diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:19:15 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:19:15 +0000 |
commit | 6eb9c5a5657d1fe77b55cc261450f3538d35a94d (patch) | |
tree | 657d8194422a5daccecfd42d654b8a245ef7b4c8 /contrib/pgcrypto/crypt-des.c | |
parent | Initial commit. (diff) | |
download | postgresql-13-6eb9c5a5657d1fe77b55cc261450f3538d35a94d.tar.xz postgresql-13-6eb9c5a5657d1fe77b55cc261450f3538d35a94d.zip |
Adding upstream version 13.4.upstream/13.4upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | contrib/pgcrypto/crypt-des.c | 791 |
1 files changed, 791 insertions, 0 deletions
diff --git a/contrib/pgcrypto/crypt-des.c b/contrib/pgcrypto/crypt-des.c new file mode 100644 index 0000000..6efaa60 --- /dev/null +++ b/contrib/pgcrypto/crypt-des.c @@ -0,0 +1,791 @@ +/* + * FreeSec: libcrypt for NetBSD + * + * contrib/pgcrypto/crypt-des.c + * + * Copyright (c) 1994 David Burren + * All rights reserved. + * + * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet + * this file should now *only* export crypt(), in order to make + * binaries of libcrypt exportable from the USA + * + * Adapted for FreeBSD-4.0 by Mark R V Murray + * this file should now *only* export px_crypt_des(), in order to make + * a module that can be optionally included in libcrypt. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the author nor the names of other contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $ + * + * This is an original implementation of the DES and the crypt(3) interfaces + * by David Burren <davidb@werj.com.au>. + * + * An excellent reference on the underlying algorithm (and related + * algorithms) is: + * + * B. Schneier, Applied Cryptography: protocols, algorithms, + * and source code in C, John Wiley & Sons, 1994. + * + * Note that in that book's description of DES the lookups for the initial, + * pbox, and final permutations are inverted (this has been brought to the + * attention of the author). A list of errata for this book has been + * posted to the sci.crypt newsgroup by the author and is available for FTP. + * + * ARCHITECTURE ASSUMPTIONS: + * It is assumed that the 8-byte arrays passed by reference can be + * addressed as arrays of uint32's (ie. the CPU is not picky about + * alignment). + */ + +#include "postgres.h" +#include "miscadmin.h" +#include "port/pg_bswap.h" + +#include "px-crypt.h" + +#define _PASSWORD_EFMT1 '_' + +static const char _crypt_a64[] = +"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + +static uint8 IP[64] = { + 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, + 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, + 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, + 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 +}; + +static uint8 inv_key_perm[64]; +static uint8 u_key_perm[56]; +static uint8 key_perm[56] = { + 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, + 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, + 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, + 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 +}; + +static uint8 key_shifts[16] = { + 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 +}; + +static uint8 inv_comp_perm[56]; +static uint8 comp_perm[48] = { + 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, + 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, + 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, + 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 +}; + +/* + * No E box is used, as it's replaced by some ANDs, shifts, and ORs. + */ + +static uint8 u_sbox[8][64]; +static uint8 sbox[8][64] = { + { + 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, + 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, + 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, + 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 + }, + { + 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, + 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, + 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, + 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 + }, + { + 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, + 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, + 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, + 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 + }, + { + 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, + 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, + 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, + 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 + }, + { + 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, + 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, + 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, + 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 + }, + { + 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, + 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, + 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, + 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 + }, + { + 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, + 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, + 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, + 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 + }, + { + 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, + 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, + 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, + 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 + } +}; + +static uint8 un_pbox[32]; +static uint8 pbox[32] = { + 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, + 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 +}; + +static uint32 _crypt_bits32[32] = +{ + 0x80000000, 0x40000000, 0x20000000, 0x10000000, + 0x08000000, 0x04000000, 0x02000000, 0x01000000, + 0x00800000, 0x00400000, 0x00200000, 0x00100000, + 0x00080000, 0x00040000, 0x00020000, 0x00010000, + 0x00008000, 0x00004000, 0x00002000, 0x00001000, + 0x00000800, 0x00000400, 0x00000200, 0x00000100, + 0x00000080, 0x00000040, 0x00000020, 0x00000010, + 0x00000008, 0x00000004, 0x00000002, 0x00000001 +}; + +static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}; + +static uint32 saltbits; +static long old_salt; +static uint32 *bits28, + *bits24; +static uint8 init_perm[64], + final_perm[64]; +static uint32 en_keysl[16], + en_keysr[16]; +static uint32 de_keysl[16], + de_keysr[16]; +static int des_initialised = 0; +static uint8 m_sbox[4][4096]; +static uint32 psbox[4][256]; +static uint32 ip_maskl[8][256], + ip_maskr[8][256]; +static uint32 fp_maskl[8][256], + fp_maskr[8][256]; +static uint32 key_perm_maskl[8][128], + key_perm_maskr[8][128]; +static uint32 comp_maskl[8][128], + comp_maskr[8][128]; +static uint32 old_rawkey0, + old_rawkey1; + +static inline int +ascii_to_bin(char ch) +{ + if (ch > 'z') + return 0; + if (ch >= 'a') + return (ch - 'a' + 38); + if (ch > 'Z') + return 0; + if (ch >= 'A') + return (ch - 'A' + 12); + if (ch > '9') + return 0; + if (ch >= '.') + return (ch - '.'); + return 0; +} + +static void +des_init(void) +{ + int i, + j, + b, + k, + inbit, + obit; + uint32 *p, + *il, + *ir, + *fl, + *fr; + + old_rawkey0 = old_rawkey1 = 0L; + saltbits = 0L; + old_salt = 0L; + bits24 = (bits28 = _crypt_bits32 + 4) + 4; + + /* + * Invert the S-boxes, reordering the input bits. + */ + for (i = 0; i < 8; i++) + for (j = 0; j < 64; j++) + { + b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); + u_sbox[i][j] = sbox[i][b]; + } + + /* + * Convert the inverted S-boxes into 4 arrays of 8 bits. Each will handle + * 12 bits of the S-box input. + */ + for (b = 0; b < 4; b++) + for (i = 0; i < 64; i++) + for (j = 0; j < 