summaryrefslogtreecommitdiffstats
path: root/database/README.md
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--database/README.md147
1 files changed, 147 insertions, 0 deletions
diff --git a/database/README.md b/database/README.md
new file mode 100644
index 0000000..1453f9b
--- /dev/null
+++ b/database/README.md
@@ -0,0 +1,147 @@
+<!--
+title: "Database"
+description: "The Netdata Agent leverages multiple, user-configurable time-series databases that use RAM and/or disk to store metrics on any type of node."
+custom_edit_url: https://github.com/netdata/netdata/edit/master/database/README.md
+-->
+
+# Database
+
+Netdata is fully capable of long-term metrics storage, at per-second granularity, via its default database engine
+(`dbengine`). But to remain as flexible as possible, Netdata supports several storage options:
+
+1. `dbengine`, (the default) data are in database files. The [Database Engine](/database/engine/README.md) works like a
+ traditional database. There is some amount of RAM dedicated to data caching and indexing and the rest of the data
+ reside compressed on disk. The number of history entries is not fixed in this case, but depends on the configured
+ disk space and the effective compression ratio of the data stored. This is the **only mode** that supports changing
+ the data collection update frequency (`update every`) **without losing** the previously stored metrics. For more
+ details see [here](/database/engine/README.md).
+
+2. `ram`, data are purely in memory. Data are never saved on disk. This mode uses `mmap()` and supports [KSM](#ksm).
+
+3. `save`, data are only in RAM while Netdata runs and are saved to / loaded from disk on Netdata restart. It also
+ uses `mmap()` and supports [KSM](#ksm).
+
+4. `map`, data are in memory mapped files. This works like the swap. When Netdata writes data on its memory, the Linux
+ kernel marks the related memory pages as dirty and automatically starts updating them on disk. Unfortunately we
+ cannot control how frequently this works. The Linux kernel uses exactly the same algorithm it uses for its swap
+ memory. This mode uses `mmap()` but does not support [KSM](#ksm). _Keep in mind though, this option will have a
+ constant write on your disk._
+
+5. `alloc`, like `ram` but it uses `calloc()` and does not support [KSM](#ksm). This mode is the fallback for all others
+ except `none`.
+
+6. `none`, without a database (collected metrics can only be streamed to another Netdata).
+
+## Which database mode to use
+
+The default mode `[db].mode = dbengine` has been designed to scale for longer retentions and is the only mode suitable
+for parent Agents in the _Parent - Child_ setups
+
+The other available database modes are designed to minimize resource utilization and should only be considered on
+[Parent - Child](/docs/metrics-storage-management/how-streaming-works.mdx) setups at the children side and only when the
+resource constraints are very strict.
+
+So,
+
+- On a single node setup, use `[db].mode = dbengine`.
+- On a [Parent - Child](/docs/metrics-storage-management/how-streaming-works.mdx) setup, use `[db].mode = dbengine` on the
+ parent to increase retention, a more resource efficient mode like, `dbengine` with light retention settings, and
+ `save`, `ram` or `none` modes for the children to minimize resource utilization.
+
+## Choose your database mode
+
+You can select the database mode by editing `netdata.conf` and setting:
+
+```conf
+[db]
+ # dbengine (default), ram, save (the default if dbengine not available), map (swap like), none, alloc
+ mode = dbengine
+```
+
+## Netdata Longer Metrics Retention
+
+Metrics retention is controlled only by the disk space allocated to storing metrics. But it also affects the memory and
+CPU required by the agent to query longer timeframes.
+
+Since Netdata Agents usually run on the edge, on production systems, Netdata Agent **parents** should be considered.
+When having a [**parent - child**](/docs/metrics-storage-management/how-streaming-works.mdx) setup, the child (the
+Netdata Agent running on a production system) delegates all of its functions, including longer metrics retention and
+querying, to the parent node that can dedicate more resources to this task. A single Netdata Agent parent can centralize
+multiple children Netdata Agents (dozens, hundreds, or even thousands depending on its available resources).
+
+## Running Netdata on embedded devices
+
+Embedded devices typically have very limited RAM resources available.
+
+There are two settings for you to configure:
+
+1. `[db].update every`, which controls the data collection frequency
+2. `[db].retention`, which controls the size of the database in memory (except for `[db].mode = dbengine`)
+
+By default `[db].update every = 1` and `[db].retention = 3600`. This gives you an hour of data with per second updates.
+
+If you set `[db].update every = 2` and `[db].retention = 1800`, you will still have an hour of data, but collected once
+every 2 seconds. This will **cut in half** both CPU and RAM resources consumed by Netdata. Of course experiment a bit to find the right setting.
+On very weak devices you might have to use `[db].update every = 5` and `[db].retention = 720` (still 1 hour of data, but
+1/5 of the CPU and RAM resources).
+
+You can also disable [data collection plugins](/collectors/README.md) that you don't need. Disabling such plugins will also
+free both CPU and RAM resources.
+
+## Memory optimizations
+
+### KSM
+
+KSM performs memory deduplication by scanning through main memory for physical pages that have identical content, and
+identifies the virtual pages that are mapped to those physical pages. It leaves one page unchanged, and re-maps each
+duplicate page to point to the same physical page. Netdata offers all of its in-memory database to kernel for
+deduplication.
+
+In the past, KSM has been criticized for consuming a lot of CPU resources. This is true when KSM is used for
+deduplicating certain applications, but it is not true for Netdata. Agent's memory is written very infrequently
+(if you have 24 hours of metrics in Netdata, each byte at the in-memory database will be updated just once per day). KSM
+is a solution that will provide 60+% memory savings to Netdata.
+
+### Enable KSM in kernel
+
+To enable KSM in kernel, you need to run a kernel compiled with the following:
+
+```sh
+CONFIG_KSM=y
+```
+
+When KSM is enabled at the kernel, it is just available for the user to enable it.
+
+If you build a kernel with `CONFIG_KSM=y`, you will just get a few files in `/sys/kernel/mm/ksm`. Nothing else
+happens. There is no performance penalty (apart from the memory this code occupies into the kernel).
+
+The files that `CONFIG_KSM=y` offers include:
+
+- `/sys/kernel/mm/ksm/run` by default `0`. You have to set this to `1` for the kernel to spawn `ksmd`.
+- `/sys/kernel/mm/ksm/sleep_millisecs`, by default `20`. The frequency ksmd should evaluate memory for deduplication.
+- `/sys/kernel/mm/ksm/pages_to_scan`, by default `100`. The amount of pages ksmd will evaluate on each run.
+
+So, by default `ksmd` is just disabled. It will not harm performance and the user/admin can control the CPU resources
+they are willing to have used by `ksmd`.
+
+### Run `ksmd` kernel daemon
+
+To activate / run `ksmd,` you need to run the following:
+
+```sh
+echo 1 >/sys/kernel/mm/ksm/run
+echo 1000 >/sys/kernel/mm/ksm/sleep_millisecs
+```
+
+With these settings, ksmd does not even appear in the running process list (it will run once per second and evaluate 100
+pages for de-duplication).
+
+Put the above lines in your boot sequence (`/etc/rc.local` or equivalent) to have `ksmd` run at boot.
+
+### Monitoring Kernel Memory de-duplication performance
+
+Netdata will create charts for kernel memory de-duplication performance, like this:
+
+![image](https://cloud.githubusercontent.com/assets/2662304/11998786/eb23ae54-aab6-11e5-94d4-e848e8a5c56a.png)
+
+