summaryrefslogtreecommitdiffstats
path: root/contrib/pgcrypto/rijndael.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:19:15 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:19:15 +0000
commit6eb9c5a5657d1fe77b55cc261450f3538d35a94d (patch)
tree657d8194422a5daccecfd42d654b8a245ef7b4c8 /contrib/pgcrypto/rijndael.c
parentInitial commit. (diff)
downloadpostgresql-13-6eb9c5a5657d1fe77b55cc261450f3538d35a94d.tar.xz
postgresql-13-6eb9c5a5657d1fe77b55cc261450f3538d35a94d.zip
Adding upstream version 13.4.upstream/13.4upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--contrib/pgcrypto/rijndael.c677
1 files changed, 677 insertions, 0 deletions
diff --git a/contrib/pgcrypto/rijndael.c b/contrib/pgcrypto/rijndael.c
new file mode 100644
index 0000000..6938701
--- /dev/null
+++ b/contrib/pgcrypto/rijndael.c
@@ -0,0 +1,677 @@
+/* $OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */
+
+/* contrib/pgcrypto/rijndael.c */
+
+/* This is an independent implementation of the encryption algorithm: */
+/* */
+/* RIJNDAEL by Joan Daemen and Vincent Rijmen */
+/* */
+/* which is a candidate algorithm in the Advanced Encryption Standard */
+/* programme of the US National Institute of Standards and Technology. */
+/* */
+/* Copyright in this implementation is held by Dr B R Gladman but I */
+/* hereby give permission for its free direct or derivative use subject */
+/* to acknowledgment of its origin and compliance with any conditions */
+/* that the originators of the algorithm place on its exploitation. */
+/* */
+/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */
+
+/* Timing data for Rijndael (rijndael.c)
+
+Algorithm: rijndael (rijndael.c)
+
+128 bit key:
+Key Setup: 305/1389 cycles (encrypt/decrypt)
+Encrypt: 374 cycles = 68.4 mbits/sec
+Decrypt: 352 cycles = 72.7 mbits/sec
+Mean: 363 cycles = 70.5 mbits/sec
+
+192 bit key:
+Key Setup: 277/1595 cycles (encrypt/decrypt)
+Encrypt: 439 cycles = 58.3 mbits/sec
+Decrypt: 425 cycles = 60.2 mbits/sec
+Mean: 432 cycles = 59.3 mbits/sec
+
+256 bit key:
+Key Setup: 374/1960 cycles (encrypt/decrypt)
+Encrypt: 502 cycles = 51.0 mbits/sec
+Decrypt: 498 cycles = 51.4 mbits/sec
+Mean: 500 cycles = 51.2 mbits/sec
+
+*/
+
+#include "postgres.h"
+
+#include <sys/param.h>
+
+#include "px.h"
+#include "rijndael.h"
+
+#define PRE_CALC_TABLES
+#define LARGE_TABLES
+
+static void gen_tabs(void);
+
+/* 3. Basic macros for speeding up generic operations */
+
+/* Circular rotate of 32 bit values */
+
+#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
+#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
+
+/* Invert byte order in a 32 bit variable */
+
+#define bswap(x) ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))
+
+/* Extract byte from a 32 bit quantity (little endian notation) */
+
+#define byte(x,n) ((u1byte)((x) >> (8 * (n))))
+
+#ifdef WORDS_BIGENDIAN
+#define io_swap(x) bswap(x)
+#else
+#define io_swap(x) (x)
+#endif
+
+#ifdef PRINT_TABS
+#undef PRE_CALC_TABLES
+#endif
+
+#ifdef PRE_CALC_TABLES
+
+#include "rijndael.tbl"
+#define tab_gen 1
+#else /* !PRE_CALC_TABLES */
+
