diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 14:40:04 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 14:40:04 +0000 |
commit | 25505898530a333011f4fd5cbc841ad6b26c089c (patch) | |
tree | 333a33fdd60930bcccc3f177ed9467d535e9bac6 /smult_curve25519_ref.c | |
parent | Initial commit. (diff) | |
download | openssh-25505898530a333011f4fd5cbc841ad6b26c089c.tar.xz openssh-25505898530a333011f4fd5cbc841ad6b26c089c.zip |
Adding upstream version 1:9.2p1.upstream/1%9.2p1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'smult_curve25519_ref.c')
-rw-r--r-- | smult_curve25519_ref.c | 265 |
1 files changed, 265 insertions, 0 deletions
diff --git a/smult_curve25519_ref.c b/smult_curve25519_ref.c new file mode 100644 index 0000000..2e69934 --- /dev/null +++ b/smult_curve25519_ref.c @@ -0,0 +1,265 @@ +/* $OpenBSD: smult_curve25519_ref.c,v 1.2 2013/11/02 22:02:14 markus Exp $ */ +/* +version 20081011 +Matthew Dempsky +Public domain. +Derived from public domain code by D. J. Bernstein. +*/ + +int crypto_scalarmult_curve25519(unsigned char *, const unsigned char *, const unsigned char *); + +static void add(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) +{ + unsigned int j; + unsigned int u; + u = 0; + for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; } + u += a[31] + b[31]; out[31] = u; +} + +static void sub(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) +{ + unsigned int j; + unsigned int u; + u = 218; + for (j = 0;j < 31;++j) { + u += a[j] + 65280 - b[j]; + out[j] = u & 255; + u >>= 8; + } + u += a[31] - b[31]; + out[31] = u; +} + +static void squeeze(unsigned int a[32]) +{ + unsigned int j; + unsigned int u; + u = 0; + for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } + u += a[31]; a[31] = u & 127; + u = 19 * (u >> 7); + for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } + u += a[31]; a[31] = u; +} + +static const unsigned int minusp[32] = { + 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128 +} ; + +static void freeze(unsigned int a[32]) +{ + unsigned int aorig[32]; + unsigned int j; + unsigned int negative; + + for (j = 0;j < 32;++j) aorig[j] = a[j]; + add(a,a,minusp); + negative = -((a[31] >> 7) & 1); + for (j = 0;j < 32;++j) a[j] ^= negative & (aorig[j] ^ a[j]); +} + +static void mult(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) +{ + unsigned int i; + unsigned int j; + unsigned int u; + + for (i = 0;i < 32;++i) { + u = 0; + for (j = 0;j <= i;++j) u += a[j] * b[i - j]; + for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j]; + out[i] = u; + } + squeeze(out); +} + +static void mult121665(unsigned int out[32],const unsigned int a[32]) +{ + unsigned int j; + unsigned int u; + + u = 0; + for (j = 0;j < 31;++j) { u += 121665 * a[j]; out[j] = u & 255; u >>= 8; } + u += 121665 * a[31]; out[31] = u & 127; + u = 19 * (u >> 7); + for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; } + u += out[j]; out[j] = u; +} + +static void square(unsigned int out[32],const unsigned int a[32]) +{ + unsigned int i; + unsigned int j; + unsigned int u; + + for (i = 0;i < 32;++i) { + u = 0; + for (j = 0;j < i - j;++j) u += a[j] * a[i - j]; + for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j]; + u *= 2; + if ((i & 1) == 0) { + u += a[i / 2] * a[i / 2]; + u += 38 * a[i / 2 + 16] * a[i / 2 + 16]; + } + out[i] = u; + } + squeeze(out); +} + +static void select(unsigned int p[64],unsigned int q[64],const unsigned int r[64],const unsigned int s[64],unsigned int b) +{ + unsigned int j; + unsigned int t; + unsigned int bminus1; + + bminus1 = b - 1; + for (j = 0;j < 64;++j) { + t = bminus1 & (r[j] ^ s[j]); + p[j] = s[j] ^ t; + q[j] = r[j] ^ t; + } +} + +static void mainloop(unsigned int work[64],const unsigned char e[32]) +{ + unsigned int