/* * psql - the PostgreSQL interactive terminal * * Copyright (c) 2000-2020, PostgreSQL Global Development Group * * src/bin/psql/crosstabview.c */ #include "postgres_fe.h" #include "common.h" #include "common/logging.h" #include "crosstabview.h" #include "pqexpbuffer.h" #include "psqlscanslash.h" #include "settings.h" /* * Value/position from the resultset that goes into the horizontal or vertical * crosstabview header. */ typedef struct _pivot_field { /* * Pointer obtained from PQgetvalue() for colV or colH. Each distinct * value becomes an entry in the vertical header (colV), or horizontal * header (colH). A Null value is represented by a NULL pointer. */ char *name; /* * When a sort is requested on an alternative column, this holds * PQgetvalue() for the sort column corresponding to . If * appear multiple times, it's the first value in the order of the results * that is kept. A Null value is represented by a NULL pointer. */ char *sort_value; /* * Rank of this value, starting at 0. Initially, it's the relative * position of the first appearance of in the resultset. For * example, if successive rows contain B,A,C,A,D then it's B:0,A:1,C:2,D:3 * When a sort column is specified, ranks get updated in a final pass to * reflect the desired order. */ int rank; } pivot_field; /* Node in avl_tree */ typedef struct _avl_node { /* Node contents */ pivot_field field; /* * Height of this node in the tree (number of nodes on the longest path to * a leaf). */ int height; /* * Child nodes. [0] points to left subtree, [1] to right subtree. Never * NULL, points to the empty node avl_tree.end when no left or right * value. */ struct _avl_node *children[2]; } avl_node; /* * Control structure for the AVL tree (binary search tree kept * balanced with the AVL algorithm) */ typedef struct _avl_tree { int count; /* Total number of nodes */ avl_node *root; /* root of the tree */ avl_node *end; /* Immutable dereferenceable empty tree */ } avl_tree; static bool printCrosstab(const PGresult *results, int num_columns, pivot_field *piv_columns, int field_for_columns, int num_rows, pivot_field *piv_rows, int field_for_rows, int field_for_data); static void avlInit(avl_tree *tree); static void avlMergeValue(avl_tree *tree, char *name, char *sort_value); static int avlCollectFields(avl_tree *tree, avl_node *node, pivot_field *fields, int idx); static void avlFree(avl_tree *tree, avl_node *node); static void rankSort(int num_columns, pivot_field *piv_columns); static int indexOfColumn(char *arg, const PGresult *res); static int pivotFieldCompare(const void *a, const void *b); static int rankCompare(const void *a, const void *b); /* * Main entry point to this module. * * Process the data from *res according to the options in pset (global), * to generate the horizontal and vertical headers contents, * then call printCrosstab() for the actual output. */ bool PrintResultsInCrosstab(const PGresult *res) { bool retval = false; avl_tree piv_columns; avl_tree piv_rows; pivot_field *array_columns = NULL; pivot_field *array_rows = NULL; int num_columns = 0; int num_rows = 0; int field_for_rows; int field_for_columns; int field_for_data; int sort_field_for_columns; int rn; avlInit(&piv_rows); avlInit(&piv_columns); if (PQresultStatus(res) != PGRES_TUPLES_OK) { pg_log_error("\\crosstabview: statement did not return a result set"); goto error_return; } if (PQnfields(res) < 3) { pg_log_error("\\crosstabview: query must return at least three columns"); goto error_return; } /* Process first optional arg (vertical header column) */ if (pset.ctv_args[0] == NULL) field_for_rows = 0; else { field_for_rows = indexOfColumn(pset.ctv_args[0], res); if (field_for_rows < 0) goto error_return; } /* Process second optional arg (horizontal header column) */ if (pset.ctv_args[1] == NULL) field_for_columns = 1; else { field_for_columns = indexOfColumn(pset.ctv_args[1], res); if (field_for_columns < 0) goto error_return; } /* Insist that header columns be distinct */ if (field_for_columns == field_for_rows) { pg_log_error("\\crosstabview: vertical and horizontal headers must be different columns"); goto error_return; } /* Process third optional