+static u1byte pow_tab[256];
+static u1byte log_tab[256];
+static u1byte sbx_tab[256];
+static u1byte isb_tab[256];
+static u4byte rco_tab[10];
+static u4byte ft_tab[4][256];
+static u4byte it_tab[4][256];
+
+#ifdef LARGE_TABLES
+static u4byte fl_tab[4][256];
+static u4byte il_tab[4][256];
+#endif
+
+static u4byte tab_gen = 0;
+#endif /* !PRE_CALC_TABLES */
+
+#define ff_mult(a,b) ((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
+
+#define f_rn(bo, bi, n, k) \
+ (bo)[n] = ft_tab[0][byte((bi)[n],0)] ^ \
+ ft_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
+ ft_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
+ ft_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
+
+#define i_rn(bo, bi, n, k) \
+ (bo)[n] = it_tab[0][byte((bi)[n],0)] ^ \
+ it_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
+ it_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
+ it_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
+
+#ifdef LARGE_TABLES
+
+#define ls_box(x) \
+ ( fl_tab[0][byte(x, 0)] ^ \
+ fl_tab[1][byte(x, 1)] ^ \
+ fl_tab[2][byte(x, 2)] ^ \
+ fl_tab[3][byte(x, 3)] )
+
+#define f_rl(bo, bi, n, k) \
+ (bo)[n] = fl_tab[0][byte((bi)[n],0)] ^ \
+ fl_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
+ fl_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
+ fl_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
+
+#define i_rl(bo, bi, n, k) \
+ (bo)[n] = il_tab[0][byte((bi)[n],0)] ^ \
+ il_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
+ il_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
+ il_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
+#else
+
+#define ls_box(x) \
+ ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
+ ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
+ ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
+ ((u4byte)sbx_tab[byte(x, 3)] << 24)
+
+#define f_rl(bo, bi, n, k) \
+ (bo)[n] = (u4byte)sbx_tab[byte((bi)[n],0)] ^ \
+ rotl(((u4byte)sbx_tab[byte((bi)[((n) + 1) & 3],1)]), 8) ^ \
+ rotl(((u4byte)sbx_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \
+ rotl(((u4byte)sbx_tab[byte((bi)[((n) + 3) & 3],3)]), 24) ^ *((k) + (n))
+
+#define i_rl(bo, bi, n, k) \
+ (bo)[n] = (u4byte)isb_tab[byte((bi)[n],0)] ^ \
+ rotl(((u4byte)isb_tab[byte((bi)[((n) + 3) & 3],1)]), 8) ^ \
+ rotl(((u4byte)isb_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \
+ rotl(((u4byte)isb_tab[byte((bi)[((n) + 1) & 3],3)]), 24) ^ *((k) + (n))
+#endif
+
+static void
+gen_tabs(void)
+{
+#ifndef PRE_CALC_TABLES
+ u4byte i,
+ t;
+ u1byte p,
+ q;
+
+ /* log and power tables for GF(2**8) finite field with */
+ /* 0x11b as modular polynomial - the simplest primitive */
+ /* root is 0x11, used here to generate the tables */
+
+ for (i = 0, p = 1; i < 256; ++i)
+ {
+ pow_tab[i] = (u1byte) p;
+ log_tab[p] = (u1byte) i;
+
+ p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
+ }
+
+ log_tab[1] = 0;
+ p = 1;
+
+ for (i = 0; i < 10; ++i)
+ {
+ rco_tab[i] = p;
+
+ p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
+ }
+
+ /* note that the affine byte transformation matrix in */
