/*------------------------------------------------------------------------- * * dependencies.c * POSTGRES functional dependencies * * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/backend/statistics/dependencies.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/htup_details.h" #include "access/sysattr.h" #include "catalog/pg_operator.h" #include "catalog/pg_statistic_ext.h" #include "catalog/pg_statistic_ext_data.h" #include "lib/stringinfo.h" #include "nodes/nodeFuncs.h" #include "nodes/nodes.h" #include "nodes/pathnodes.h" #include "optimizer/clauses.h" #include "optimizer/optimizer.h" #include "statistics/extended_stats_internal.h" #include "statistics/statistics.h" #include "utils/bytea.h" #include "utils/fmgroids.h" #include "utils/fmgrprotos.h" #include "utils/lsyscache.h" #include "utils/selfuncs.h" #include "utils/syscache.h" #include "utils/typcache.h" /* size of the struct header fields (magic, type, ndeps) */ #define SizeOfHeader (3 * sizeof(uint32)) /* size of a serialized dependency (degree, natts, atts) */ #define SizeOfItem(natts) \ (sizeof(double) + sizeof(AttrNumber) * (1 + (natts))) /* minimal size of a dependency (with two attributes) */ #define MinSizeOfItem SizeOfItem(2) /* minimal size of dependencies, when all deps are minimal */ #define MinSizeOfItems(ndeps) \ (SizeOfHeader + (ndeps) * MinSizeOfItem) /* * Internal state for DependencyGenerator of dependencies. Dependencies are similar to * k-permutations of n elements, except that the order does not matter for the * first (k-1) elements. That is, (a,b=>c) and (b,a=>c) are equivalent. */ typedef struct DependencyGeneratorData { int k; /* size of the dependency */ int n; /* number of possible attributes */ int current; /* next dependency to return (index) */ AttrNumber ndependencies; /* number of dependencies generated */ AttrNumber *dependencies; /* array of pre-generated dependencies */ } DependencyGeneratorData; typedef DependencyGeneratorData *DependencyGenerator; static void generate_dependencies_recurse(DependencyGenerator state, int index, AttrNumber start, AttrNumber *current); static void generate_dependencies(DependencyGenerator state); static DependencyGenerator DependencyGenerator_init(int n, int k); static void DependencyGenerator_free(DependencyGenerator state); static AttrNumber *DependencyGenerator_next(DependencyGenerator state); static double dependency_degree(int numrows, HeapTuple *rows, int k, AttrNumber *dependency, VacAttrStats **stats, Bitmapset *attrs); static bool dependency_is_fully_matched(MVDependency *dependency, Bitmapset *attnums); static bool dependency_is_compatible_clause(Node *clause, Index relid, AttrNumber *attnum); static MVDependency *find_strongest_dependency(MVDependencies **dependencies, int ndependencies, Bitmapset *attnums); static Selectivity clauselist_apply_dependencies(PlannerInfo *root, List *clauses, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo, MVDependency **dependencies, int ndependencies, AttrNumber *list_attnums, Bitmapset **estimatedclauses); static void generate_dependencies_recurse(DependencyGenerator state, int index, AttrNumber start, AttrNumber *current) { /* * The generator handles the first (k-1) elements differently from the * last element. */ if (index < (state->k - 1)) { AttrNumber i; /* * The first (k-1) values have to be in ascending order, which we * generate recursively. */ for (i = start; i < state->n; i++) { current[index] = i; generate_dependencies_recurse(state, (index + 1), (i + 1), current); } } else { int i; /* * the last element is the implied value, which does not respect the * ascending order. We just need to check that the value is not in the * first (k-1) elements. */ for (i = 0; i < state->n; i++) { int j; bool match = false; current[index] = i; for (j = 0; j < index; j++) { if (current[j] == i) { match = true; break; } } /* * If the value is not found in the first part of the dependency, * we're done. */ if (!match) { state->dependencies = (AttrNumber *) repalloc(state->dependencies, state->k * (state->ndependencies + 1) * sizeof(AttrNumber)); memcpy(&state->dependencies[(state->k * state->ndependencies)], current, state->k * sizeof(AttrNumber)); state->ndependencies++; } } } } /* generate all dependencies (k-permutations of n elements) */ static void generate_dependencies(DependencyGenerator state) { AttrNumber *current = (AttrNumber *) palloc0(sizeof(AttrNumber) * state->k); generate_dependencies_recurse(state, 0, 0, current); pfree(current); } /* * initialize