/*------------------------------------------------------------------------- * * twophase.c * Two-phase commit support functions. * * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/backend/access/transam/twophase.c * * NOTES * Each global transaction is associated with a global transaction * identifier (GID). The client assigns a GID to a postgres * transaction with the PREPARE TRANSACTION command. * * We keep all active global transactions in a shared memory array. * When the PREPARE TRANSACTION command is issued, the GID is * reserved for the transaction in the array. This is done before * a WAL entry is made, because the reservation checks for duplicate * GIDs and aborts the transaction if there already is a global * transaction in prepared state with the same GID. * * A global transaction (gxact) also has dummy PGXACT and PGPROC; this is * what keeps the XID considered running by TransactionIdIsInProgress. * It is also convenient as a PGPROC to hook the gxact's locks to. * * Information to recover prepared transactions in case of crash is * now stored in WAL for the common case. In some cases there will be * an extended period between preparing a GXACT and commit/abort, in * which case we need to separately record prepared transaction data * in permanent storage. This includes locking information, pending * notifications etc. All that state information is written to the * per-transaction state file in the pg_twophase directory. * All prepared transactions will be written prior to shutdown. * * Life track of state data is following: * * * On PREPARE TRANSACTION backend writes state data only to the WAL and * stores pointer to the start of the WAL record in * gxact->prepare_start_lsn. * * If COMMIT occurs before checkpoint then backend reads data from WAL * using prepare_start_lsn. * * On checkpoint state data copied to files in pg_twophase directory and * fsynced * * If COMMIT happens after checkpoint then backend reads state data from * files * * During replay and replication, TwoPhaseState also holds information * about active prepared transactions that haven't been moved to disk yet. * * Replay of twophase records happens by the following rules: * * * At the beginning of recovery, pg_twophase is scanned once, filling * TwoPhaseState with entries marked with gxact->inredo and * gxact->ondisk. Two-phase file data older than the XID horizon of * the redo position are discarded. * * On PREPARE redo, the transaction is added to TwoPhaseState->prepXacts. * gxact->inredo is set to true for such entries. * * On Checkpoint we iterate through TwoPhaseState->prepXacts entries * that have gxact->inredo set and are behind the redo_horizon. We * save them to disk and then switch gxact->ondisk to true. * * On COMMIT/ABORT we delete the entry from TwoPhaseState->prepXacts. * If gxact->ondisk is true, the corresponding entry from the disk * is additionally deleted. * * RecoverPreparedTransactions(), StandbyRecoverPreparedTransactions() * and PrescanPreparedTransactions() have been modified to go through * gxact->inredo entries that have not made it to disk. * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include #include #include "access/commit_ts.h" #include "access/htup_details.h" #include "access/subtrans.h" #include "access/transam.h" #include "access/twophase.h" #include "access/twophase_rmgr.h" #include "access/xact.h" #include "access/xlog.h" #include "access/xloginsert.h" #include "access/xlogreader.h" #include "access/xlogutils.h" #include "catalog/pg_type.h" #include "catalog/storage.h" #include "funcapi.h" #include "miscadmin.h" #include "pg_trace.h" #include "pgstat.h" #include "replication/origin.h" #include "replication/syncrep.h" #include "replication/walsender.h" #include "storage/fd.h" #include "storage/ipc.h" #include "storage/md.h" #include "storage/predicate.h" #include "storage/proc.h" #include "storage/procarray.h" #include "storage/sinvaladt.h" #include "storage/smgr.h" #include "utils/builtins.h" #include "utils/memutils.h" #include "utils/timestamp.h" /* * Directory where Two-phase commit files reside within PGDATA */ #define TWOPHASE_DIR "pg_twophase" /* GUC variable, can't be changed after startup */ int max_prepared_xacts = 0; /* * This struct describes one global transaction that is in prepared state * or attempting to become prepared. * * The lifecycle of a global transaction is: * * 1. After checking that the requested GID is not in use, set up an entry in * the TwoPhaseState->prepXacts array with the correct GID and valid = false, * and mark it as locked by my backend. * * 2. After successfully completing prepare, set valid = true and enter the * referenced PGPROC into the global ProcArray. * * 3. To begin COMMIT PREPARED or ROLLBACK PREPARED, check that the entry is * valid and not locked, then mark the entry as locked by storing my current * backend ID into locking_backend. This prevents concurrent attempts to * commit or rollback the same prepared xact. * * 4. On completion of COMMIT PREPARED or ROLLBACK PREPARED, remove the entry * from the ProcArray and the TwoPhaseState->prepXacts array and return it to * the freelist. * * Note that if the preparing transaction fails between steps 1 and 2, the * entry must be removed so that the GID and the GlobalTransaction struct * can be reused. See AtAbort_Twophase(). * * typedef struct GlobalTransactionData *GlobalTransaction appears in * twophase.h */ typedef struct GlobalTransactionData { GlobalTransaction next; /* list link for free list */ int pgprocno; /* ID of associated dummy PGPROC */ BackendId dummyBackendId; /* similar to backend id for backends */ TimestampTz prepared_at; /* time of preparation */ /* * Note that we need to keep track of two LSNs for each GXACT. We keep * track of the start LSN because this is the address we must use to read * state data back from WAL when committing a prepared GXACT. We keep * track of the end LSN because that is the LSN we need to wait for prior * to commit. */ XLogRecPtr prepare_start_lsn; /* XLOG offset of prepare record start */ XLogRecPtr prepare_end_lsn; /* XLOG offset of prepare record end */ TransactionId xid; /* The GXACT id */ Oid owner; /* ID of user that executed the xact */ BackendId locking_backend; /* backend currently working on the xact */ bool valid; /* true if PGPROC entry is in proc array */ bool ondisk; /* true if prepare state file is on disk */ bool inredo; /* true if entry was added via xlog_redo */ char gid[GIDSIZE]; /* The GID assigned to the prepared xact */ } GlobalTransactionData; /* * Two Phase Commit shared state. Access to this struct is protected * by TwoPhaseStateLock. */ typedef struct TwoPhaseStateData { /* Head of linked list of free GlobalTransactionData structs */ GlobalTransaction freeGXacts; /* Number of valid prepXacts entries. */ int numPrepXacts; /* There are max_prepared_xacts items in this array */ GlobalTransaction prepXacts[FLEXIBLE_ARRAY_MEMBER]; } TwoPhaseStateData; static TwoPhaseStateData *TwoPhaseState; /* * Global transaction entry currently locked by us, if any. Note that any * access to the entry pointed to by this variable must be protected by * TwoPhaseStateLock, though obviously the pointer itself doesn't need to be * (since it's just local memory). */ static GlobalTransaction MyLockedGxact = NULL; static bool twophaseExitRegistered = false; static void RecordTransactionCommitPrepared(TransactionId xid, int nchildren, TransactionId *children, int nrels, RelFileNode *rels, int ninvalmsgs, SharedInvalidationMessage *invalmsgs, bool initfileinval, const char *gid); static void RecordTransactionAbortPrepared(TransactionId xid, int nchildren, TransactionId *children, int nrels, RelFileNode *rels, const char *gid); static void ProcessRecords(char *bufptr, TransactionId xid, const TwoPhaseCallback callbacks[]); static void RemoveGXact(GlobalTransaction gxact); static void XlogReadTwoPhaseData(XLogRecPtr lsn, char **buf, int *len); static char *ProcessTwoPhaseBuffer(TransactionId xid, XLogRecPtr prepare_start_lsn, bool fromdisk, bool setParent, bool setNextXid); static void MarkAsPreparingGuts(GlobalTransaction gxact, TransactionId xid, const char *gid, TimestampTz prepared_at, Oid owner, Oid databaseid); static void RemoveTwoPhaseFile(TransactionId xid, bool giveWarning); static void RecreateTwoPhaseFile(TransactionId xid, void *content, int