-- -- exercises for the hash join code -- begin; set local min_parallel_table_scan_size = 0; set local parallel_setup_cost = 0; set local enable_hashjoin = on; -- Extract bucket and batch counts from an explain analyze plan. In -- general we can't make assertions about how many batches (or -- buckets) will be required because it can vary, but we can in some -- special cases and we can check for growth. create or replace function find_hash(node json) returns json language plpgsql as $$ declare x json; child json; begin if node->>'Node Type' = 'Hash' then return node; else for child in select json_array_elements(node->'Plans') loop x := find_hash(child); if x is not null then return x; end if; end loop; return null; end if; end; $$; create or replace function hash_join_batches(query text) returns table (original int, final int) language plpgsql as $$ declare whole_plan json; hash_node json; begin for whole_plan in execute 'explain (analyze, format ''json'') ' || query loop hash_node := find_hash(json_extract_path(whole_plan, '0', 'Plan')); original := hash_node->>'Original Hash Batches'; final := hash_node->>'Hash Batches'; return next; end loop; end; $$; -- Make a simple relation with well distributed keys and correctly -- estimated size. create table simple as select generate_series(1, 20000) AS id, 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'; alter table simple set (parallel_workers = 2); analyze simple; -- Make a relation whose size we will under-estimate. We want stats -- to say 1000 rows, but actually there are 20,000 rows. create table bigger_than_it_looks as select generate_series(1, 20000) as id, 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'; alter table bigger_than_it_looks set (autovacuum_enabled = 'false'); alter table bigger_than_it_looks set (parallel_workers = 2); analyze bigger_than_it_looks; update pg_class set reltuples = 1000 where relname = 'bigger_than_it_looks'; -- Make a relation whose size we underestimate and that also has a -- kind of skew that breaks our batching scheme. We want stats to say -- 2 rows, but actually there are 20,000 rows with the same key. create table extremely_skewed (id int, t text); alter table extremely_skewed set (autovacuum_enabled = 'false'); alter table extremely_skewed set (parallel_workers = 2); analyze extremely_skewed; insert into extremely_skewed select 42 as id, 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' from generate_series(1, 20000); update pg_class set reltuples = 2, relpages = pg_relation_size('extremely_skewed') / 8192 where relname = 'extremely_skewed'; -- Make a relation with a couple of enormous tuples. create table wide as select generate_series(1, 2) as id, rpad('', 320000, 'x') as t; alter table wide set (parallel_workers = 2); -- The "optimal" case: the hash table fits in memory; we plan for 1 -- batch, we stick to that number, and peak memory usage stays within -- our work_mem budget -- non-parallel savepoint settings; set local max_parallel_workers_per_gather = 0; set local work_mem = '4MB'; explain (costs off) select count(*) from simple r join simple s using (id); QUERY PLAN ---------------------------------------- Aggregate -> Hash Join Hash Cond: (r.id = s.id) -> Seq Scan on simple r -> Hash -> Seq Scan on simple s (6 rows) select count(*) from simple r join simple s using (id); count ------- 20000 (1 row) select original > 1 as initially_multibatch, final > original as increased_batches from hash_join_batches( $$ select count(*) from simple r join simple s using (id); $$); initially_multibatch | increased_batches ----------------------+------------------- f | f (1 row) rollback to settings; -- parallel with parallel-oblivious hash join savepoint settings; set local max_parallel_workers_per_gather = 2; set local work_mem = '4MB'; set local enable_parallel_hash = off; explain (costs off) select count(*) from simple r join simple s using (id); QUERY PLAN ------------------------------------------------------- Finalize Aggregate -> Gather Workers Planned: 2 -> Partial Aggregate -> Hash Join Hash Cond: (r.id = s.id) -> Parallel Seq Scan on simple r -> Hash -> Seq Scan on simple s (9 rows) select