the DependencyGenerator of variations, and prebuild the variations * * This pre-builds all the variations. We could also generate them in * DependencyGenerator_next(), but this seems simpler. */ static DependencyGenerator DependencyGenerator_init(int n, int k) { DependencyGenerator state; Assert((n >= k) && (k > 0)); /* allocate the DependencyGenerator state */ state = (DependencyGenerator) palloc0(sizeof(DependencyGeneratorData)); state->dependencies = (AttrNumber *) palloc(k * sizeof(AttrNumber)); state->ndependencies = 0; state->current = 0; state->k = k; state->n = n; /* now actually pre-generate all the variations */ generate_dependencies(state); return state; } /* free the DependencyGenerator state */ static void DependencyGenerator_free(DependencyGenerator state) { pfree(state->dependencies); pfree(state); } /* generate next combination */ static AttrNumber * DependencyGenerator_next(DependencyGenerator state) { if (state->current == state->ndependencies) return NULL; return &state->dependencies[state->k * state->current++]; } /* * validates functional dependency on the data * * An actual work horse of detecting functional dependencies. Given a variation * of k attributes, it checks that the first (k-1) are sufficient to determine * the last one. */ static double dependency_degree(int numrows, HeapTuple *rows, int k, AttrNumber *dependency, VacAttrStats **stats, Bitmapset *attrs) { int i, nitems; MultiSortSupport mss; SortItem *items; AttrNumber *attnums; AttrNumber *attnums_dep; int numattrs; /* counters valid within a group */ int group_size = 0; int n_violations = 0; /* total number of rows supporting (consistent with) the dependency */ int n_supporting_rows = 0; /* Make sure we have at least two input attributes. */ Assert(k >= 2); /* sort info for all attributes columns */ mss = multi_sort_init(k); /* * Transform the attrs from bitmap to an array to make accessing the i-th * member easier, and then construct a filtered version with only attnums * referenced by the dependency we validate. */ attnums = build_attnums_array(attrs, &numattrs); attnums_dep = (AttrNumber *) palloc(k * sizeof(AttrNumber)); for (i = 0; i < k; i++) attnums_dep[i] = attnums[dependency[i]]; /* * Verify the dependency (a,b,...)->z, using a rather simple algorithm: * * (a) sort the data lexicographically * * (b) split the data into groups by first (k-1) columns * * (c) for each group count different values in the last column * * We use the column data types' default sort operators and collations; * perhaps at some point it'd be worth using column-specific collations? */ /* prepare the sort function for the dimensions */ for (i = 0; i < k; i++) { VacAttrStats *colstat = stats[dependency[i]]; TypeCacheEntry *type; type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR); if (type->lt_opr == InvalidOid) /* shouldn't happen */ elog(ERROR, "cache lookup failed for ordering operator for type %u", colstat->attrtypid); /* prepare the sort function for this dimension */ multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid); } /* * build an array of SortItem(s) sorted using the multi-sort support * * XXX This relies on all stats entries pointing to the same tuple * descriptor. For now that assumption holds, but it might change in the * future for example if we support statistics on multiple tables. */ items = build_sorted_items(numrows, &nitems, rows, stats[0]->tupDesc, mss, k, attnums_dep); /* * Walk through the sorted array, split it into rows according to the * first (k-1) columns. If there's a single value in the last column, we * count the group as 'supporting' the functional dependency. Otherwise we * count it as contradicting. */ /* start with the first row forming a group */ group_size = 1; /* loop 1 beyond the end of the array so that we count the final group */ for (i = 1; i <= nitems; i++) { /* * Check if the group ended, which may be either because we processed * all the items (i==nitems), or because the i-th item is not equal to * the preceding one. */ if (i == nitems || multi_sort_compare_dims(0, k - 2, &items[i - 1], &items[i], mss) != 0) { /* * If no violations were found in the group then track the rows of * the group as supporting the functional dependency. */ if (n_violations == 0) n_supporting_rows += group_size; /* Reset counters for the new group */ n_violations = 0; group_size = 1; continue; } /* first columns match, but the last one does not (so contradicting) */ else if (multi_sort_compare_dim(k - 1, &items[i - 