len); /* * Initialization of shared memory */ Size TwoPhaseShmemSize(void) { Size size; /* Need the fixed struct, the array of pointers, and the GTD structs */ size = offsetof(TwoPhaseStateData, prepXacts); size = add_size(size, mul_size(max_prepared_xacts, sizeof(GlobalTransaction))); size = MAXALIGN(size); size = add_size(size, mul_size(max_prepared_xacts, sizeof(GlobalTransactionData))); return size; } void TwoPhaseShmemInit(void) { bool found; TwoPhaseState = ShmemInitStruct("Prepared Transaction Table", TwoPhaseShmemSize(), &found); if (!IsUnderPostmaster) { GlobalTransaction gxacts; int i; Assert(!found); TwoPhaseState->freeGXacts = NULL; TwoPhaseState->numPrepXacts = 0; /* * Initialize the linked list of free GlobalTransactionData structs */ gxacts = (GlobalTransaction) ((char *) TwoPhaseState + MAXALIGN(offsetof(TwoPhaseStateData, prepXacts) + sizeof(GlobalTransaction) * max_prepared_xacts)); for (i = 0; i < max_prepared_xacts; i++) { /* insert into linked list */ gxacts[i].next = TwoPhaseState->freeGXacts; TwoPhaseState->freeGXacts = &gxacts[i]; /* associate it with a PGPROC assigned by InitProcGlobal */ gxacts[i].pgprocno = PreparedXactProcs[i].pgprocno; /* * Assign a unique ID for each dummy proc, so that the range of * dummy backend IDs immediately follows the range of normal * backend IDs. We don't dare to assign a real backend ID to dummy * procs, because prepared transactions don't take part in cache * invalidation like a real backend ID would imply, but having a * unique ID for them is nevertheless handy. This arrangement * allows you to allocate an array of size (MaxBackends + * max_prepared_xacts + 1), and have a slot for every backend and * prepared transaction. Currently multixact.c uses that * technique. */ gxacts[i].dummyBackendId = MaxBackends + 1 + i; } } else Assert(found); } /* * Exit hook to unlock the global transaction entry we're working on. */ static void AtProcExit_Twophase(int code, Datum arg) { /* same logic as abort */ AtAbort_Twophase(); } /* * Abort hook to unlock the global transaction entry we're working on. */ void AtAbort_Twophase(void) { if (MyLockedGxact == NULL) return; /* * What to do with the locked global transaction entry? If we were in the * process of preparing the transaction, but haven't written the WAL * record and state file yet, the transaction must not be considered as * prepared. Likewise, if we are in the process of finishing an * already-prepared transaction, and fail after having already written the * 2nd phase commit or rollback record to the WAL, the transaction should * not be considered as prepared anymore. In those cases, just remove the * entry from shared memory. * * Otherwise, the entry must be left in place so that the transaction can * be finished later, so just unlock it. * * If we abort during prepare, after having written the WAL record, we * might not have transferred all locks and other state to the prepared * transaction yet. Likewise, if we abort during commit or rollback, * after having written the WAL record, we might not have released all the * resources held by the transaction yet. In those cases, the in-memory * state can be wrong, but it's too late to back out. */ LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); if (!MyLockedGxact->valid) RemoveGXact(MyLockedGxact); else MyLockedGxact->locking_backend = InvalidBackendId; LWLockRelease(TwoPhaseStateLock); MyLockedGxact = NULL; } /* * This is called after we have finished transferring state to the prepared * PGXACT entry. */ void PostPrepare_Twophase(void) { LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); MyLockedGxact->locking_backend = InvalidBackendId; LWLockRelease(TwoPhaseStateLock); MyLockedGxact = NULL; } /* * MarkAsPreparing * Reserve the GID for the given transaction. */ GlobalTransaction MarkAsPreparing(TransactionId xid, const char *gid, TimestampTz prepared_at, Oid owner, Oid databaseid) { GlobalTransaction gxact; int i; if (strlen(gid) >= GIDSIZE) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("transaction identifier \"%s\" is too long", gid))); /* fail immediately if feature is disabled */ if (max_prepared_xacts == 0) ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("prepared transactions are disabled"), errhint("Set max_prepared_transactions to a nonzero value."))); /* on first call, register the exit hook */ if (!twophaseExitRegistered) { before_shmem_exit(AtProcExit_Twophase, 0); twophaseExitRegistered = true; } LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); /* Check for conflicting GID */ for (i = 0; i < TwoPhaseState->numPrepXacts; i++) { gxact = TwoPhaseState->prepXacts[i]; if (strcmp(gxact->gid, gid) == 0) { ereport(ERROR, (errcode(ERRCODE_DUPLICATE_OBJECT), errmsg("transaction identifier \"%s\" is already in use", gid))); } } /* Get a free gxact from the freelist */ if (TwoPhaseState->freeGXacts == NULL) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("maximum number of prepared transactions reached"), errhint("Increase max_prepared_transactions (currently %d).", max_prepared_xacts))); gxact = TwoPhaseState->freeGXacts; TwoPhaseState->freeGXacts = gxact->next; MarkAsPreparingGuts(gxact, xid, gid, prepared_at, owner, databaseid); gxact->ondisk = false; /* And insert it into the active array */ Assert(TwoPhaseState->numPrepXacts < max_prepared_xacts); TwoPhaseState->prepXacts[TwoPhaseState->numPrepXacts++] = gxact; LWLockRelease(TwoPhaseStateLock); return gxact; } /* * MarkAsPreparingGuts * * This uses a gxact struct and puts it into the active array. * NOTE: this is also used when reloading a gxact after a crash; so avoid * assuming that we can use very much backend context. * * Note: This function should be called with appropriate locks held. */ static void MarkAsPreparingGuts(GlobalTransaction gxact, TransactionId xid, const char *gid, TimestampTz prepared_at, Oid owner, Oid databaseid) { PGPROC *proc; PGXACT *pgxact; int i; Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); Assert(gxact != NULL); proc = &ProcGlobal->allProcs[gxact->pgprocno]; pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; /* Initialize the PGPROC entry */ MemSet(proc, 0, sizeof(PGPROC)); proc->pgprocno = gxact->pgprocno; SHMQueueElemInit(&(proc->links)); proc->waitStatus = STATUS_OK; /* We set up the gxact's VXID as InvalidBackendId/XID */ proc->lxid = (LocalTransactionId) xid; pgxact->xid = xid; pgxact->xmin = InvalidTransactionId; proc->delayChkpt = false; pgxact->vacuumFlags = 0; proc->pid = 0; proc->backendId = InvalidBackendId; proc->databaseId = databaseid; proc->roleId = owner; proc->tempNamespaceId = InvalidOid; proc->isBackgroundWorker = false; proc->lwWaiting = false; proc->lwWaitMode = 0; proc->waitLock = NULL; proc->waitProcLock = NULL; for (i = 0; i < NUM_LOCK_PARTITIONS; i++) SHMQueueInit(&(proc->myProcLocks[i])); /* subxid data must be filled later by GXactLoadSubxactData */ pgxact->overflowed = false; pgxact->nxids = 0; gxact->prepared_at = prepared_at; gxact->xid = xid; gxact->owner = owner; gxact->locking_backend = MyBackendId; gxact->valid = false; gxact->inredo = false; strcpy(gxact->gid, gid); /* * Remember that we have this GlobalTransaction entry locked for us. If we * abort after this, we must release it. */ MyLockedGxact = gxact; } /* * GXactLoadSubxactData * * If the transaction being persisted had any subtransactions, this must * be called before MarkAsPrepared() to load information into the dummy * PGPROC. */ static void GXactLoadSubxactData(GlobalTransaction gxact, int nsubxacts, TransactionId *children) { PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno]; PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; /* We need no extra lock since the GXACT isn't valid yet */ if (nsubxacts > PGPROC_MAX_CACHED_SUBXIDS) { pgxact->overflowed = true; nsubxacts = PGPROC_MAX_CACHED_SUBXIDS; } if (nsubxacts > 0) { memcpy(proc->subxids.xids, children, nsubxacts * sizeof(TransactionId)); pgxact->nxids = nsubxacts; } } /* * MarkAsPrepared * Mark the GXACT as fully valid, and enter it into the global ProcArray. * * lock_held indicates whether caller already holds TwoPhaseStateLock. */ static void MarkAsPrepared(GlobalTransaction gxact, bool lock_held) { /* Lock here may be overkill, but I'm not convinced of that ... */ if (!lock_held) LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); Assert(!gxact->valid); gxact->valid = true; if (!lock_held) LWLockRelease(TwoPhaseStateLock); /* * Put it into the global ProcArray so TransactionIdIsInProgress considers * the XID as still running. */ ProcArrayAdd(&ProcGlobal->allProcs[gxact->pgprocno]); } /* * LockGXact * Locate the prepared transaction and mark it busy for COMMIT or PREPARE. */ static GlobalTransaction LockGXact(const char *gid, Oid user) { int i; /* on first call, register the exit hook */ if (!twophaseExitRegistered) { before_shmem_exit(AtProcExit_Twophase, 0); twophaseExitRegistered = true; } LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); for (i = 0; i < TwoPhaseState->numPrepXacts; i++) { GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno]; /* Ignore not-yet-valid GIDs */ if (!gxact->valid) continue; if (strcmp(gxact->gid, gid) != 0) continue; /* Found it, but has someone else got it locked? */ if (gxact->locking_backend != InvalidBackendId) ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("prepared transaction with identifier \"%s\" is busy", gid))); if (user != gxact->owner && !superuser_arg(user)) ereport(ERROR, (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), errmsg("permission denied to finish prepared transaction"), errhint("Must be superuser or the user that prepared the transaction."))); /* * Note: it probably would be possible to allow committing from * another database; but at the moment NOTIFY is known not to work and * there may be some other issues as well. Hence disallow until * someone gets motivated to make it work. */ if (MyDatabaseId != proc->databaseId) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("prepared transaction belongs to another database"), errhint("Connect to the database where the transaction was prepared to finish it."))); /* OK for me to lock it */ gxact->locking_backend = MyBackendId; MyLockedGxact = gxact; LWLockRelease(TwoPhaseStateLock); return gxact; } LWLockRelease(TwoPhaseStateLock); ereport(ERROR, (errcode(ERRCODE_UNDEFINED_OBJECT), errmsg("prepared transaction with identifier \"%s\" does not exist", gid))); /* NOTREACHED */ return NULL; } /* * RemoveGXact * Remove the prepared transaction from the shared memory array. * * NB: caller should have already removed it from ProcArray */ static void RemoveGXact(GlobalTransaction gxact) { int i; Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); for (i = 0; i < TwoPhaseState->numPrepXacts; i++) { if (gxact == TwoPhaseState->prepXacts[i]) { /* remove from the active array */ TwoPhaseState->numPrepXacts--; TwoPhaseState->prepXacts[i] = TwoPhaseState->prepXacts[TwoPhaseState->numPrepXacts]; /* and put it back in the freelist */ gxact->next = TwoPhaseState->freeGXacts; TwoPhaseState->freeGXacts = gxact; return; } } elog(ERROR, "failed to find %p in GlobalTransaction array", gxact); } /* * Returns an array of all prepared transactions for the user-level * function pg_prepared_xact. * * The returned array and all its elements are copies of internal data * structures, to minimize the time we need to hold the TwoPhaseStateLock. * * WARNING -- we return even those transactions that are not fully prepared * yet. The caller should filter them out if he doesn't want them. * * The returned array is palloc'd. */ static int GetPreparedTransactionList(GlobalTransaction *gxacts) { GlobalTransaction array; int num; int i; LWLockAcquire(TwoPhaseStateLock, LW_SHARED); if (TwoPhaseState->numPrepXacts == 0) { LWLockRelease(TwoPhaseStateLock); *gxacts = NULL; return 0; } num = TwoPhaseState->numPrepXacts; array = (GlobalTransaction) palloc(sizeof(GlobalTransactionData) * num); *gxacts = array; for (i = 0; i < num; i++) memcpy(array + i, TwoPhaseState->prepXacts[i], sizeof(GlobalTransactionData)); LWLockRelease(TwoPhaseStateLock); return num; } /* Working status for pg_prepared_xact */ typedef struct { GlobalTransaction array; int ngxacts; int currIdx; } Working_State; /* * pg_prepared_xact * Produce a view with one row per prepared transaction. * * This function is here so we don't have to export the * GlobalTransactionData struct definition. */ Datum pg_prepared_xact(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; Working_State *status; if (SRF_IS_FIRSTCALL()) { TupleDesc tupdesc; MemoryContext oldcontext; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* * Switch to memory context appropriate for multiple function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* build tupdesc for result tuples */ /* this had better match pg_prepared_xacts view in system_views.sql */ tupdesc = CreateTemplateTupleDesc(5); TupleDescInitEntry(tupdesc, (AttrNumber) 1, "transaction", XIDOID, -1, 0); TupleDescInitEntry(tupdesc, (AttrNumber) 2, "gid", TEXTOID, -1, 0); TupleDescInitEntry(tupdesc, (AttrNumber) 3, "prepared", TIMESTAMPTZOID, -1, 0); TupleDescInitEntry(tupdesc, (AttrNumber) 4, "ownerid", OIDOID, -1, 0); TupleDescInitEntry(tupdesc, (AttrNumber) 5, "dbid", OIDOID, -1, 0); funcctx->tuple_desc = BlessTupleDesc(tupdesc); /* * Collect all the 2PC status information that we will format and send * out as a result set. */ status = (Working_State *) palloc(sizeof(Working_State)); funcctx->user_fctx = (void *) status; status->ngxacts = GetPreparedTransactionList(&status->array); status->currIdx = 0; MemoryContextSwitchTo(oldcontext); } funcctx = SRF_PERCALL_SETUP(); status = (Working_State *) funcctx->user_fctx; while (status->array != NULL && status->currIdx < status->ngxacts) { GlobalTransaction gxact = &status->array[status->currIdx++]; PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno]; PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; Datum values[5]; bool nulls[5]; HeapTuple tuple; Datum result; if (!gxact->valid) continue; /* * Form tuple with appropriate data. */ MemSet(values, 0, sizeof(values)); MemSet(nulls, 0, sizeof(nulls)); values[0] = TransactionIdGetDatum(pgxact->xid); values[1] = CStringGetTextDatum(gxact->gid); values[2] = TimestampTzGetDatum(gxact->prepared_at); values[3] = ObjectIdGetDatum(gxact->owner); values[4] = ObjectIdGetDatum(proc->databaseId); tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); result = HeapTupleGetDatum(tuple); SRF_RETURN_NEXT(funcctx, result); } SRF_RETURN_DONE(funcctx); } /* * TwoPhaseGetGXact * Get the GlobalTransaction struct for a prepared transaction * specified by XID * * If lock_held is set to true, TwoPhaseStateLock will not be taken, so the * caller had better hold it. */ static GlobalTransaction TwoPhaseGetGXact(TransactionId xid, bool lock_held) { GlobalTransaction result = NULL; int i; static TransactionId cached_xid = InvalidTransactionId; static GlobalTransaction cached_gxact = NULL; Assert(!lock_held || LWLockHeldByMe(TwoPhaseStateLock)); /* * During a recovery, COMMIT PREPARED, or ABORT PREPARED, we'll be called * repeatedly for the same XID. We can save work with a simple cache. */ if (xid == cached_xid) return cached_gxact; if (!lock_held) LWLockAcquire(TwoPhaseStateLock, LW_SHARED); for (i = 0; i < TwoPhaseState->numPrepXacts; i++) { GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; if (pgxact->xid == xid) { result = gxact; break; } } if (!lock_held) LWLockRelease(TwoPhaseStateLock); if (result == NULL) /* should not happen */ elog(ERROR, "failed to find GlobalTransaction for xid %u", xid); cached_xid = xid; cached_gxact = result; return result; } /* * TwoPhaseGetDummyBackendId * Get the dummy backend ID for prepared transaction specified by XID * * Dummy backend IDs are similar to real backend IDs of real backends. * They start at MaxBackends + 1, and are unique across all currently active * real backends and prepared transactions. If lock_held is set to true, * TwoPhaseStateLock will not be taken, so the caller had better hold it. */ BackendId TwoPhaseGetDummyBackendId(TransactionId xid, bool lock_held) { GlobalTransaction gxact = TwoPhaseGetGXact(xid, lock_held); return gxact->dummyBackendId; } /* * TwoPhaseGetDummyProc * Get the PGPROC that represents a prepared transaction specified by XID * * If lock_held is set to true, TwoPhaseStateLock will not be taken, so the * caller had better hold it. */ PGPROC * TwoPhaseGetDummyProc(TransactionId xid, bool lock_held) { GlobalTransaction gxact = TwoPhaseGetGXact(xid, lock_held); return &ProcGlobal->allProcs[gxact->pgprocno]; } /************************************************************************/ /* State file support */ /************************************************************************/ #define TwoPhaseFilePath(path, xid) \ snprintf(path, MAXPGPATH, TWOPHASE_DIR "/%08X", xid) /* * 2PC state file format: * * 1. TwoPhaseFileHeader * 2. TransactionId[] (subtransactions) * 3. RelFileNode[] (files to be deleted at commit) * 4. RelFileNode[] (files to be deleted at abort) * 5. SharedInvalidationMessage[] (inval messages to be sent at commit) * 6. TwoPhaseRecordOnDisk * 7. ... * 8. TwoPhaseRecordOnDisk (end sentinel, rmid == TWOPHASE_RM_END_ID) * 9. checksum (CRC-32C) * * Each segment except the final checksum is MAXALIGN'd. */ /* * Header for a 2PC state file */ #define TWOPHASE_MAGIC 0x57F94534 /* format identifier */ typedef xl_xact_prepare TwoPhaseFileHeader; /* * Header for each record in a state file * * NOTE: len counts only the rmgr data, not the TwoPhaseRecordOnDisk header. * The rmgr data will be stored starting on a MAXALIGN boundary. */ typedef struct TwoPhaseRecordOnDisk { uint32 len; /* length of rmgr data */ TwoPhaseRmgrId rmid; /* resource manager for this record */ uint16 info; /* flag bits for use by rmgr */ } TwoPhaseRecordOnDisk; /* * During prepare, the state file is assembled in memory before writing it * to WAL and the actual state file. We use a chain of StateFileChunk blocks * for that. */ typedef struct StateFileChunk { char *data; uint32 len; struct StateFileChunk *next; } StateFileChunk; static struct xllist { StateFileChunk *head; /* first data block in the chain */ StateFileChunk *tail; /* last block in chain */ uint32 num_chunks; uint32 bytes_free; /* free bytes left in tail block */ uint32 total_len; /* total data bytes in chain */ } records; /* * Append a block of data to records data structure. * * NB: each block is padded to a MAXALIGN multiple. This must be * accounted for when the file is later read! * * The data is copied, so the caller is free to modify it afterwards. */ static void save_state_data(const void *data, uint32 len) { uint32 padlen = MAXALIGN(len); if (padlen > records.bytes_free) { records.tail->next = palloc0(sizeof(StateFileChunk)); records.tail = records.tail->next; records.tail->len = 0; records.tail->next = NULL; records.num_chunks++; records.bytes_free = Max(padlen, 512); records.tail->data = palloc(records.bytes_free); } memcpy(((char *) records.tail->data) + records.tail->len, data, len); records.tail->len += padlen; records.bytes_free -= padlen; records.total_len += padlen; } /* * Start preparing a state file. * * Initializes data structure and inserts the 2PC file header record. */ void StartPrepare(GlobalTransaction gxact) { PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno]; PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; TransactionId xid = pgxact->xid; TwoPhaseFileHeader hdr; TransactionId *children; RelFileNode *commitrels; RelFileNode *abortrels; SharedInvalidationMessage *invalmsgs; /* Initialize linked list */ records.head = palloc0(sizeof(StateFileChunk)); records.head->len = 0; records.head->next = NULL; records.bytes_free = Max(sizeof(TwoPhaseFileHeader), 512); records.head->data = palloc(records.bytes_free); records.tail = records.head; records.num_chunks = 1; records.total_len = 0; /* Create header */ hdr.magic = TWOPHASE_MAGIC; hdr.total_len = 0; /* EndPrepare will fill this in */ hdr.xid = xid; hdr.database = proc->databaseId; hdr.prepared_at = gxact->prepared_at; hdr.owner = gxact->owner; hdr.nsubxacts = xactGetCommittedChildren(&children); hdr.ncommitrels = smgrGetPendingDeletes(true, &commitrels); hdr.nabortrels = smgrGetPendingDeletes(false, &abortrels); hdr.ninvalmsgs = xactGetCommittedInvalidationMessages(&invalmsgs, &hdr.initfileinval); hdr.gidlen = strlen(gxact->gid) + 1; /* Include '\0' */ save_state_data(&hdr, sizeof(TwoPhaseFileHeader)); save_state_data(gxact->gid, hdr.gidlen); /* * Add the additional info about subxacts, deletable files and cache * invalidation messages. */ if (hdr.nsubxacts > 0) { save_state_data(children, hdr.nsubxacts * sizeof(TransactionId)); /* While we have the child-xact data, stuff it in the gxact too */ GXactLoadSubxactData(gxact, hdr.nsubxacts, children); } if (hdr.ncommitrels > 0) { save_state_data(commitrels, hdr.ncommitrels * sizeof(RelFileNode)); pfree(commitrels); } if (hdr.nabortrels > 0) { save_state_data(abortrels, hdr.nabortrels * sizeof(RelFileNode)); pfree(abortrels); } if (hdr.ninvalmsgs > 0) { save_state_data(invalmsgs, hdr.ninvalmsgs * sizeof(SharedInvalidationMessage)); pfree(invalmsgs); } } /* * Finish preparing state data and writing it to WAL. */ void EndPrepare(GlobalTransaction gxact) { TwoPhaseFileHeader *hdr; StateFileChunk *record; bool replorigin; /* Add the end sentinel to the list of 2PC records */ RegisterTwoPhaseRecord(TWOPHASE_RM_END_ID, 0, NULL, 0); /* Go back and fill in total_len in the file header record */ hdr = (TwoPhaseFileHeader *) records.head->data; Assert(hdr->magic == TWOPHASE_MAGIC); hdr->total_len = records.total_len + sizeof(pg_crc32c); replorigin = (replorigin_session_origin != InvalidRepOriginId && replorigin_session_origin != DoNotReplicateId); if (replorigin) { Assert(replorigin_session_origin_lsn != InvalidXLogRecPtr); hdr->origin_lsn = replorigin_session_origin_lsn; hdr->origin_timestamp = replorigin_session_origin_timestamp; } else { hdr->origin_lsn = InvalidXLogRecPtr; hdr->origin_timestamp = 0; } /* * If the data size exceeds MaxAllocSize, we won't be able to read it in * ReadTwoPhaseFile. Check for that now, rather than fail in the case * where we write data to file and then re-read at commit time. */ if (hdr->total_len > MaxAllocSize) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("two-phase state file maximum length exceeded"))); /* * Now writing 2PC state data to WAL. We let the WAL's CRC protection * cover us, so no need to calculate a separate CRC. * * We have to set delayChkpt here, too; otherwise a checkpoint starting * immediately after the WAL record is inserted could complete without * fsync'ing our state file. (This is essentially the same kind of race * condition as the COMMIT-to-clog-write case that RecordTransactionCommit * uses delayChkpt for; see notes there.) * * We save the PREPARE record's location in the gxact for later use by * CheckPointTwoPhase. */ XLogEnsureRecordSpace(0, records.num_chunks); START_CRIT_SECTION(); MyProc->delayChkpt = true; XLogBeginInsert(); for (record = records.head; record != NULL; record = record->next) XLogRegisterData(record->data, record->len); XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); gxact->prepare_end_lsn = XLogInsert(RM_XACT_ID, XLOG_XACT_PREPARE); if (replorigin) { /* Move LSNs forward for this replication origin */ replorigin_session_advance(replorigin_session_origin_lsn, gxact->prepare_end_lsn); } XLogFlush(gxact->prepare_end_lsn); /* If we crash now, we have prepared: WAL replay will fix things */ /* Store record's start location to read that later on Commit */ gxact->prepare_start_lsn = ProcLastRecPtr; /* * Mark the prepared transaction as valid. As soon as xact.c marks * MyPgXact as not running our XID (which it will do immediately after * this function returns), others can commit/rollback the xact. * * NB: a side effect of this is to make a dummy ProcArray entry for the * prepared XID. This must happen before we clear the XID from MyPgXact, * else there is a window where the XID is not running according to * TransactionIdIsInProgress, and onlookers would be entitled to assume * the xact crashed. Instead we have a window where the same XID appears * twice in ProcArray, which is OK. */ MarkAsPrepared(gxact, false); /* * Now we can mark ourselves as out of the commit critical section: a * checkpoint starting after this will certainly see the gxact as a * candidate for fsyncing. */ MyProc->delayChkpt = false; /* * Remember that we have this GlobalTransaction entry locked for us. If * we crash after this point, it's too late to abort, but we must unlock * it so that the prepared transaction can be committed or rolled back. */ MyLockedGxact = gxact; END_CRIT_SECTION(); /* * Wait for synchronous replication, if required. * * Note that at this stage we have marked the prepare, but still show as * running in the procarray (twice!) and continue to hold locks. */ SyncRepWaitForLSN(gxact->prepare_end_lsn, false); records.tail = records.head = NULL; records.num_chunks = 0; } /* * Register