diff options
Diffstat (limited to 'doc/src/sgml/html/explicit-locking.html')
-rw-r--r-- | doc/src/sgml/html/explicit-locking.html | 392 |
1 files changed, 392 insertions, 0 deletions
diff --git a/doc/src/sgml/html/explicit-locking.html b/doc/src/sgml/html/explicit-locking.html new file mode 100644 index 0000000..ae53bee --- /dev/null +++ b/doc/src/sgml/html/explicit-locking.html @@ -0,0 +1,392 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>13.3. Explicit Locking</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets V1.79.1" /><link rel="prev" href="transaction-iso.html" title="13.2. Transaction Isolation" /><link rel="next" href="applevel-consistency.html" title="13.4. Data Consistency Checks at the Application Level" /></head><body id="docContent" class="container-fluid col-10"><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">13.3. Explicit Locking</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="transaction-iso.html" title="13.2. Transaction Isolation">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="mvcc.html" title="Chapter 13. Concurrency Control">Up</a></td><th width="60%" align="center">Chapter 13. Concurrency Control</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 13.4 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="applevel-consistency.html" title="13.4. Data Consistency Checks at the Application Level">Next</a></td></tr></table><hr></hr></div><div class="sect1" id="EXPLICIT-LOCKING"><div class="titlepage"><div><div><h2 class="title" style="clear: both">13.3. Explicit Locking</h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="explicit-locking.html#LOCKING-TABLES">13.3.1. Table-Level Locks</a></span></dt><dt><span class="sect2"><a href="explicit-locking.html#LOCKING-ROWS">13.3.2. Row-Level Locks</a></span></dt><dt><span class="sect2"><a href="explicit-locking.html#LOCKING-PAGES">13.3.3. Page-Level Locks</a></span></dt><dt><span class="sect2"><a href="explicit-locking.html#LOCKING-DEADLOCKS">13.3.4. Deadlocks</a></span></dt><dt><span class="sect2"><a href="explicit-locking.html#ADVISORY-LOCKS">13.3.5. Advisory Locks</a></span></dt></dl></div><a id="id-1.5.12.6.2" class="indexterm"></a><p> + <span class="productname">PostgreSQL</span> provides various lock modes + to control concurrent access to data in tables. These modes can + be used for application-controlled locking in situations where + <acronym class="acronym">MVCC</acronym> does not give the desired behavior. Also, + most <span class="productname">PostgreSQL</span> commands automatically + acquire locks of appropriate modes to ensure that referenced + tables are not dropped or modified in incompatible ways while the + command executes. (For example, <code class="command">TRUNCATE</code> cannot safely be + executed concurrently with other operations on the same table, so it + obtains an <code class="literal">ACCESS EXCLUSIVE</code> lock on the table to + enforce that.) + </p><p> + To examine a list of the currently outstanding locks in a database + server, use the + <a class="link" href="view-pg-locks.html" title="51.73. pg_locks"><code class="structname">pg_locks</code></a> + system view. For more information on monitoring the status of the lock + manager subsystem, refer to <a class="xref" href="monitoring.html" title="Chapter 27. Monitoring Database Activity">Chapter 27</a>. + </p><div class="sect2" id="LOCKING-TABLES"><div class="titlepage"><div><div><h3 class="title">13.3.1. Table-Level Locks</h3></div></div></div><a id="id-1.5.12.6.5.2" class="indexterm"></a><p> + The list below shows the available lock modes and the contexts in + which they are used automatically by + <span class="productname">PostgreSQL</span>. You can also acquire any + of these locks explicitly with the command <a class="xref" href="sql-lock.html" title="LOCK"><span class="refentrytitle">LOCK</span></a>. + Remember that all of these lock modes are table-level locks, + even if the name contains the word + <span class="quote">“<span class="quote">row</span>”</span>; the names of the lock modes are historical. + To some extent the names reflect the typical usage of each lock + mode — but the semantics are all the same. The only real difference + between one lock mode and another is the set of lock modes with + which each conflicts (see <a