+ /* rijndael specification is in big endian format with */
+ /* bit 0 as the most significant bit. In the remainder */
+ /* of the specification the bits are numbered from the */
+ /* least significant end of a byte. */
+
+ for (i = 0; i < 256; ++i)
+ {
+ p = (i ? pow_tab[255 - log_tab[i]] : 0);
+ q = p;
+ q = (q >> 7) | (q << 1);
+ p ^= q;
+ q = (q >> 7) | (q << 1);
+ p ^= q;
+ q = (q >> 7) | (q << 1);
+ p ^= q;
+ q = (q >> 7) | (q << 1);
+ p ^= q ^ 0x63;
+ sbx_tab[i] = (u1byte) p;
+ isb_tab[p] = (u1byte) i;
+ }
+
+ for (i = 0; i < 256; ++i)
+ {
+ p = sbx_tab[i];
+
+#ifdef LARGE_TABLES
+
+ t = p;
+ fl_tab[0][i] = t;
+ fl_tab[1][i] = rotl(t, 8);
+ fl_tab[2][i] = rotl(t, 16);
+ fl_tab[3][i] = rotl(t, 24);
+#endif
+ t = ((u4byte) ff_mult(2, p)) |
+ ((u4byte) p << 8) |
+ ((u4byte) p << 16) |
+ ((u4byte) ff_mult(3, p) << 24);
+
+ ft_tab[0][i] = t;
+ ft_tab[1][i] = rotl(t, 8);
+ ft_tab[2][i] = rotl(t, 16);
+ ft_tab[3][i] = rotl(t, 24);
+
+ p = isb_tab[i];
+
+#ifdef LARGE_TABLES
+
+ t = p;
+ il_tab[0][i] = t;
+ il_tab[1][i] = rotl(t, 8);
+ il_tab[2][i] = rotl(t, 16);
+ il_tab[3][i] = rotl(t, 24);
+#endif
+ t = ((u4byte) ff_mult(14, p)) |
+ ((u4byte) ff_mult(9, p) << 8) |
+ ((u4byte) ff_mult(13, p) << 16) |
+ ((u4byte) ff_mult(11, p) << 24);
+
+ it_tab[0][i] = t;
+ it_tab[1][i] = rotl(t, 8);
+ it_tab[2][i] = rotl(t, 16);
+ it_tab[3][i] = rotl(t, 24);
+ }
+
+ tab_gen = 1;
+#endif /* !PRE_CALC_TABLES */
+}
+
+
+#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
+
+#define imix_col(y,x) \
+do { \
+ u = star_x(x); \
+ v = star_x(u); \
+ w = star_x(v); \
+ t = w ^ (x); \
+ (y) = u ^ v ^ w; \
+ (y) ^= rotr(u ^ t, 8) ^ \
+ rotr(v ^ t, 16) ^ \
+ rotr(t,24); \
+} while (0)
+
+/* initialise the key schedule from the user supplied key */
+
+#define loop4(i) \
+do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
+ t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
+ t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
+ t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \
+ t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \
+} while (0)
+
+#define loop6(i) \
+do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
+ t ^= e_key[6 * (i)]; e_key[6 * (i) + 6] = t; \
+ t ^= e_key[6 * (i) + 1]; e_key[6 * (i) + 7] = t; \
+ t ^= e_key[6 * (i) + 2]; e_key[6 * (i) + 8] = t; \
+ t ^= e_key[6 * (i) + 3]; e_key[6 * (i) + 9] = t; \
+ t ^= e_key[6 * (i) + 4]; e_key[6 * (i) + 10] = t; \
+ t ^= e_key[6 * (i) + 5]; e_key[6 * (i) + 11] = t; \
+} while (0)
+
+#define loop8(i) \
+do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
+ t ^= e_key[8 * (i)]; e_key[8 * (i) + 8] = t; \
+ t ^= e_key[8 * (i) + 1]; e_key[8 * (i) + 9] = t; \
+ t ^= e_key[8 * (i) + 2]; e_key[8 * (i) + 10] = t; \
+ t ^= e_key[8 * (i) + 3]; e_key[8 * (i) + 11] = t; \
+ t = e_key[8 * (i) + 4] ^ ls_box(t); \
+ e_key[8 * (i) + 12] = t; \
+ t ^= e_key[8 * (i) + 5]; e_key[8 * (i) + 13] = t; \
+ t ^= e_key[8 * (i) + 6]; e_key[8 * (i) + 14] = t; \
+ t ^= e_key[8 * (i) + 7]; e_key[8 * (i) + 15] = t; \
+} while (0)
+
+rijndael_ctx *
+rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
+ int encrypt)