a 2PC record to be written to state file. */ void RegisterTwoPhaseRecord(TwoPhaseRmgrId rmid, uint16 info, const void *data, uint32 len) { TwoPhaseRecordOnDisk record; record.rmid = rmid; record.info = info; record.len = len; save_state_data(&record, sizeof(TwoPhaseRecordOnDisk)); if (len > 0) save_state_data(data, len); } /* * Read and validate the state file for xid. * * If it looks OK (has a valid magic number and CRC), return the palloc'd * contents of the file, issuing an error when finding corrupted data. If * missing_ok is true, which indicates that missing files can be safely * ignored, then return NULL. This state can be reached when doing recovery. */ static char * ReadTwoPhaseFile(TransactionId xid, bool missing_ok) { char path[MAXPGPATH]; char *buf; TwoPhaseFileHeader *hdr; int fd; struct stat stat; uint32 crc_offset; pg_crc32c calc_crc, file_crc; int r; TwoPhaseFilePath(path, xid); fd = OpenTransientFile(path, O_RDONLY | PG_BINARY); if (fd < 0) { if (missing_ok && errno == ENOENT) return NULL; ereport(ERROR, (errcode_for_file_access(), errmsg("could not open file \"%s\": %m", path))); } /* * Check file length. We can determine a lower bound pretty easily. We * set an upper bound to avoid palloc() failure on a corrupt file, though * we can't guarantee that we won't get an out of memory error anyway, * even on a valid file. */ if (fstat(fd, &stat)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not stat file \"%s\": %m", path))); if (stat.st_size < (MAXALIGN(sizeof(TwoPhaseFileHeader)) + MAXALIGN(sizeof(TwoPhaseRecordOnDisk)) + sizeof(pg_crc32c)) || stat.st_size > MaxAllocSize) ereport(ERROR, (errcode(ERRCODE_DATA_CORRUPTED), errmsg_plural("incorrect size of file \"%s\": %zu byte", "incorrect size of file \"%s\": %zu bytes", (Size) stat.st_size, path, (Size) stat.st_size))); crc_offset = stat.st_size - sizeof(pg_crc32c); if (crc_offset != MAXALIGN(crc_offset)) ereport(ERROR, (errcode(ERRCODE_DATA_CORRUPTED), errmsg("incorrect alignment of CRC offset for file \"%s\"", path))); /* * OK, slurp in the file. */ buf = (char *) palloc(stat.st_size); pgstat_report_wait_start(WAIT_EVENT_TWOPHASE_FILE_READ); r = read(fd, buf, stat.st_size); if (r != stat.st_size) { if (r < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read file \"%s\": %m", path))); else ereport(ERROR, (errmsg("could not read file \"%s\": read %d of %zu", path, r, (Size) stat.st_size))); } pgstat_report_wait_end(); if (CloseTransientFile(fd) != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not close file \"%s\": %m", path))); hdr = (TwoPhaseFileHeader *) buf; if (hdr->magic != TWOPHASE_MAGIC) ereport(ERROR, (errcode(ERRCODE_DATA_CORRUPTED), errmsg("invalid magic number stored in file \"%s\"", path))); if (hdr->total_len != stat.st_size) ereport(ERROR, (errcode(ERRCODE_DATA_CORRUPTED), errmsg("invalid size stored in file \"%s\"", path))); INIT_CRC32C(calc_crc); COMP_CRC32C(calc_crc, buf, crc_offset); FIN_CRC32C(calc_crc); file_crc = *((pg_crc32c *) (buf + crc_offset)); if (!EQ_CRC32C(calc_crc, file_crc)) ereport(ERROR, (errcode(ERRCODE_DATA_CORRUPTED), errmsg("calculated CRC checksum does not match value stored in file \"%s\"", path))); return buf; } /* * Reads 2PC data from xlog. During checkpoint this data will be moved to * twophase files and ReadTwoPhaseFile should be used instead. * * Note clearly that this function can access WAL during normal operation, * similarly to the way WALSender or Logical Decoding would do. While * accessing WAL, read_local_xlog_page() may change ThisTimeLineID, * particularly if this routine is called for the end-of-recovery checkpoint * in the checkpointer itself, so save the current timeline number value * and restore it once done. */ static void XlogReadTwoPhaseData(XLogRecPtr lsn, char **buf, int *len) { XLogRecord *record; XLogReaderState *xlogreader; char *errormsg; TimeLineID save_currtli = ThisTimeLineID; xlogreader = XLogReaderAllocate(wal_segment_size, NULL, XL_ROUTINE(.page_read = &read_local_xlog_page, .segment_open = &wal_segment_open, .segment_close = &wal_segment_close), NULL); if (!xlogreader) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"), errdetail("Failed while allocating a WAL reading processor."))); XLogBeginRead(xlogreader, lsn); record = XLogReadRecord(xlogreader, &errormsg); /* * Restore immediately the timeline where it was previously, as * read_local_xlog_page() could have changed it if the record was read * while recovery was finishing or if the timeline has jumped in-between. */ ThisTimeLineID = save_currtli; if (record == NULL) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read two-phase state from WAL at %X/%X", (uint32) (lsn >> 32), (uint32) lsn))); if (XLogRecGetRmid(xlogreader) != RM_XACT_ID || (XLogRecGetInfo(xlogreader) & XLOG_XACT_OPMASK) != XLOG_XACT_PREPARE) ereport(ERROR, (errcode_for_file_access(), errmsg("expected two-phase state data is not present in WAL at %X/%X", (uint32) (lsn >> 32), (uint32) lsn))); if (len != NULL) *len = XLogRecGetDataLen(xlogreader); *buf = palloc(sizeof(char) * XLogRecGetDataLen(xlogreader)); memcpy(*buf, XLogRecGetData(xlogreader), sizeof(char) * XLogRecGetDataLen(xlogreader)); XLogReaderFree(xlogreader); } /* * Confirms an xid is prepared, during recovery */ bool StandbyTransactionIdIsPrepared(TransactionId xid) { char *buf; TwoPhaseFileHeader *hdr; bool result; Assert(TransactionIdIsValid(xid)); if (max_prepared_xacts <= 0) return false; /* nothing to do */ /* Read and validate file */ buf = ReadTwoPhaseFile(xid, true); if (buf == NULL) return false; /* Check header also */ hdr = (TwoPhaseFileHeader *) buf; result = TransactionIdEquals(hdr->xid, xid); pfree(buf); return result; } /* * FinishPreparedTransaction: execute COMMIT PREPARED or ROLLBACK PREPARED */ void FinishPreparedTransaction(const char *gid, bool isCommit) { GlobalTransaction gxact; PGPROC *proc; PGXACT *pgxact; TransactionId xid; char *buf; char *bufptr; TwoPhaseFileHeader *hdr; TransactionId latestXid; TransactionId *children; RelFileNode *commitrels; RelFileNode *abortrels; RelFileNode *delrels; int ndelrels; SharedInvalidationMessage *invalmsgs; /* * Validate the GID, and lock the GXACT to ensure that two backends do not * try to commit the same GID at once. */ gxact = LockGXact(gid, GetUserId()); proc = &ProcGlobal->allProcs[gxact->pgprocno]; pgxact = &ProcGlobal->allPgXact[gxact->pgprocno]; xid = pgxact->xid; /* * Read and validate 2PC state data. State data will typically be stored * in WAL files if the LSN is after the last checkpoint record, or moved * to disk if for some reason they have lived for a long time. */ if (gxact->ondisk) buf = ReadTwoPhaseFile(xid, false); else XlogReadTwoPhaseData(gxact->prepare_start_lsn, &buf, NULL); /* * Disassemble the header area */ hdr = (TwoPhaseFileHeader *) buf; Assert(TransactionIdEquals(hdr->xid, xid)); bufptr = buf + MAXALIGN(sizeof(TwoPhaseFileHeader)); bufptr += MAXALIGN(hdr->gidlen); children = (TransactionId *) bufptr; bufptr += MAXALIGN(hdr->nsubxacts * sizeof(TransactionId)); commitrels = (RelFileNode *) bufptr; bufptr += MAXALIGN(hdr->ncommitrels * sizeof(RelFileNode)); abortrels = (RelFileNode *) bufptr; bufptr += MAXALIGN(hdr->nabortrels * sizeof(RelFileNode)); invalmsgs = (SharedInvalidationMessage *) bufptr; bufptr += MAXALIGN(hdr->ninvalmsgs * sizeof(SharedInvalidationMessage)); /* compute latestXid among all children */ latestXid = TransactionIdLatest(xid, hdr->nsubxacts, children); /* Prevent cancel/die interrupt while cleaning up */ HOLD_INTERRUPTS(); /* * The order of operations here is critical: make the XLOG entry for * commit or abort, then mark the transaction committed or aborted in * pg_xact, then remove its PGPROC from the global ProcArray (which means * TransactionIdIsInProgress will stop saying the prepared xact is in * progress), then run the post-commit or post-abort callbacks. The * callbacks will release the locks the transaction held. */ if (isCommit) RecordTransactionCommitPrepared(xid, hdr->nsubxacts, children, hdr->ncommitrels, commitrels, hdr->ninvalmsgs, invalmsgs, hdr->initfileinval, gid); else RecordTransactionAbortPrepared(xid, hdr->nsubxacts, children, hdr->nabortrels, abortrels, gid); ProcArrayRemove(proc, latestXid); /* * In case we fail while running the callbacks, mark the gxact invalid so * no one else will try to commit/rollback, and so it will be