class="xref" href="explicit-locking.html#TABLE-LOCK-COMPATIBILITY" title="Table 13.2. Conflicting Lock Modes">Table 13.2</a>). + Two transactions cannot hold locks of conflicting + modes on the same table at the same time. (However, a transaction + never conflicts with itself. For example, it might acquire + <code class="literal">ACCESS EXCLUSIVE</code> lock and later acquire + <code class="literal">ACCESS SHARE</code> lock on the same table.) Non-conflicting + lock modes can be held concurrently by many transactions. Notice in + particular that some lock modes are self-conflicting (for example, + an <code class="literal">ACCESS EXCLUSIVE</code> lock cannot be held by more than one + transaction at a time) while others are not self-conflicting (for example, + an <code class="literal">ACCESS SHARE</code> lock can be held by multiple transactions). + </p><div class="variablelist"><p class="title"><strong>Table-Level Lock Modes</strong></p><dl class="variablelist"><dt><span class="term"> + <code class="literal">ACCESS SHARE</code> + </span></dt><dd><p> + Conflicts with the <code class="literal">ACCESS EXCLUSIVE</code> lock + mode only. + </p><p> + The <code class="command">SELECT</code> command acquires a lock of this mode on + referenced tables. In general, any query that only <span class="emphasis"><em>reads</em></span> a table + and does not modify it will acquire this lock mode. + </p></dd><dt><span class="term"> + <code class="literal">ROW SHARE</code> + </span></dt><dd><p> + Conflicts with the <code class="literal">EXCLUSIVE</code> and + <code class="literal">ACCESS EXCLUSIVE</code> lock modes. + </p><p> + The <code class="command">SELECT FOR UPDATE</code> and + <code class="command">SELECT FOR SHARE</code> commands acquire a + lock of this mode on the target table(s) (in addition to + <code class="literal">ACCESS SHARE</code> locks on any other tables + that are referenced but not selected + <code class="option">FOR UPDATE/FOR SHARE</code>). + </p></dd><dt><span class="term"> + <code class="literal">ROW EXCLUSIVE</code> + </span></dt><dd><p> + Conflicts with the <code class="literal">SHARE</code>, <code class="literal">SHARE ROW + EXCLUSIVE</code>, <code class="literal">EXCLUSIVE</code>, and + <code class="literal">ACCESS EXCLUSIVE</code> lock modes. + </p><p> + The commands <code class="command">UPDATE</code>, + <code class="command">DELETE</code>, and <code class="command">INSERT</code> + acquire this lock mode on the target table (in addition to + <code class="literal">ACCESS SHARE</code> locks on any other referenced + tables). In general, this lock mode will be acquired by any + command that <span class="emphasis"><em>modifies data</em></span> in a table. + </p></dd><dt><span class="term"> + <code class="literal">SHARE UPDATE EXCLUSIVE</code> + </span></dt><dd><p> + Conflicts with the <code class="literal">SHARE UPDATE EXCLUSIVE</code>, + <code class="literal">SHARE</code>, <code class="literal">SHARE ROW + EXCLUSIVE</code>, <code class="literal">EXCLUSIVE</code>, and + <code class="literal">ACCESS EXCLUSIVE</code> lock modes. + This mode protects a table against + concurrent schema changes and <code class="command">VACUUM</code> runs. + </p><p> + Acquired by <code class="command">VACUUM</code> (without <code class="option">FULL</code>), + <code class="command">ANALYZE</code>, <code class="command">CREATE INDEX CONCURRENTLY</code>, + <code class="command">REINDEX CONCURRENTLY</code>, + <code class="command">CREATE STATISTICS</code>, and certain <code class="command">ALTER + INDEX</code> and <code class="command">ALTER TABLE</code> variants (for full + details see <a class="xref" href="sql-alterindex.html" title="ALTER INDEX"><span class="refentrytitle">ALTER INDEX</span></a> and <a class="xref" href="sql-altertable.html" title="ALTER TABLE"><span class="refentrytitle">ALTER TABLE</span></a>). + </p></dd><dt><span class="term"> + <code class="literal">SHARE</code> + </span></dt><dd><p> + Conflicts with the <code class="literal">ROW EXCLUSIVE</code>, + <code class="literal">SHARE UPDATE EXCLUSIVE</code>, <code class="literal">SHARE ROW + EXCLUSIVE</code>, <code class="literal">EXCLUSIVE</code>, and + <code class="literal">ACCESS EXCLUSIVE</code> lock modes. + This mode protects a table against concurrent data changes. + </p><p> + Acquired by <code