1], &items[i], mss) != 0) n_violations++; group_size++; } if (items) pfree(items); pfree(mss); pfree(attnums); pfree(attnums_dep); /* Compute the 'degree of validity' as (supporting/total). */ return (n_supporting_rows * 1.0 / numrows); } /* * detects functional dependencies between groups of columns * * Generates all possible subsets of columns (variations) and computes * the degree of validity for each one. For example when creating statistics * on three columns (a,b,c) there are 9 possible dependencies * * two columns three columns * ----------- ------------- * (a) -> b (a,b) -> c * (a) -> c (a,c) -> b * (b) -> a (b,c) -> a * (b) -> c * (c) -> a * (c) -> b */ MVDependencies * statext_dependencies_build(int numrows, HeapTuple *rows, Bitmapset *attrs, VacAttrStats **stats) { int i, k; int numattrs; AttrNumber *attnums; /* result */ MVDependencies *dependencies = NULL; /* * Transform the bms into an array, to make accessing i-th member easier. */ attnums = build_attnums_array(attrs, &numattrs); Assert(numattrs >= 2); /* * We'll try build functional dependencies starting from the smallest ones * covering just 2 columns, to the largest ones, covering all columns * included in the statistics object. We start from the smallest ones * because we want to be able to skip already implied ones. */ for (k = 2; k <= numattrs; k++) { AttrNumber *dependency; /* array with k elements */ /* prepare a DependencyGenerator of variation */ DependencyGenerator DependencyGenerator = DependencyGenerator_init(numattrs, k); /* generate all possible variations of k values (out of n) */ while ((dependency = DependencyGenerator_next(DependencyGenerator))) { double degree; MVDependency *d; /* compute how valid the dependency seems */ degree = dependency_degree(numrows, rows, k, dependency, stats, attrs); /* * if the dependency seems entirely invalid, don't store it */ if (degree == 0.0) continue; d = (MVDependency *) palloc0(offsetof(MVDependency, attributes) + k * sizeof(AttrNumber)); /* copy the dependency (and keep the indexes into stxkeys) */ d->degree = degree; d->nattributes = k; for (i = 0; i < k; i++) d->attributes[i] = attnums[dependency[i]]; /* initialize the list of dependencies */ if (dependencies == NULL) { dependencies = (MVDependencies *) palloc0(sizeof(MVDependencies)); dependencies->magic = STATS_DEPS_MAGIC; dependencies->type = STATS_DEPS_TYPE_BASIC; dependencies->ndeps = 0; } dependencies->ndeps++; dependencies = (MVDependencies *) repalloc(dependencies, offsetof(MVDependencies, deps) + dependencies->ndeps * sizeof(MVDependency *)); dependencies->deps[dependencies->ndeps - 1] = d; } /* * we're done with variations of k elements, so free the * DependencyGenerator */ DependencyGenerator_free(DependencyGenerator); } return dependencies; } /* * Serialize list of dependencies into a bytea value. */ bytea * statext_dependencies_serialize(MVDependencies *dependencies) { int i; bytea *output; char *tmp; Size len; /* we need to store ndeps, with a number of attributes for each one */ len = VARHDRSZ + SizeOfHeader; /* and also include space for the actual attribute numbers and degrees */ for (i = 0; i < dependencies->ndeps; i++) len += SizeOfItem(dependencies->deps[i]->nattributes); output = (bytea *) palloc0(len); SET_VARSIZE(output, len); tmp = VARDATA(output); /* Store the base struct values (magic, type, ndeps) */ memcpy(tmp, &dependencies->magic, sizeof(uint32)); tmp += sizeof(uint32); memcpy(tmp, &dependencies->type, sizeof(uint32)); tmp += sizeof(uint32); memcpy(tmp, &dependencies->ndeps, sizeof(uint32)); tmp += sizeof(uint32); /* store number of attributes and attribute numbers for each dependency */ for (i = 0; i < dependencies->ndeps; i++) { MVDependency *d = dependencies->deps[i]; memcpy(tmp, &d->degree, sizeof(double)); tmp += sizeof(double); memcpy(tmp, &d->nattributes, sizeof(AttrNumber)); tmp += sizeof(AttrNumber); memcpy(tmp, d->attributes, sizeof(AttrNumber) * d->nattributes); tmp += sizeof(AttrNumber) * d->nattributes; /* protect against overflow */ Assert(tmp <= ((char *) output + len)); } /* make sure we've produced exactly the right amount of data */ Assert(tmp == ((char *) output + len)); return output; } /* * Reads serialized dependencies into MVDependencies structure. */ MVDependencies * statext_dependencies_deserialize(bytea *data) { int i; Size min_expected_size; MVDependencies *dependencies; char *tmp; if (data == NULL) return NULL; if (VARSIZE_ANY_EXHDR(data) < SizeOfHeader) elog(ERROR, "invalid MVDependencies size %zd (expected at