summaryrefslogtreecommitdiffstats
path: root/src/common/scram-common.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/scram-common.c')
-rw-r--r--src/common/scram-common.c291
1 files changed, 291 insertions, 0 deletions
diff --git a/src/common/scram-common.c b/src/common/scram-common.c
new file mode 100644
index 0000000..4971134
--- /dev/null
+++ b/src/common/scram-common.c
@@ -0,0 +1,291 @@
+/*-------------------------------------------------------------------------
+ * scram-common.c
+ * Shared frontend/backend code for SCRAM authentication
+ *
+ * This contains the common low-level functions needed in both frontend and
+ * backend, for implement the Salted Challenge Response Authentication
+ * Mechanism (SCRAM), per IETF's RFC 5802.
+ *
+ * Portions Copyright (c) 2017-2020, PostgreSQL Global Development Group
+ *
+ * IDENTIFICATION
+ * src/common/scram-common.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#ifndef FRONTEND
+#include "postgres.h"
+#else
+#include "postgres_fe.h"
+#endif
+
+#include "common/base64.h"
+#include "common/scram-common.h"
+#include "port/pg_bswap.h"
+
+#define HMAC_IPAD 0x36
+#define HMAC_OPAD 0x5C
+
+/*
+ * Calculate HMAC per RFC2104.
+ *
+ * The hash function used is SHA-256.
+ */
+void
+scram_HMAC_init(scram_HMAC_ctx *ctx, const uint8 *key, int keylen)
+{
+ uint8 k_ipad[SHA256_HMAC_B];
+ int i;
+ uint8 keybuf[SCRAM_KEY_LEN];
+
+ /*
+ * If the key is longer than the block size (64 bytes for SHA-256), pass
+ * it through SHA-256 once to shrink it down.
+ */
+ if (keylen > SHA256_HMAC_B)
+ {
+ pg_sha256_ctx sha256_ctx;
+
+ pg_sha256_init(&sha256_ctx);
+ pg_sha256_update(&sha256_ctx, key, keylen);
+ pg_sha256_final(&sha256_ctx, keybuf);
+ key = keybuf;
+ keylen = SCRAM_KEY_LEN;
+ }
+
+ memset(k_ipad, HMAC_IPAD, SHA256_HMAC_B);
+ memset(ctx->k_opad, HMAC_OPAD, SHA256_HMAC_B);
+
+ for (i = 0; i < keylen; i++)
+ {
+ k_ipad[i] ^= key[i];
+ ctx->k_opad[i] ^= key[i];
+ }
+
+ /* tmp = H(K XOR ipad, text) */
+ pg_sha256_init(&ctx->sha256ctx);
+ pg_sha256_update(&ctx->sha256ctx, k_ipad, SHA256_HMAC_B);
+}
+
+/*
+ * Update HMAC calculation
+ * The hash function used is SHA-256.
+ */
+void
+scram_HMAC_update(scram_HMAC_ctx *ctx, const char *str, int slen)
+{
+ pg_sha256_update(&ctx->sha256ctx, (const uint8 *) str, slen);
+}
+
+/*
+ * Finalize HMAC calculation.
+ * The hash function used is SHA-256.
+ */
+void
+scram_HMAC_final(uint8 *result, scram_HMAC_ctx *ctx)
+{
+ uint8 h[SCRAM_KEY_LEN];
+
+ pg_sha256_final(&ctx->sha256ctx, h);
+
+ /* H(K XOR opad, tmp) */
+ pg_sha256_init(&ctx->sha256ctx);
+ pg_sha256_update(&ctx->sha256ctx, ctx->k_opad, SHA256_HMAC_B);
+ pg_sha256_update(&ctx->sha256ctx, h, SCRAM_KEY_LEN);
+ pg_sha256_final(&ctx->sha256ctx, result);
+}
+
+/*
+ * Calculate SaltedPassword.
+ *
+ * The password should already be normalized by SASLprep.
+ */
+void
+scram_SaltedPassword(const char *password,
+ const char *salt, int saltlen, int iterations,
+ uint8 *result)
+{
+ int password_len = strlen(password);
+ uint32 one = pg_hton32(1);
+ int i,
+ j;
+ uint8 Ui[SCRAM_KEY_LEN];
+ uint8 Ui_prev[SCRAM_KEY_LEN];
+ scram_HMAC_ctx hmac_ctx;
+
+ /*
+ * Iterate hash calculation of HMAC entry using given salt. This is
+ * essentially PBKDF2 (see RFC2898) with HMAC() as the pseudorandom
+ * function.
+ */
+
+ /* First iteration */
+ scram_HMAC_init(&hmac_ctx, (uint8 *) password, password_len);
+ scram_HMAC_update(&hmac_ctx, salt, saltlen);
+ scram_HMAC_update(&hmac_ctx, (char *) &one, sizeof(uint32));
+ scram_HMAC_final(Ui_prev, &hmac_ctx);
+ memcpy(result, Ui_prev, SCRAM_KEY_LEN);
+
+ /* Subsequent iterations */
+ for (i = 2; i <= iterations; i++)
+ {
+ scram_HMAC_init(&hmac_ctx, (uint8 *) password, password_len);
+ scram_HMAC_update(&hmac_ctx, (const char *) Ui_prev, SCRAM_KEY_LEN);
+ scram_HMAC_final(Ui, &hmac_ctx);
+ for (j = 0; j < SCRAM_KEY_LEN; j++)
+ result[j] ^= Ui[j];
+ memcpy(Ui_prev, Ui, SCRAM_KEY_LEN);
+ }
+}
+
+
+/*
+ * Calculate SHA-256 hash for a NULL-terminated string. (The NULL terminator is
+ * not included in the hash).
