/*------------------------------------------------------------------------ * * geqo_pool.c * Genetic Algorithm (GA) pool stuff * * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/backend/optimizer/geqo/geqo_pool.c * *------------------------------------------------------------------------- */ /* contributed by: =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*= * Martin Utesch * Institute of Automatic Control * = = University of Mining and Technology = * utesch@aut.tu-freiberg.de * Freiberg, Germany * =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*= */ /* -- parts of this are adapted from D. Whitley's Genitor algorithm -- */ #include "postgres.h" #include #include #include #include "optimizer/geqo_copy.h" #include "optimizer/geqo_pool.h" #include "optimizer/geqo_recombination.h" static int compare(const void *arg1, const void *arg2); /* * alloc_pool * allocates memory for GA pool */ Pool * alloc_pool(PlannerInfo *root, int pool_size, int string_length) { Pool *new_pool; Chromosome *chromo; int i; /* pool */ new_pool = (Pool *) palloc(sizeof(Pool)); new_pool->size = (int) pool_size; new_pool->string_length = (int) string_length; /* all chromosome */ new_pool->data = (Chromosome *) palloc(pool_size * sizeof(Chromosome)); /* all gene */ chromo = (Chromosome *) new_pool->data; /* vector of all chromos */ for (i = 0; i < pool_size; i++) chromo[i].string = palloc((string_length + 1) * sizeof(Gene)); return new_pool; } /* * free_pool * deallocates memory for GA pool */ void free_pool(PlannerInfo *root, Pool *pool) { Chromosome *chromo; int i; /* all gene */ chromo = (Chromosome *) pool->data; /* vector of all chromos */ for (i = 0; i < pool->size; i++) pfree(chromo[i].string); /* all chromosome */ pfree(pool->data); /* pool */ pfree(pool); } /* * random_init_pool * initialize genetic pool */ void random_init_pool(PlannerInfo *root, Pool *pool) { Chromosome *chromo = (Chromosome *) pool->data; int i; int bad = 0; /* * We immediately discard any invalid individuals (those that geqo_eval * returns DBL_MAX for), thereby not wasting pool space on them. * * If we fail to make any valid individuals after 10000 tries, give up; * this probably means something is broken, and we shouldn't just let * ourselves get stuck in an infinite loop. */ i = 0; while (i < pool->size) { init_tour(root, chromo[i].string, pool->string_length); pool->data[i].worth = geqo_eval(root, chromo[i].string, pool->string_length); if (pool->data[i].worth < DBL_MAX) i++; else { bad++; if (i == 0 && bad >= 10000) elog(ERROR, "geqo failed to make a valid plan"); } } #ifdef GEQO_DEBUG if (bad > 0) elog(DEBUG1, "%d invalid tours found while selecting %d pool entries", bad, pool->size); #endif } /* * sort_pool * sorts input pool according to worth, from smallest to largest * * maybe you have to change compare() for different ordering ... */ void sort_pool(PlannerInfo *root, Pool *pool) { qsort(pool->data, pool->size, sizeof(Chromosome), compare); } /* * compare * qsort comparison function for sort_pool */ static int compare(const void *arg1, const void *arg2) { const Chromosome *chromo1 = (const Chromosome *) arg1; const Chromosome *chromo2 = (const Chromosome *) arg2; if (chromo1->worth == chromo2->worth) return 0; else if (chromo1->worth > chromo2->worth) return 1; else return -1; } /* alloc_chromo * allocates a chromosome and string space */ Chromosome * alloc_chromo(PlannerInfo *root, int string_length) { Chromosome *chromo; chromo = (Chromosome *) palloc(sizeof(Chromosome)); chromo->string = (Gene *) palloc((string_length + 1) * sizeof(Gene)); return chromo; } /* free_chromo * deallocates a chromosome and string space */ void free_chromo(PlannerInfo *root, Chromosome *chromo) { pfree(chromo->string); pfree(chromo); } /* spread_chromo * inserts a new chromosome into the pool, displacing worst gene in pool * assumes best->worst = smallest->largest */ void spread_chromo(PlannerInfo *root, Chromosome *chromo, Pool *pool) { int top, mid, bot; int i, index; Chromosome swap_chromo, tmp_chromo; /* new chromo is so bad we can't use it */ if (chromo->worth > pool->data[pool->size - 1].worth) return; /* do a binary search to find the index of the new chromo */ top = 0; mid = pool->size / 2; bot = pool->size - 1; index = -1; while (index == -1) { /* these 4 cases find a new location */ if (chromo->worth <= pool->data[top].worth) index = top; else if (chromo->worth == pool->data[mid].worth) index = mid; else if (chromo->worth == pool->data[bot].worth) index = bot; else if (bot - top <= 1) index = bot; /* * these 2 cases move the search indices since a new location has not * yet been found. */ else if (chromo->worth < pool->data[mid].worth) { bot = mid; mid = top + ((bot - top) / 2); } else { /* (chromo->worth > pool->data[mid].worth) */ top = mid; mid = top + ((bot - top) / 2); } } /* ... while */ /* now we have index for chromo */ /* * move every gene from index on down one position to make room for chromo */ /* * copy new gene into pool storage; always replace worst gene in pool */ geqo_copy(root, &pool->data[pool->size - 1], chromo, pool->string_length); swap_chromo.string = pool->data[pool->size - 1].string; swap_chromo.worth = pool->data[pool->size - 1].worth; for (i = index; i < pool->size; i++) { tmp_chromo.string = pool->data[i].string; tmp_chromo.worth = pool->data[i].worth; pool->data[i].string = swap_chromo.string; pool->data[i].worth = swap_chromo.worth; swap_chromo.string = tmp_chromo.string; swap_chromo.worth = tmp_chromo.worth; } }