summaryrefslogtreecommitdiffstats
path: root/mesonbuild/interpreterbase/interpreterbase.py
diff options
context:
space:
mode:
Diffstat (limited to 'mesonbuild/interpreterbase/interpreterbase.py')
-rw-r--r--mesonbuild/interpreterbase/interpreterbase.py604
1 files changed, 604 insertions, 0 deletions
diff --git a/mesonbuild/interpreterbase/interpreterbase.py b/mesonbuild/interpreterbase/interpreterbase.py
new file mode 100644
index 0000000..f72ddc1
--- /dev/null
+++ b/mesonbuild/interpreterbase/interpreterbase.py
@@ -0,0 +1,604 @@
+# Copyright 2016-2017 The Meson development team
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This class contains the basic functionality needed to run any interpreter
+# or an interpreter-based tool.
+from __future__ import annotations
+
+from .. import mparser, mesonlib
+from .. import environment
+
+from .baseobjects import (
+ InterpreterObject,
+ MesonInterpreterObject,
+ MutableInterpreterObject,
+ InterpreterObjectTypeVar,
+ ObjectHolder,
+ IterableObject,
+
+ HoldableTypes,
+)
+
+from .exceptions import (
+ InterpreterException,
+ InvalidCode,
+ InvalidArguments,
+ SubdirDoneRequest,
+ ContinueRequest,
+ BreakRequest
+)
+
+from .decorators import FeatureNew
+from .disabler import Disabler, is_disabled
+from .helpers import default_resolve_key, flatten, resolve_second_level_holders
+from .operator import MesonOperator
+from ._unholder import _unholder
+
+import os, copy, re, pathlib
+import typing as T
+import textwrap
+
+if T.TYPE_CHECKING:
+ from .baseobjects import SubProject, TYPE_kwargs, TYPE_var
+ from ..interpreter import Interpreter
+
+ HolderMapType = T.Dict[
+ T.Union[
+ T.Type[mesonlib.HoldableObject],
+ T.Type[int],
+ T.Type[bool],
+ T.Type[str],
+ T.Type[list],
+ T.Type[dict],
+ ],
+ # For some reason, this has to be a callable and can't just be ObjectHolder[InterpreterObjectTypeVar]
+ T.Callable[[InterpreterObjectTypeVar, 'Interpreter'], ObjectHolder[InterpreterObjectTypeVar]]
+ ]
+
+ FunctionType = T.Dict[
+ str,
+ T.Callable[[mparser.BaseNode, T.List[TYPE_var], T.Dict[str, TYPE_var]], TYPE_var]
+ ]
+
+class InterpreterBase:
+ def __init__(self, source_root: str, subdir: str, subproject: 'SubProject'):
+ self.source_root = source_root
+ self.funcs: FunctionType = {}
+ self.builtin: T.Dict[str, InterpreterObject] = {}
+ # Holder maps store a mapping from an HoldableObject to a class ObjectHolder
+ self.holder_map: HolderMapType = {}
+ self.bound_holder_map: HolderMapType = {}
+ self.subdir = subdir
+ self.root_subdir = subdir
+ self.subproject = subproject
+ self.variables: T.Dict[str, InterpreterObject] = {}
+ self.argument_depth = 0
+ self.current_lineno = -1
+ # Current node set during a function call. This can be used as location
+ # when printing a warning message during a method call.
+ self.current_node = None # type: mparser.BaseNode
+ # This is set to `version_string` when this statement is evaluated:
+ # meson.version().compare_version(version_string)
+ # If it was part of a if-clause, it is used to temporally override the
+ # current meson version target within that if-block.
+ self.tmp_meson_version = None # type: T.Optional[str]
+
+ def load_root_meson_file(self) -> None:
+ mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename)
+ if not os.path.isfile(mesonfile):
+ raise InvalidArguments(f'Missing Meson file in {mesonfile}')
+ with open(mesonfile, encoding='utf-8') as mf:
+ code = mf.read()
+ if code.isspace():
+ raise InvalidCode('Builder file is empty.')
+ assert isinstance(code, str)
+ try:
+ self.ast = mparser.Parser(code, mesonfile).parse()
+ except mesonlib.MesonException as me:
+ me.file = mesonfile
+ raise me
+
+ def parse_project(self) -> None:
+ """
+ Parses project() and initializes languages, compilers etc. Do this
+ early because we need this before we parse the rest of the AST.