count(*) from simple r join simple s using (id); count ------- 20000 (1 row) select original > 1 as initially_multibatch, final > original as increased_batches from hash_join_batches( $$ select count(*) from simple r join simple s using (id); $$); initially_multibatch | increased_batches ----------------------+------------------- f | f (1 row) rollback to settings; -- parallel with parallel-aware hash join savepoint settings; set local max_parallel_workers_per_gather = 2; set local work_mem = '4MB'; set local enable_parallel_hash = on; explain (costs off) select count(*) from simple r join simple s using (id); QUERY PLAN ------------------------------------------------------------- Finalize Aggregate -> Gather Workers Planned: 2 -> Partial Aggregate -> Parallel Hash Join Hash Cond: (r.id = s.id) -> Parallel Seq Scan on simple r -> Parallel Hash -> Parallel Seq Scan on simple s (9 rows) select count(*) from simple r join simple s using (id); count ------- 20000 (1 row) select original > 1 as initially_multibatch, final > original as increased_batches from hash_join_batches( $$ select count(*) from simple r join simple s using (id); $$); initially_multibatch | increased_batches ----------------------+------------------- f | f (1 row) rollback to settings; -- The "good" case: batches required, but we plan the right number; we -- plan for some number of batches, and we stick to that number, and -- peak memory usage says within our work_mem budget -- non-parallel savepoint settings; set local max_parallel_workers_per_gather = 0; set local work_mem = '128kB'; explain (costs off) select count(*) from simple r join simple s using (id); QUERY PLAN ---------------------------------------- Aggregate -> Hash Join Hash Cond: (r.id = s.id) -> Seq Scan on simple r -> Hash -> Seq Scan on simple s (6 rows) select count(*) from simple r join simple s using (id); count ------- 20000 (1 row) select original > 1 as initially_multibatch, final > original as increased_batches from hash_join_batches( $$ select count(*) from simple r join simple s using (id); $$); initially_multibatch | increased_batches ----------------------+------------------- t | f (1 row) rollback to settings; -- parallel with parallel-oblivious hash join savepoint settings; set local max_parallel_workers_per_gather = 2; set local work_mem = '128kB'; set local enable_parallel_hash = off; explain (costs off) select count(*) from simple r join simple s using (id); QUERY PLAN ------------------------------------------------------- Finalize Aggregate -> Gather Workers Planned: 2 -> Partial Aggregate -> Hash Join Hash Cond: (r.id = s.id) -> Parallel Seq Scan on simple r -> Hash -> Seq Scan on simple s (9 rows) select count(*) from simple r join simple s using (id); count ------- 20000 (1 row) select original > 1 as initially_multibatch, final > original as increased_batches from hash_join_batches( $$ select count(*) from simple r join simple s using (id); $$); initially_multibatch | increased_batches ----------------------+------------------- t | f (1 row) rollback to settings; -- parallel with parallel-aware hash join savepoint settings; set local max_parallel_workers_per_gather = 2; set local work_mem = '192kB'; set local enable_parallel_hash = on; explain (costs off) select count(*) from simple r join simple s using (id); QUERY PLAN ------------------------------------------------------------- Finalize Aggregate -> Gather Workers Planned: 2 -> Partial Aggregate -> Parallel Hash Join Hash Cond: (r.id = s.id) -> Parallel Seq Scan on simple r -> Parallel Hash -> Parallel Seq Scan on simple s (9 rows) select count(*) from simple r join simple s using (id); count ------- 20000 (1 row) select original > 1 as initially_multibatch, final > original as increased_batches from hash_join_batches( $$ select count(*) from simple r join simple s using (id); $$); initially_multibatch | increased_batches ----------------------+------------------- t | f (1 row) rollback to settings; -- The "bad" case: during execution we need to increase number of -- batches; in this case we plan for 1 batch, and increase at least a -- couple of times, and peak memory usage stays within our