class="command">CREATE INDEX</code> + (without <code class="option">CONCURRENTLY</code>). + </p></dd><dt><span class="term"> + <code class="literal">SHARE ROW EXCLUSIVE</code> + </span></dt><dd><p> + Conflicts with the <code class="literal">ROW EXCLUSIVE</code>, + <code class="literal">SHARE UPDATE EXCLUSIVE</code>, + <code class="literal">SHARE</code>, <code class="literal">SHARE ROW + EXCLUSIVE</code>, <code class="literal">EXCLUSIVE</code>, and + <code class="literal">ACCESS EXCLUSIVE</code> lock modes. + This mode protects a table against concurrent data changes, and + is self-exclusive so that only one session can hold it at a time. + </p><p> + Acquired by <code class="command">CREATE TRIGGER</code> and some forms of + <code class="command">ALTER TABLE</code> (see <a class="xref" href="sql-altertable.html" title="ALTER TABLE"><span class="refentrytitle">ALTER TABLE</span></a>). + </p></dd><dt><span class="term"> + <code class="literal">EXCLUSIVE</code> + </span></dt><dd><p> + Conflicts with the <code class="literal">ROW SHARE</code>, <code class="literal">ROW + EXCLUSIVE</code>, <code class="literal">SHARE UPDATE + EXCLUSIVE</code>, <code class="literal">SHARE</code>, <code class="literal">SHARE + ROW EXCLUSIVE</code>, <code class="literal">EXCLUSIVE</code>, and + <code class="literal">ACCESS EXCLUSIVE</code> lock modes. + This mode allows only concurrent <code class="literal">ACCESS SHARE</code> locks, + i.e., only reads from the table can proceed in parallel with a + transaction holding this lock mode. + </p><p> + Acquired by <code class="command">REFRESH MATERIALIZED VIEW CONCURRENTLY</code>. + </p></dd><dt><span class="term"> + <code class="literal">ACCESS EXCLUSIVE</code> + </span></dt><dd><p> + Conflicts with locks of all modes (<code class="literal">ACCESS + SHARE</code>, <code class="literal">ROW SHARE</code>, <code class="literal">ROW + EXCLUSIVE</code>, <code class="literal">SHARE UPDATE + EXCLUSIVE</code>, <code class="literal">SHARE</code>, <code class="literal">SHARE + ROW EXCLUSIVE</code>, <code class="literal">EXCLUSIVE</code>, and + <code class="literal">ACCESS EXCLUSIVE</code>). + This mode guarantees that the + holder is the only transaction accessing the table in any way. + </p><p> + Acquired by the <code class="command">DROP TABLE</code>, + <code class="command">TRUNCATE</code>, <code class="command">REINDEX</code>, + <code class="command">CLUSTER</code>, <code class="command">VACUUM FULL</code>, + and <code class="command">REFRESH MATERIALIZED VIEW</code> (without + <code class="option">CONCURRENTLY</code>) + commands. Many forms of <code class="command">ALTER INDEX</code> and <code class="command">ALTER TABLE</code> also acquire + a lock at this level. This is also the default lock mode for + <code class="command">LOCK TABLE</code> statements that do not specify + a mode explicitly. + </p></dd></dl></div><div class="tip"><h3 class="title">Tip</h3><p> + Only an <code class="literal">ACCESS EXCLUSIVE</code> lock blocks a + <code class="command">SELECT</code> (without <code class="option">FOR UPDATE/SHARE</code>) + statement. + </p></div><p> + Once acquired, a lock is normally held until the end of the transaction. But if a + lock is acquired after establishing a savepoint, the lock is released + immediately if the savepoint is rolled back to. This is consistent with + the principle that <code class="command">ROLLBACK</code> cancels all effects of the + commands since the savepoint. The same holds for locks acquired within a + <span class="application">PL/pgSQL</span> exception block: an error escape from the block + releases locks acquired within it. + </p><div class="table" id="TABLE-LOCK-COMPATIBILITY"><p class="title"><strong>Table 13.2. Conflicting Lock Modes</strong></p><div class="table-contents"><table class="table" summary=" Conflicting Lock Modes" border="1"><colgroup><col /><col class="lockst" /><col /><col /><col /><col /><col /><col /><col class="lockend" /></colgroup><thead><tr><th rowspan="2">Requested Lock Mode</th><th colspan="8" align="center">Existing Lock Mode</th></tr><tr><th><code class="literal">ACCESS SHARE</code></th><th><code class="literal">ROW SHARE</code></th><th><code class="literal">ROW EXCL.</code></th><th><code class="literal">SHARE UPDATE EXCL.