+ """
+ self.evaluate_codeblock(self.ast, end=1)
+
+ def sanity_check_ast(self) -> None:
+ if not isinstance(self.ast, mparser.CodeBlockNode):
+ raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.')
+ if not self.ast.lines:
+ raise InvalidCode('No statements in code.')
+ first = self.ast.lines[0]
+ if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project':
+ p = pathlib.Path(self.source_root).resolve()
+ found = p
+ for parent in p.parents:
+ if (parent / 'meson.build').is_file():
+ with open(parent / 'meson.build', encoding='utf-8') as f:
+ if f.readline().startswith('project('):
+ found = parent
+ break
+ else:
+ break
+
+ error = 'first statement must be a call to project()'
+ if found != p:
+ raise InvalidCode(f'Not the project root: {error}\n\nDid you mean to run meson from the directory: "{found}"?')
+ else:
+ raise InvalidCode(f'Invalid source tree: {error}')
+
+ def run(self) -> None:
+ # Evaluate everything after the first line, which is project() because
+ # we already parsed that in self.parse_project()
+ try:
+ self.evaluate_codeblock(self.ast, start=1)
+ except SubdirDoneRequest:
+ pass
+
+ def evaluate_codeblock(self, node: mparser.CodeBlockNode, start: int = 0, end: T.Optional[int] = None) -> None:
+ if node is None:
+ return
+ if not isinstance(node, mparser.CodeBlockNode):
+ e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.')
+ e.lineno = node.lineno
+ e.colno = node.colno
+ raise e
+ statements = node.lines[start:end]
+ i = 0
+ while i < len(statements):
+ cur = statements[i]
+ try:
+ self.current_lineno = cur.lineno
+ self.evaluate_statement(cur)
+ except Exception as e:
+ if getattr(e, 'lineno', None) is None:
+ # We are doing the equivalent to setattr here and mypy does not like it
+ e.lineno = cur.lineno # type: ignore
+ e.colno = cur.colno # type: ignore
+ e.file = os.path.join(self.source_root, self.subdir, environment.build_filename) # type: ignore
+ raise e
+ i += 1 # In THE FUTURE jump over blocks and stuff.
+
+ def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[InterpreterObject]:
+ self.current_node = cur
+ if isinstance(cur, mparser.FunctionNode):
+ return self.function_call(cur)
+ elif isinstance(cur, mparser.AssignmentNode):
+ self.assignment(cur)
+ elif isinstance(cur, mparser.MethodNode):
+ return self.method_call(cur)
+ elif isinstance(cur, mparser.StringNode):
+ return self._holderify(cur.value)
+ elif isinstance(cur, mparser.BooleanNode):
+ return self._holderify(cur.value)
+ elif isinstance(cur, mparser.IfClauseNode):
+ return self.evaluate_if(cur)
+ elif isinstance(cur, mparser.IdNode):
+ return self.get_variable(cur.value)
+ elif isinstance(cur, mparser.ComparisonNode):
+ return self.evaluate_comparison(cur)
+ elif isinstance(cur, mparser.ArrayNode):
+ return self.evaluate_arraystatement(cur)
+ elif isinstance(cur, mparser.DictNode):
+ return self.evaluate_dictstatement(cur)
+ elif isinstance(cur, mparser.NumberNode):
+ return self._holderify(cur.value)
+ elif isinstance(cur, mparser.AndNode):
+ return self.evaluate_andstatement(cur)
+ elif isinstance(cur, mparser.OrNode):
+ return self.evaluate_orstatement(cur)
+ elif isinstance(cur, mparser.NotNode):
+ return self.evaluate_notstatement(cur)
+ elif isinstance(cur, mparser.UMinusNode):
+ return self.evaluate_uminusstatement(cur)
+ elif isinstance(cur, mparser.ArithmeticNode):
+ return self.evaluate_arithmeticstatement(cur)
+ elif isinstance(cur, mparser.ForeachClauseNode):
+ self.evaluate_foreach(cur)
+ elif isinstance(cur, mparser.PlusAssignmentNode):
+ self.evaluate_plusassign(cur)
+ elif isinstance(cur, mparser.IndexNode):
+ return self.evaluate_indexing(cur)
+ elif isinstance(cur, mparser.TernaryNode):
+ return self.evaluate_ternary(cur)
+ elif isinstance(cur, mparser.FormatStringNode):
+ if isinstance(cur, mparser.MultilineFormatStringNode):
+ return self.evaluate_multiline_fstring(cur)
+ else:
+ return self.evaluate_fstring(cur)
+ elif isinstance(cur, mparser.ContinueNode):
+ raise ContinueRequest()
+ elif isinstance(cur, mparser.BreakNode):
+ raise BreakRequest()
+ else:
+ raise InvalidCode("Unknown statement.")
