/* * method.c: Method implementations for nwipe. * * Copyright Darik Horn . * * Modifications to original dwipe Copyright Andy Beverley * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software * Foundation, version 2. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* HOWTO: Add another wipe method. * * 1. Create a new function here and add the prototype to the 'method.h' file. * 2. Update nwipe_method_label() appropriately. * 3. Put the passes that you wish to run into a nwipe_pattern_t array. * 4. Call nwipe_runmethod() with your array of patterns. * 5. Copy-and-paste within the 'options.c' file so that the new method can be invoked. * 6. Optionally try to plug your function into 'gui.c'. * 7. Update the function 'calculate_round_size()' with the new method. * * * WARNING: Remember to pad all pattern arrays with { 0, NULL }. * * WARNING: Never change nwipe_options after calling a method. * * NOTE: The nwipe_runmethod function appends a user selectable final blanking (zero) pass to all methods. * */ #include #include "nwipe.h" #include "context.h" #include "method.h" #include "prng.h" #include "options.h" #include "pass.h" #include "logging.h" /* * Comment Legend * * "method" An ordered set of patterns. * "pattern" The magic bits that will be written to a device. * "pass" Reading or writing one pattern to an entire device. * "rounds" The number of times that a method will be applied to a device. * */ const char* nwipe_dod522022m_label = "DoD 5220.22-M"; const char* nwipe_dodshort_label = "DoD Short"; const char* nwipe_gutmann_label = "Gutmann Wipe"; const char* nwipe_ops2_label = "RCMP TSSIT OPS-II"; const char* nwipe_random_label = "PRNG Stream"; const char* nwipe_zero_label = "Fill With Zeros"; const char* nwipe_one_label = "Fill With Ones"; const char* nwipe_verify_zero_label = "Verify Zeros (0x00)"; const char* nwipe_verify_one_label = "Verify Ones (0xFF)"; const char* nwipe_is5enh_label = "HMG IS5 Enhanced"; const char* nwipe_unknown_label = "Unknown Method (FIXME)"; const char* nwipe_method_label( void* method ) { /** * Returns a pointer to the name of the method function. * */ if( method == &nwipe_dod522022m ) { return nwipe_dod522022m_label; } if( method == &nwipe_dodshort ) { return nwipe_dodshort_label; } if( method == &nwipe_gutmann ) { return nwipe_gutmann_label; } if( method == &nwipe_ops2 ) { return nwipe_ops2_label; } if( method == &nwipe_random ) { return nwipe_random_label; } if( method == &nwipe_zero ) { return nwipe_zero_label; } if( method == &nwipe_one ) { return nwipe_one_label; } if( method == &nwipe_verify_zero ) { return nwipe_verify_zero_label; } if( method == &nwipe_verify_one ) { return nwipe_verify_one_label; } if( method == &nwipe_is5enh ) { return nwipe_is5enh_label; } /* else */ return nwipe_unknown_label; } /* nwipe_method_label */ void* nwipe_zero( void* ptr ) { /** * Fill the device with zeroes. */ nwipe_context_t* c; c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); /* set wipe in progress flag for GUI */ c->wipe_status = 1; /* setup for a zero-fill. */ char zerofill[1] = { '\x00' }; nwipe_pattern_t patterns[] = { { 1, &zerofill[0] }, // pass 1: 0s { 0, NULL } }; /* Run the method. */ c->result = nwipe_runmethod( c, patterns ); /* Finished. Set the wipe_status flag so that the GUI knows */ c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_zero */ void* nwipe_one( void* ptr ) { /** * Fill the device with ones. */ nwipe_context_t* c; c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); /* set wipe in progress flag for GUI */ c->wipe_status = 1; /* setup for a zero-fill. */ char onefill[1] = { '\xFF' }; nwipe_pattern_t patterns[] = { { 1, &onefill[0] }, // pass 1: 1s { 0, NULL } }; /* Run the method. */ c->result = nwipe_runmethod( c, patterns ); /* Finished. Set the wipe_status flag so that the GUI knows */ c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_one */ void* nwipe_verify_zero( void* ptr ) { /** * Verify the device is full of zeros. */ nwipe_context_t* c; c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); /* set wipe in progress flag for GUI */ c->wipe_status = 1; /* Do nothing because nwipe_runmethod appends a zero-fill. */ nwipe_pattern_t patterns[] = { { 0, NULL } }; /* Run the method. */ c->result = nwipe_runmethod( c, patterns ); /* Finished. Set the wipe_status flag so that the GUI knows */ c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_verify zeros */ void* nwipe_verify_one( void* ptr ) { /** * Verify the device is full of ones. */ nwipe_context_t* c; c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); /* set wipe in progress flag for GUI */ c->wipe_status = 1; /* Do nothing because nwipe_runmethod appends a zero-fill. */ nwipe_pattern_t patterns[] = { { 0, NULL } }; /* Run the method. */ c->result = nwipe_runmethod( c, patterns ); /* Finished. Set the wipe_status flag so that the GUI knows */ c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_verify */ void* nwipe_dod522022m( void* ptr ) { /** * United States Department of Defense 5220.22-M standard wipe. * */ nwipe_context_t* c; c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); /* set wipe in progress flag for GUI */ c->wipe_status = 1; /* A result holder. */ int r; /* Random characters. (Elements 2 and 6 are unused.) */ char dod[7]; nwipe_pattern_t patterns[] = { { 1, &dod[0] }, // Pass 1: A random character. { 1, &dod[1] }, // Pass 2: The bitwise complement of pass 1. { -1, "" }, // Pass 3: A random stream. { 1, &dod[3] }, // Pass 4: A random character. { 1, &dod[4] }, // Pass 5: A random character. { 1, &dod[5] }, // Pass 6: The bitwise complement of pass 5. { -1, "" }, // Pass 7: A random stream. { 0, NULL } }; /* Load the array with random characters. */ r = read( c->entropy_fd, &dod, sizeof( dod ) ); /* NOTE: Only the random data in dod[0], dod[3], and dod[4] is actually used. */ /* Check the result. */ if( r != sizeof( dod ) ) { r = errno; nwipe_perror( r, __FUNCTION__, "read" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to seed the %s method.", nwipe_dod522022m_label ); /* Ensure a negative return. */ if( r < 0 ) { c->result = r; return NULL; } else { c->result = -1; return NULL; } } /* Pass 2 is the bitwise complement of Pass 1. */ dod[1] = ~dod[0]; /* Pass 4 is the bitwise complement of Pass 3. */ dod[5] = ~dod[4]; /* Run the DoD 5220.22-M method. */ c->result = nwipe_runmethod( c, patterns ); /* Finished. Set the wipe_status flag so that the GUI knows */ c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_dod522022m */ void* nwipe_dodshort( void* ptr ) { /** * United States Department of Defense 5220.22-M short wipe. * This method is comprised of passes 1,2,7 from the standard wipe. * */ nwipe_context_t* c; c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); /* set wipe in progress flag for GUI */ c->wipe_status = 1; /* A result holder. */ int r; /* Random characters. (Element 3 is unused.) */ char dod[3]; nwipe_pattern_t patterns[] = { { 1, &dod[0] }, // Pass 1: A random character. { 1, &dod[1] }, // Pass 2: The bitwise complement of pass 1. { -1, "" }, // Pass 3: A random stream. { 0, NULL } }; /* Load the array with random characters. */ r = read( c->entropy_fd, &dod, sizeof( dod ) ); /* NOTE: Only the random data in dod[0] is actually used. */ /* Check the result. */ if( r != sizeof( dod ) ) { r = errno; nwipe_perror( r, __FUNCTION__, "read" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to seed the %s method.", nwipe_dodshort_label ); /* Ensure a negative return. */ if( r < 0 ) { c->result = r; return NULL; } else { c->result = -1; return NULL; } } /* Pass 2 is the bitwise complement of Pass 1. */ dod[1] = ~dod[0]; /* Run the DoD 5220.022-M short method. */ c->result = nwipe_runmethod( c, patterns ); /* Finished. Set the wipe_status flag so that the GUI knows */ c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_dodshort */ void* nwipe_gutmann( void* ptr ) { /** * Peter Gutmann's wipe. * */ nwipe_context_t* c; c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); /* set wipe in progress flag for GUI */ c->wipe_status = 1; /* Define the Gutmann method. */ nwipe_pattern_t book[] = { { -1, "" }, // Random pass. { -1, "" }, // Random pass. { -1, "" }, // Random pass. { -1, "" }, // Random pass. { 3, "\x55\x55\x55" }, // Static pass: 0x555555 01010101 01010101 01010101 { 3, "\xAA\xAA\xAA" }, // Static pass: 0XAAAAAA 10101010 10101010 10101010 { 3, "\x92\x49\x24" }, // Static pass: 0x924924 10010010 01001001 00100100 { 3, "\x49\x24\x92" }, // Static pass: 0x492492 01001001 00100100 10010010 { 3, "\x24\x92\x49" }, // Static pass: 0x249249 00100100 10010010 01001001 { 3, "\x00\x00\x00" }, // Static pass: 0x000000 00000000 00000000 00000000 { 3, "\x11\x11\x11" }, // Static pass: 0x111111 00010001 00010001 00010001 { 3, "\x22\x22\x22" }, // Static pass: 0x222222 00100010 00100010 00100010 { 3, "\x33\x33\x33" }, // Static pass: 0x333333 00110011 00110011 00110011 { 3, "\x44\x44\x44" }, // Static pass: 0x444444 01000100 01000100 01000100 { 3, "\x55\x55\x55" }, // Static pass: 0x555555 01010101 01010101 01010101 { 3, "\x66\x66\x66" }, // Static pass: 0x666666 01100110 01100110 01100110 { 3, "\x77\x77\x77" }, // Static pass: 0x777777 01110111 01110111 01110111 { 3, "\x88\x88\x88" }, // Static pass: 0x888888 10001000 10001000 10001000 { 3, "\x99\x99\x99" }, // Static pass: 0x999999 10011001 10011001 10011001 { 3, "\xAA\xAA\xAA" }, // Static pass: 0xAAAAAA 10101010 10101010 10101010 { 3, "\xBB\xBB\xBB" }, // Static pass: 0xBBBBBB 10111011 10111011 10111011 { 3, "\xCC\xCC\xCC" }, // Static pass: 0xCCCCCC 11001100 11001100 11001100 { 3, "\xDD\xDD\xDD" }, // Static pass: 0xDDDDDD 11011101 11011101 11011101 { 3, "\xEE\xEE\xEE" }, // Static pass: 0xEEEEEE 11101110 11101110 11101110 { 3, "\xFF\xFF\xFF" }, // Static pass: 0xFFFFFF 11111111 11111111 11111111 { 3, "\x92\x49\x24" }, // Static pass: 0x924924 10010010 01001001 00100100 { 3, "\x49\x24\x92" }, // Static pass: 0x492492 01001001 00100100 10010010 { 3, "\x24\x92\x49" }, // Static pass: 0x249249 00100100 10010010 01001001 { 3, "\x6D\xB6\xDB" }, // Static pass: 0x6DB6DB 01101101 10110110 11011011 { 3, "\xB6\xDB\x6D" }, // Static pass: 0xB6DB6D 10110110 11011011 01101101 { 3, "\xDB\x6D\xB6" }, // Static pass: 0XDB6DB6 11011011 01101101 10110110 { -1, "" }, // Random pass. { -1, "" }, // Random pass. { -1, "" }, // Random pass. { -1, "" }, // Random pass. { 0, NULL } }; /* Put the book array into this array in random order. */ nwipe_pattern_t patterns[36]; /* An entropy buffer. */ u16 s[27]; /* Load the array with random characters. */ ssize_t r = read( c->entropy_fd, &s, sizeof( s ) ); if( r != sizeof( s ) ) { r = errno; nwipe_perror( r, __FUNCTION__, "read" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to seed the %s method.", nwipe_gutmann_label ); /* Ensure a negative return. */ if( r < 0 ) { c->result = r; return NULL; } else { c->result = -1; return NULL; } } // First 4 random passes for( int i = 0; i <= 3; ++i ) { patterns[i] = book[i]; } // Middle 27 passes in random order for( int i = 26; i >= 0; --i ) { /* Get a random integer that is less than the first index 'i'. */ int n = (int) ( (double) ( s[i] ) / (double) ( 0x0000FFFF + 1 ) * (double) ( i + 1 ) ); /* Initialize the secondary index. */ int j = 3; while( n-- >= 0 ) { /* Advance 'j' by 'n' positions... */ j += 1; /* ... but don't count 'book' elements that have already been copied. */ while( book[j].length == 0 ) { j += 1; } } /* Copy the element. */ patterns[i + 4] = book[j]; /* Mark this element as having been used. */ book[j].length = 0; } // Last 4 random passes for( int i = 31; i <= 34; ++i ) { patterns[i] = book[i]; } /* Ensure that the array is terminated. */ patterns[35].length = 0; patterns[35].s = NULL; /* Run the Gutmann method. */ c->result = nwipe_runmethod( c, patterns ); /* Finished. Set the wipe_status flag so that the GUI knows */ c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_gutmann */ void* nwipe_ops2( void* ptr ) { /** * Royal Canadian Mounted Police * Technical Security Standard for Information Technology * Appendix OPS-II: Media Sanitization * * NOTE: The last pass of this method is specially handled by nwipe_runmethod. * */ nwipe_context_t* c; c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); /* set wipe in progress flag for GUI */ c->wipe_status = 1; /* A generic array index. */ int i; /* A generic result buffer. */ int r; /* A buffer for random characters. */ char* s; /* A buffer for the bitwise complements of 's'. */ char* t; /* The element count of 's' and 't'. */ u32 u; /* The pattern array for this method is dynamically allocated. */ nwipe_pattern_t* patterns; /* The element count of 'patterns'. */ u32 q; /* We need one random character per round. */ u = 1 * nwipe_options.rounds; /* Allocate the array of random characters. */ s = malloc( sizeof( char ) * u ); if( s == NULL ) { nwipe_perror( errno, __FUNCTION__, "malloc" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to allocate the random character array." ); c->result = -1; return NULL; } /* Allocate the array of complement characters. */ t = malloc( sizeof( char ) * u ); if( t == NULL ) { nwipe_perror( errno, __FUNCTION__, "malloc" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to allocate the complement character array." ); c->result = -1; free( s ); return NULL; } /* We need eight pattern elements per round, plus one for padding. */ q = 8 * u + 1; /* Allocate the pattern array. */ patterns = malloc( sizeof( nwipe_pattern_t ) * q ); if( patterns == NULL ) { nwipe_perror( errno, __FUNCTION__, "malloc" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to allocate the pattern array." ); c->result = -1; free( s ); free( t ); return NULL; } /* Load the array of random characters. */ r = read( c->entropy_fd, s, u ); if( r != u ) { r = errno; nwipe_perror( r, __FUNCTION__, "read" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to seed the %s method.", nwipe_ops2_label ); if( r < 0 ) { c->result = r; free( s ); free( t ); free( patterns ); return NULL; } else { c->result = -1; free( s ); free( t ); free( patterns ); return NULL; } } for( i = 0; i < u; i += 1 ) { /* Populate the array of complements. */ t[i] = ~s[i]; } for( i = 0; i < u; i += 8 ) { /* Populate the array of patterns. */ /* Even elements point to the random characters. */ patterns[i * 4 + 0].length = 1; patterns[i * 4 + 0].s = &s[i]; patterns[i * 4 + 2].length = 1; patterns[i * 4 + 2].s = &s[i]; patterns[i * 4 + 4].length = 1; patterns[i * 4 + 4].s = &s[i]; patterns[i * 4 + 6].length = 1; patterns[i * 4 + 6].s = &s[i]; /* Odd elements point to the complement characters. */ patterns[i * 4 + 1].length = 1; patterns[i * 4 + 1].s = &t[i]; patterns[i * 4 + 3].length = 1; patterns[i * 4 + 3].s = &t[i]; patterns[i * 4 + 5].length = 1; patterns[i * 4 + 5].s = &t[i]; patterns[i * 4 + 7].length = 1; patterns[i * 4 + 7].s = &t[i]; } /* Ensure that the array is terminated. */ patterns[q - 1].length = 0; patterns[q - 1].s = NULL; /* Run the TSSIT OPS-II method. */ c->result = nwipe_runmethod( c, patterns ); /* Release the random character buffer. */ free( s ); /* Release the complement character buffer */ free( t ); /* Release the pattern buffer. */ free( patterns ); /* We're done. */ /* Finished. Set the wipe_status flag so that the GUI knows */ c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_ops2 */ void* nwipe_is5enh( void* ptr ) { nwipe_context_t* c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); c->wipe_status = 1; char is5enh[3] = { '\x00', '\xFF', '\x00' }; nwipe_pattern_t patterns[] = { { 1, &is5enh[0] }, // Pass 1: 0s { 1, &is5enh[1] }, // Pass 2: 1s { -1, &is5enh[2] }, // Pass 3: random bytes with verification { 0, NULL } }; c->result = nwipe_runmethod( c, patterns ); c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_is5enh */ void* nwipe_random( void* ptr ) { /** * Fill the device with a stream from the PRNG. * */ nwipe_context_t* c; c = (nwipe_context_t*) ptr; /* get current time at the start of the wipe */ time( &c->start_time ); /* set wipe in progress flag for GUI */ c->wipe_status = 1; /* Define the random method. */ nwipe_pattern_t patterns[] = { { -1, "" }, { 0, NULL } }; /* Run the method. */ c->result = nwipe_runmethod( c, patterns ); /* Finished. Set the wipe_status flag so that the GUI knows */ c->wipe_status = 0; /* get current time at the end of the wipe */ time( &c->end_time ); return NULL; } /* nwipe_random */ int nwipe_runmethod( nwipe_context_t* c, nwipe_pattern_t* patterns ) { /** * Writes patterns to the device. * */ /* The result holder. */ int r; /* An index variable. */ int i = 0; /* Variable to track if it is the last pass */ int lastpass = 0; i = 0; /* The zero-fill pattern for the final pass of most methods. */ nwipe_pattern_t pattern_zero = { 1, "\x00" }; /* The one-fill pattern for verification of the ones fill */ nwipe_pattern_t pattern_one = { 1, "\xFF" }; /* Create the PRNG state buffer. */ c->prng_seed.length = NWIPE_KNOB_PRNG_STATE_LENGTH; c->prng_seed.s = malloc( c->prng_seed.length ); /* Check the memory allocation. */ if( !c->prng_seed.s ) { nwipe_perror( errno, __FUNCTION__, "malloc" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to allocate memory for the prng seed buffer." ); return -1; } /* Count the number of patterns in the array. */ while( patterns[i].length ) { i += 1; } /* Tell the parent the number of device passes that will be run in one round. */ c->pass_count = i; /* Set the number of bytes that will be written across all passes in one round. */ c->pass_size = c->pass_count * c->device_size; /* For the selected method, calculate the correct round_size value (for correct percentage calculation) */ calculate_round_size( c ); /* If only verifying then the round size is the device size */ if( nwipe_options.method == &nwipe_verify_zero || nwipe_options.method == &nwipe_verify_one ) { c->round_size = c->device_size; } /* Initialize the working round counter. */ c->round_working = 0; nwipe_log( NWIPE_LOG_NOTICE, "Invoking method '%s' on %s", nwipe_method_label( nwipe_options.method ), c->device_name ); while( c->round_working < c->round_count ) { /* Increment the round counter. */ c->round_working += 1; nwipe_log( NWIPE_LOG_NOTICE, "Starting round %i of %i on %s", c->round_working, c->round_count, c->device_name ); /* Initialize the working pass counter. */ c->pass_working = 0; for( i = 0; i < c->pass_count; i++ ) { /* Increment the working pass. */ c->pass_working += 1; /* Check if this is the last pass. */ if( nwipe_options.verify == NWIPE_VERIFY_LAST && nwipe_options.method != &nwipe_ops2 ) { if( nwipe_options.noblank == 1 && c->round_working == c->round_count && c->pass_working == c->pass_count ) { lastpass = 1; } } nwipe_log( NWIPE_LOG_NOTICE, "Starting pass %i/%i, round %i/%i, on %s", c->pass_working, c->pass_count, c->round_working, c->round_count, c->device_name ); if( patterns[i].length == 0 ) { /* Caught insanity. */ nwipe_log( NWIPE_LOG_SANITY, "nwipe_runmethod: A non-terminating pattern element has zero length." ); return -1; } if( patterns[i].length > 0 ) { /* Write a static pass. */ c->pass_type = NWIPE_PASS_WRITE; r = nwipe_static_pass( c, &patterns[i] ); c->pass_type = NWIPE_PASS_NONE; /* Log number of bytes written to disk */ nwipe_log( NWIPE_LOG_NOTICE, "%llu bytes written to %s", c->pass_done, c->device_name ); /* Check for a fatal error. */ if( r < 0 ) { return r; } if( nwipe_options.verify == NWIPE_VERIFY_ALL || lastpass == 1 ) { nwipe_log( NWIPE_LOG_NOTICE, "Verifying pass %i of %i, round %i of %i, on %s", c->pass_working, c->pass_count, c->round_working, c->round_count, c->device_name ); /* Verify this pass. */ c->pass_type = NWIPE_PASS_VERIFY; r = nwipe_static_verify( c, &patterns[i] ); c->pass_type = NWIPE_PASS_NONE; nwipe_log( NWIPE_LOG_NOTICE, "%llu bytes read from %s", c->pass_done, c->device_name ); /* Check for a fatal error. */ if( r < 0 ) { return r; } nwipe_log( NWIPE_LOG_NOTICE, "Verified pass %i of %i, round %i of %i, on '%s'.", c->pass_working, c->pass_count, c->round_working, c->round_count, c->device_name ); } } /* static pass */ else { c->pass_type = NWIPE_PASS_WRITE; /* Seed the PRNG. */ r = read( c->entropy_fd, c->prng_seed.s, c->prng_seed.length ); /* Check the result. */ if( r < 0 ) { c->pass_type = NWIPE_PASS_NONE; nwipe_perror( errno, __FUNCTION__, "read" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to seed the PRNG." ); return -1; } /* Check for a partial read. */ if( r != c->prng_seed.length ) { /* TODO: Handle partial reads. */ nwipe_log( NWIPE_LOG_FATAL, "Insufficient entropy is available." ); return -1; } /* Write the random pass. */ r = nwipe_random_pass( c ); c->pass_type = NWIPE_PASS_NONE; /* Log number of bytes written to disk */ nwipe_log( NWIPE_LOG_NOTICE, "%llu bytes written to %s", c->pass_done, c->device_name ); /* Check for a fatal error. */ if( r < 0 ) { return r; } /* Make sure IS5 enhanced always verifies its PRNG pass regardless */ /* of the current combination of the --noblank (which influences */ /* the lastpass variable) and --verify options. */ if( nwipe_options.verify == NWIPE_VERIFY_ALL || lastpass == 1 || nwipe_options.method == &nwipe_is5enh ) { nwipe_log( NWIPE_LOG_NOTICE, "Verifying pass %i of %i, round %i of %i, on %s", c->pass_working, c->pass_count, c->round_working, c->round_count, c->device_name ); /* Verify this pass. */ c->pass_type = NWIPE_PASS_VERIFY; r = nwipe_random_verify( c ); c->pass_type = NWIPE_PASS_NONE; nwipe_log( NWIPE_LOG_NOTICE, "%llu bytes read from %s", c->pass_done, c->device_name ); /* Check for a fatal error. */ if( r < 0 ) { return r; } nwipe_log( NWIPE_LOG_NOTICE, "Verified pass %i of %i, round %i of %i, on '%s'.", c->pass_working, c->pass_count, c->round_working, c->round_count, c->device_name ); } } /* random pass */ nwipe_log( NWIPE_LOG_NOTICE, "Finished pass %i/%i, round %i/%i, on %s", c->pass_working, c->pass_count, c->round_working, c->round_count, c->device_name ); } /* for passes */ if( c->round_working < c->round_count ) { nwipe_log( NWIPE_LOG_NOTICE, "Finished round %i of %i on %s", c->round_working, c->round_count, c->device_name ); } else { nwipe_log( NWIPE_LOG_NOTICE, "Finished final round %i of %i on %s", c->round_working, c->round_count, c->device_name ); } } /* while rounds */ if( nwipe_options.method == &nwipe_ops2 ) { /* NOTE: The OPS-II method specifically requires that a random pattern be left on the device. */ /* Tell the parent that we are running the final pass. */ c->pass_type = NWIPE_PASS_FINAL_OPS2; /* Seed the PRNG. */ r = read( c->entropy_fd, c->prng_seed.s, c->prng_seed.length ); /* Check the result. */ if( r < 0 ) { nwipe_perror( errno, __FUNCTION__, "read" ); nwipe_log( NWIPE_LOG_FATAL, "Unable to seed the PRNG." ); return -1; } /* Check for a partial read. */ if( r != c->prng_seed.length ) { /* TODO: Handle partial reads. */ nwipe_log( NWIPE_LOG_FATAL, "Insufficient entropy is available." ); return -1; } nwipe_log( NWIPE_LOG_NOTICE, "Writing final random pattern to '%s'.", c->device_name ); /* The final ops2 pass. */ r = nwipe_random_pass( c ); nwipe_log( NWIPE_LOG_NOTICE, "%llu bytes written to %s", c->pass_done, c->device_name ); /* Check for a fatal error. */ if( r < 0 ) { return r; } if( nwipe_options.verify == NWIPE_VERIFY_LAST || nwipe_options.verify == NWIPE_VERIFY_ALL ) { nwipe_log( NWIPE_LOG_NOTICE, "Verifying final random pattern FRP on %s", c->device_name ); /* Verify the final zero pass. */ r = nwipe_random_verify( c ); nwipe_log( NWIPE_LOG_NOTICE, "%llu bytes read from %s", c->pass_done, c->device_name ); /* Check for a fatal error. */ if( r < 0 ) { return