work_mem -- budget -- non-parallel savepoint settings; set local max_parallel_workers_per_gather = 0; set local work_mem = '128kB'; explain (costs off) select count(*) FROM simple r JOIN bigger_than_it_looks s USING (id); QUERY PLAN ------------------------------------------------------ Aggregate -> Hash Join Hash Cond: (r.id = s.id) -> Seq Scan on simple r -> Hash -> Seq Scan on bigger_than_it_looks s (6 rows) select count(*) FROM simple r JOIN bigger_than_it_looks s USING (id); count ------- 20000 (1 row) select original > 1 as initially_multibatch, final > original as increased_batches from hash_join_batches( $$ select count(*) FROM simple r JOIN bigger_than_it_looks s USING (id); $$); initially_multibatch | increased_batches ----------------------+------------------- f | t (1 row) rollback to settings; -- parallel with parallel-oblivious hash join savepoint settings; set local max_parallel_workers_per_gather = 2; set local work_mem = '128kB'; set local enable_parallel_hash = off; explain (costs off) select count(*) from simple r join bigger_than_it_looks s using (id); QUERY PLAN ------------------------------------------------------------------ Finalize Aggregate -> Gather Workers Planned: 2 -> Partial Aggregate -> Hash Join Hash Cond: (r.id = s.id) -> Parallel Seq Scan on simple r -> Hash -> Seq Scan on bigger_than_it_looks s (9 rows) select count(*) from simple r join bigger_than_it_looks s using (id); count ------- 20000 (1 row) select original > 1 as initially_multibatch, final > original as increased_batches from hash_join_batches( $$ select count(*) from simple r join bigger_than_it_looks s using (id); $$); initially_multibatch | increased_batches ----------------------+------------------- f | t (1 row) rollback to settings; -- parallel with parallel-aware hash join savepoint settings; set local max_parallel_workers_per_gather = 1; set local work_mem = '192kB'; set local enable_parallel_hash = on; explain (costs off) select count(*) from simple r join bigger_than_it_looks s using (id); QUERY PLAN --------------------------------------------------------------------------- Finalize Aggregate -> Gather Workers Planned: 1 -> Partial Aggregate -> Parallel Hash Join Hash Cond: (r.id = s.id) -> Parallel Seq Scan on simple r -> Parallel Hash -> Parallel Seq Scan on bigger_than_it_looks s (9 rows) select count(*) from simple r join bigger_than_it_looks s using (id); count ------- 20000 (1 row) select original > 1 as initially_multibatch, final > original as increased_batches from hash_join_batches( $$ select count(*) from simple r join bigger_than_it_looks s using (id); $$); initially_multibatch | increased_batches ----------------------+------------------- f | t (1 row) rollback to settings; -- The "ugly" case: increasing the number of batches during execution -- doesn't help, so stop trying to fit in work_mem and hope for the -- best; in this case we plan for 1 batch, increases just once and -- then stop increasing because that didn't help at all, so we blow -- right through the work_mem budget and hope for the best... -- non-parallel savepoint settings; set local max_parallel_workers_per_gather = 0; set local work_mem = '128kB'; explain (costs off) select count(*) from simple r join extremely_skewed s using (id); QUERY PLAN -------------------------------------------------- Aggregate -> Hash Join Hash Cond: (r.id = s.id) -> Seq Scan on simple r -> Hash -> Seq Scan on extremely_skewed s (6 rows) select count(*) from simple r join extremely_skewed s using (id); count ------- 20000 (1 row) select * from hash_join_batches( $$ select count(*) from simple r join extremely_skewed s using (id); $$); original | final ----------+------- 1 | 2 (1 row) rollback to settings; -- parallel with parallel-oblivious hash join savepoint settings; set local max_parallel_workers_per_gather = 2; set local work_mem = '128kB'; set local enable_parallel_hash = off; explain (costs off) select count(*) from simple r join extremely_skewed s using (id); QUERY PLAN -------------------------------------------------------- Aggregate -> Gather Workers Planned: 2 -> Hash Join Hash Cond: (r.id = s.id) -> Parallel Seq Scan on simple r -> Hash -> Seq Scan on extremely_skewed s (8 rows) select count(*) from simple r join extremely_skewed s using (id); count ------- 20000 (1 row) select * from hash_join_batches( $$ select count(*) from simple r join extremely_skewed s using (id); $$); original | final ----------+------- 1 | 2 (1 row) rollback to settings; -- parallel with parallel-aware hash join savepoint settings; set local max_parallel_workers_per_gather = 1; set local work_mem = '128kB'; set local enable_parallel_hash = on; explain (costs off) select count(*) from simple r join extremely_skewed s using (id); QUERY PLAN ----------------------------------------------------------------------- Finalize Aggregate -> Gather Workers Planned: 1 -> Partial Aggregate -> Parallel Hash Join Hash Cond: (r.id = s.id) -> Parallel Seq Scan on simple r -> Parallel Hash -> Parallel Seq Scan on extremely_skewed s (9 rows) select count(*) from simple r join extremely_skewed s using (id); count ------- 20000 (1 row) select * from hash_join_batches( $$ select count(*) from simple r join extremely_skewed s using (id); $$); original | final ----------+------- 1 | 4 (1 row) rollback to settings; -- A couple of other hash join tests unrelated to work_mem management. -- Check that EXPLAIN ANALYZE has data even if the leader doesn't participate savepoint settings; set local max_parallel_workers_per_gather = 2; set local work_mem = '4MB'; set local parallel_leader_participation = off; select * from hash_join_batches( $$ select count(*) from simple r join simple s using (id); $$); original | final ----------+------- 1 | 1 (1 row) rollback to settings; -- Exercise rescans. We'll turn off parallel_leader_participation so -- that we can check that instrumentation comes back correctly. create table join_foo as select generate_series(1, 3) as id, 'xxxxx'::text as t; alter table join_foo set (parallel_workers = 0); create table join_bar as select generate_series(1, 10000) as id, 'xxxxx'::text as t; alter table join_bar set (parallel_workers = 2); -- multi-batch with rescan, parallel-oblivious savepoint settings; set enable_parallel_hash = off; set parallel_leader_participation = off; set min_parallel_table_scan_size = 0; set parallel_setup_cost = 0; set parallel_tuple_cost = 0; set max_parallel_workers_per_gather = 2; set enable_material = off; set enable_mergejoin = off; set work_mem = '64kB'; explain (costs off) select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; QUERY PLAN ------------------------------------------------------------------------------------ Aggregate -> Nested Loop Left Join Join Filter: ((join_foo.id < (b1.id + 1)) AND (join_foo.id > (b1.id - 1))) -> Seq Scan on join_foo -> Gather Workers Planned: 2 -> Hash Join Hash Cond: (b1.id = b2.id) -> Parallel Seq Scan on join_bar b1 -> Hash -> Seq Scan on join_bar b2 (11 rows) select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; count ------- 3 (1 row) select final > 1 as multibatch from hash_join_batches( $$ select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; $$); multibatch ------------ t (1 row) rollback to settings; -- single-batch with rescan, parallel-oblivious savepoint settings; set enable_parallel_hash = off; set parallel_leader_participation = off; set min_parallel_table_scan_size = 0; set parallel_setup_cost = 0; set parallel_tuple_cost = 0; set max_parallel_workers_per_gather = 2; set enable_material = off; set enable_mergejoin = off; set work_mem = '4MB'; explain (costs off) select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; QUERY PLAN ------------------------------------------------------------------------------------ Aggregate -> Nested Loop Left Join Join Filter: ((join_foo.id < (b1.id + 1)) AND (join_foo.id > (b1.id - 1))) -> Seq Scan on join_foo -> Gather Workers Planned: 2 -> Hash Join Hash Cond: (b1.id = b2.id) -> Parallel Seq Scan on join_bar b1 -> Hash -> Seq Scan on join_bar b2 (11 rows) select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; count ------- 3 (1 row) select final > 1 as multibatch from hash_join_batches( $$ select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; $$); multibatch ------------ f (1 row) rollback to