summaryrefslogtreecommitdiffstats
path: root/collectors/python.d.plugin/changefinder/changefinder.chart.py
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--collectors/python.d.plugin/changefinder/changefinder.chart.py185
1 files changed, 185 insertions, 0 deletions
diff --git a/collectors/python.d.plugin/changefinder/changefinder.chart.py b/collectors/python.d.plugin/changefinder/changefinder.chart.py
new file mode 100644
index 0000000..c18e560
--- /dev/null
+++ b/collectors/python.d.plugin/changefinder/changefinder.chart.py
@@ -0,0 +1,185 @@
+# -*- coding: utf-8 -*-
+# Description: changefinder netdata python.d module
+# Author: andrewm4894
+# SPDX-License-Identifier: GPL-3.0-or-later
+
+from json import loads
+import re
+
+from bases.FrameworkServices.UrlService import UrlService
+
+import numpy as np
+import changefinder
+from scipy.stats import percentileofscore
+
+update_every = 5
+disabled_by_default = True
+
+ORDER = [
+ 'scores',
+ 'flags'
+]
+
+CHARTS = {
+ 'scores': {
+ 'options': [None, 'ChangeFinder', 'score', 'Scores', 'scores', 'line'],
+ 'lines': []
+ },
+ 'flags': {
+ 'options': [None, 'ChangeFinder', 'flag', 'Flags', 'flags', 'stacked'],
+ 'lines': []
+ }
+}
+
+DEFAULT_PROTOCOL = 'http'
+DEFAULT_HOST = '127.0.0.1:19999'
+DEFAULT_CHARTS_REGEX = 'system.*'
+DEFAULT_MODE = 'per_chart'
+DEFAULT_CF_R = 0.5
+DEFAULT_CF_ORDER = 1
+DEFAULT_CF_SMOOTH = 15
+DEFAULT_CF_DIFF = False
+DEFAULT_CF_THRESHOLD = 99
+DEFAULT_N_SCORE_SAMPLES = 14400
+DEFAULT_SHOW_SCORES = False
+
+
+class Service(UrlService):
+ def __init__(self, configuration=None, name=None):
+ UrlService.__init__(self, configuration=configuration, name=name)
+ self.order = ORDER
+ self.definitions = CHARTS
+ self.protocol = self.configuration.get('protocol', DEFAULT_PROTOCOL)
+ self.host = self.configuration.get('host', DEFAULT_HOST)
+ self.url = '{}://{}/api/v1/allmetrics?format=json'.format(self.protocol, self.host)
+ self.charts_regex = re.compile(self.configuration.get('charts_regex', DEFAULT_CHARTS_REGEX))
+ self.charts_to_exclude = self.configuration.get('charts_to_exclude', '').split(',')
+ self.mode = self.configuration.get('mode', DEFAULT_MODE)
+ self.n_score_samples = int(self.configuration.get('n_score_samples', DEFAULT_N_SCORE_SAMPLES))
+ self.show_scores = int(self.configuration.get('show_scores', DEFAULT_SHOW_SCORES))
+ self.cf_r = float(self.configuration.get('cf_r', DEFAULT_CF_R))
+ self.cf_order = int(self.configuration.get('cf_order', DEFAULT_CF_ORDER))
+ self.cf_smooth = int(self.configuration.get('cf_smooth', DEFAULT_CF_SMOOTH))
+ self.cf_diff = bool(self.configuration.get('cf_diff', DEFAULT_CF_DIFF))
+ self.cf_threshold = float(self.configuration.get('cf_threshold', DEFAULT_CF_THRESHOLD))
+ self.collected_dims = {'scores': set(), 'flags': set()}
+ self.models = {}
+ self.x_latest = {}
+ self.scores_latest = {}
+ self.scores_samples = {}
+
+ def get_score(self, x, model):
+ """Update the score for the model based on most recent data, flag if it's percentile passes self.cf_threshold.
+ """
+
+ # get score
+ if model not in self.models:
+ # initialise empty model if needed
+ self.models[model] = changefinder.ChangeFinder(r=self.cf_r, order=self.cf_order, smooth=self.cf_smooth)
+ # if the update for this step fails then just fallback to last known score
+ try:
+ score = self.models[model].update(x)
+ self.scores_latest[model] = score
+ except Exception as _:
+ score = self.scores_latest.get(model, 0)
+ score = 0 if np.isnan(score) else score
+
+ # update sample scores used to calculate percentiles
+ if model in self.scores_samples:
+ self.scores_samples[model].append(score)
+ else:
+ self.scores_samples[model] = [score]
+ self.scores_samples[model] = self.scores_samples[model][-self.n_score_samples:]
+
+ # convert score to percentile
+ score = percentileofscore(self.scores_samples[model], score)
+
+ # flag based on score percentile
+ flag = 1 if score >= self.cf_threshold else 0
+
+ return score, flag
+
+ def validate_charts(self, chart, data, algorithm='absolute', multiplier=1, divisor=1):
+ """If dimension not in chart then add it.
+ """
+ if not self.charts:
+ return
+
+ for dim in data:
+ if dim not in self.collected_dims[chart]:
+ self.collected_dims[chart].add(dim)
+ self.charts[chart].add_dimension([dim, dim, algorithm, multiplier, divisor])
+
+ for dim in list(self.collected_dims[chart]):
+ if dim not in data:
+ self.collected_dims[chart].remove(dim)
+ self.charts[chart].del_dimension(dim, hide=False)
+
+ def diff(self, x, model):
+ """Take difference of data.
+ """
+ x_diff = x - self.x_latest.get(model, 0)
+ self.x_latest[model] = x
+ x = x_diff
+ return x
+
+ def _get_data(self):
+
+ # pull data from self.url
+ raw_data = self._get_raw_data()
+ if raw_data is None:
+ return None
+
+ raw_data = loads(raw_data)
+
+ # filter to just the data for the charts specified
+ charts_in_scope = list(filter(self.charts_regex.match, raw_data.keys()))
+ charts_in_scope = [c for c in charts_in_scope if c not in self.charts_to_exclude]
+
+ data_score = {}
+ data_flag = {}
+
+ # process each chart
+ for chart in charts_in_scope:
+
+ if self.mode == 'per_chart':
+
+ # average dims on chart and run changefinder on that average
+ x = [raw_data[chart]['dimensions'][dim]['value'] for dim in raw_data[chart]['dimensions']]
+ x = [x for x in x if x is not None]
+
+ if len(x) > 0:
+
+ x = sum(x) / len(x)
+ x = self.diff(x, chart) if self.cf_diff else x
+
+ score, flag = self.get_score(x, chart)
+ if self.show_scores:
+ data_score['{}_score'.format(chart)] = score * 100
+ data_flag[chart] = flag
+
+ else:
+
+ # run changefinder on each individual dim
+ for dim in raw_data[chart]['dimensions']:
+
+ chart_dim = '{}|{}'.format(chart, dim)
+
+ x = raw_data[chart]['dimensions'][dim]['value']
+ x = x if x else 0
+ x = self.diff(x, chart_dim) if self.cf_diff else x
+
+ score, flag = self.get_score(x, chart_dim)
+ if self.show_scores:
+ data_score['{}_score'.format(chart_dim)] = score * 100
+ data_flag[chart_dim] = flag
+
+ self.validate_charts('flags', data_flag)
+
+ if self.show_scores & len(data_score) > 0:
+ data_score['average_score'] = sum(data_score.values()) / len(data_score)
+ self.validate_charts('scores', data_score, divisor=100)
+
+ data = {**data_score, **data_flag}
+
+ return data