+ return None
+
+ def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> InterpreterObject:
+ (arguments, kwargs) = self.reduce_arguments(cur.args)
+ if len(kwargs) > 0:
+ raise InvalidCode('Keyword arguments are invalid in array construction.')
+ return self._holderify([_unholder(x) for x in arguments])
+
+ @FeatureNew('dict', '0.47.0')
+ def evaluate_dictstatement(self, cur: mparser.DictNode) -> InterpreterObject:
+ def resolve_key(key: mparser.BaseNode) -> str:
+ if not isinstance(key, mparser.StringNode):
+ FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject)
+ str_key = _unholder(self.evaluate_statement(key))
+ if not isinstance(str_key, str):
+ raise InvalidArguments('Key must be a string')
+ return str_key
+ arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}')
+ assert not arguments
+ return self._holderify({k: _unholder(v) for k, v in kwargs.items()})
+
+ def evaluate_notstatement(self, cur: mparser.NotNode) -> InterpreterObject:
+ v = self.evaluate_statement(cur.value)
+ if isinstance(v, Disabler):
+ return v
+ return self._holderify(v.operator_call(MesonOperator.NOT, None))
+
+ def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]:
+ assert isinstance(node, mparser.IfClauseNode)
+ for i in node.ifs:
+ # Reset self.tmp_meson_version to know if it gets set during this
+ # statement evaluation.
+ self.tmp_meson_version = None
+ result = self.evaluate_statement(i.condition)
+ if isinstance(result, Disabler):
+ return result
+ if not isinstance(result, InterpreterObject):
+ raise mesonlib.MesonBugException(f'Argument to not ({result}) is not an InterpreterObject but {type(result).__name__}.')
+ res = result.operator_call(MesonOperator.BOOL, None)
+ if not isinstance(res, bool):
+ raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.')
+ if res:
+ prev_meson_version = mesonlib.project_meson_versions[self.subproject]
+ if self.tmp_meson_version:
+ mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version
+ try:
+ self.evaluate_codeblock(i.block)
+ finally:
+ mesonlib.project_meson_versions[self.subproject] = prev_meson_version
+ return None
+ if not isinstance(node.elseblock, mparser.EmptyNode):
+ self.evaluate_codeblock(node.elseblock)
+ return None
+
+ def evaluate_comparison(self, node: mparser.ComparisonNode) -> InterpreterObject:
+ val1 = self.evaluate_statement(node.left)
+ if isinstance(val1, Disabler):
+ return val1
+ val2 = self.evaluate_statement(node.right)
+ if isinstance(val2, Disabler):
+ return val2
+
+ # New code based on InterpreterObjects
+ operator = {
+ 'in': MesonOperator.IN,
+ 'notin': MesonOperator.NOT_IN,
+ '==': MesonOperator.EQUALS,
+ '!=': MesonOperator.NOT_EQUALS,
+ '>': MesonOperator.GREATER,
+ '<': MesonOperator.LESS,
+ '>=': MesonOperator.GREATER_EQUALS,
+ '<=': MesonOperator.LESS_EQUALS,
+ }[node.ctype]
+
+ # Check if the arguments should be reversed for simplicity (this essentially converts `in` to `contains`)
+ if operator in (MesonOperator.IN, MesonOperator.NOT_IN):
+ val1, val2 = val2, val1
+
+ val1.current_node = node
+ return self._holderify(val1.operator_call(operator, _unholder(val2)))
+
+ def evaluate_andstatement(self, cur: mparser.AndNode) -> InterpreterObject:
+ l = self.evaluate_statement(cur.left)
+ if isinstance(l, Disabler):
+ return l
+ l_bool = l.operator_call(MesonOperator.BOOL, None)
+ if not l_bool:
+ return self._holderify(l_bool)
+ r = self.evaluate_statement(cur.right)
+ if isinstance(r, Disabler):
+ return r
+ return self._holderify(r.operator_call(MesonOperator.BOOL, None))
+
+ def evaluate_orstatement(self, cur: mparser.OrNode) -> InterpreterObject:
+ l = self.evaluate_statement(cur.left)
+ if isinstance(l, Disabler):
+ return l
+ l_bool = l.operator_call(MesonOperator.BOOL, None)
+ if l_bool:
+ return self._holderify(l_bool)
