/* * The PCI Utilities -- Manipulate PCI Configuration Registers * * Copyright (c) 1998--2020 Martin Mares <mj@ucw.cz> * * Can be freely distributed and used under the terms of the GNU GPL. */ #include <stdio.h> #include <string.h> #include <stdlib.h> #include <stdarg.h> #include <errno.h> #define PCIUTILS_SETPCI #include "pciutils.h" static int force; /* Don't complain if no devices match */ static int verbose; /* Verbosity level */ static int demo_mode; /* Only show */ static int allow_raw_access; const char program_name[] = "setpci"; static struct pci_access *pacc; struct value { unsigned int value; unsigned int mask; }; struct op { struct op *next; u16 cap_type; /* PCI_CAP_xxx or 0 */ u16 cap_id; const char *name; unsigned int hdr_type_mask; unsigned int addr; unsigned int width; /* Byte width of the access */ unsigned int num_values; /* Number of values to write; 0=read */ unsigned int number; /* The n-th capability of that id */ struct value values[0]; }; struct group { struct group *next; struct pci_filter filter; struct op *first_op; struct op **last_op; }; static struct group *first_group, **last_group = &first_group; static int need_bus_scan; static unsigned int max_values[] = { 0, 0xff, 0xffff, 0, 0xffffffff }; static int matches_single_device(struct group *group) { struct pci_filter *f = &group->filter; return (f->domain >= 0 && f->bus >= 0 && f->slot >= 0 && f->func >= 0); } static struct pci_dev ** select_devices(struct group *group) { struct pci_filter *f = &group->filter; if (!need_bus_scan && matches_single_device(group)) { struct pci_dev **devs = xmalloc(sizeof(struct device *) * 2); struct pci_dev *dev = pci_get_dev(pacc, f->domain, f->bus, f->slot, f->func); int i = 0; if (pci_filter_match(f, dev)) devs[i++] = dev; devs[i] = NULL; return devs; } else { struct pci_dev **devs, *dev; int i = 0; int cnt = 1; for (dev = pacc->devices; dev; dev = dev->next) if (pci_filter_match(f, dev)) cnt++; devs = xmalloc(sizeof(struct device *) * cnt); for (dev = pacc->devices; dev; dev = dev->next) if (pci_filter_match(f, dev)) devs[i++] = dev; devs[i] = NULL; return devs; } } static void PCI_PRINTF(1,2) trace(const char *fmt, ...) { va_list args; va_start(args, fmt); if (verbose) vprintf(fmt, args); va_end(args); } static void exec_op(struct op *op, struct pci_dev *dev) { const char * const formats[] = { NULL, " %02x", " %04x", NULL, " %08x" }; const char * const mask_formats[] = { NULL, " %02x->(%02x:%02x)->%02x", " %04x->(%04x:%04x)->%04x", NULL, " %08x->(%08x:%08x)->%08x" }; unsigned int i, x, y; int addr = 0; int width = op->width; char slot[16]; sprintf(slot, "%04x:%02x:%02x.