recycled if * we fail after this point. It is still locked by our backend so it * won't go away yet. * * (We assume it's safe to do this without taking TwoPhaseStateLock.) */ gxact->valid = false; /* * We have to remove any files that were supposed to be dropped. For * consistency with the regular xact.c code paths, must do this before * releasing locks, so do it before running the callbacks. * * NB: this code knows that we couldn't be dropping any temp rels ... */ if (isCommit) { delrels = commitrels; ndelrels = hdr->ncommitrels; } else { delrels = abortrels; ndelrels = hdr->nabortrels; } /* Make sure files supposed to be dropped are dropped */ DropRelationFiles(delrels, ndelrels, false); /* * Handle cache invalidation messages. * * Relcache init file invalidation requires processing both before and * after we send the SI messages. See AtEOXact_Inval() */ if (hdr->initfileinval) RelationCacheInitFilePreInvalidate(); SendSharedInvalidMessages(invalmsgs, hdr->ninvalmsgs); if (hdr->initfileinval) RelationCacheInitFilePostInvalidate(); /* * Acquire the two-phase lock. We want to work on the two-phase callbacks * while holding it to avoid potential conflicts with other transactions * attempting to use the same GID, so the lock is released once the shared * memory state is cleared. */ LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); /* And now do the callbacks */ if (isCommit) ProcessRecords(bufptr, xid, twophase_postcommit_callbacks); else ProcessRecords(bufptr, xid, twophase_postabort_callbacks); PredicateLockTwoPhaseFinish(xid, isCommit); /* Clear shared memory state */ RemoveGXact(gxact); /* * Release the lock as all callbacks are called and shared memory cleanup * is done. */ LWLockRelease(TwoPhaseStateLock); /* Count the prepared xact as committed or aborted */ AtEOXact_PgStat(isCommit, false); /* * And now we can clean up any files we may have left. */ if (gxact->ondisk) RemoveTwoPhaseFile(xid, true); MyLockedGxact = NULL; RESUME_INTERRUPTS(); pfree(buf); } /* * Scan 2PC state data in memory and call the indicated callbacks for each 2PC record. */ static void ProcessRecords(char *bufptr, TransactionId xid, const TwoPhaseCallback callbacks[]) { for (;;) { TwoPhaseRecordOnDisk *record = (TwoPhaseRecordOnDisk *) bufptr; Assert(record->rmid <= TWOPHASE_RM_MAX_ID); if (record->rmid == TWOPHASE_RM_END_ID) break; bufptr += MAXALIGN(sizeof(TwoPhaseRecordOnDisk)); if (callbacks[record->rmid] != NULL) callbacks[record->rmid] (xid, record->info, (void *) bufptr, record->len); bufptr += MAXALIGN(record->len); } } /* * Remove the 2PC file for the specified XID. * * If giveWarning is false, do not complain about file-not-present; * this is an expected case during WAL replay. */ static void RemoveTwoPhaseFile(TransactionId xid, bool giveWarning) { char path[MAXPGPATH]; TwoPhaseFilePath(path, xid); if (unlink(path)) if (errno != ENOENT || giveWarning) ereport(WARNING, (errcode_for_file_access(), errmsg("could not remove file \"%s\": %m", path))); } /* * Recreates a state file. This is used in WAL replay and during * checkpoint creation. * * Note: content and len don't include CRC. */ static void RecreateTwoPhaseFile(TransactionId xid, void *content, int len) { char path[MAXPGPATH]; pg_crc32c statefile_crc; int fd; /* Recompute CRC */ INIT_CRC32C(statefile_crc); COMP_CRC32C(statefile_crc, content, len); FIN_CRC32C(statefile_crc); TwoPhaseFilePath(path, xid); fd = OpenTransientFile(path, O_CREAT | O_TRUNC | O_WRONLY | PG_BINARY); if (fd < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not recreate file \"%s\": %m", path))); /* Write content and CRC */ errno = 0; pgstat_report_wait_start(WAIT_EVENT_TWOPHASE_FILE_WRITE); if (write(fd, content, len) != len) { /* if write didn't set errno, assume problem is no disk space */ if (errno == 0) errno = ENOSPC; ereport(ERROR, (errcode_for_file_access(), errmsg("could not write file \"%s\": %m", path))); } if (write(fd, &statefile_crc, sizeof(pg_crc32c)) != sizeof(pg_crc32c)) { /* if write didn't set errno, assume problem is no disk space */ if (errno == 0) errno = ENOSPC; ereport(ERROR, (errcode_for_file_access(), errmsg("could not write file \"%s\": %m", path))); } pgstat_report_wait_end(); /* * We must fsync the file because the end-of-replay checkpoint will not do * so, there being no GXACT in shared memory yet to tell it to. */ pgstat_report_wait_start(WAIT_EVENT_TWOPHASE_FILE_SYNC); if (pg_fsync(fd) != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not fsync file \"%s\": %m", path))); pgstat_report_wait_end(); if (CloseTransientFile(fd) != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not close file \"%s\": %m", path))); } /* * CheckPointTwoPhase -- handle 2PC component of checkpointing. * * We must fsync the state file of any GXACT that is valid or has been * generated during redo and has a PREPARE LSN <= the checkpoint's redo * horizon. (If the gxact isn't valid yet, has not been generated in * redo, or has a later LSN, this checkpoint is not responsible for * fsyncing it.) * * This is deliberately run as late as possible in the checkpoint sequence, * because GXACTs ordinarily have short lifespans, and so it is quite * possible that GXACTs that were valid at checkpoint start will no longer * exist if we wait a little bit. With typical checkpoint settings this * will be about 3 minutes for an online checkpoint, so as a result we * expect that there will be no GXACTs that need to be copied to disk. * * If a GXACT remains valid across multiple checkpoints, it will already * be on disk so we don't bother to repeat that write. */ void CheckPointTwoPhase(XLogRecPtr redo_horizon) { int i; int serialized_xacts = 0; if (max_prepared_xacts <= 0) return; /* nothing to do */ TRACE_POSTGRESQL_TWOPHASE_CHECKPOINT_START(); /* * We are expecting there to be zero GXACTs that need to be copied to * disk, so we perform all I/O while holding TwoPhaseStateLock for * simplicity. This prevents any new xacts from preparing while this * occurs, which shouldn't be a problem since the presence of long-lived * prepared xacts indicates the transaction manager isn't active. * * It's also possible to move I/O out of the lock, but on every error we * should check whether somebody committed our transaction in different * backend. Let's leave this optimization for future, if somebody will * spot that this place cause bottleneck. * * Note that it isn't possible for there to be a GXACT with a * prepare_end_lsn set prior to the last checkpoint yet is marked invalid, * because of the efforts with delayChkpt. */ LWLockAcquire(TwoPhaseStateLock, LW_SHARED); for (i = 0; i < TwoPhaseState->numPrepXacts; i++) { /* * Note that we are using gxact not pgxact so this works in recovery * also */ GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; if ((gxact->valid || gxact->inredo) && !gxact->ondisk && gxact->prepare_end_lsn <= redo_horizon) { char *buf; int len; XlogReadTwoPhaseData(gxact->prepare_start_lsn, &buf, &len); RecreateTwoPhaseFile(gxact->xid, buf, len); gxact->ondisk = true; gxact->prepare_start_lsn = InvalidXLogRecPtr; gxact->prepare_end_lsn = InvalidXLogRecPtr; pfree(buf); serialized_xacts++; } } LWLockRelease(TwoPhaseStateLock); /* * Flush unconditionally the parent directory to make any information * durable on disk. Two-phase files could have been removed and those * removals need to be made persistent as well as any files newly created * previously since the last checkpoint. */ fsync_fname(TWOPHASE_DIR, true); TRACE_POSTGRESQL_TWOPHASE_CHECKPOINT_DONE(); if (log_checkpoints && serialized_xacts > 0) ereport(LOG, (errmsg_plural("%u two-phase state file was written " "for a long-running prepared transaction", "%u two-phase state files were written " "for long-running prepared transactions", serialized_xacts, serialized_xacts))); } /* * restoreTwoPhaseData * * Scan pg_twophase and fill TwoPhaseState depending on the on-disk data. * This is called once at the beginning of recovery, saving any extra * lookups in the future. Two-phase files that are newer than the * minimum XID horizon are discarded on the way. */ void restoreTwoPhaseData(void) { DIR *cldir; struct dirent *clde; LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); cldir = AllocateDir(TWOPHASE_DIR); while ((clde = ReadDir(cldir, TWOPHASE_DIR)) != NULL) { if (strlen(clde->d_name) == 8 && strspn(clde->d_name, "0123456789ABCDEF") == 