r; } nwipe_log( NWIPE_LOG_NOTICE, "[SUCCESS] Verified FRP on '%s' matches", c->device_name ); } } /* final ops2 */ else if( nwipe_options.method == &nwipe_verify_zero ) { nwipe_log( NWIPE_LOG_NOTICE, "Verifying that %s is zeroed", c->device_name ); /* Verify the final zero pass. */ c->pass_type = NWIPE_PASS_VERIFY; r = nwipe_static_verify( c, &pattern_zero ); c->pass_type = NWIPE_PASS_NONE; /* Check for a fatal error. */ if( r < 0 ) { return r; } if( c->verify_errors == 0 ) { nwipe_log( NWIPE_LOG_NOTICE, "[SUCCESS] Verified that %s is Zeroed.", c->device_name ); } else { nwipe_log( NWIPE_LOG_ERROR, "[FAILURE] %s has not been Zeroed .", c->device_name ); } } /* verify */ else if( nwipe_options.method == &nwipe_verify_one ) { nwipe_log( NWIPE_LOG_NOTICE, "Verifying that %s is Ones (0xFF)", c->device_name ); /* Verify the final ones pass. */ c->pass_type = NWIPE_PASS_VERIFY; r = nwipe_static_verify( c, &pattern_one ); c->pass_type = NWIPE_PASS_NONE; /* Check for a fatal error. */ if( r < 0 ) { return r; } if( c->verify_errors == 0 ) { nwipe_log( NWIPE_LOG_NOTICE, "[SUCCESS] Verified that %s is full of ones (0xFF).", c->device_name ); } else { nwipe_log( NWIPE_LOG_ERROR, "[FAILURE] %s is not full of ones (0xFF).", c->device_name ); } } /* verify */ else if( nwipe_options.noblank == 0 ) { /* Tell the user that we are on the final pass. */ c->pass_type = NWIPE_PASS_FINAL_BLANK; nwipe_log( NWIPE_LOG_NOTICE, "Blanking device %s", c->device_name ); /* The final zero pass. */ r = nwipe_static_pass( c, &pattern_zero ); /* Log number of bytes written to disk */ nwipe_log( NWIPE_LOG_NOTICE, "%llu bytes written to %s", c->pass_done, c->device_name ); /* Check for a fatal error. */ if( r < 0 ) { return r; } if( nwipe_options.verify == NWIPE_VERIFY_LAST || nwipe_options.verify == NWIPE_VERIFY_ALL ) { nwipe_log( NWIPE_LOG_NOTICE, "Verifying that %s is empty.", c->device_name ); /* Verify the final zero pass. */ c->pass_type = NWIPE_PASS_VERIFY; r = nwipe_static_verify( c, &pattern_zero ); c->pass_type = NWIPE_PASS_NONE; /* Log number of bytes read from disk */ nwipe_log( NWIPE_LOG_NOTICE, "%llu bytes read from %s", c->pass_done, c->device_name ); /* Check for a fatal error. */ if( r < 0 ) { return r; } if( c->verify_errors == 0 ) { nwipe_log( NWIPE_LOG_NOTICE, "[SUCCESS] Verified that %s is empty.", c->device_name ); } else { nwipe_log( NWIPE_LOG_NOTICE, "[FAILURE] %s Verification errors, not empty", c->device_name ); } } if( c->verify_errors == 0 && c->pass_errors == 0 ) { nwipe_log( NWIPE_LOG_NOTICE, "[SUCCESS] Blanked device %s", c->device_name ); } else { nwipe_log( NWIPE_LOG_NOTICE, "[FAILURE] %s may not be blanked", c->device_name ); } } /* final blank */ /* Release the state buffer. */ c->prng_seed.length = 0; free( c->prng_seed.s ); /* Tell the parent that we have fininshed the final pass. */ c->pass_type = NWIPE_PASS_NONE; if( c->verify_errors > 0 ) { /* We finished, but with non-fatal verification errors. */ nwipe_log( NWIPE_LOG_ERROR, "%llu verification errors on '%s'.", c->verify_errors, c->device_name ); } if( c->pass_errors > 0 ) { /* We finished, but with non-fatal wipe errors. */ nwipe_log( NWIPE_LOG_ERROR, "%llu wipe errors on '%s'.", c->pass_errors, c->device_name ); } /* FIXME: The 'round_errors' context member is not being used. */ if( c->pass_errors > 0 || c->round_errors > 0 || c->verify_errors > 0 ) { /* We finished, but with non-fatal errors. */ return 1; } /* We finished successfully. */ return 0; } /* nwipe_runmethod */ void calculate_round_size( nwipe_context_t* c ) { /* This is where the round size is calculated. round_size is used in the running percentage completion * calculation. round size is calculated based on pass_size, pass_count, number of rounds, blanking * on/off and verification All/Last/None * * To hopefully make this calculation more understandable, I have separated the calculations that apply to * all methods and processed first then created a