%x", dev->domain, dev->bus, dev->dev, dev->func); trace("%s ", slot); if (op->cap_type) { struct pci_cap *cap; unsigned int cap_nr = op->number; cap = pci_find_cap_nr(dev, op->cap_id, op->cap_type, &cap_nr); if (cap) addr = cap->addr; else if (cap_nr == 0) die("%s: Instance #%d of %s %04x not found - there are no capabilities with that id.", slot, op->number, ((op->cap_type == PCI_CAP_NORMAL) ? "Capability" : "Extended capability"), op->cap_id); else die("%s: Instance #%d of %s %04x not found - there %s only %d %s with that id.", slot, op->number, ((op->cap_type == PCI_CAP_NORMAL) ? "Capability" : "Extended capability"), op->cap_id, ((cap_nr == 1) ? "is" : "are"), cap_nr, ((cap_nr == 1) ? "capability" : "capabilities")); trace(((op->cap_type == PCI_CAP_NORMAL) ? "(cap %02x @%02x) " : "(ecap %04x @%03x) "), op->cap_id, addr); } addr += op->addr; trace("@%02x", addr); /* We have already checked it when parsing, but addressing relative to capabilities can change the address. */ if (addr & (width-1)) die("%s: Unaligned access of width %d to register %04x", slot, width, addr); if (addr + width > 0x1000) die("%s: Access of width %d to register %04x out of range", slot, width, addr); if (op->hdr_type_mask) { unsigned int hdr_type = pci_read_byte(dev, PCI_HEADER_TYPE) & 0x7f; if (hdr_type > 2 || !((1 << hdr_type) & op->hdr_type_mask)) die("%s: Does not have register %s.", slot, op->name); } if (op->num_values) { for (i=0; i<op->num_values; i++) { if ((op->values[i].mask & max_values[width]) == max_values[width]) { x = op->values[i].value; trace(formats[width], op->values[i].value); } else { switch (width) { case 1: y = pci_read_byte(dev, addr); break; case 2: y = pci_read_word(dev, addr); break; default: y = pci_read_long(dev, addr); break; } x = (y & ~op->values[i].mask) | op->values[i].value; trace(mask_formats[width], y, op->values[i].value, op->values[i].mask, x); } if (!demo_mode) { switch (width) { case 1: pci_write_byte(dev, addr, x); break; case 2: pci_write_word(dev, addr, x); break; default: pci_write_long(dev, addr, x); break; } } addr += width; } trace("\n"); } else { trace(" = "); switch (width) { case 1: x = pci_read_byte(dev, addr); break; case 2: x = pci_read_word(dev, addr); break; default: x = pci_read_long(dev, addr); break; } printf(formats[width]+1, x); putchar('\n'); } } static void execute(void) { struct group *group; int group_cnt = 0; for (group = first_group; group; group = group->next) { struct pci_dev **vec = select_devices(group); struct pci_dev *dev; unsigned int i; group_cnt++; if (!vec[0] && !force) fprintf(stderr, "setpci: Warning: No devices selected for operation group %d.\n", group_cnt); for (i = 0; dev = vec[i]; i++) { struct op *op; for (op = group->first_op; op; op = op->next) exec_op(op, dev); } free(vec); } } static void scan_ops(void) { struct group *group; struct op *op; for (group = first_group; group; group = group->next) for (op = group->first_op; op; op = op->next) { if (op->num_values && !demo_mode) pacc->writeable = 1; if (!matches_single_device(group) || !allow_raw_access) need_bus_scan = 1; } } struct reg_name { unsigned int cap; unsigned int offset; unsigned int width; unsigned int hdr_type_mask; const char *name; }; static const struct reg_name pci_reg_names[] = { { 0, 0x00, 2, 0x0, "VENDOR_ID" }, { 0, 0x02, 2, 0x0, "DEVICE_ID" }, { 0, 0x04, 2, 0x0, "COMMAND" }, { 0, 0x06, 2, 0x0, "STATUS" }, { 0, 0x08, 