least %zd)", VARSIZE_ANY_EXHDR(data), SizeOfHeader); /* read the MVDependencies header */ dependencies = (MVDependencies *) palloc0(sizeof(MVDependencies)); /* initialize pointer to the data part (skip the varlena header) */ tmp = VARDATA_ANY(data); /* read the header fields and perform basic sanity checks */ memcpy(&dependencies->magic, tmp, sizeof(uint32)); tmp += sizeof(uint32); memcpy(&dependencies->type, tmp, sizeof(uint32)); tmp += sizeof(uint32); memcpy(&dependencies->ndeps, tmp, sizeof(uint32)); tmp += sizeof(uint32); if (dependencies->magic != STATS_DEPS_MAGIC) elog(ERROR, "invalid dependency magic %d (expected %d)", dependencies->magic, STATS_DEPS_MAGIC); if (dependencies->type != STATS_DEPS_TYPE_BASIC) elog(ERROR, "invalid dependency type %d (expected %d)", dependencies->type, STATS_DEPS_TYPE_BASIC); if (dependencies->ndeps == 0) elog(ERROR, "invalid zero-length item array in MVDependencies"); /* what minimum bytea size do we expect for those parameters */ min_expected_size = SizeOfItem(dependencies->ndeps); if (VARSIZE_ANY_EXHDR(data) < min_expected_size) elog(ERROR, "invalid dependencies size %zd (expected at least %zd)", VARSIZE_ANY_EXHDR(data), min_expected_size); /* allocate space for the MCV items */ dependencies = repalloc(dependencies, offsetof(MVDependencies, deps) + (dependencies->ndeps * sizeof(MVDependency *))); for (i = 0; i < dependencies->ndeps; i++) { double degree; AttrNumber k; MVDependency *d; /* degree of validity */ memcpy(°ree, tmp, sizeof(double)); tmp += sizeof(double); /* number of attributes */ memcpy(&k, tmp, sizeof(AttrNumber)); tmp += sizeof(AttrNumber); /* is the number of attributes valid? */ Assert((k >= 2) && (k <= STATS_MAX_DIMENSIONS)); /* now that we know the number of attributes, allocate the dependency */ d = (MVDependency *) palloc0(offsetof(MVDependency, attributes) + (k * sizeof(AttrNumber))); d->degree = degree; d->nattributes = k; /* copy attribute numbers */ memcpy(d->attributes, tmp, sizeof(AttrNumber) * d->nattributes); tmp += sizeof(AttrNumber) * d->nattributes; dependencies->deps[i] = d; /* still within the bytea */ Assert(tmp <= ((char *) data + VARSIZE_ANY(data))); } /* we should have consumed the whole bytea exactly */ Assert(tmp == ((char *) data + VARSIZE_ANY(data))); return dependencies; } /* * dependency_is_fully_matched * checks that a functional dependency is fully matched given clauses on * attributes (assuming the clauses are suitable equality clauses) */ static bool dependency_is_fully_matched(MVDependency *dependency, Bitmapset *attnums) { int j; /* * Check that the dependency actually is fully covered by clauses. We have * to translate all attribute numbers, as those are referenced */ for (j = 0; j < dependency->nattributes; j++) { int attnum = dependency->attributes[j]; if (!bms_is_member(attnum, attnums)) return false; } return true; } /* * statext_dependencies_load * Load the functional dependencies for the indicated pg_statistic_ext tuple */ MVDependencies * statext_dependencies_load(Oid mvoid) { MVDependencies *result; bool isnull; Datum deps; HeapTuple htup; htup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(mvoid)); if (!HeapTupleIsValid(htup)) elog(ERROR, "cache lookup failed for statistics object %u", mvoid); deps = SysCacheGetAttr(STATEXTDATASTXOID, htup, Anum_pg_statistic_ext_data_stxddependencies, &isnull); if (isnull) elog(ERROR, "requested statistics kind \"%c\" is not yet built for statistics object %u", STATS_EXT_DEPENDENCIES, mvoid); result = statext_dependencies_deserialize(DatumGetByteaPP(deps)); ReleaseSysCache(htup); return result; } /* * pg_dependencies_in - input routine for type pg_dependencies. * * pg_dependencies is real enough to be a table column, but it has no operations * of its own, and disallows input too */ Datum pg_dependencies_in(PG_FUNCTION_ARGS) { /* * pg_node_list stores the data in binary form and parsing text input is * not needed, so disallow this. */ ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot accept a value of type %s", "pg_dependencies"))); PG_RETURN_VOID(); /* keep compiler quiet */ } /* * pg_dependencies - output routine for type pg_dependencies. */ Datum pg_dependencies_out(PG_FUNCTION_ARGS) { bytea *data = PG_GETARG_BYTEA_PP(0); MVDependencies *dependencies = statext_dependencies_deserialize(data); int i, j; StringInfoData str; initStringInfo(&str); appendStringInfoChar(&str, '{'); for (i = 0; i < dependencies->ndeps; i++) { MVDependency *dependency = dependencies->deps[i]; if (i > 