arg (data column) */ if (pset.ctv_args[2] == NULL) { int i; /* * If the data column was not specified, we search for the one not * used as either vertical or horizontal headers. Must be exactly * three columns, or this won't be unique. */ if (PQnfields(res) != 3) { pg_log_error("\\crosstabview: data column must be specified when query returns more than three columns"); goto error_return; } field_for_data = -1; for (i = 0; i < PQnfields(res); i++) { if (i != field_for_rows && i != field_for_columns) { field_for_data = i; break; } } Assert(field_for_data >= 0); } else { field_for_data = indexOfColumn(pset.ctv_args[2], res); if (field_for_data < 0) goto error_return; } /* Process fourth optional arg (horizontal header sort column) */ if (pset.ctv_args[3] == NULL) sort_field_for_columns = -1; /* no sort column */ else { sort_field_for_columns = indexOfColumn(pset.ctv_args[3], res); if (sort_field_for_columns < 0) goto error_return; } /* * First part: accumulate the names that go into the vertical and * horizontal headers, each into an AVL binary tree to build the set of * DISTINCT values. */ for (rn = 0; rn < PQntuples(res); rn++) { char *val; char *val1; /* horizontal */ val = PQgetisnull(res, rn, field_for_columns) ? NULL : PQgetvalue(res, rn, field_for_columns); val1 = NULL; if (sort_field_for_columns >= 0 && !PQgetisnull(res, rn, sort_field_for_columns)) val1 = PQgetvalue(res, rn, sort_field_for_columns); avlMergeValue(&piv_columns, val, val1); if (piv_columns.count > CROSSTABVIEW_MAX_COLUMNS) { pg_log_error("\\crosstabview: maximum number of columns (%d) exceeded", CROSSTABVIEW_MAX_COLUMNS); goto error_return; } /* vertical */ val = PQgetisnull(res, rn, field_for_rows) ? NULL : PQgetvalue(res, rn, field_for_rows); avlMergeValue(&piv_rows, val, NULL); } /* * Second part: Generate sorted arrays from the AVL trees. */ num_columns = piv_columns.count; num_rows = piv_rows.count; array_columns = (pivot_field *) pg_malloc(sizeof(pivot_field) * num_columns); array_rows = (pivot_field *) pg_malloc(sizeof(pivot_field) * num_rows); avlCollectFields(&piv_columns, piv_columns.root, array_columns, 0); avlCollectFields(&piv_rows, piv_rows.root, array_rows, 0); /* * Third part: optionally, process the ranking data for the horizontal * header */ if (sort_field_for_columns >= 0) rankSort(num_columns, array_columns); /* * Fourth part: print the crosstab'ed results. */ retval = printCrosstab(res, num_columns, array_columns, field_for_columns, num_rows, array_rows, field_for_rows, field_for_data); error_return: avlFree(&piv_columns, piv_columns.root); avlFree(&piv_rows, piv_rows.root); pg_free(array_columns); pg_free(array_rows); return retval; } /* * Output the pivoted resultset with the printTable* functions. Return true * if successful, false otherwise. */ static bool printCrosstab(const PGresult *results, int num_columns, pivot_field *piv_columns, int field_for_columns, int num_rows, pivot_field *piv_rows, int field_for_rows, int field_for_data) { printQueryOpt popt = pset.popt; printTableContent cont; int i, rn; char col_align; int *horiz_map; bool retval = false; printTableInit(&cont, &popt.topt, popt.title, num_columns + 1, num_rows); /* Step 1: set target column names (horizontal header) */ /* The name of the first column is kept unchanged by the pivoting */ printTableAddHeader(&cont, PQfname(results, field_for_rows), false, column_type_alignment(PQftype(results, field_for_rows))); /* * To iterate over piv_columns[] by piv_columns[].rank, create a reverse * map associating each piv_columns[].rank to its index in piv_columns. * This avoids an O(N^2) loop later. */ horiz_map = (int *) pg_malloc(sizeof(int) * num_columns); for (i = 0; i < num_columns; i++) horiz_map[piv_columns[i].rank] = i; /* * The display alignment depends on its PQftype(). */ col_align = column_type_alignment(PQftype(results, field_for_data)); for (i = 0; i < num_columns; i++) { char *colname; colname = piv_columns[horiz_map[i]].name ? piv_columns[horiz_map[i]].name : (popt.nullPrint ? popt.nullPrint : ""); printTableAddHeader(&cont, colname, false, col_align); } pg_free(horiz_map); /* Step 2: set row names in the first output column (vertical header) */ for (i = 0; i < num_rows; i++) { int k = piv_rows[i].rank; cont.cells[k * (num_columns + 1)] = piv_rows[i].name ? piv_rows[i].name : (popt.nullPrint ? popt.nullPrint : ""); } cont.cellsadded = num_rows * (num_columns + 1); /* * Step 3: fill in the content cells. */ for (rn = 0; rn < PQntuples(results); rn++) { int row_number; int col_number; pivot_field *rp, *cp; pivot_field elt; /* Find target row */ if (!PQgetisnull(results, rn, field_for_rows)) elt.name = PQgetvalue(results, rn, field_for_rows); else elt.name = NULL; rp = (pivot_field *) bsearch(&elt, piv_rows, num_rows, sizeof(pivot_field), pivotFieldCompare); Assert(rp != NULL); row_number = rp->rank; /* Find target column */ if (!PQgetisnull(results, rn, field_for_columns)) elt.name = PQgetvalue(results, rn, field_for_columns); else elt.name = NULL; cp = (pivot_field *) bsearch(&elt, piv_columns, num_columns, sizeof(pivot_field), pivotFieldCompare); Assert(cp != NULL); col_number = cp->rank; /* Place value into cell */ if (col_number >= 0 && row_number >= 0) { int idx; /* index into the cont.cells array */ idx = 1 + col_number + row_number * (num_columns + 1); /* * If the cell already contains a value, raise an error. */ if (cont.cells[idx] != NULL) { pg_log_error("\\crosstabview: query result contains multiple data values for row \"%s\", column \"%s\"", rp->name ? rp->name : (popt.nullPrint ? popt.nullPrint : "(null)"), cp->name ? cp->name : (popt.nullPrint ? popt.nullPrint : "(null)")); goto error; } cont.cells[idx] = !PQgetisnull(results, rn, field_for_data) ? PQgetvalue(results, rn, field_for_data) : (popt.nullPrint ? popt.nullPrint : ""); } } /* * The non-initialized cells must be set to an empty string for the print * functions */ for (i = 0; i < cont.cellsadded; i++) { if (cont.cells[i] == NULL) cont.cells[i] = ""; } printTable(&cont, pset.queryFout, false, pset.logfile); retval = true; error: printTableCleanup(&cont); return retval; } /* * The avl* functions below provide a minimalistic implementation of AVL binary * trees, to efficiently collect the distinct values that will form the horizontal * and vertical headers. It only supports adding new values, no removal or even * search. */ static void avlInit(avl_tree *tree) { tree->end = (avl_node *) pg_malloc0(sizeof(avl_node)); tree->end->children[0] = tree->end->children[1] = tree->end; tree->count = 0; tree->root = tree->end; } /* Deallocate recursively an AVL tree, starting from node */ static void avlFree(avl_tree *tree, avl_node *node) { if (node->children[0] != tree->end) { avlFree(tree, node->children[0]); pg_free(node->children[0]); } if (node->children[1] != tree->end) { avlFree(tree, node->children[1]); pg_free(node->children[1]); } if (node == tree->root) { /* free the root separately as it's not child of anything */ if (node != tree->end) pg_free(node); /* free the tree->end struct only once and when all else is freed */ pg_free(tree->end); } } /* Set the height to 1 plus the greatest of left and right heights */ static void avlUpdateHeight(avl_node *n) { n->height = 1 + (n->children[0]->height > n->children[1]->height ? n->children[0]->height : n->children[1]->height); } /* Rotate a subtree left (dir=0) or right (dir=1). Not recursive */ static avl_node * avlRotate(avl_node **current, int dir) { avl_node *before = *current; avl_node *after = (*current)->children[dir]; *current = after; before->children[dir] = after->children[!dir]; avlUpdateHeight(before); after->children[!dir] = before; return after; } static int avlBalance(avl_node *n) { return n->children[0]->height - n->children[1]->height; } /* * After an insertion, possibly rebalance the tree so that the left and right * node heights don't differ by more than 1. * May update *node. */ static void avlAdjustBalance(avl_tree *tree, avl_node **node) { avl_node *current = *node; int b = avlBalance(current) / 2; if (b != 0) { int dir = (1 - b) / 2; if (avlBalance(current->children[dir]) == -b) avlRotate(¤t->children[dir], !dir); current = avlRotate(node, dir); } if (current != tree->end) avlUpdateHeight(current); } /* * Insert a new value/field, starting from *node, reaching the correct