</code></th><th><code class="literal">SHARE</code></th><th><code class="literal">SHARE ROW EXCL.</code></th><th><code class="literal">EXCL.</code></th><th><code class="literal">ACCESS EXCL.</code></th></tr></thead><tbody><tr><td><code class="literal">ACCESS SHARE</code></td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center">X</td></tr><tr><td><code class="literal">ROW SHARE</code></td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center">X</td><td align="center">X</td></tr><tr><td><code class="literal">ROW EXCL.</code></td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td></tr><tr><td><code class="literal">SHARE UPDATE EXCL.</code></td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td></tr><tr><td><code class="literal">SHARE</code></td><td align="center"> </td><td align="center"> </td><td align="center">X</td><td align="center">X</td><td align="center"> </td><td align="center">X</td><td align="center">X</td><td align="center">X</td></tr><tr><td><code class="literal">SHARE ROW EXCL.</code></td><td align="center"> </td><td align="center"> </td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td></tr><tr><td><code class="literal">EXCL.</code></td><td align="center"> </td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td></tr><tr><td><code class="literal">ACCESS EXCL.</code></td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td></tr></tbody></table></div></div><br class="table-break" /></div><div class="sect2" id="LOCKING-ROWS"><div class="titlepage"><div><div><h3 class="title">13.3.2. Row-Level Locks</h3></div></div></div><p> + In addition to table-level locks, there are row-level locks, which + are listed as below with the contexts in which they are used + automatically by <span class="productname">PostgreSQL</span>. See + <a class="xref" href="explicit-locking.html#ROW-LOCK-COMPATIBILITY" title="Table 13.3. Conflicting Row-Level Locks">Table 13.3</a> for a complete table of + row-level lock conflicts. Note that a transaction can hold + conflicting locks on the same row, even in different subtransactions; + but other than that, two transactions can never hold conflicting locks + on the same row. Row-level locks do not affect data querying; they + block only <span class="emphasis"><em>writers and lockers</em></span> to the same + row. Row-level locks are released at transaction end or during + savepoint rollback, just like table-level locks. + + </p><div class="variablelist"><p class="title"><strong>Row-Level Lock Modes</strong></p><dl class="variablelist"><dt><span class="term"> + <code class="literal">FOR UPDATE</code> + </span></dt><dd><p> + <code class="literal">FOR UPDATE</code> causes the rows retrieved by the + <code class="command">SELECT</code> statement to be locked as though for + update. This prevents them from being locked, modified or deleted by + other transactions until the current transaction ends. That is, + other transactions that attempt <code class="command">UPDATE</code>, + <code class="command">DELETE</code>, + <code class="command">SELECT FOR UPDATE</code>, + <code class="command">SELECT FOR NO KEY UPDATE</code>, + <code class="command">SELECT FOR SHARE</code> or + <code class="command">SELECT FOR KEY SHARE</code> + of these rows will be blocked until the current transaction ends; + conversely, <code class="command">SELECT FOR UPDATE</code> will wait for a + concurrent transaction that has run any of those commands on the + same row, + and will then lock and return the updated row (or no row, if the + row was deleted). Within a <code class="literal">REPEATABLE READ</code> or + <code class="literal">SERIALIZABLE</code> transaction, + however, an error will be thrown if a row to be locked has changed + since the transaction started. For further discussion see + <a class="xref" href="applevel-consistency.html" title="13.4. Data Consistency Checks at the Application Level">Section 13.4</a>. + </p><p> + The <code class="literal">FOR UPDATE</code> lock mode + is also acquired by any <code class="command">DELETE</code> on a row, and also by an + <code class="command">UPDATE</code> that modifies the values of certain columns. Currently, + the set of columns considered for the <code class="command">UPDATE</code> case are those that + have a unique index on them that can be used in a foreign key (so partial + indexes and expressional