xzm1[64]; + unsigned int xzm[64]; + unsigned int xzmb[64]; + unsigned int xzm1b[64]; + unsigned int xznb[64]; + unsigned int xzn1b[64]; + unsigned int a0[64]; + unsigned int a1[64]; + unsigned int b0[64]; + unsigned int b1[64]; + unsigned int c1[64]; + unsigned int r[32]; + unsigned int s[32]; + unsigned int t[32]; + unsigned int u[32]; + unsigned int j; + unsigned int b; + int pos; + + for (j = 0;j < 32;++j) xzm1[j] = work[j]; + xzm1[32] = 1; + for (j = 33;j < 64;++j) xzm1[j] = 0; + + xzm[0] = 1; + for (j = 1;j < 64;++j) xzm[j] = 0; + + for (pos = 254;pos >= 0;--pos) { + b = e[pos / 8] >> (pos & 7); + b &= 1; + select(xzmb,xzm1b,xzm,xzm1,b); + add(a0,xzmb,xzmb + 32); + sub(a0 + 32,xzmb,xzmb + 32); + add(a1,xzm1b,xzm1b + 32); + sub(a1 + 32,xzm1b,xzm1b + 32); + square(b0,a0); + square(b0 + 32,a0 + 32); + mult(b1,a1,a0 + 32); + mult(b1 + 32,a1 + 32,a0); + add(c1,b1,b1 + 32); + sub(c1 + 32,b1,b1 + 32); + square(r,c1 + 32); + sub(s,b0,b0 + 32); + mult121665(t,s); + add(u,t,b0); + mult(xznb,b0,b0 + 32); + mult(xznb + 32,s,u); + square(xzn1b,c1); + mult(xzn1b + 32,r,work); + select(xzm,xzm1,xznb,xzn1b,b); + } + + for (j = 0;j < 64;++j) work[j] = xzm[j]; +} + +static void recip(unsigned int out[32],const unsigned int z[32]) +{ + unsigned int z2[32]; + unsigned int z9[32]; + unsigned int z11[32]; + unsigned int z2_5_0[32]; + unsigned int z2_10_0[32]; + unsigned int z2_20_0[32]; + unsigned int z2_50_0[32]; + unsigned int z2_100_0[32]; + unsigned int t0[32]; + unsigned int t1[32]; + int i; + + /* 2 */ square(z2,z); + /* 4 */ square(t1,z2); + /* 8 */ square(t0,t1); + /* 9 */ mult(z9,t0,z); + /* 11 */ mult(z11,z9,z2); + /* 22 */ square(t0,z11); + /* 2^5 - 2^0 = 31 */ mult(z2_5_0,t0,z9); + + /* 2^6 - 2^1 */ square(t0,z2_5_0); + /* 2^7 - 2^2 */ square(t1,t0); + /* 2^8 - 2^3 */ square(t0,t1); + /* 2^9 - 2^4 */ square(t1,t0); + /* 2^10 - 2^5 */ square(t0,t1); + /* 2^10 - 2^0 */ mult(z2_10_0,t0,z2_5_0); + + /* 2^11 - 2^1 */ square(t0,z2_10_0); + /* 2^12 - 2^2 */ square(t1,t0); + /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t0,t1); square(t1,t0); } + /* 2^20 - 2^0 */ mult(z2_20_0,t1,z2_10_0); + + /* 2^21 - 2^1 */ square(t0,z2_20_0); + /* 2^22 - 2^2 */ square(t1,t0); + /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { square(t0,t1); square(t1,t0); } + /* 2^40 - 2^0 */ mult(t0,t1,z2_20_0); + + /* 2^41 - 2^1 */ square(t1,t0); + /* 2^42 - 2^2 */ square(t0,t1); + /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t1,t0); square(t0,t1); } + /* 2^50 - 2^0 */ mult(z2_50_0,t0,z2_10_0); + + /* 2^51 - 2^1 */ square(t0,z2_50_0); + /* 2^52 - 2^2 */ square(t1,t0); + /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } + /* 2^100 - 2^0 */ mult(z2_100_0,t1,z2_50_0); + + /* 2^101 - 2^1 */ square(t1,z2_100_0); + /* 2^102 - 2^2 */ square(t0,t1); + /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { square(t1,t0); square(t0,t1); } + /* 2^200 - 2^0 */ mult(t1,t0,z2_100_0); + + /* 2^201 - 2^1 */ square(t0,t1); + /* 2^202 - 2^2 */ square(t1,t0); + /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } + /* 2^250 - 2^0 */ mult(t0,t1,z2_50_0); + + /* 2^251 - 2^1 */ square(t1,t0); + /* 2^252 - 2^2 */ square(t0,t1); + /* 2^253 - 2^3 */ square(t1,t0); + /* 2^254 - 2^4 */ square(t0,t1); + /* 2^255 - 2^5 */ square(t1,t0); + /* 2^255 - 21 */ mult(out,t1,z11); +} + +int crypto_scalarmult_curve25519(unsigned char *q, + const unsigned char *n, + const unsigned char *p) +{ + unsigned int work[96]; + unsigned char e[32]; + unsigned int i; + for (i = 0;i < 32;++i) e[i] = n[i]; + e[0] &= 248; + e[31] &= 127; + e[31] |= 64; + for (i = 0;i < 32;++i) work[i] = p[i]; + mainloop(work,e); + recip(work + 32,work + 32); + mult(work + 64,work,work + 32); + freeze(work + 64); + for (i = 0;i < 32;++i) q[i] = work[64 + i]; + return 0; +} |