position * in the tree by recursion. Possibly rebalance the tree and possibly update * *node. Do nothing if the value is already present in the tree. */ static void avlInsertNode(avl_tree *tree, avl_node **node, pivot_field field) { avl_node *current = *node; if (current == tree->end) { avl_node *new_node = (avl_node *) pg_malloc(sizeof(avl_node)); new_node->height = 1; new_node->field = field; new_node->children[0] = new_node->children[1] = tree->end; tree->count++; *node = new_node; } else { int cmp = pivotFieldCompare(&field, ¤t->field); if (cmp != 0) { avlInsertNode(tree, cmp > 0 ? ¤t->children[1] : ¤t->children[0], field); avlAdjustBalance(tree, node); } } } /* Insert the value into the AVL tree, if it does not preexist */ static void avlMergeValue(avl_tree *tree, char *name, char *sort_value) { pivot_field field; field.name = name; field.rank = tree->count; field.sort_value = sort_value; avlInsertNode(tree, &tree->root, field); } /* * Recursively extract node values into the names array, in sorted order with a * left-to-right tree traversal. * Return the next candidate offset to write into the names array. * fields[] must be preallocated to hold tree->count entries */ static int avlCollectFields(avl_tree *tree, avl_node *node, pivot_field *fields, int idx) { if (node == tree->end) return idx; idx = avlCollectFields(tree, node->children[0], fields, idx); fields[idx] = node->field; return avlCollectFields(tree, node->children[1], fields, idx + 1); } static void rankSort(int num_columns, pivot_field *piv_columns) { int *hmap; /* [[offset in piv_columns, rank], ...for * every header entry] */ int i; hmap = (int *) pg_malloc(sizeof(int) * num_columns * 2); for (i = 0; i < num_columns; i++) { char *val = piv_columns[i].sort_value; /* ranking information is valid if non null and matches /^-?\d+$/ */ if (val && ((*val == '-' && strspn(val + 1, "0123456789") == strlen(val + 1)) || strspn(val, "0123456789") == strlen(val))) { hmap[i * 2] = atoi(val); hmap[i * 2 + 1] = i; } else { /* invalid rank information ignored (equivalent to rank 0) */ hmap[i * 2] = 0; hmap[i * 2 + 1] = i; } } qsort(hmap, num_columns, sizeof(int) * 2, rankCompare); for (i = 0; i < num_columns; i++) { piv_columns[hmap[i * 2 + 1]].rank = i; } pg_free(hmap); } /* * Look up a column reference, which can be either: * - a number from 1 to PQnfields(res) * - a column name matching one of PQfname(res,...) * * Returns zero-based column number, or -1 if not found or ambiguous. * * Note: may modify contents of "arg" string. */ static int indexOfColumn(char *arg, const PGresult *res) { int idx; if (arg[0] && strspn(arg, "0123456789") == strlen(arg)) { /* if arg contains only digits, it's a column number */ idx = atoi(arg) - 1; if (idx < 0 || idx >= PQnfields(res)) { pg_log_error("\\crosstabview: column number %d is out of range 1..%d", idx + 1, PQnfields(res)); return -1; } } else { int i; /* * Dequote and downcase the column name. By checking for all-digits * before doing this, we can ensure that a quoted name is treated as a * name even if it's all digits. */ dequote_downcase_identifier(arg, true, pset.encoding); /* Now look for match(es) among res' column names */ idx = -1; for (i = 0; i < PQnfields(res); i++) { if (strcmp(arg, PQfname(res, i)) == 0) { if (idx >= 0) { /* another idx was already found for the same name */ pg_log_error("\\crosstabview: ambiguous column name: \"%s\"", arg); return -1; } idx = i; } } if (idx == -1) { pg_log_error("\\crosstabview: column name not found: \"%s\"", arg); return -1; } } return idx; } /* * Value comparator for vertical and horizontal headers * used for deduplication only. * - null values are considered equal * - non-null < null * - non-null values are compared with strcmp() */ static int pivotFieldCompare(const void *a, const void *b) { const pivot_field *pa = (const pivot_field *) a; const pivot_field *pb = (const pivot_field *) b; /* test null values */ if (!pb->name) return pa->name ? -1 : 0; else if (!pa->name) return 1; /* non-null values */ return strcmp(pa->name, pb->name); } static int rankCompare(const void *a, const void *b) { return *((const int *) a) - *((const int *) b); }