summaryrefslogtreecommitdiffstats
path: root/ml/ml.cc
diff options
context:
space:
mode:
Diffstat (limited to 'ml/ml.cc')
-rw-r--r--ml/ml.cc165
1 files changed, 165 insertions, 0 deletions
diff --git a/ml/ml.cc b/ml/ml.cc
new file mode 100644
index 0000000..1a7d6ae
--- /dev/null
+++ b/ml/ml.cc
@@ -0,0 +1,165 @@
+// SPDX-License-Identifier: GPL-3.0-or-later
+
+#include "Config.h"
+#include "Dimension.h"
+#include "Host.h"
+
+#include <random>
+
+using namespace ml;
+
+bool ml_capable() {
+ return true;
+}
+
+bool ml_enabled(RRDHOST *RH) {
+ if (!Cfg.EnableAnomalyDetection)
+ return false;
+
+ if (simple_pattern_matches(Cfg.SP_HostsToSkip, rrdhost_hostname(RH)))
+ return false;
+
+ return true;
+}
+
+/*
+ * Assumptions:
+ * 1) hosts outlive their sets, and sets outlive their dimensions,
+ * 2) dimensions always have a set that has a host.
+ */
+
+void ml_init(void) {
+ // Read config values
+ Cfg.readMLConfig();
+
+ if (!Cfg.EnableAnomalyDetection)
+ return;
+
+ // Generate random numbers to efficiently sample the features we need
+ // for KMeans clustering.
+ std::random_device RD;
+ std::mt19937 Gen(RD());
+
+ Cfg.RandomNums.reserve(Cfg.MaxTrainSamples);
+ for (size_t Idx = 0; Idx != Cfg.MaxTrainSamples; Idx++)
+ Cfg.RandomNums.push_back(Gen());
+}
+
+void ml_new_host(RRDHOST *RH) {
+ if (!ml_enabled(RH))
+ return;
+
+ Host *H = new Host(RH);
+ RH->ml_host = static_cast<ml_host_t>(H);
+
+ H->startAnomalyDetectionThreads();
+}
+
+void ml_delete_host(RRDHOST *RH) {
+ Host *H = static_cast<Host *>(RH->ml_host);
+ if (!H)
+ return;
+
+ H->stopAnomalyDetectionThreads();
+
+ delete H;
+ RH->ml_host = nullptr;
+}
+
+void ml_new_dimension(RRDDIM *RD) {
+ RRDSET *RS = RD->rrdset;
+
+ Host *H = static_cast<Host *>(RD->rrdset->rrdhost->ml_host);
+ if (!H)
+ return;
+
+ if (static_cast<unsigned>(RD->update_every) != H->updateEvery())
+ return;
+
+ if (simple_pattern_matches(Cfg.SP_ChartsToSkip, rrdset_name(RS)))
+ return;
+
+ Dimension *D = new Dimension(RD);
+ RD->ml_dimension = static_cast<ml_dimension_t>(D);
+ H->addDimension(D);
+}
+
+void ml_delete_dimension(RRDDIM *RD) {
+ Dimension *D = static_cast<Dimension *>(RD->ml_dimension);
+ if (!D)
+ return;
+
+ Host *H = static_cast<Host *>(RD->rrdset->rrdhost->ml_host);
+ if (!H)
+ delete D;
+ else
+ H->removeDimension(D);
+
+ RD->ml_dimension = nullptr;
+}
+
+char *ml_get_host_info(RRDHOST *RH) {
+ nlohmann::json ConfigJson;
+
+ if (RH && RH->ml_host) {
+ Host *H = static_cast<Host *>(RH->ml_host);
+ H->getConfigAsJson(ConfigJson);
+ } else {
+ ConfigJson["enabled"] = false;
+ }
+
+ return strdupz(ConfigJson.dump(2, '\t').c_str());
+}
+
+char *ml_get_host_runtime_info(RRDHOST *RH) {
+ nlohmann::json ConfigJson;
+
+ if (RH && RH->ml_host) {
+ Host *H = static_cast<Host *>(RH->ml_host);
+ H->getDetectionInfoAsJson(ConfigJson);
+ } else {
+ return nullptr;
+ }
+
+ return strdup(ConfigJson.dump(1, '\t').c_str());
+}
+
+char *ml_get_host_models(RRDHOST *RH) {
+ nlohmann::json ModelsJson;
+
+ if (RH && RH->ml_host) {
+ Host *H = static_cast<Host *>(RH->ml_host);
+ H->getModelsAsJson(ModelsJson);
+ return strdup(ModelsJson.dump(2, '\t').c_str());
+ }
+
+ return nullptr;
+}
+
+bool ml_is_anomalous(RRDDIM *RD, double Value, bool Exists) {
+ Dimension *D = static_cast<Dimension *>(RD->ml_dimension);
+ if (!D)
+ return false;
+
+ return D->predict(Value, Exists);
+}
+
+bool ml_streaming_enabled() {
+ return Cfg.StreamADCharts;
+}
+
+#if defined(ENABLE_ML_TESTS)
+
+#include "gtest/gtest.h"
+
+int test_ml(int argc, char *argv[]) {
+ (void) argc;
+ (void) argv;
+
+ ::testing::InitGoogleTest(&argc, argv);
+ return RUN_ALL_TESTS();
+}
+
+#endif // ENABLE_ML_TESTS
+
+#include "ml-private.h"