1, 0x0, "REVISION" }, { 0, 0x09, 1, 0x0, "CLASS_PROG" }, { 0, 0x0a, 2, 0x0, "CLASS_DEVICE" }, { 0, 0x0c, 1, 0x0, "CACHE_LINE_SIZE" }, { 0, 0x0d, 1, 0x0, "LATENCY_TIMER" }, { 0, 0x0e, 1, 0x0, "HEADER_TYPE" }, { 0, 0x0f, 1, 0x0, "BIST" }, { 0, 0x10, 4, 0x3, "BASE_ADDRESS_0" }, { 0, 0x14, 4, 0x3, "BASE_ADDRESS_1" }, { 0, 0x18, 4, 0x1, "BASE_ADDRESS_2" }, { 0, 0x1c, 4, 0x1, "BASE_ADDRESS_3" }, { 0, 0x20, 4, 0x1, "BASE_ADDRESS_4" }, { 0, 0x24, 4, 0x1, "BASE_ADDRESS_5" }, { 0, 0x28, 4, 0x1, "CARDBUS_CIS" }, { 0, 0x2c, 2, 0x1, "SUBSYSTEM_VENDOR_ID" }, { 0, 0x2e, 2, 0x1, "SUBSYSTEM_ID" }, { 0, 0x30, 4, 0x1, "ROM_ADDRESS" }, { 0, 0x34, 1, 0x3, "CAPABILITIES" }, { 0, 0x3c, 1, 0x3, "INTERRUPT_LINE" }, { 0, 0x3d, 1, 0x3, "INTERRUPT_PIN" }, { 0, 0x3e, 1, 0x1, "MIN_GNT" }, { 0, 0x3f, 1, 0x1, "MAX_LAT" }, { 0, 0x18, 1, 0x2, "PRIMARY_BUS" }, { 0, 0x19, 1, 0x2, "SECONDARY_BUS" }, { 0, 0x1a, 1, 0x2, "SUBORDINATE_BUS" }, { 0, 0x1b, 1, 0x2, "SEC_LATENCY_TIMER" }, { 0, 0x1c, 1, 0x2, "IO_BASE" }, { 0, 0x1d, 1, 0x2, "IO_LIMIT" }, { 0, 0x1e, 2, 0x2, "SEC_STATUS" }, { 0, 0x20, 2, 0x2, "MEMORY_BASE" }, { 0, 0x22, 2, 0x2, "MEMORY_LIMIT" }, { 0, 0x24, 2, 0x2, "PREF_MEMORY_BASE" }, { 0, 0x26, 2, 0x2, "PREF_MEMORY_LIMIT" }, { 0, 0x28, 4, 0x2, "PREF_BASE_UPPER32" }, { 0, 0x2c, 4, 0x2, "PREF_LIMIT_UPPER32" }, { 0, 0x30, 2, 0x2, "IO_BASE_UPPER16" }, { 0, 0x32, 2, 0x2, "IO_LIMIT_UPPER16" }, { 0, 0x38, 4, 0x2, "BRIDGE_ROM_ADDRESS" }, { 0, 0x3e, 2, 0x2, "BRIDGE_CONTROL" }, { 0, 0x10, 4, 0x4, "CB_CARDBUS_BASE" }, { 0, 0x14, 2, 0x4, "CB_CAPABILITIES" }, { 0, 0x16, 2, 0x4, "CB_SEC_STATUS" }, { 0, 0x18, 1, 0x4, "CB_BUS_NUMBER" }, { 0, 0x19, 1, 0x4, "CB_CARDBUS_NUMBER" }, { 0, 0x1a, 1, 0x4, "CB_SUBORDINATE_BUS" }, { 0, 0x1b, 1, 0x4, "CB_CARDBUS_LATENCY" }, { 0, 0x1c, 4, 0x4, "CB_MEMORY_BASE_0" }, { 0, 0x20, 4, 0x4, "CB_MEMORY_LIMIT_0" }, { 0, 0x24, 4, 0x4, "CB_MEMORY_BASE_1" }, { 0, 0x28, 4, 0x4, "CB_MEMORY_LIMIT_1" }, { 0, 0x2c, 2, 0x4, "CB_IO_BASE_0" }, { 0, 0x2e, 2, 0x4, "CB_IO_BASE_0_HI" }, { 0, 0x30, 2, 0x4, "CB_IO_LIMIT_0" }, { 0, 0x32, 2, 0x4, "CB_IO_LIMIT_0_HI" }, { 0, 0x34, 2, 0x4, "CB_IO_BASE_1" }, { 0, 0x36, 2, 0x4, "CB_IO_BASE_1_HI" }, { 0, 0x38, 2, 0x4, "CB_IO_LIMIT_1" }, { 0, 0x3a, 2, 0x4, "CB_IO_LIMIT_1_HI" }, { 0, 0x40, 2, 0x4, "CB_SUBSYSTEM_VENDOR_ID" }, { 0, 0x42, 2, 0x4, "CB_SUBSYSTEM_ID" }, { 0, 0x44, 4, 0x4, "CB_LEGACY_MODE_BASE" }, { 0x10001, 0, 0, 0x0, "CAP_PM" }, { 0x10002, 0, 0, 0x0, "CAP_AGP" }, { 0x10003, 0, 0, 0x0, "CAP_VPD" }, { 0x10004, 0, 0, 0x0, "CAP_SLOTID" }, { 0x10005, 0, 0, 0x0, "CAP_MSI" }, { 0x10006, 0, 0, 0x0, "CAP_CHSWP" }, { 0x10007, 0, 0, 0x0, "CAP_PCIX" }, { 0x10008, 0, 0, 0x0, "CAP_HT" }, { 0x10009, 0, 0, 0x0, "CAP_VNDR" }, { 0x1000a, 0, 0, 0x0, "CAP_DBG" }, { 0x1000b, 0, 0, 0x0, "CAP_CCRC" }, { 0x1000c, 0, 0, 0x0, "CAP_HOTPLUG" }, { 0x1000d, 0, 0, 0x0, "CAP_SSVID" }, { 0x1000e, 0, 0, 0x0, "CAP_AGP3" }, { 0x1000f, 0, 0, 0x0, "CAP_SECURE" }, { 0x10010, 0, 0, 0x0, "CAP_EXP" }, { 0x10011, 0, 0, 0x0, "CAP_MSIX" }, { 0x10012, 0, 0, 0x0, "CAP_SATA" }, { 0x10013, 0, 0, 