64; j++) + m_sbox[b][(i << 6) | j] = + (u_sbox[(b << 1)][i] << 4) | + u_sbox[(b << 1) + 1][j]; + + /* + * Set up the initial & final permutations into a useful form, and + * initialise the inverted key permutation. + */ + for (i = 0; i < 64; i++) + { + init_perm[final_perm[i] = IP[i] - 1] = i; + inv_key_perm[i] = 255; + } + + /* + * Invert the key permutation and initialise the inverted key compression + * permutation. + */ + for (i = 0; i < 56; i++) + { + u_key_perm[i] = key_perm[i] - 1; + inv_key_perm[key_perm[i] - 1] = i; + inv_comp_perm[i] = 255; + } + + /* + * Invert the key compression permutation. + */ + for (i = 0; i < 48; i++) + inv_comp_perm[comp_perm[i] - 1] = i; + + /* + * Set up the OR-mask arrays for the initial and final permutations, and + * for the key initial and compression permutations. + */ + for (k = 0; k < 8; k++) + { + for (i = 0; i < 256; i++) + { + *(il = &ip_maskl[k][i]) = 0L; + *(ir = &ip_maskr[k][i]) = 0L; + *(fl = &fp_maskl[k][i]) = 0L; + *(fr = &fp_maskr[k][i]) = 0L; + for (j = 0; j < 8; j++) + { + inbit = 8 * k + j; + if (i & _crypt_bits8[j]) + { + if ((obit = init_perm[inbit]) < 32) + *il |= _crypt_bits32[obit]; + else + *ir |= _crypt_bits32[obit - 32]; + if ((obit = final_perm[inbit]) < 32) + *fl |= _crypt_bits32[obit]; + else + *fr |= _crypt_bits32[obit - 32]; + } + } + } + for (i = 0; i < 128; i++) + { + *(il = &key_perm_maskl[k][i]) = 0L; + *(ir = &key_perm_maskr[k][i]) = 0L; + for (j = 0; j < 7; j++) + { + inbit = 8 * k + j; + if (i & _crypt_bits8[j + 1]) + { + if ((obit = inv_key_perm[inbit]) == 255) + continue; + if (obit < 28) + *il |= bits28[obit]; + else + *ir |= bits28[obit - 28]; + } + } + *(il = &comp_maskl[k][i]) = 0L; + *(ir = &comp_maskr[k][i]) = 0L; + for (j = 0; j < 7; j++) + { + inbit = 7 * k + j; + if (i & _crypt_bits8[j + 1]) + { + if ((obit = inv_comp_perm[inbit]) == 255) + continue; + if (obit < 24) + *il |= bits24[obit]; + else + *ir |= bits24[obit - 24]; + } + } + } + } + + /* + * Invert the P-box permutation, and convert into OR-masks for handling + * the output of the S-box arrays setup above. + */ + for (i = 0; i < 32; i++) + un_pbox[pbox[i] - 1] = i; + + for (b = 0; b < 4; b++) + for (i = 0; i < 256; i++) + { + *(p = &psbox[b][i]) = 0L; + for (j = 0; j < 8; j++) + { + if (i & _crypt_bits8[j]) + *p |= _crypt_bits32[un_pbox[8 * b + j]]; + } + } + + des_initialised = 1; +} + +static void +setup_salt(long salt) +{ + uint32 obit, + saltbit; + int i; + + if (salt == old_salt) + return; + old_salt = salt; + + saltbits = 0L; + saltbit = 1; + obit = 0x800000; + for (i = 0; i < 24; i++) + { + if (salt & saltbit) + saltbits |= obit; + saltbit <<= 1; + obit >>= 1; + } +} + +static int +des_setkey(const char *key) +{ + uint32 k0, + k1, + rawkey0, + rawkey1; + int shifts, + round; + + if (!des_initialised) + des_init(); + + rawkey0 = pg_ntoh32(*(const uint32 *) key); + rawkey1 = pg_ntoh32(*(const uint32 *) (key + 4)); + + if ((rawkey0 | rawkey1) + && rawkey0 == old_rawkey0 + && rawkey1 == old_rawkey1) + { + /* + * Already setup for this key. This optimization fails on a zero key + * (which is weak and has bad parity anyway) in order to simplify the + * starting conditions. + */ + return 0; + } + old_rawkey0 = rawkey0; + old_rawkey1 = rawkey1; + + /* + * Do key permutation and split into two 28-bit subkeys. + */ + k0 = key_perm_maskl[0][rawkey0 >> 25] + | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] + | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] + | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] + | key_perm_maskl[4][rawkey1 >> 25] + | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] + | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] + | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; + k1 = key_perm_maskr[0][rawkey0 >> 25] + | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] + | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] + | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] + | key_perm_maskr[4][rawkey1 >> 25] + | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] + | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] + | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; + + /* + * Rotate subkeys and do compression permutation. + */ + shifts = 0; + for (round = 0; round < 16; round++) + { + uint32 t0, + t1; + + shifts += key_shifts[round]; + + t0 = (k0 << shifts) | (k0 >> (28 - shifts)); + t1 = (k1 << shifts) | (k1 >> (28 - shifts)); + + de_keysl[15 - round] = + en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] + | comp_maskl[1][(t0 >> 14) & 0x7f] + | comp_maskl[2][(t0 >> 7) & 0x7f] + | comp_maskl[3][t0 & 0x7f] + | comp_maskl[4][(t1 >> 21) & 0x7f] + | comp_maskl[5][(t1 >> 14) & 0x7f] + | comp_maskl[6][(t1 >> 7) & 0x7f] + | comp_maskl[7][t1 & 0x7f]; + + de_keysr[15 - round] = + en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] + | comp_maskr[1][(t0 >> 14) & 0x7f] + | comp_maskr[2][(t0 >> 7) & 0x7f] + | comp_maskr[3][t0 & 0x7f] + | comp_maskr[4][(t1 >> 21) & 0x7f] + | comp_maskr[5][(t1 >> 14) & 0x7f] + | comp_maskr[6][(t1 >> 7) & 0x7f] + | comp_maskr[7][t1 & 0x7f]; + } + return 0; +} + +static int +do_des(uint32 l_in, uint32 r_in, uint32 *l_out, uint32 *r_out, int count) +{ + /* + * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. + */ + uint32 l, + r, + *kl, + *kr, + *kl1, + *kr1; + uint32 f, + r48l, + r48r; + int round; + + if (count == 0) + return 1; + else if (count > 0) + { + /* + * Encrypting + */ + kl1 = en_keysl; + kr1 = en_keysr; + } + else + { + /* + * Decrypting + */ + count = -count; + kl1 = de_keysl; + kr1 = de_keysr; + } + + /* + * Do initial permutation (IP). + */ + l = ip_maskl[0][l_in >> 24] + | ip_maskl[1][(l_in >> 16) & 0xff] + | ip_maskl[2][(l_in >> 8) & 0xff] + | ip_maskl[3][l_in & 0xff] + | ip_maskl[4][r_in >> 24] + | ip_maskl[5][(r_in >> 16) & 0xff] + | ip_maskl[6][(r_in >> 8) & 0xff] + | ip_maskl[7][r_in & 0xff]; + r = ip_maskr[0][l_in >> 24] + | ip_maskr[1][(l_in >> 16) & 0xff] + | ip_maskr[2][(l_in >> 8) & 0xff] + | ip_maskr[3][l_in & 0xff] + | ip_maskr[4][r_in >> 24] + | ip_maskr[5][(r_in >> 16) & 0xff] + | ip_maskr[6][(r_in >> 8) & 0xff] + | ip_maskr[7][r_in & 0xff]; + + while (count--) + { + CHECK_FOR_INTERRUPTS(); + + /* + * Do each round. + */ + kl = kl1; + kr = kr1; + round = 16; + while (round--) + { + /* + * Expand R to 48 bits (simulate the E-box). + */ + r48l = ((r & 0x00000001) << 23) + | ((r & 0xf8000000) >> 9) + | ((r & 0x1f800000) >> 11) + | ((r & 0x01f80000) >> 13) + | ((r & 0x001f8000) >> 15); + + r48r = ((r & 0x0001f800) << 7) + | ((r & 0x00001f80) << 5) + | ((r & 0x000001f8) << 3) + | ((r & 0x0000001f) << 1) + | ((r & 0x80000000) >> 31); + + /* + * Do salting for crypt() and friends, and XOR with the permuted + * key. + */ + f = (r48l ^ r48r) & saltbits; + r48l ^= f ^ *kl++; + r48r ^= f ^ *kr++; + + /* + * Do sbox lookups (which shrink it back to 32 bits) and do the + * pbox permutation at the same time. + */ + f = psbox[0][m_sbox[0][r48l >> 12]] + | psbox[1][m_sbox[1][r48l & 0xfff]] + | psbox[2][m_sbox[2][r48r >> 12]] + | psbox[3][m_sbox[3][r48r & 0xfff]]; + + /* + * Now that we've permuted things, complete f(). + */ + f ^= l; + l = r; + r = f; + } + r = l; + l = f; + } + + /* + * Do final permutation (inverse of IP). + */ + *l_out = fp_maskl[0][l >> 24] + | fp_maskl[1][(l >> 16) & 0xff] + | fp_maskl[2][(l >> 8) & 0xff] + | fp_maskl[3][l & 0xff] + | fp_maskl[4][r >> 24] + | fp_maskl[5][(r >> 16) & 0xff] + | fp_maskl[6][(r >> 8) & 0xff] + | fp_maskl[7][r & 0xff]; + *r_out = fp_maskr[0][l >> 24] + | fp_maskr[1][(l >> 16) & 0xff] + | fp_maskr[2][(l >> 8) & 0xff] + | fp_maskr[3][l & 0xff] + | fp_maskr[4][r >> 24] + | fp_maskr[5][(r >> 16) & 0xff] + | fp_maskr[6][(r >> 8) & 0xff] + | fp_maskr[7][r & 0xff]; + return 0; +} + +static int +des_cipher(const char *in, char *out, long salt, int count) +{ + uint32 buffer[2]; + uint32 l_out, + r_out, + rawl, + rawr; + int retval; + + if (!des_initialised) + des_init(); + + setup_salt(salt); + + /* copy data to avoid assuming input is word-aligned */ + memcpy(buffer, in, sizeof(buffer)); + + rawl = pg_ntoh32(buffer[0]); + rawr = pg_ntoh32(buffer[1]); + + retval = do_des(rawl, rawr, &l_out, &r_out, count); + if (retval) + return retval; + + buffer[0] = pg_hton32(l_out); + buffer[1] = pg_hton32(r_out); + + /* copy data to avoid assuming output is word-aligned */ + memcpy(out, buffer, sizeof(buffer)); + + return retval; +} + +char * +px_crypt_des(const char *key, const char *setting) +{ + int i; + uint32 count, + salt, + l, + r0, + r1, + keybuf[2]; + char *p; + uint8 *q; + static char output[21]; + + if (!des_initialised) + des_init(); + + + /* + * Copy the key, shifting each character up by one bit and padding with + * zeros. + */ + q = (uint8 *) keybuf; + while (q - (uint8 *) keybuf - 8) + { + *q++ = *key << 1; + if (*key != '\0') + key++; + } + if (des_setkey((char *) keybuf)) + return NULL; + +#ifndef DISABLE_XDES + if (*setting == _PASSWORD_EFMT1) + { + /* + * "new"-style: setting must be a 9-character (underscore, then 4 + * bytes of count, then 4 bytes of salt) string. See CRYPT(3) under + * the "Extended crypt" heading for further details. + * + * Unlimited characters of the input key are used. This is known as + * the "Extended crypt" DES method. + * + */ + if (strlen(setting) < 9) + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("invalid salt"))); + + for (i = 1, count = 0L; i < 5; i++) + count |= ascii_to_bin(setting[i]) << (i - 1) * 6; + + for (i = 5, salt = 0L; i < 9; i++) + salt |= ascii_to_bin(setting[i]) << (i - 5) * 6; + + while (*key) + { + /* + * Encrypt the key with itself. + */ + if (des_cipher((char *) keybuf, (char *) keybuf, 0L, 1)) + return NULL; + + /* + * And XOR with the next 8 characters of the key. + */ + q = (uint8 *) keybuf; + while (q - (uint8 *) keybuf - 8 && *key) + *q++ ^= *key++ << 1; + + if (des_setkey((char *) keybuf)) + return NULL; + } + StrNCpy(output, setting, 10); + + /* + * Double check that we weren't given a short setting. If we were, the + * above code will probably have created weird values for count and + * salt, but we don't really care. Just make sure the output string + * doesn't have an extra NUL in it. + */ + p = output + strlen(output); + } + else +#endif /* !DISABLE_XDES */ + { + /* + * "old"-style: setting - 2 bytes of salt key - only up to the first 8 + * characters of the input key are used. + */ + count = 25; + + if (strlen(setting) < 2) + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("invalid salt"))); + + salt = (ascii_to_bin(setting[1]) << 6) + | ascii_to_bin(setting[0]); + + output[0] = setting[0]; + + /* + * If the encrypted password that the salt was extracted from is only + * 1 character long, the salt will be corrupted. We need to ensure + * that the output string doesn't have an extra NUL in it! + */ + output[1] = setting[1] ? setting[1] : output[0]; + + p = output + 2; + } + setup_salt(salt); + + /* + * Do it. + */ + if (do_des(0L, 0L, &r0, &r1, count)) + return NULL; + + /* + * Now encode the result... + */ + l = (r0 >> 8); + *p++ = _crypt_a64[(l >> 18) & 0x3f]; + *p++ = _crypt_a64[(l >> 12) & 0x3f]; + *p++ = _crypt_a64[(l >> 6) & 0x3f]; + *p++ = _crypt_a64[l & 0x3f]; + + l = (r0 << 16) | ((r1 >> 16) & 0xffff); + *p++ = _crypt_a64[(l >> 18) & 0x3f]; + *p++ = _crypt_a64[(l >> 12) & 0x3f]; + *p++ = _crypt_a64[(l >> 6) & 0x3f]; + *p++ = _crypt_a64[l & 0x3f]; + + l = r1 << 2; + *p++ = _crypt_a64[(l >> 12) & 0x3f]; + *p++ = _crypt_a64[(l >> 6) & 0x3f]; + *p++ = _crypt_a64[l & 0x3f]; + *p = 0; + + return output; +} |