+ */
+void
+scram_H(const uint8 *input, int len, uint8 *result)
+{
+ pg_sha256_ctx ctx;
+
+ pg_sha256_init(&ctx);
+ pg_sha256_update(&ctx, input, len);
+ pg_sha256_final(&ctx, result);
+}
+
+/*
+ * Calculate ClientKey.
+ */
+void
+scram_ClientKey(const uint8 *salted_password, uint8 *result)
+{
+ scram_HMAC_ctx ctx;
+
+ scram_HMAC_init(&ctx, salted_password, SCRAM_KEY_LEN);
+ scram_HMAC_update(&ctx, "Client Key", strlen("Client Key"));
+ scram_HMAC_final(result, &ctx);
+}
+
+/*
+ * Calculate ServerKey.
+ */
+void
+scram_ServerKey(const uint8 *salted_password, uint8 *result)
+{
+ scram_HMAC_ctx ctx;
+
+ scram_HMAC_init(&ctx, salted_password, SCRAM_KEY_LEN);
+ scram_HMAC_update(&ctx, "Server Key", strlen("Server Key"));
+ scram_HMAC_final(result, &ctx);
+}
+
+
+/*
+ * Construct a SCRAM secret, for storing in pg_authid.rolpassword.
+ *
+ * The password should already have been processed with SASLprep, if necessary!
+ *
+ * If iterations is 0, default number of iterations is used. The result is
+ * palloc'd or malloc'd, so caller is responsible for freeing it.
+ */
+char *
+scram_build_secret(const char *salt, int saltlen, int iterations,
+ const char *password)
+{
+ uint8 salted_password[SCRAM_KEY_LEN];
+ uint8 stored_key[SCRAM_KEY_LEN];
+ uint8 server_key[SCRAM_KEY_LEN];
+ char *result;
+ char *p;
+ int maxlen;
+ int encoded_salt_len;
+ int encoded_stored_len;
+ int encoded_server_len;
+ int encoded_result;
+
+ if (iterations <= 0)
+ iterations = SCRAM_DEFAULT_ITERATIONS;
+
+ /* Calculate StoredKey and ServerKey */
+ scram_SaltedPassword(password, salt, saltlen, iterations,
+ salted_password);
+ scram_ClientKey(salted_password, stored_key);
+ scram_H(stored_key, SCRAM_KEY_LEN, stored_key);
+
+ scram_ServerKey(salted_password, server_key);
+
+ /*----------
+ * The format is:
+ * SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>
+ *----------
+ */
+ encoded_salt_len = pg_b64_enc_len(saltlen);
+ encoded_stored_len = pg_b64_enc_len(SCRAM_KEY_LEN);
+ encoded_server_len = pg_b64_enc_len(SCRAM_KEY_LEN);
+
+ maxlen = strlen("SCRAM-SHA-256") + 1
+ + 10 + 1 /* iteration count */
+ + encoded_salt_len + 1 /* Base64-encoded salt */
+ + encoded_stored_len + 1 /* Base64-encoded StoredKey */
+ + encoded_server_len + 1; /* Base64-encoded ServerKey */
+
+#ifdef FRONTEND
+ result = malloc(maxlen);
+ if (!result)
+ return NULL;
+#else
+ result = palloc(maxlen);
+#endif
+
+ p = result + sprintf(result, "SCRAM-SHA-256$%d:", iterations);
+
+ /* salt */
+ encoded_result = pg_b64_encode(salt, saltlen, p, encoded_salt_len);
+ if (encoded_result < 0)
+ {
+#ifdef FRONTEND
+ free(result);
+ return NULL;
+#else
+ elog(ERROR, "could not encode salt");
+#endif
+ }
+ p += encoded_result;
+ *(p++) = '$';
+
+ /* stored key */
+ encoded_result = pg_b64_encode((char *) stored_key, SCRAM_KEY_LEN, p,
+ encoded_stored_len);
+ if (encoded_result < 0)
+ {
+#ifdef FRONTEND
+ free(result);
+ return NULL;
+#else
+ elog(ERROR, "could not encode stored key");
+#endif
+ }
+
+ p += encoded_result;
+ *(p++) = ':';
+
+ /* server key */
+ encoded_result = pg_b64_encode((char *) server_key, SCRAM_KEY_LEN, p,
+ encoded_server_len);
+ if (encoded_result < 0)
+ {
+#ifdef FRONTEND
+ free(result);
+ return NULL;
+#else
+ elog(ERROR, "could not encode server key");
+#endif
+ }
+
+ p += encoded_result;
+ *(p++) = '\0';
+
+ Assert(p - result <= maxlen);
+
+ return result;
+}