+ r = self.evaluate_statement(cur.right)
+ if isinstance(r, Disabler):
+ return r
+ return self._holderify(r.operator_call(MesonOperator.BOOL, None))
+
+ def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> InterpreterObject:
+ v = self.evaluate_statement(cur.value)
+ if isinstance(v, Disabler):
+ return v
+ v.current_node = cur
+ return self._holderify(v.operator_call(MesonOperator.UMINUS, None))
+
+ def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> InterpreterObject:
+ l = self.evaluate_statement(cur.left)
+ if isinstance(l, Disabler):
+ return l
+ r = self.evaluate_statement(cur.right)
+ if isinstance(r, Disabler):
+ return r
+
+ mapping: T.Dict[str, MesonOperator] = {
+ 'add': MesonOperator.PLUS,
+ 'sub': MesonOperator.MINUS,
+ 'mul': MesonOperator.TIMES,
+ 'div': MesonOperator.DIV,
+ 'mod': MesonOperator.MOD,
+ }
+ l.current_node = cur
+ res = l.operator_call(mapping[cur.operation], _unholder(r))
+ return self._holderify(res)
+
+ def evaluate_ternary(self, node: mparser.TernaryNode) -> T.Optional[InterpreterObject]:
+ assert isinstance(node, mparser.TernaryNode)
+ result = self.evaluate_statement(node.condition)
+ if isinstance(result, Disabler):
+ return result
+ result.current_node = node
+ result_bool = result.operator_call(MesonOperator.BOOL, None)
+ if result_bool:
+ return self.evaluate_statement(node.trueblock)
+ else:
+ return self.evaluate_statement(node.falseblock)
+
+ @FeatureNew('multiline format strings', '0.63.0')
+ def evaluate_multiline_fstring(self, node: mparser.MultilineFormatStringNode) -> InterpreterObject:
+ return self.evaluate_fstring(node)
+
+ @FeatureNew('format strings', '0.58.0')
+ def evaluate_fstring(self, node: mparser.FormatStringNode) -> InterpreterObject:
+ assert isinstance(node, mparser.FormatStringNode)
+
+ def replace(match: T.Match[str]) -> str:
+ var = str(match.group(1))
+ try:
+ val = _unholder(self.variables[var])
+ if not isinstance(val, (str, int, float, bool)):
+ raise InvalidCode(f'Identifier "{var}" does not name a formattable variable ' +
+ '(has to be an integer, a string, a floating point number or a boolean).')
+
+ return str(val)
+ except KeyError:
+ raise InvalidCode(f'Identifier "{var}" does not name a variable.')
+
+ res = re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value)
+ return self._holderify(res)
+
+ def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None:
+ assert isinstance(node, mparser.ForeachClauseNode)
+ items = self.evaluate_statement(node.items)
+ if not isinstance(items, IterableObject):
+ raise InvalidArguments('Items of foreach loop do not support iterating')
+
+ tsize = items.iter_tuple_size()
+ if len(node.varnames) != (tsize or 1):
+ raise InvalidArguments(f'Foreach expects exactly {tsize or 1} variables for iterating over objects of type {items.display_name()}')
+
+ for i in items.iter_self():
+ if tsize is None:
+ if isinstance(i, tuple):
+ raise mesonlib.MesonBugException(f'Iteration of {items} returned a tuple even though iter_tuple_size() is None')
+ self.set_variable(node.varnames[0], self._holderify(i))
+ else:
+ if not isinstance(i, tuple):
+ raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
+ if len(i) != tsize:
+ raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
+ for j in range(tsize):
+ self.set_variable(node.varnames[j], self._holderify(i[j]))
+ try:
+ self.evaluate_codeblock(node.block)
+ except ContinueRequest:
+ continue
+ except BreakRequest:
+ break
+
+ def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None:
+ assert isinstance(node, mparser.PlusAssignmentNode)
+ varname = node.var_name
+ addition = self.evaluate_statement(node.value)
+
+ # Remember that all variables are immutable. We must always create a
+ # full new variable and then assign it.