0x0, "CAP_AF" }, { 0x10014, 0, 0, 0x0, "CAP_EA" }, { 0x20001, 0, 0, 0x0, "ECAP_AER" }, { 0x20002, 0, 0, 0x0, "ECAP_VC" }, { 0x20003, 0, 0, 0x0, "ECAP_DSN" }, { 0x20004, 0, 0, 0x0, "ECAP_PB" }, { 0x20005, 0, 0, 0x0, "ECAP_RCLINK" }, { 0x20006, 0, 0, 0x0, "ECAP_RCILINK" }, { 0x20007, 0, 0, 0x0, "ECAP_RCEC" }, { 0x20008, 0, 0, 0x0, "ECAP_MFVC" }, { 0x20009, 0, 0, 0x0, "ECAP_VC2" }, { 0x2000a, 0, 0, 0x0, "ECAP_RBCB" }, { 0x2000b, 0, 0, 0x0, "ECAP_VNDR" }, { 0x2000d, 0, 0, 0x0, "ECAP_ACS" }, { 0x2000e, 0, 0, 0x0, "ECAP_ARI" }, { 0x2000f, 0, 0, 0x0, "ECAP_ATS" }, { 0x20010, 0, 0, 0x0, "ECAP_SRIOV" }, { 0x20011, 0, 0, 0x0, "ECAP_MRIOV" }, { 0x20012, 0, 0, 0x0, "ECAP_MCAST" }, { 0x20013, 0, 0, 0x0, "ECAP_PRI" }, { 0x20015, 0, 0, 0x0, "ECAP_REBAR" }, { 0x20016, 0, 0, 0x0, "ECAP_DPA" }, { 0x20017, 0, 0, 0x0, "ECAP_TPH" }, { 0x20018, 0, 0, 0x0, "ECAP_LTR" }, { 0x20019, 0, 0, 0x0, "ECAP_SECPCI" }, { 0x2001a, 0, 0, 0x0, "ECAP_PMUX" }, { 0x2001b, 0, 0, 0x0, "ECAP_PASID" }, { 0x2001c, 0, 0, 0x0, "ECAP_LNR" }, { 0x2001d, 0, 0, 0x0, "ECAP_DPC" }, { 0x2001e, 0, 0, 0x0, "ECAP_L1PM" }, { 0x2001f, 0, 0, 0x0, "ECAP_PTM" }, { 0x20020, 0, 0, 0x0, "ECAP_M_PCIE" }, { 0x20021, 0, 0, 0x0, "ECAP_FRS" }, { 0x20022, 0, 0, 0x0, "ECAP_RTR" }, { 0x20023, 0, 0, 0x0, "ECAP_DVSEC" }, { 0x20024, 0, 0, 0x0, "ECAP_VF_REBAR" }, { 0x20025, 0, 0, 0x0, "ECAP_DLNK" }, { 0x20026, 0, 0, 0x0, "ECAP_16GT" }, { 0x20027, 0, 0, 0x0, "ECAP_LMR" }, { 0x20028, 0, 0, 0x0, "ECAP_HIER_ID" }, { 0x20029, 0, 0, 0x0, "ECAP_NPEM" }, { 0, 0, 0, 0x0, NULL } }; static void dump_registers(void) { const struct reg_name *r; printf("cap pos w name\n"); for (r = pci_reg_names; r->name; r++) { if (r->cap >= 0x20000) printf("%04x", r->cap - 0x20000); else if (r->cap) printf(" %02x", r->cap - 0x10000); else printf(" "); printf(" %02x %c %s\n", r->offset, "-BW?L"[r->width], r->name); } } static void NONRET usage(void) { fprintf(stderr, "Usage: setpci [<options>] (<device>+ <reg>[=<values>]*)*\n" "\n" "General options:\n" "-f\t\tDon't complain if there's nothing to do\n" "-v\t\tBe verbose\n" "-D\t\tList changes, don't commit them\n" "-r\t\tUse raw access without bus scan if possible\n" "--dumpregs\tDump all known register names and exit\n" "\n" "PCI access options:\n" GENERIC_HELP "\n" "Setting commands:\n" "<device>:\t-s [[[<domain>]:][<bus>]:][<slot>][.[<func>]]\n" "\t\t-d [<vendor>]:[<device>]\n" "<reg>:\t\t<base>[+<offset>][.(B|W|L)][@<number>]\n" "<base>:\t\t<address>\n" "\t\t<named-register>\n" "\t\t[E]CAP_<capability-name>\n" "\t\t[E]CAP<capability-number>\n" "<values>:\t<value>[,<value>...]\n" "<value>:\t<hex>\n" "\t\t<hex>:<mask>\n"); exit(0); } static void NONRET PCI_PRINTF(1,2) parse_err(const char *msg, ...) { va_list args; va_start(args, msg); fprintf(stderr, "setpci: "); vfprintf(stderr, msg, args); fprintf(stderr, ".\nTry `setpci --help' for more information.