8) { TransactionId xid; char *buf; xid = (TransactionId) strtoul(clde->d_name, NULL, 16); buf = ProcessTwoPhaseBuffer(xid, InvalidXLogRecPtr, true, false, false); if (buf == NULL) continue; PrepareRedoAdd(buf, InvalidXLogRecPtr, InvalidXLogRecPtr, InvalidRepOriginId); } } LWLockRelease(TwoPhaseStateLock); FreeDir(cldir); } /* * PrescanPreparedTransactions * * Scan the shared memory entries of TwoPhaseState and determine the range * of valid XIDs present. This is run during database startup, after we * have completed reading WAL. ShmemVariableCache->nextFullXid has been set to * one more than the highest XID for which evidence exists in WAL. * * We throw away any prepared xacts with main XID beyond nextFullXid --- if any * are present, it suggests that the DBA has done a PITR recovery to an * earlier point in time without cleaning out pg_twophase. We dare not * try to recover such prepared xacts since they likely depend on database * state that doesn't exist now. * * However, we will advance nextFullXid beyond any subxact XIDs belonging to * valid prepared xacts. We need to do this since subxact commit doesn't * write a WAL entry, and so there might be no evidence in WAL of those * subxact XIDs. * * On corrupted two-phase files, fail immediately. Keeping around broken * entries and let replay continue causes harm on the system, and a new * backup should be rolled in. * * Our other responsibility is to determine and return the oldest valid XID * among the prepared xacts (if none, return ShmemVariableCache->nextFullXid). * This is needed to synchronize pg_subtrans startup properly. * * If xids_p and nxids_p are not NULL, pointer to a palloc'd array of all * top-level xids is stored in *xids_p. The number of entries in the array * is returned in *nxids_p. */ TransactionId PrescanPreparedTransactions(TransactionId **xids_p, int *nxids_p) { FullTransactionId nextFullXid = ShmemVariableCache->nextFullXid; TransactionId origNextXid = XidFromFullTransactionId(nextFullXid); TransactionId result = origNextXid; TransactionId *xids = NULL; int nxids = 0; int allocsize = 0; int i; LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); for (i = 0; i < TwoPhaseState->numPrepXacts; i++) { TransactionId xid; char *buf; GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; Assert(gxact->inredo); xid = gxact->xid; buf = ProcessTwoPhaseBuffer(xid, gxact->prepare_start_lsn, gxact->ondisk, false, true); if (buf == NULL) continue; /* * OK, we think this file is valid. Incorporate xid into the * running-minimum result. */ if (TransactionIdPrecedes(xid, result)) result = xid; if (xids_p) { if (nxids == allocsize) { if (nxids == 0) { allocsize = 10; xids = palloc(allocsize * sizeof(TransactionId)); } else { allocsize = allocsize * 2; xids = repalloc(xids, allocsize * sizeof(TransactionId)); } } xids[nxids++] = xid; } pfree(buf); } LWLockRelease(TwoPhaseStateLock); if (xids_p) { *xids_p = xids; *nxids_p = nxids; } return result; } /* * StandbyRecoverPreparedTransactions * * Scan the shared memory entries of TwoPhaseState and setup all the required * information to allow standby queries to treat prepared transactions as still * active. * * This is never called at the end of recovery - we use * RecoverPreparedTransactions() at that point. * * The lack of calls to SubTransSetParent() calls here is by design; * those calls are made by RecoverPreparedTransactions() at the end of recovery * for those xacts that need this. */ void StandbyRecoverPreparedTransactions(void) { int i; LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); for (i = 0; i < TwoPhaseState->numPrepXacts; i++) { TransactionId xid; char *buf; GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; Assert(gxact->inredo); xid = gxact->xid; buf = ProcessTwoPhaseBuffer(xid, gxact->prepare_start_lsn, gxact->ondisk, false, false); if (buf != NULL) pfree(buf); } LWLockRelease(TwoPhaseStateLock); } /* * RecoverPreparedTransactions * * Scan the shared memory entries of TwoPhaseState and reload the state for * each prepared transaction (reacquire locks, etc). * * This is run at the end of recovery, but before we allow backends to write * WAL. * * At the end of recovery the way we take snapshots will change. We now need * to mark all running transactions with their full SubTransSetParent() info * to allow normal snapshots to work correctly if snapshots overflow. * We do this here because by definition prepared transactions are the only * type of write transaction still running, so this is necessary and * complete. */ void RecoverPreparedTransactions(void) { int i; LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); for (i = 0; i < TwoPhaseState->numPrepXacts; i++) { TransactionId xid; char *buf; GlobalTransaction gxact = TwoPhaseState->prepXacts[i]; char *bufptr; TwoPhaseFileHeader *hdr; TransactionId *subxids; const char *gid; xid = gxact->xid; /* * Reconstruct subtrans state for the transaction --- needed because * pg_subtrans is not preserved over a restart. Note that we are * linking all the subtransactions directly to the top-level XID; * there may originally have been a more complex hierarchy, but * there's no need to restore that exactly. It's possible that * SubTransSetParent has been set before, if the prepared transaction * generated xid assignment records. */ buf = ProcessTwoPhaseBuffer(xid, gxact->prepare_start_lsn, gxact->ondisk, true, false); if (buf == NULL) continue; ereport(LOG, (errmsg("recovering prepared transaction %u from shared memory", xid))); hdr = (TwoPhaseFileHeader *) buf; Assert(TransactionIdEquals(hdr->xid, xid)); bufptr = buf + MAXALIGN(sizeof(TwoPhaseFileHeader)); gid = (const char *) bufptr; bufptr += MAXALIGN(hdr->gidlen); subxids = (TransactionId *) bufptr; bufptr += MAXALIGN(hdr->nsubxacts * sizeof(TransactionId)); bufptr += MAXALIGN(hdr->ncommitrels * sizeof(RelFileNode)); bufptr += MAXALIGN(hdr->nabortrels * sizeof(RelFileNode)); bufptr += MAXALIGN(hdr->ninvalmsgs * sizeof(SharedInvalidationMessage)); /* * Recreate its GXACT and dummy PGPROC. But, check whether it was * added in redo and already has a shmem entry for it. */ MarkAsPreparingGuts(gxact, xid, gid, hdr->prepared_at, hdr->owner, hdr->database); /* recovered, so reset the flag for entries generated by redo */ gxact->inredo = false; GXactLoadSubxactData(gxact, hdr->nsubxacts, subxids); MarkAsPrepared(gxact, true); LWLockRelease(TwoPhaseStateLock); /* * Recover other state (notably locks) using resource managers. */ ProcessRecords(bufptr, xid, twophase_recover_callbacks); /* * Release locks held by the standby process after we process each * prepared transaction. As a result, we don't need too many * additional locks at any one time. */ if (InHotStandby) StandbyReleaseLockTree(xid, hdr->nsubxacts, subxids); /* * We're done with recovering this transaction. Clear MyLockedGxact, * like we do in PrepareTransaction() during normal operation. */ PostPrepare_Twophase(); pfree(buf); LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE); } LWLockRelease(TwoPhaseStateLock); } /* * ProcessTwoPhaseBuffer * * Given a transaction id, read it either from disk or read it directly * via shmem xlog record pointer using the provided "prepare_start_lsn". * * If setParent is true, set up subtransaction parent linkages. * * If setNextXid is true, set ShmemVariableCache->nextFullXid to the newest * value scanned. */ static char * ProcessTwoPhaseBuffer(TransactionId xid, XLogRecPtr prepare_start_lsn, bool fromdisk, bool setParent, bool setNextXid) { FullTransactionId nextFullXid = ShmemVariableCache->nextFullXid; TransactionId origNextXid = XidFromFullTransactionId(nextFullXid); TransactionId *subxids; char *buf; TwoPhaseFileHeader *hdr; int i; Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); if (!fromdisk) Assert(prepare_start_lsn != InvalidXLogRecPtr); /* Already processed? */ if (TransactionIdDidCommit(xid) || TransactionIdDidAbort(xid)) { if (fromdisk) { ereport(WARNING, (errmsg("removing stale two-phase state file for transaction %u", xid))); RemoveTwoPhaseFile(xid, true); } else { ereport(WARNING, (errmsg("removing stale two-phase state from memory for transaction %u", xid))); PrepareRedoRemove(xid, true); } return NULL; } /* Reject XID if too new */ if (TransactionIdFollowsOrEquals(xid, origNextXid)) { if (fromdisk) { ereport(WARNING, (errmsg("removing future two-phase state file