settings; -- multi-batch with rescan, parallel-aware savepoint settings; set enable_parallel_hash = on; set parallel_leader_participation = off; set min_parallel_table_scan_size = 0; set parallel_setup_cost = 0; set parallel_tuple_cost = 0; set max_parallel_workers_per_gather = 2; set enable_material = off; set enable_mergejoin = off; set work_mem = '64kB'; explain (costs off) select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; QUERY PLAN ------------------------------------------------------------------------------------ Aggregate -> Nested Loop Left Join Join Filter: ((join_foo.id < (b1.id + 1)) AND (join_foo.id > (b1.id - 1))) -> Seq Scan on join_foo -> Gather Workers Planned: 2 -> Parallel Hash Join Hash Cond: (b1.id = b2.id) -> Parallel Seq Scan on join_bar b1 -> Parallel Hash -> Parallel Seq Scan on join_bar b2 (11 rows) select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; count ------- 3 (1 row) select final > 1 as multibatch from hash_join_batches( $$ select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; $$); multibatch ------------ t (1 row) rollback to settings; -- single-batch with rescan, parallel-aware savepoint settings; set enable_parallel_hash = on; set parallel_leader_participation = off; set min_parallel_table_scan_size = 0; set parallel_setup_cost = 0; set parallel_tuple_cost = 0; set max_parallel_workers_per_gather = 2; set enable_material = off; set enable_mergejoin = off; set work_mem = '4MB'; explain (costs off) select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; QUERY PLAN ------------------------------------------------------------------------------------ Aggregate -> Nested Loop Left Join Join Filter: ((join_foo.id < (b1.id + 1)) AND (join_foo.id > (b1.id - 1))) -> Seq Scan on join_foo -> Gather Workers Planned: 2 -> Parallel Hash Join Hash Cond: (b1.id = b2.id) -> Parallel Seq Scan on join_bar b1 -> Parallel Hash -> Parallel Seq Scan on join_bar b2 (11 rows) select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; count ------- 3 (1 row) select final > 1 as multibatch from hash_join_batches( $$ select count(*) from join_foo left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1; $$); multibatch ------------ f (1 row) rollback to settings; -- A full outer join where every record is matched. -- non-parallel savepoint settings; set local max_parallel_workers_per_gather = 0; explain (costs off) select count(*) from simple r full outer join simple s using (id); QUERY PLAN ---------------------------------------- Aggregate -> Hash Full Join Hash Cond: (r.id = s.id) -> Seq Scan on simple r -> Hash -> Seq Scan on simple s (6 rows) select count(*) from simple r full outer join simple s using (id); count ------- 20000 (1 row) rollback to settings; -- parallelism not possible with parallel-oblivious outer hash join savepoint settings; set local max_parallel_workers_per_gather = 2; explain (costs off) select count(*) from simple r full outer join simple s using (id); QUERY PLAN ---------------------------------------- Aggregate -> Hash Full Join Hash Cond: (r.id = s.id) -> Seq Scan on simple r -> Hash -> Seq Scan on simple s (6 rows) select count(*) from simple r full outer join simple s using (id); count ------- 20000 (1 row) rollback to settings; -- An full outer join where every record is not matched. -- non-parallel savepoint settings; set local max_parallel_workers_per_gather = 0; explain (costs off) select count(*) from simple r full outer join simple s on (r.id = 0 - s.id); QUERY PLAN ---------------------------------------- Aggregate -> Hash Full Join Hash Cond: ((0 - s.id) = r.id) -> Seq Scan on simple s -> Hash -> Seq Scan on simple r (6 rows) select count(*) from simple r full outer join simple s on (r.id = 0 - s.id); count ------- 40000 (1 row) rollback to settings; -- parallelism not possible with parallel-oblivious outer hash join savepoint settings; set local max_parallel_workers_per_gather = 2; explain (costs off) select count(*) from simple r full outer join simple s on (r.id = 0 - s.id); QUERY PLAN ---------------------------------------- Aggregate -> Hash Full Join Hash Cond: ((0 - s.id) = r.id) -> Seq Scan on simple s -> Hash -> Seq