\n"); exit(1); } static int parse_options(int argc, char **argv) { const char opts[] = GENERIC_OPTIONS; int i=1; if (argc == 2) { if (!strcmp(argv[1], "--help")) usage(); if (!strcmp(argv[1], "--version")) { puts("setpci version " PCIUTILS_VERSION); exit(0); } if (!strcmp(argv[1], "--dumpregs")) { dump_registers(); exit(0); } } while (i < argc && argv[i][0] == '-') { char *c = argv[i++] + 1; char *d = c; char *e; while (*c) switch (*c) { case 0: break; case 'v': verbose++; c++; break; case 'f': force++; c++; break; case 'D': demo_mode++; c++; break; case 'r': allow_raw_access++; c++; break; default: if (e = strchr(opts, *c)) { char *arg; c++; if (e[1] == ':') { if (*c) arg = c; else if (i < argc) arg = argv[i++]; else parse_err("Option -%c requires an argument", *e); c = ""; } else arg = NULL; if (!parse_generic_option(*e, pacc, arg)) parse_err("Unable to parse option -%c", *e); } else { if (c != d) parse_err("Invalid or misplaced option -%c", *c); return i-1; } } } return i; } static int parse_filter(int argc, char **argv, int i, struct group *group) { char *c = argv[i++]; char *d; if (!c[1] || !strchr("sd", c[1])) parse_err("Invalid option -%c", c[1]); if (c[2]) d = (c[2] == '=') ? c+3 : c+2; else if (i < argc) d = argv[i++]; else parse_err("Option -%c requires an argument", c[1]); switch (c[1]) { case 's': if (d = pci_filter_parse_slot(&group->filter, d)) parse_err("Unable to parse filter -s %s", d); break; case 'd': if (d = pci_filter_parse_id(&group->filter, d)) parse_err("Unable to parse filter -d %s", d); break; default: parse_err("Unknown filter option -%c", c[1]); } return i; } static const struct reg_name *parse_reg_name(char *name) { const struct reg_name *r; for (r = pci_reg_names; r->name; r++) if (!strcasecmp(r->name, name)) return r; return NULL; } static int parse_x32(char *c, char **stopp, unsigned int *resp) { char *stop; unsigned long int l; if (!*c) return -1; errno = 0; l = strtoul(c, &stop, 16); if (errno) return -1; if ((l & ~0U) != l) return -1; *resp = l; if (*stop) { if (stopp) *stopp = stop; return 0; } else { if (stopp) *stopp = NULL; return 1; } } static void parse_register(struct op *op, char *base) { const struct reg_name *r; unsigned int cap; op->cap_type = op->cap_id = 0; if (parse_x32(base, NULL, &op->addr) > 0) return; else if (r = parse_reg_name(base)) { switch (r->cap & 0xff0000) { case 0x10000: op->cap_type = PCI_CAP_NORMAL; break; case 0x20000: op->cap_type = PCI_CAP_EXTENDED; break; } op->cap_id = r->cap & 0xffff; op->addr = r->offset; op->hdr_type_mask = r->hdr_type_mask; op->name = r->name; if (r->width && !op->width) op->width = r->width; return; } else if (!strncasecmp(base, "CAP", 3)) { if (parse_x32(base+3, NULL, &cap) > 0 && cap < 0x100) { op->cap_type = PCI_CAP_NORMAL; op->cap_id = cap; op->addr = 0; return; } } else if (!strncasecmp(base, "ECAP", 4)) { if (parse_x32(base+4, NULL, &cap) > 0 && cap < 0x1000) { op->cap_type = PCI_CAP_EXTENDED; op->cap_id = cap; op->addr = 0; return; } } parse_err("Unknown register \"%s\"", base); } static void parse_op(char *c, struct group *group) { char *base, *offset, *width, *value, *number; char *e, *f; int n, j; struct op *op; /* Split the argument */ base = xstrdup(c); if (value = strchr(base, '=')) *value++ = 0; if (number = strchr(base, '@')) *number++ = 0; if (width = strchr(base, '.')) *width++ = 0; if (offset = strchr(base, '+')) *offset++ = 0; /* Look for setting of values and count how many */ n = 0; if (value) { if (!