+{
+ u4byte i,
+ t,
+ u,
+ v,
+ w;
+ u4byte *e_key = ctx->e_key;
+ u4byte *d_key = ctx->d_key;
+
+ ctx->decrypt = !encrypt;
+
+ if (!tab_gen)
+ gen_tabs();
+
+ ctx->k_len = (key_len + 31) / 32;
+
+ e_key[0] = io_swap(in_key[0]);
+ e_key[1] = io_swap(in_key[1]);
+ e_key[2] = io_swap(in_key[2]);
+ e_key[3] = io_swap(in_key[3]);
+
+ switch (ctx->k_len)
+ {
+ case 4:
+ t = e_key[3];
+ for (i = 0; i < 10; ++i)
+ loop4(i);
+ break;
+
+ case 6:
+ e_key[4] = io_swap(in_key[4]);
+ t = e_key[5] = io_swap(in_key[5]);
+ for (i = 0; i < 8; ++i)
+ loop6(i);
+ break;
+
+ case 8:
+ e_key[4] = io_swap(in_key[4]);
+ e_key[5] = io_swap(in_key[5]);
+ e_key[6] = io_swap(in_key[6]);
+ t = e_key[7] = io_swap(in_key[7]);
+ for (i = 0; i < 7; ++i)
+ loop8(i);
+ break;
+ }
+
+ if (!encrypt)
+ {
+ d_key[0] = e_key[0];
+ d_key[1] = e_key[1];
+ d_key[2] = e_key[2];
+ d_key[3] = e_key[3];
+
+ for (i = 4; i < 4 * ctx->k_len + 24; ++i)
+ imix_col(d_key[i], e_key[i]);
+ }
+
+ return ctx;
+}
+
+/* encrypt a block of text */
+
+#define f_nround(bo, bi, k) \
+do { \
+ f_rn(bo, bi, 0, k); \
+ f_rn(bo, bi, 1, k); \
+ f_rn(bo, bi, 2, k); \
+ f_rn(bo, bi, 3, k); \
+ k += 4; \
+} while (0)
+
+#define f_lround(bo, bi, k) \
+do { \
+ f_rl(bo, bi, 0, k); \
+ f_rl(bo, bi, 1, k); \
+ f_rl(bo, bi, 2, k); \
+ f_rl(bo, bi, 3, k); \
+} while (0)
+
+void
+rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
+{
+ u4byte k_len = ctx->k_len;
+ u4byte *e_key = ctx->e_key;
+ u4byte b0[4],
+ b1[4],
+ *kp;
+
+ b0[0] = io_swap(in_blk[0]) ^ e_key[0];
+ b0[1] = io_swap(in_blk[1]) ^ e_key[1];
+ b0[2] = io_swap(in_blk[2]) ^ e_key[2];
+ b0[3] = io_swap(in_blk[3]) ^ e_key[3];
+
+ kp = e_key + 4;
+
+ if (k_len > 6)
+ {
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ }
+
+ if (k_len > 4)
+ {
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ }
+
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp);
+ f_lround(b0, b1, kp);
+
+ out_blk[0] = io_swap(b0[0]);
+ out_blk[1] = io_swap(b0[1]);
+ out_blk[2] = io_swap(b0[2]);
+ out_blk[3] = io_swap(b0[3]);
+}
+
+/* decrypt a block of text */
+
+#define i_nround(bo, bi, k) \
+do { \
+ i_rn(bo, bi, 0, k); \
+ i_rn(bo, bi, 1, k); \
+ i_rn(bo, bi, 2, k); \
+ i_rn(bo, bi, 3, k); \
+ k -= 4; \
+} while (0)
+
+#define i_lround(bo, bi, k) \
+do { \
+ i_rl(bo, bi, 0, k); \
+ i_rl(bo, bi, 1, k); \
+ i_rl(bo, bi, 2, k); \
+ i_rl(bo, bi, 3, k); \
+} while (0)
+
+void
+rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
+{
+ u4byte b0[4],
+ b1[4],
+ *kp;
+ u4byte k_len = ctx->k_len;
+ u4byte *e_key = ctx->e_key;
+ u4byte *d_key = ctx->d_key;
+
+ b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
+ b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
+ b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
+ b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
+
+ kp = d_key + 4 * (k_len + 5);
+
+ if (k_len > 6)
+ {
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ }
+
+ if (k_len > 4)
+ {
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ }
+
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_lround(b0, b1, kp);
+