+ old_variable = self.get_variable(varname)
+ old_variable.current_node = node
+ new_value = self._holderify(old_variable.operator_call(MesonOperator.PLUS, _unholder(addition)))
+ self.set_variable(varname, new_value)
+
+ def evaluate_indexing(self, node: mparser.IndexNode) -> InterpreterObject:
+ assert isinstance(node, mparser.IndexNode)
+ iobject = self.evaluate_statement(node.iobject)
+ if isinstance(iobject, Disabler):
+ return iobject
+ index = _unholder(self.evaluate_statement(node.index))
+
+ if iobject is None:
+ raise InterpreterException('Tried to evaluate indexing on None')
+ iobject.current_node = node
+ return self._holderify(iobject.operator_call(MesonOperator.INDEX, index))
+
+ def function_call(self, node: mparser.FunctionNode) -> T.Optional[InterpreterObject]:
+ func_name = node.func_name
+ (h_posargs, h_kwargs) = self.reduce_arguments(node.args)
+ (posargs, kwargs) = self._unholder_args(h_posargs, h_kwargs)
+ if is_disabled(posargs, kwargs) and func_name not in {'get_variable', 'set_variable', 'unset_variable', 'is_disabler'}:
+ return Disabler()
+ if func_name in self.funcs:
+ func = self.funcs[func_name]
+ func_args = posargs
+ if not getattr(func, 'no-args-flattening', False):
+ func_args = flatten(posargs)
+ if not getattr(func, 'no-second-level-holder-flattening', False):
+ func_args, kwargs = resolve_second_level_holders(func_args, kwargs)
+ res = func(node, func_args, kwargs)
+ return self._holderify(res) if res is not None else None
+ else:
+ self.unknown_function_called(func_name)
+ return None
+
+ def method_call(self, node: mparser.MethodNode) -> T.Optional[InterpreterObject]:
+ invokable = node.source_object
+ obj: T.Optional[InterpreterObject]
+ if isinstance(invokable, mparser.IdNode):
+ object_display_name = f'variable "{invokable.value}"'
+ obj = self.get_variable(invokable.value)
+ else:
+ object_display_name = invokable.__class__.__name__
+ obj = self.evaluate_statement(invokable)
+ method_name = node.name
+ (h_args, h_kwargs) = self.reduce_arguments(node.args)
+ (args, kwargs) = self._unholder_args(h_args, h_kwargs)
+ if is_disabled(args, kwargs):
+ return Disabler()
+ if not isinstance(obj, InterpreterObject):
+ raise InvalidArguments(f'{object_display_name} is not callable.')
+ # TODO: InterpreterBase **really** shouldn't be in charge of checking this
+ if method_name == 'extract_objects':
+ if isinstance(obj, ObjectHolder):
+ self.validate_extraction(obj.held_object)
+ elif not isinstance(obj, Disabler):
+ raise InvalidArguments(f'Invalid operation "extract_objects" on {object_display_name} of type {type(obj).__name__}')
+ obj.current_node = node
+ res = obj.method_call(method_name, args, kwargs)
+ return self._holderify(res) if res is not None else None
+
+ def _holderify(self, res: T.Union[TYPE_var, InterpreterObject]) -> InterpreterObject:
+ if isinstance(res, HoldableTypes):
+ # Always check for an exact match first.
+ cls = self.holder_map.get(type(res), None)
+ if cls is not None:
+ # Casts to Interpreter are required here since an assertion would
+ # not work for the `ast` module.
+ return cls(res, T.cast('Interpreter', self))
+ # Try the boundary types next.
+ for typ, cls in self.bound_holder_map.items():
+ if isinstance(res, typ):
+ return cls(res, T.cast('Interpreter', self))
+ raise mesonlib.MesonBugException(f'Object {res} of type {type(res).__name__} is neither in self.holder_map nor self.bound_holder_map.')
+ elif isinstance(res, ObjectHolder):
+ raise mesonlib.MesonBugException(f'Returned object {res} of type {type(res).__name__} is an object holder.')
+ elif isinstance(res, MesonInterpreterObject):
+ return res
+ raise mesonlib.MesonBugException(f'Unknown returned object {res} of type {type(res).__name__} in the parameters.')