0) appendStringInfoString(&str, ", "); appendStringInfoChar(&str, '"'); for (j = 0; j < dependency->nattributes; j++) { if (j == dependency->nattributes - 1) appendStringInfoString(&str, " => "); else if (j > 0) appendStringInfoString(&str, ", "); appendStringInfo(&str, "%d", dependency->attributes[j]); } appendStringInfo(&str, "\": %f", dependency->degree); } appendStringInfoChar(&str, '}'); PG_RETURN_CSTRING(str.data); } /* * pg_dependencies_recv - binary input routine for type pg_dependencies. */ Datum pg_dependencies_recv(PG_FUNCTION_ARGS) { ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot accept a value of type %s", "pg_dependencies"))); PG_RETURN_VOID(); /* keep compiler quiet */ } /* * pg_dependencies_send - binary output routine for type pg_dependencies. * * Functional dependencies are serialized in a bytea value (although the type * is named differently), so let's just send that. */ Datum pg_dependencies_send(PG_FUNCTION_ARGS) { return byteasend(fcinfo); } /* * dependency_is_compatible_clause * Determines if the clause is compatible with functional dependencies * * Only clauses that have the form of equality to a pseudoconstant, or can be * interpreted that way, are currently accepted. Furthermore the variable * part of the clause must be a simple Var belonging to the specified * relation, whose attribute number we return in *attnum on success. */ static bool dependency_is_compatible_clause(Node *clause, Index relid, AttrNumber *attnum) { Var *var; if (IsA(clause, RestrictInfo)) { RestrictInfo *rinfo = (RestrictInfo *) clause; /* Pseudoconstants are not interesting (they couldn't contain a Var) */ if (rinfo->pseudoconstant) return false; /* Clauses referencing multiple, or no, varnos are incompatible */ if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON) return false; clause = (Node *) rinfo->clause; } if (is_opclause(clause)) { /* If it's an opclause, check for Var = Const or Const = Var. */ OpExpr *expr = (OpExpr *) clause; /* Only expressions with two arguments are candidates. */ if (list_length(expr->args) != 2) return false; /* Make sure non-selected argument is a pseudoconstant. */ if (is_pseudo_constant_clause(lsecond(expr->args))) var = linitial(expr->args); else if (is_pseudo_constant_clause(linitial(expr->args))) var = lsecond(expr->args); else return false; /* * If it's not an "=" operator, just ignore the clause, as it's not * compatible with functional dependencies. * * This uses the function for estimating selectivity, not the operator * directly (a bit awkward, but well ...). * * XXX this is pretty dubious; probably it'd be better to check btree * or hash opclass membership, so as not to be fooled by custom * selectivity functions, and to be more consistent with decisions * elsewhere in the planner. */ if (get_oprrest(expr->opno) != F_EQSEL) return false; /* OK to proceed with checking "var" */ } else if (IsA(clause, ScalarArrayOpExpr)) { /* If it's an scalar array operator, check for Var IN Const. */ ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause; /* * Reject ALL() variant, we only care about ANY/IN. * * FIXME Maybe we should check if all the values are the same, and * allow ALL in that case? Doesn't seem very practical, though. */ if (!expr->useOr) return false; /* Only expressions with two arguments are candidates. */ if (list_length(expr->args) != 2) return false; /* * We know it's always (Var IN Const), so we assume the var is the * first argument, and pseudoconstant is the second one. */ if (!is_pseudo_constant_clause(lsecond(expr->args))) return false; var = linitial(expr->args); /* * If it's not an "=" operator, just ignore the clause, as it's not * compatible with functional dependencies. The operator is identified * simply by looking at which function it uses to estimate * selectivity. That's a bit strange, but it's what other similar * places do. */ if (get_oprrest(expr->opno) != F_EQSEL) return false; /* OK to proceed with checking "var" */ } else if (is_orclause(clause)) { BoolExpr *expr = (BoolExpr *) clause; ListCell *lc; /* start with no attribute number */ *attnum = InvalidAttrNumber; foreach(lc, expr->args) { AttrNumber clause_attnum; /* * Had we found incompatible clause in the arguments, treat the * whole clause as incompatible. */ if (!dependency_is_compatible_clause((Node *) lfirst(lc), relid, &clause_attnum)) return false; if (*attnum == InvalidAttrNumber) *attnum = clause_attnum; if (*attnum != clause_attnum) return false; } /* the Var is already checked by the recursive call */ return true; } else if (is_notclause(clause)) { /* * "NOT x" can be interpreted as "x = false", so get the argument and * proceed with seeing if it's a suitable Var. */ var = (Var *) get_notclausearg(clause); } else { /* * A boolean expression "x" can be interpreted as "x = true", so * proceed with seeing if it's a suitable Var. */ var = (Var *) clause; } /* * We may ignore any RelabelType node above the operand. (There won't be * more than one, since eval_const_expressions has been applied already.) */ if (IsA(var, RelabelType)) var = (Var *) ((RelabelType *) var)->arg; /* We only support plain Vars for now */ if (!IsA(var, Var)) return false; /* Ensure Var is from the correct relation */ if (var->varno != relid) return false; /* We also better ensure the Var is from the current level */ if (var->varlevelsup != 0) return false; /* Also ignore system attributes (we don't allow stats on those) */ if (!AttrNumberIsForUserDefinedAttr(var->varattno)) return false; *attnum = var->varattno; return true; } /* * find_strongest_dependency * find the strongest dependency on the attributes * * When applying functional dependencies, we start with the strongest * dependencies. That is, we select the dependency that: * * (a) has all attributes covered by equality clauses * * (b) has the most attributes * * (c) has the highest degree of validity * * This guarantees that we eliminate the most redundant conditions first * (see the comment in dependencies_clauselist_selectivity). */ static MVDependency * find_strongest_dependency(MVDependencies **dependencies, int ndependencies, Bitmapset *attnums) { int i, j; MVDependency *strongest = NULL; /* number of attnums in clauses */ int nattnums = bms_num_members(attnums); /* * Iterate over the MVDependency items and find the strongest one from the * fully-matched dependencies. We do the cheap checks first, before * matching it against the attnums. */ for (i = 0; i < ndependencies; i++) { for (j = 0; j < dependencies[i]->ndeps; j++) { MVDependency *dependency = dependencies[i]->deps[j]; /* * Skip dependencies referencing more attributes than available * clauses, as those can't be fully matched. */ if (dependency->nattributes > nattnums) continue; if (strongest) { /* skip dependencies on fewer attributes than the strongest. */ if (dependency->nattributes < strongest->nattributes) continue; /* also skip weaker dependencies when attribute count matches */ if (strongest->nattributes == dependency->nattributes && strongest->degree > dependency->degree) continue; } /* * this dependency is stronger, but we must still check that it's * fully matched to these attnums. We perform this check last as * it's slightly more expensive than the previous checks. */ if (dependency_is_fully_matched(dependency, attnums)) strongest = dependency; /* save new best match */ } } return strongest; } /* * clauselist_apply_dependencies * Apply the specified functional dependencies to a list of clauses and * return the estimated selecvitity of the clauses that are compatible * with any of the given dependencies. * * This will estimate all not-already-estimated clauses that are compatible * with functional dependencies, and which have an attribute mentioned by any * of the given dependencies (either as an implying or implied attribute). * * Given (lists of) clauses on attributes (a,b) and a functional dependency * (a=>b), the per-column selectivities P(a) and P(b) are notionally combined * using the formula * * P(a,b) = f * P(a) + (1-f) * P(a) * P(b) * * where 'f' is the degree of dependency. This reflects the fact that we * expect a fraction f of all rows to be consistent with the dependency * (a=>b), and so have a selectivity of P(a), while the remaining rows are * treated as independent. * * In practice, we use a slightly modified version of this formula, which uses * a selectivity of Min(P(a), P(b)) for the dependent rows, since the result * should obviously not exceed either column's individual selectivity. I.e., * we actually combine selectivities using the formula * * P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b) * * This can make quite a difference if the specific values matching the * clauses are not consistent with the functional dependency. */ static Selectivity clauselist_apply_dependencies(PlannerInfo *root, List *clauses, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo, MVDependency **dependencies, int ndependencies, AttrNumber *list_attnums, Bitmapset **estimatedclauses) { Bitmapset *attnums; int i; int