switch statement that contains method specific changes if any */ /* Don't change the order of these values as the case statements use their index in the array */ void* array_methods[] = { &nwipe_zero, &nwipe_ops2, &nwipe_dodshort, &nwipe_dod522022m, &nwipe_gutmann, &nwipe_random, &nwipe_is5enh, NULL }; int i; /* This while loop allows us to effectively create a const so we can use a case statement rather than if statements. * This is probably more readable as more methods may get added in the future. The code could be condensed as some * methods have identical adjustments, however as there are only a few methods I felt it was easier to understand as * it is, however this could be changed if necessary. */ int selected_method; i = 0; while( array_methods[i] != NULL ) { if( nwipe_options.method == array_methods[i] ) { selected_method = i; } i++; } if( nwipe_options.verify == NWIPE_VERIFY_ALL ) { /* We must read back all passes, so double the byte count. */ c->pass_size *= 2; } /* Tell the parent the number of rounds that will be run. */ c->round_count = nwipe_options.rounds; /* Set the initial number of bytes that will be written across all rounds. c->pass_size includes write AND verification passes if 'verify_all' is selected but does not include the final blanking pass or the verify_last option */ c->round_size = c->pass_size; /* Multiple the round_size by the number of rounds (times) the user wants to wipe the drive with this method. */ c->round_size *= c->round_count; /* Now increase size based on whether blanking is enabled and verification */ if( nwipe_options.noblank == 0 ) { /* Blanking enabled so increase round size */ c->round_size += c->device_size; if( nwipe_options.verify == NWIPE_VERIFY_LAST || nwipe_options.verify == NWIPE_VERIFY_ALL ) { c->round_size += c->device_size; } } else { /* Blanking not enabled, check for 'Verify_last', increase round size if enabled. */ if( nwipe_options.verify == NWIPE_VERIFY_LAST ) { c->round_size += c->device_size; } } /* Additional method specific round_size adjustments go in this switch statement */ switch( selected_method ) { case 0: /* NWIPE_ZERO - No additional calculation required * ---------- */ break; case 1: /* NWIPE_OPS2 * ---------- */ /* Required for mandatory 9th and final random pass */ c->round_size += c->device_size; /* Required for selectable 9th and final random verification */ if( nwipe_options.verify == NWIPE_VERIFY_ALL || nwipe_options.verify == NWIPE_VERIFY_LAST ) { c->round_size += c->device_size; } /* As no final zero blanking pass is permitted by this standard reduce round size if it's selected */ if( nwipe_options.noblank == 0 ) { /* Reduce for blanking pass */ c->round_size -= c->device_size; /* Reduce for blanking pass verification */ if( nwipe_options.verify == NWIPE_VERIFY_ALL || nwipe_options.verify == NWIPE_VERIFY_LAST ) { c->round_size -= c->device_size; } } else { if( nwipe_options.verify == NWIPE_VERIFY_LAST ) { /* If blanking off & verification on reduce round size */ c->round_size -= c->device_size; } } break; case 2: /* DoD Short - No additional calculation required * --------- */ break; case 3: /* DOD 522022m - No additional calculation required * ----------- */ break; case 4: /* GutMann - No additional calculation required * ------- */ break; case 5: /* PRNG (random) - No additional calculation required * ------------- */ break; case 6: /* NWIPE_IS5ENH * ------------ */ /* This method ALWAYS verifies the 3rd pass so increase by device size, * but NOT if VERIFY_ALL has been selected, but first .. */ /* Reduce as Verify_Last already included previously if blanking was off */ if( nwipe_options.verify == NWIPE_VERIFY_LAST && nwipe_options.noblank == 1 ) { c->round_size -= c->device_size; } /* Adjusts for verify on every third pass multiplied by number of rounds */ if( nwipe_options.verify != NWIPE_VERIFY_ALL ) { c->round_size += ( c->device_size * c->round_count ); } break; } } /* eof */