+
+ def _unholder_args(self,
+ args: T.List[InterpreterObject],
+ kwargs: T.Dict[str, InterpreterObject]) -> T.Tuple[T.List[TYPE_var], TYPE_kwargs]:
+ return [_unholder(x) for x in args], {k: _unholder(v) for k, v in kwargs.items()}
+
+ def unknown_function_called(self, func_name: str) -> None:
+ raise InvalidCode(f'Unknown function "{func_name}".')
+
+ def reduce_arguments(
+ self,
+ args: mparser.ArgumentNode,
+ key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key,
+ duplicate_key_error: T.Optional[str] = None,
+ ) -> T.Tuple[
+ T.List[InterpreterObject],
+ T.Dict[str, InterpreterObject]
+ ]:
+ assert isinstance(args, mparser.ArgumentNode)
+ if args.incorrect_order():
+ raise InvalidArguments('All keyword arguments must be after positional arguments.')
+ self.argument_depth += 1
+ reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments]
+ if any(x is None for x in reduced_pos):
+ raise InvalidArguments('At least one value in the arguments is void.')
+ reduced_kw: T.Dict[str, InterpreterObject] = {}
+ for key, val in args.kwargs.items():
+ reduced_key = key_resolver(key)
+ assert isinstance(val, mparser.BaseNode)
+ reduced_val = self.evaluate_statement(val)
+ if reduced_val is None:
+ raise InvalidArguments(f'Value of key {reduced_key} is void.')
+ if duplicate_key_error and reduced_key in reduced_kw:
+ raise InvalidArguments(duplicate_key_error.format(reduced_key))
+ reduced_kw[reduced_key] = reduced_val
+ self.argument_depth -= 1
+ final_kw = self.expand_default_kwargs(reduced_kw)
+ return reduced_pos, final_kw
+
+ def expand_default_kwargs(self, kwargs: T.Dict[str, T.Optional[InterpreterObject]]) -> T.Dict[str, T.Optional[InterpreterObject]]:
+ if 'kwargs' not in kwargs:
+ return kwargs
+ to_expand = _unholder(kwargs.pop('kwargs'))
+ if not isinstance(to_expand, dict):
+ raise InterpreterException('Value of "kwargs" must be dictionary.')
+ if 'kwargs' in to_expand:
+ raise InterpreterException('Kwargs argument must not contain a "kwargs" entry. Points for thinking meta, though. :P')
+ for k, v in to_expand.items():
+ if k in kwargs:
+ raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.')
+ kwargs[k] = self._holderify(v)
+ return kwargs
+
+ def assignment(self, node: mparser.AssignmentNode) -> None:
+ assert isinstance(node, mparser.AssignmentNode)
+ if self.argument_depth != 0:
+ raise InvalidArguments(textwrap.dedent('''\
+ Tried to assign values inside an argument list.
+ To specify a keyword argument, use : instead of =.
+ '''))
+ var_name = node.var_name
+ if not isinstance(var_name, str):
+ raise InvalidArguments('Tried to assign value to a non-variable.')
+ value = self.evaluate_statement(node.value)
+ # For mutable objects we need to make a copy on assignment
+ if isinstance(value, MutableInterpreterObject):
+ value = copy.deepcopy(value)
+ self.set_variable(var_name, value)
+
+ def set_variable(self, varname: str, variable: T.Union[TYPE_var, InterpreterObject], *, holderify: bool = False) -> None:
+ if variable is None:
+ raise InvalidCode('Can not assign None to variable.')
+ if holderify:
+ variable = self._holderify(variable)
+ else:
+ # Ensure that we are always storing ObjectHolders
+ if not isinstance(variable, InterpreterObject):
+ raise mesonlib.MesonBugException(f'set_variable in InterpreterBase called with a non InterpreterObject {variable} of type {type(variable).__name__}')
+ if not isinstance(varname, str):
+ raise InvalidCode('First argument to set_variable must be a string.')
+ if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None:
+ raise InvalidCode('Invalid variable name: ' + varname)
+ if varname in self.builtin:
+ raise InvalidCode(f'Tried to overwrite internal variable "{varname}"')
+ self.variables[varname] = variable
+
+ def get_variable(self, varname: str) -> InterpreterObject:
+ if varname in self.builtin:
+ return self.builtin[varname]
+ if varname in self.variables:
+ return self.variables[varname]
+ raise InvalidCode(f'Unknown variable "{varname}".')
+
+ def validate_extraction(self, buildtarget: mesonlib.HoldableObject) -> None:
+ raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)')