j; int nattrs; Selectivity *attr_sel; int attidx; int listidx; ListCell *l; Selectivity s1; /* * Extract the attnums of all implying and implied attributes from all the * given dependencies. Each of these attributes is expected to have at * least 1 not-already-estimated compatible clause that we will estimate * here. */ attnums = NULL; for (i = 0; i < ndependencies; i++) { for (j = 0; j < dependencies[i]->nattributes; j++) { AttrNumber attnum = dependencies[i]->attributes[j]; attnums = bms_add_member(attnums, attnum); } } /* * Compute per-column selectivity estimates for each of these attributes, * and mark all the corresponding clauses as estimated. */ nattrs = bms_num_members(attnums); attr_sel = (Selectivity *) palloc(sizeof(Selectivity) * nattrs); attidx = 0; i = -1; while ((i = bms_next_member(attnums, i)) >= 0) { List *attr_clauses = NIL; Selectivity simple_sel; listidx = -1; foreach(l, clauses) { Node *clause = (Node *) lfirst(l); listidx++; if (list_attnums[listidx] == i) { attr_clauses = lappend(attr_clauses, clause); *estimatedclauses = bms_add_member(*estimatedclauses, listidx); } } simple_sel = clauselist_selectivity_simple(root, attr_clauses, varRelid, jointype, sjinfo, NULL); attr_sel[attidx++] = simple_sel; } /* * Now combine these selectivities using the dependency information. For * chains of dependencies such as a -> b -> c, the b -> c dependency will * come before the a -> b dependency in the array, so we traverse the * array backwards to ensure such chains are computed in the right order. * * As explained above, pairs of selectivities are combined using the * formula * * P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b) * * to ensure that the combined selectivity is never greater than either * individual selectivity. * * Where multiple dependencies apply (e.g., a -> b -> c), we use * conditional probabilities to compute the overall result as follows: * * P(a,b,c) = P(c|a,b) * P(a,b) = P(c|a,b) * P(b|a) * P(a) * * so we replace the selectivities of all implied attributes with * conditional probabilities, that are conditional on all their implying * attributes. The selectivities of all other non-implied attributes are * left as they are. */ for (i = ndependencies - 1; i >= 0; i--) { MVDependency *dependency = dependencies[i]; AttrNumber attnum; Selectivity s2; double f; /* Selectivity of all the implying attributes */ s1 = 1.0; for (j = 0; j < dependency->nattributes - 1; j++) { attnum = dependency->attributes[j]; attidx = bms_member_index(attnums, attnum); s1 *= attr_sel[attidx]; } /* Original selectivity of the implied attribute */ attnum = dependency->attributes[j]; attidx = bms_member_index(attnums, attnum); s2 = attr_sel[attidx]; /* * Replace s2 with the conditional probability s2 given s1, computed * using the formula P(b|a) = P(a,b) / P(a), which simplifies to * * P(b|a) = f * Min(P(a), P(b)) / P(a) + (1-f) * P(b) * * where P(a) = s1, the selectivity of the implying attributes, and * P(b) = s2, the selectivity of the implied attribute. */ f = dependency->degree; if (s1 <= s2) attr_sel[attidx] = f + (1 - f) * s2; else attr_sel[attidx] = f * s2 / s1 + (1 - f) * s2; } /* * The overall selectivity of all the clauses on all these attributes is * then the product of all the original (non-implied) probabilities and * the new conditional (implied) probabilities. */ s1 = 1.0; for (i = 0; i < nattrs; i++) s1 *= attr_sel[i]; CLAMP_PROBABILITY(s1); pfree(attr_sel); bms_free(attnums); return s1; } /* * dependencies_clauselist_selectivity * Return the estimated selectivity of (a subset of) the given clauses * using functional dependency statistics, or 1.0 if no useful functional * dependency statistic exists. * * 'estimatedclauses' is an input/output argument that gets a bit set * corresponding to the (zero-based) list index of each clause that is included * in the estimated selectivity. * * Given equality clauses on attributes (a,b) we find the strongest dependency * between them, i.e. either (a=>b) or (b=>a). Assuming (a=>b) is the selected * dependency, we then combine the per-clause selectivities using the formula * * P(a,b) = f * P(a) + (1-f) * P(a) * P(b) * * where 'f' is the degree of the dependency. (Actually we use a slightly * modified version of this formula -- see clauselist_apply_dependencies()). * * With clauses on more than two attributes, the dependencies are applied * recursively, starting with the widest/strongest dependencies. For example * P(a,b,c) is first split like this: * * P(a,b,c) = f * P(a,b) + (1-f) * P(a,b) * P(c) * * assuming (a,b=>c) is the strongest dependency. */ Selectivity dependencies_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo, RelOptInfo *rel, Bitmapset **estimatedclauses) { Selectivity s1 = 1.0; ListCell *l; Bitmapset *clauses_attnums = NULL; AttrNumber *list_attnums; int listidx; MVDependencies **func_dependencies; int nfunc_dependencies; int total_ndeps; MVDependency **dependencies; int ndependencies; int i; /* check if there's any stats that might be useful for us. */ if (!has_stats_of_kind(rel->statlist, STATS_EXT_DEPENDENCIES)) return 1.0; list_attnums = (AttrNumber *) palloc(sizeof(AttrNumber) * list_length(clauses)); /* * Pre-process the clauses list to extract the attnums seen in each item. * We need to determine if there's any clauses which will be useful for * dependency selectivity estimations. Along the way we'll record all of * the attnums for each clause in a list which we'll reference later so we * don't need to repeat the same work again. We'll also keep track of all * attnums seen. * * We also skip clauses that we already estimated using different types of * statistics (we treat them as incompatible). */ listidx = 0; foreach(l, clauses) { Node *clause = (Node *) lfirst(l); AttrNumber attnum; if (!bms_is_member(listidx, *estimatedclauses) && dependency_is_compatible_clause(clause, rel->relid, &attnum)) { list_attnums[listidx] = attnum; clauses_attnums = bms_add_member(clauses_attnums, attnum); } else list_attnums[listidx] = InvalidAttrNumber; listidx++; } /* * If there's not at least two distinct attnums then reject the whole list * of clauses. We must return 1.0 so the calling function's selectivity is * unaffected. */ if (bms_num_members(clauses_attnums) < 2) { bms_free(clauses_attnums); pfree(list_attnums); return 1.0; } /* * Load all functional dependencies matching at least two parameters. We * can simply consider all dependencies at once, without having to search * for the best statistics object. * * To not waste cycles and memory, we deserialize dependencies only for * statistics that match at least two attributes. The array is allocated * with the assumption that all objects match - we could grow the array to * make it just the right size, but it's likely wasteful anyway thanks to * moving the freed chunks to freelists etc. */ func_dependencies = (MVDependencies **) palloc(sizeof(MVDependencies *) * list_length(rel->statlist)); nfunc_dependencies = 0; total_ndeps = 0; foreach(l, rel->statlist) { StatisticExtInfo *stat = (StatisticExtInfo *) lfirst(l); Bitmapset *matched; int num_matched; /* skip statistics that are not of the correct type */ if (stat->kind != STATS_EXT_DEPENDENCIES) continue; matched = bms_intersect(clauses_attnums, stat->keys); num_matched = bms_num_members(matched); bms_free(matched); /* skip objects matching fewer than two attributes from clauses */ if (num_matched < 2) continue; func_dependencies[nfunc_dependencies] = statext_dependencies_load(stat->statOid); total_ndeps += func_dependencies[nfunc_dependencies]->ndeps; nfunc_dependencies++; } /* if no matching stats could be found then we've nothing to do */ if (nfunc_dependencies == 0) { pfree(func_dependencies); bms_free(clauses_attnums); pfree(list_attnums); return 1.0; } /* * Work out which dependencies we can apply, starting with the * widest/stongest ones, and proceeding to smaller/weaker ones. */ dependencies = (MVDependency **) palloc(sizeof(MVDependency *) * total_ndeps); ndependencies = 0; while (true) { MVDependency *dependency; AttrNumber attnum; /* the widest/strongest dependency, fully matched by clauses */ dependency = find_strongest_dependency(func_dependencies, nfunc_dependencies, clauses_attnums); if (!dependency) break; dependencies[ndependencies++] = dependency; /* Ignore dependencies using this implied attribute in later loops */ attnum = dependency->attributes[dependency->nattributes - 1]; clauses_attnums = bms_del_member(clauses_attnums, attnum); } /* * If we found applicable dependencies, use them to estimate all * compatible clauses on attributes that they refer to. */ if (ndependencies != 0) s1 = clauselist_apply_dependencies(root, clauses, varRelid, jointype, sjinfo, dependencies, ndependencies, list_attnums, estimatedclauses); /* free deserialized functional dependencies (and then the array) */ for (i = 0; i < nfunc_dependencies; i++) pfree(func_dependencies[i]); pfree(dependencies); pfree(func_dependencies); bms_free(clauses_attnums); pfree(list_attnums); return s1; }