+ out_blk[0] = io_swap(b0[0]);
+ out_blk[1] = io_swap(b0[1]);
+ out_blk[2] = io_swap(b0[2]);
+ out_blk[3] = io_swap(b0[3]);
+}
+
+/*
+ * conventional interface
+ *
+ * ATM it hopes all data is 4-byte aligned - which
+ * should be true for PX. -marko
+ */
+
+void
+aes_set_key(rijndael_ctx *ctx, const uint8 *key, unsigned keybits, int enc)
+{
+ uint32 *k;
+
+ k = (uint32 *) key;
+ rijndael_set_key(ctx, k, keybits, enc);
+}
+
+void
+aes_ecb_encrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
+{
+ unsigned bs = 16;
+ uint32 *d;
+
+ while (len >= bs)
+ {
+ d = (uint32 *) data;
+ rijndael_encrypt(ctx, d, d);
+
+ len -= bs;
+ data += bs;
+ }
+}
+
+void
+aes_ecb_decrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
+{
+ unsigned bs = 16;
+ uint32 *d;
+
+ while (len >= bs)
+ {
+ d = (uint32 *) data;
+ rijndael_decrypt(ctx, d, d);
+
+ len -= bs;
+ data += bs;
+ }
+}
+
+void
+aes_cbc_encrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
+{
+ uint32 *iv = (uint32 *) iva;
+ uint32 *d = (uint32 *) data;
+ unsigned bs = 16;
+
+ while (len >= bs)
+ {
+ d[0] ^= iv[0];
+ d[1] ^= iv[1];
+ d[2] ^= iv[2];
+ d[3] ^= iv[3];
+
+ rijndael_encrypt(ctx, d, d);
+
+ iv = d;
+ d += bs / 4;
+ len -= bs;
+ }
+}
+
+void
+aes_cbc_decrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
+{
+ uint32 *d = (uint32 *) data;
+ unsigned bs = 16;
+ uint32 buf[4],
+ iv[4];
+
+ memcpy(iv, iva, bs);
+ while (len >= bs)
+ {
+ buf[0] = d[0];
+ buf[1] = d[1];
+ buf[2] = d[2];
+ buf[3] = d[3];
+
+ rijndael_decrypt(ctx, buf, d);
+
+ d[0] ^= iv[0];
+ d[1] ^= iv[1];
+ d[2] ^= iv[2];
+ d[3] ^= iv[3];
+
+ iv[0] = buf[0];
+ iv[1] = buf[1];
+ iv[2] = buf[2];
+ iv[3] = buf[3];
+ d += 4;
+ len -= bs;
+ }
+}
+
+/*
+ * pre-calculate tables.
+ *
+ * On i386 lifts 17k from .bss to .rodata
+ * and avoids 1k code and setup time.
+ * -marko
+ */
+#ifdef PRINT_TABS
+
+static void
+show256u8(char *name, uint8 *data)
+{
+ int i;
+
+ printf("static const u1byte %s[256] = {\n ", name);
+ for (i = 0; i < 256;)
+ {
+ printf("%u", pow_tab[i++]);
+ if (i < 256)
+ printf(i % 16 ? ", " : ",\n ");
+ }
+ printf("\n};\n\n");
+}
+
+
+static void
+show4x256u32(char *name, uint32 data[4][256])
+{
+ int i,
+ j;
+
+ printf("static const u4byte %s[4][256] = {\n{\n ", name);
+ for (i = 0; i < 4; i++)
+ {
+ for (j = 0; j < 256;)
+ {
+ printf("0x%08x", data[i][j]);
+ j++;
+ if (j < 256)
+ printf(j % 4 ? ", " : ",\n ");
+ }
+ printf(i < 3 ? "\n}, {\n " : "\n}\n");
+ }
+ printf("};\n\n");
+}
+
+int
+main()
+{
+ int i;
+ char *hdr = "/* Generated by rijndael.c */\n\n";
+
+ gen_tabs();
+
+ printf(hdr);
+ show256u8("pow_tab", pow_tab);
+ show256u8("log_tab", log_tab);
+ show256u8("sbx_tab", sbx_tab);
+ show256u8("isb_tab", isb_tab);
+
+ show4x256u32("ft_tab", ft_tab);
+ show4x256u32("it_tab", it_tab);
+#ifdef LARGE_TABLES
+ show4x256u32("fl_tab", fl_tab);
+ show4x256u32("il_tab", il_tab);
+#endif
+ printf("static const u4byte rco_tab[10] = {\n ");
+ for (i = 0; i < 10; i++)
+ {
+ printf("0x%08x", rco_tab[i]);
+ if (i < 9)
+ printf(", ");
+ if (i == 4)
+ printf("\n ");
+ }
+ printf("\n};\n\n");
+ return 0;
+}
+
+#endif