for transaction %u", xid))); RemoveTwoPhaseFile(xid, true); } else { ereport(WARNING, (errmsg("removing future two-phase state from memory for transaction %u", xid))); PrepareRedoRemove(xid, true); } return NULL; } if (fromdisk) { /* Read and validate file */ buf = ReadTwoPhaseFile(xid, false); } else { /* Read xlog data */ XlogReadTwoPhaseData(prepare_start_lsn, &buf, NULL); } /* Deconstruct header */ hdr = (TwoPhaseFileHeader *) buf; if (!TransactionIdEquals(hdr->xid, xid)) { if (fromdisk) ereport(ERROR, (errcode(ERRCODE_DATA_CORRUPTED), errmsg("corrupted two-phase state file for transaction %u", xid))); else ereport(ERROR, (errcode(ERRCODE_DATA_CORRUPTED), errmsg("corrupted two-phase state in memory for transaction %u", xid))); } /* * Examine subtransaction XIDs ... they should all follow main XID, and * they may force us to advance nextFullXid. */ subxids = (TransactionId *) (buf + MAXALIGN(sizeof(TwoPhaseFileHeader)) + MAXALIGN(hdr->gidlen)); for (i = 0; i < hdr->nsubxacts; i++) { TransactionId subxid = subxids[i]; Assert(TransactionIdFollows(subxid, xid)); /* update nextFullXid if needed */ if (setNextXid) AdvanceNextFullTransactionIdPastXid(subxid); if (setParent) SubTransSetParent(subxid, xid); } return buf; } /* * RecordTransactionCommitPrepared * * This is basically the same as RecordTransactionCommit (q.v. if you change * this function): in particular, we must set the delayChkpt flag to avoid a * race condition. * * We know the transaction made at least one XLOG entry (its PREPARE), * so it is never possible to optimize out the commit record. */ static void RecordTransactionCommitPrepared(TransactionId xid, int nchildren, TransactionId *children, int nrels, RelFileNode *rels, int ninvalmsgs, SharedInvalidationMessage *invalmsgs, bool initfileinval, const char *gid) { XLogRecPtr recptr; TimestampTz committs = GetCurrentTimestamp(); bool replorigin; /* * Are we using the replication origins feature? Or, in other words, are * we replaying remote actions? */ replorigin = (replorigin_session_origin != InvalidRepOriginId && replorigin_session_origin != DoNotReplicateId); START_CRIT_SECTION(); /* See notes in RecordTransactionCommit */ MyProc->delayChkpt = true; /* * Emit the XLOG commit record. Note that we mark 2PC commits as * potentially having AccessExclusiveLocks since we don't know whether or * not they do. */ recptr = XactLogCommitRecord(committs, nchildren, children, nrels, rels, ninvalmsgs, invalmsgs, initfileinval, false, MyXactFlags | XACT_FLAGS_ACQUIREDACCESSEXCLUSIVELOCK, xid, gid); if (replorigin) /* Move LSNs forward for this replication origin */ replorigin_session_advance(replorigin_session_origin_lsn, XactLastRecEnd); /* * Record commit timestamp. The value comes from plain commit timestamp * if replorigin is not enabled, or replorigin already set a value for us * in replorigin_session_origin_timestamp otherwise. * * We don't need to WAL-log anything here, as the commit record written * above already contains the data. */ if (!replorigin || replorigin_session_origin_timestamp == 0) replorigin_session_origin_timestamp = committs; TransactionTreeSetCommitTsData(xid, nchildren, children, replorigin_session_origin_timestamp, replorigin_session_origin, false); /* * We don't currently try to sleep before flush here ... nor is there any * support for async commit of a prepared xact (the very idea is probably * a contradiction) */ /* Flush XLOG to disk */ XLogFlush(recptr); /* Mark the transaction committed in pg_xact */ TransactionIdCommitTree(xid, nchildren, children); /* Checkpoint can proceed now */ MyProc->delayChkpt = false; END_CRIT_SECTION(); /* * Wait for synchronous replication, if required. * * Note that at this stage we have marked clog, but still show as running * in the procarray and continue to hold locks. */ SyncRepWaitForLSN(recptr, true); } /* * RecordTransactionAbortPrepared * * This is basically the same as RecordTransactionAbort. * * We know the transaction made at least one XLOG entry (its PREPARE), * so it is never possible to optimize out the abort record. */ static void RecordTransactionAbortPrepared(TransactionId xid, int nchildren, TransactionId *children, int nrels, RelFileNode *rels, const char *gid) { XLogRecPtr recptr; /* * Catch the scenario where we aborted partway through * RecordTransactionCommitPrepared ... */ if (TransactionIdDidCommit(xid)) elog(PANIC, "cannot abort transaction %u, it was already committed", xid); START_CRIT_SECTION(); /* * Emit the XLOG commit record. Note that we mark 2PC aborts as * potentially having AccessExclusiveLocks since we don't know whether or * not they do. */ recptr = XactLogAbortRecord(GetCurrentTimestamp(), nchildren, children, nrels, rels, MyXactFlags | XACT_FLAGS_ACQUIREDACCESSEXCLUSIVELOCK, xid, gid); /* Always flush, since we're about to remove the 2PC state file */ XLogFlush(recptr); /* * Mark the transaction aborted in clog. This is not absolutely necessary * but we may as well do it while we are here. */ TransactionIdAbortTree(xid, nchildren, children); END_CRIT_SECTION(); /* * Wait for synchronous replication, if required. * * Note that at this stage we have marked clog, but still show as running * in the procarray and continue to hold locks. */ SyncRepWaitForLSN(recptr, false); } /* * PrepareRedoAdd * * Store pointers to the start/end of the WAL record along with the xid in * a gxact entry in shared memory TwoPhaseState structure. If caller * specifies InvalidXLogRecPtr as WAL location to fetch the two-phase * data, the entry is marked as located on disk. */ void PrepareRedoAdd(char *buf, XLogRecPtr start_lsn, XLogRecPtr end_lsn, RepOriginId origin_id) { TwoPhaseFileHeader *hdr = (TwoPhaseFileHeader *) buf; char *bufptr; const char *gid; GlobalTransaction gxact; Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); Assert(RecoveryInProgress()); bufptr = buf + MAXALIGN(sizeof(TwoPhaseFileHeader)); gid = (const char *) bufptr; /* * Reserve the GID for the given transaction in the redo code path. * * This creates a gxact struct and puts it into the active array. * * In redo, this struct is mainly used to track PREPARE/COMMIT entries in * shared memory. Hence, we only fill up the bare minimum contents here. * The gxact also gets marked with gxact->inredo set to true to indicate * that it got added in the redo phase */ /* Get a free gxact from the freelist */ if (TwoPhaseState->freeGXacts == NULL) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("maximum number of prepared transactions reached"), errhint("Increase max_prepared_transactions (currently %d).", max_prepared_xacts))); gxact = TwoPhaseState->freeGXacts; TwoPhaseState->freeGXacts = gxact->next; gxact->prepared_at = hdr->prepared_at; gxact->prepare_start_lsn = start_lsn; gxact->prepare_end_lsn = end_lsn; gxact->xid = hdr->xid; gxact->owner = hdr->owner; gxact->locking_backend = InvalidBackendId; gxact->valid = false; gxact->ondisk = XLogRecPtrIsInvalid(start_lsn); gxact->inredo = true; /* yes, added in redo */ strcpy(gxact->gid, gid); /* And insert it into the active array */ Assert(TwoPhaseState->numPrepXacts < max_prepared_xacts); TwoPhaseState->prepXacts[TwoPhaseState->numPrepXacts++] = gxact; if (origin_id != InvalidRepOriginId) { /* recover apply progress */ replorigin_advance(origin_id, hdr->origin_lsn, end_lsn, false /* backward */ , false /* WAL */ ); } elog(DEBUG2, "added 2PC data in shared memory for transaction %u", gxact->xid); } /* * PrepareRedoRemove * * Remove the corresponding gxact entry from TwoPhaseState. Also remove * the 2PC file if a prepared transaction was saved via an earlier checkpoint. * * Caller must hold TwoPhaseStateLock in exclusive mode, because TwoPhaseState * is updated. */ void PrepareRedoRemove(TransactionId xid, bool giveWarning) { GlobalTransaction gxact = NULL; int i; bool found = false; Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE)); Assert(RecoveryInProgress()); for (i = 0; i < TwoPhaseState->numPrepXacts; i++) { gxact = TwoPhaseState->prepXacts[i]; if (gxact->xid == xid) { Assert(gxact->inredo); found = true; break; } } /* * Just leave if there is nothing, this is expected during WAL replay. */ if (!found) return; /* * And now we can clean up any files we may have left. */ elog(DEBUG2, "removing 2PC data for transaction %u", xid); if (gxact->ondisk) RemoveTwoPhaseFile(xid, giveWarning); RemoveGXact(gxact); }