*value) parse_err("Missing value"); n++; for (e=value; *e; e++) if (*e == ',') n++; } /* Allocate the operation */ op = xmalloc(sizeof(struct op) + n*sizeof(struct value)); memset(op, 0, sizeof(struct op)); *group->last_op = op; group->last_op = &op->next; op->num_values = n; /* What is the width suffix? */ if (width) { if (width[1]) parse_err("Invalid width \"%s\"", width); switch (*width & 0xdf) { case 'B': op->width = 1; break; case 'W': op->width = 2; break; case 'L': op->width = 4; break; default: parse_err("Invalid width \"%c\"", *width); } } else op->width = 0; /* Check which n-th capability of the same id we want */ if (number) { unsigned int num; if (parse_x32(number, NULL, &num) <= 0 || (int) num < 0) parse_err("Invalid number \"%s\"", number); op->number = num; } else op->number = 0; /* Find the register */ parse_register(op, base); if (!op->width) parse_err("Missing width"); /* Add offset */ if (offset) { unsigned int off; if (parse_x32(offset, NULL, &off) <= 0 || off >= 0x1000) parse_err("Invalid offset \"%s\"", offset); op->addr += off; } /* Check range */ if (op->addr >= 0x1000 || op->addr + op->width*(n ? n : 1) > 0x1000) parse_err("Register number %02x out of range", op->addr); if (op->addr & (op->width - 1)) parse_err("Unaligned register address %02x", op->addr); /* Parse the values */ for (j=0; j<n; j++) { unsigned int ll, lim; e = strchr(value, ','); if (e) *e++ = 0; if (parse_x32(value, &f, &ll) < 0 || f && *f != ':') parse_err("Invalid value \"%s\"", value); lim = max_values[op->width]; if (ll > lim && ll < ~0U - lim) parse_err("Value \"%s\" is out of range", value); op->values[j].value = ll; if (f && *f == ':') { if (parse_x32(f+1, NULL, &ll) <= 0) parse_err("Invalid mask \"%s\"", f+1); if (ll > lim && ll < ~0U - lim) parse_err("Mask \"%s\" is out of range", f+1); op->values[j].mask = ll; op->values[j].value &= ll; } else op->values[j].mask = ~0U; value = e; } } static struct group *new_group(void) { struct group *g = xmalloc(sizeof(*g)); memset(g, 0, sizeof(*g)); pci_filter_init(pacc, &g->filter); g->last_op = &g->first_op; *last_group = g; last_group = &g->next; return g; } static void parse_ops(int argc, char **argv, int i) { struct group *group = NULL; while (i < argc) { char *c = argv[i++]; if (*c == '-') { if (!group || group->first_op) group = new_group(); i = parse_filter(argc, argv, i-1, group); } else { if (!group) parse_err("Filter specification expected"); parse_op(c, group); } } if (!group) parse_err("No operation specified"); } int main(int argc, char **argv) { int i; pacc = pci_alloc(); pacc->error = die; i = parse_options(argc, argv); pci_init(pacc); parse_ops(argc, argv, i); scan_ops(); if (need_bus_scan) pci_scan_bus(pacc); execute(); return 0; }