indexes are not considered), but this may change + in the future. + </p></dd><dt><span class="term"> + <code class="literal">FOR NO KEY UPDATE</code> + </span></dt><dd><p> + Behaves similarly to <code class="literal">FOR UPDATE</code>, except that the lock + acquired is weaker: this lock will not block + <code class="literal">SELECT FOR KEY SHARE</code> commands that attempt to acquire + a lock on the same rows. This lock mode is also acquired by any + <code class="command">UPDATE</code> that does not acquire a <code class="literal">FOR UPDATE</code> lock. + </p></dd><dt><span class="term"> + <code class="literal">FOR SHARE</code> + </span></dt><dd><p> + Behaves similarly to <code class="literal">FOR NO KEY UPDATE</code>, except that it + acquires a shared lock rather than exclusive lock on each retrieved + row. A shared lock blocks other transactions from performing + <code class="command">UPDATE</code>, <code class="command">DELETE</code>, + <code class="command">SELECT FOR UPDATE</code> or + <code class="command">SELECT FOR NO KEY UPDATE</code> on these rows, but it does not + prevent them from performing <code class="command">SELECT FOR SHARE</code> or + <code class="command">SELECT FOR KEY SHARE</code>. + </p></dd><dt><span class="term"> + <code class="literal">FOR KEY SHARE</code> + </span></dt><dd><p> + Behaves similarly to <code class="literal">FOR SHARE</code>, except that the + lock is weaker: <code class="literal">SELECT FOR UPDATE</code> is blocked, but not + <code class="literal">SELECT FOR NO KEY UPDATE</code>. A key-shared lock blocks + other transactions from performing <code class="command">DELETE</code> or + any <code class="command">UPDATE</code> that changes the key values, but not + other <code class="command">UPDATE</code>, and neither does it prevent + <code class="command">SELECT FOR NO KEY UPDATE</code>, <code class="command">SELECT FOR SHARE</code>, + or <code class="command">SELECT FOR KEY SHARE</code>. + </p></dd></dl></div><p> + <span class="productname">PostgreSQL</span> doesn't remember any + information about modified rows in memory, so there is no limit on + the number of rows locked at one time. However, locking a row + might cause a disk write, e.g., <code class="command">SELECT FOR + UPDATE</code> modifies selected rows to mark them locked, and so + will result in disk writes. + </p><div class="table" id="ROW-LOCK-COMPATIBILITY"><p class="title"><strong>Table 13.3. Conflicting Row-Level Locks</strong></p><div class="table-contents"><table class="table" summary="Conflicting Row-Level Locks" border="1"><colgroup><col class="col1" /><col class="lockst" /><col class="col3" /><col class="col4" /><col class="lockend" /></colgroup><thead><tr><th rowspan="2">Requested Lock Mode</th><th colspan="4">Current Lock Mode</th></tr><tr><th>FOR KEY SHARE</th><th>FOR SHARE</th><th>FOR NO KEY UPDATE</th><th>FOR UPDATE</th></tr></thead><tbody><tr><td>FOR KEY SHARE</td><td align="center"> </td><td align="center"> </td><td align="center"> </td><td align="center">X</td></tr><tr><td>FOR SHARE</td><td align="center"> </td><td align="center"> </td><td align="center">X</td><td align="center">X</td></tr><tr><td>FOR NO KEY UPDATE</td><td align="center"> </td><td align="center">X</td><td align="center">X</td><td align="center">X</td></tr><tr><td>FOR UPDATE</td><td align="center">X</td><td align="center">X</td><td align="center">X</td><td align="center">X</td></tr></tbody></table></div></div><br class="table-break" /></div><div class="sect2" id="LOCKING-PAGES"><div class="titlepage"><div><div><h3 class="title">13.3.3. Page-Level Locks</h3></div></div></div><p> + In addition to table and row locks, page-level share/exclusive locks are + used to control read/write access to table pages in the shared buffer + pool. These locks are released immediately after a row is fetched or + updated. Application developers normally need not be concerned with + page-level locks, but they are mentioned here for completeness. + </p></div><div class="sect2" id="LOCKING-DEADLOCKS"><div class="titlepage"><div><div><h3 class="title">13.3.4. Deadlocks</h3></div></div></div><a id="id-1.5.12.6.8.2" class="indexterm"></a><p> + The use of explicit locking can increase the likelihood of + <em class="firstterm">deadlocks</em>, wherein two (or more) transactions each + hold locks that the other wants. For example, if transaction 1 + acquires an exclusive lock on table A and then tries to acquire + an exclusive lock on table B, while transaction 2 has already + exclusive-locked table B and now wants an exclusive lock on table + A, then neither one can proceed. + <span class="productname">PostgreSQL</span> automatically detects + deadlock situations and resolves them by aborting one of the + transactions involved, allowing the other(s) to complete. + (Exactly which transaction will be aborted is difficult to + predict and should not be relied upon.) + </p><p> + Note that deadlocks can also occur as the result of row-level + locks (and thus, they can occur even if explicit locking is not + used). Consider the case in which two concurrent + transactions modify a table. The first transaction executes: + +</p><pre class="screen"> +UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111; +</pre><p> + + This acquires a row-level lock on the row with the specified + account number. Then, the second transaction executes: + +</p><pre class="screen"> +UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222; +UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111; +</pre><p> + + The first <code class="command">UPDATE</code> statement successfully + acquires a row-level lock on the specified row, so it succeeds in + updating that row. However, the second <code class="command">UPDATE</code> + statement finds that the row it is attempting to update has + already been locked, so it waits for the transaction that + acquired the lock to complete. Transaction two is now waiting on + transaction one to complete before it continues execution. Now, + transaction one executes: + +</p><pre class="screen"> +UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222; +</pre><p> + + Transaction one attempts to acquire a row-level lock on the + specified row, but it cannot: transaction two already holds such + a lock. So it waits for transaction two to complete. Thus, + transaction one is blocked on transaction two, and transaction + two is blocked on transaction one: a deadlock + condition. <span class="productname">PostgreSQL</span> will detect this + situation and abort one of the transactions. + </p><p> + The best defense against deadlocks is generally to avoid them by + being certain that all applications using a database acquire + locks on multiple objects in a consistent order. In the example + above, if both transactions + had updated the rows in the same order, no deadlock would have + occurred. One should also ensure that the first lock acquired on + an object in a transaction is the most restrictive mode that will be + needed for that object. If it is not feasible to verify this in + advance, then deadlocks can be handled on-the-fly by retrying + transactions that abort due to deadlocks. + </p><p> + So long as no deadlock situation is detected, a transaction seeking + either a table-level or row-level lock will wait indefinitely for + conflicting locks to be released. This means it is a bad idea for + applications to hold transactions open for long periods of time + (e.g., while waiting for user input). + </p></div><div class="sect2" id="ADVISORY-LOCKS"><div class="titlepage"><div><div><h3 class="title">13.3.5. Advisory Locks</h3></div></div></div><a id="id-1.5.12.6.9.2" class="indexterm"></a><a id="id-1.5.12.6.9.3" class="indexterm"></a><p> + <span class="productname">PostgreSQL</span> provides a means for + creating locks that have application-defined meanings. These are + called <em class="firstterm">advisory locks</em>, because the system does not + enforce their use — it is up to the application to use them + correctly. Advisory locks can be useful for locking strategies + that are an awkward fit for the MVCC model. + For example, a common use of advisory locks is to emulate pessimistic + locking strategies typical of so-called <span class="quote">“<span class="quote">flat file</span>”</span> data + management systems. + While a flag stored in a table could be used for the same purpose, + advisory locks are faster, avoid table bloat, and are automatically + cleaned up by the server at the end of the session. + </p><p> + There are two ways to acquire an advisory lock in + <span class="productname">PostgreSQL</span>: at session level or at + transaction level. + Once acquired at session level, an advisory lock is held until + explicitly released or the session ends. Unlike standard lock requests, + session-level advisory lock requests do not honor transaction semantics: + a lock acquired during a transaction that is later rolled back will still + be held following the rollback, and likewise an unlock is effective even + if the calling transaction fails later. A lock can be acquired multiple + times by its owning process; for each completed lock request there must + be a corresponding unlock request before the lock is actually released. + Transaction-level lock requests, on the other hand, behave more like + regular lock requests: they are automatically released at the end of the + transaction, and there is no explicit unlock operation. This behavior + is often more convenient than the session-level behavior for short-term + usage of an advisory lock. + Session-level and transaction-level lock requests for the same advisory + lock identifier will block each other in the expected way. + If a session already holds a given advisory lock, additional requests by + it will always succeed, even if other sessions are awaiting the lock; this + statement is true regardless of whether the existing lock hold and new + request are at session level or transaction level. + </p><p> + Like all locks in + <span class="productname">PostgreSQL</span>, a complete list of advisory locks + currently held by any session can be found in the <a class="link" href="view-pg-locks.html" title="51.73. pg_locks"><code class="structname">pg_locks</code></a> system + view. + </p><p> + Both advisory locks and regular locks are stored in a shared memory + pool whose size is defined by the configuration variables + <a class="xref" href="runtime-config-locks.html#GUC-MAX-LOCKS-PER-TRANSACTION">max_locks_per_transaction</a> and + <a class="xref" href="runtime-config-connection.html#GUC-MAX-CONNECTIONS">max_connections</a>. + Care must be taken not to exhaust this + memory or the server will be unable to grant any locks at all. + This imposes an upper limit on the number of advisory locks + grantable by the server, typically in the tens to hundreds of thousands + depending on how the server is configured. + </p><p> + In certain cases using advisory locking methods, especially in queries + involving explicit ordering and <code class="literal">LIMIT</code> clauses, care must be + taken to control the locks acquired because of the order in which SQL + expressions are evaluated. For example: +</p><pre class="screen"> +SELECT pg_advisory_lock(id) FROM foo WHERE id = 12345; -- ok +SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; -- danger! +SELECT pg_advisory_lock(q.id) FROM +( + SELECT id FROM foo WHERE id > 12345 LIMIT 100 +) q; -- ok +</pre><p> + In the above queries, the second form is dangerous because the + <code class="literal">LIMIT</code> is not guaranteed to be applied before the locking + function is executed. This might cause some locks to be acquired + that the application was not expecting, and hence would fail to release + (until it ends the session). + From the point of view of the application, such locks + would be dangling, although still viewable in + <code class="structname">pg_locks</code>. + </p><p> + The functions provided to manipulate advisory locks are described in + <a class="xref" href="functions-admin.html#FUNCTIONS-ADVISORY-LOCKS" title="9.27.10. Advisory Lock Functions">Section 9.27.10</a>. + </p></div></div><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navfooter"><hr></hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="transaction-iso.html" title="13.2. Transaction Isolation">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="mvcc.html" title="Chapter 13. Concurrency Control">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="applevel-consistency.html" title="13.4. Data Consistency Checks at the Application Level">Next</a></td></tr><tr><td width="40%" align="left" valign="top">13.2. Transaction Isolation </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 13.4 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 13.4. Data Consistency Checks at the Application Level</td></tr></table></div></body></html>
\ No newline at end of file |