Scan on simple r (6 rows) select count(*) from simple r full outer join simple s on (r.id = 0 - s.id); count ------- 40000 (1 row) rollback to settings; -- exercise special code paths for huge tuples (note use of non-strict -- expression and left join required to get the detoasted tuple into -- the hash table) -- parallel with parallel-aware hash join (hits ExecParallelHashLoadTuple and -- sts_puttuple oversized tuple cases because it's multi-batch) savepoint settings; set max_parallel_workers_per_gather = 2; set enable_parallel_hash = on; set work_mem = '128kB'; explain (costs off) select length(max(s.t)) from wide left join (select id, coalesce(t, '') || '' as t from wide) s using (id); QUERY PLAN ---------------------------------------------------------------- Finalize Aggregate -> Gather Workers Planned: 2 -> Partial Aggregate -> Parallel Hash Left Join Hash Cond: (wide.id = wide_1.id) -> Parallel Seq Scan on wide -> Parallel Hash -> Parallel Seq Scan on wide wide_1 (9 rows) select length(max(s.t)) from wide left join (select id, coalesce(t, '') || '' as t from wide) s using (id); length -------- 320000 (1 row) select final > 1 as multibatch from hash_join_batches( $$ select length(max(s.t)) from wide left join (select id, coalesce(t, '') || '' as t from wide) s using (id); $$); multibatch ------------ t (1 row) rollback to settings; rollback; -- Verify that hash key expressions reference the correct -- nodes. Hashjoin's hashkeys need to reference its outer plan, Hash's -- need to reference Hash's outer plan (which is below HashJoin's -- inner plan). It's not trivial to verify that the references are -- correct (we don't display the hashkeys themselves), but if the -- hashkeys contain subplan references, those will be displayed. Force -- subplans to appear just about everywhere. -- -- Bug report: -- https://www.postgresql.org/message-id/CAPpHfdvGVegF_TKKRiBrSmatJL2dR9uwFCuR%2BteQ_8tEXU8mxg%40mail.gmail.com -- BEGIN; SET LOCAL enable_sort = OFF; -- avoid mergejoins SET LOCAL from_collapse_limit = 1; -- allows easy changing of join order CREATE TABLE hjtest_1 (a text, b int, id int, c bool); CREATE TABLE hjtest_2 (a bool, id int, b text, c int); INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 2, 1, false); -- matches INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 1, 2, false); -- fails id join condition INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 20, 1, false); -- fails < 50 INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 1, 1, false); -- fails (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5) INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'another', 2); -- matches INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 3, 'another', 7); -- fails id join condition INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'another', 90); -- fails < 55 INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'another', 3); -- fails (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5) INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'text', 1); -- fails hjtest_1.a <> hjtest_2.b; EXPLAIN (COSTS OFF, VERBOSE) SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2 FROM hjtest_1, hjtest_2 WHERE hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1) AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5) AND (SELECT hjtest_1.b * 5) < 50 AND (SELECT hjtest_2.c * 5) < 55 AND hjtest_1.a <> hjtest_2.b; QUERY PLAN ------------------------------------------------------------------------------------------------ Hash Join Output: hjtest_1.a, hjtest_2.a, (hjtest_1.tableoid)::regclass, (hjtest_2.tableoid)::regclass Hash Cond: ((hjtest_1.id = (SubPlan 1)) AND ((SubPlan 2) = (SubPlan 3))) Join Filter: (hjtest_1.a <> hjtest_2.b) -> Seq Scan on public.hjtest_1 Output: hjtest_1.a, hjtest_1.tableoid, hjtest_1.id, hjtest_1.b Filter: ((SubPlan 4) < 50) SubPlan 4 -> Result Output: (hjtest_1.b * 5) -> Hash Output: hjtest_2.a, hjtest_2.tableoid, hjtest_2.id, hjtest_2.c, hjtest_2.b -> Seq Scan on public.hjtest_2 Output: hjtest_2.a, hjtest_2.tableoid, hjtest_2.id, hjtest_2.c, hjtest_2.b Filter: ((SubPlan 5) < 55) SubPlan 5 -> Result Output: (hjtest_2.c * 5) SubPlan 1 -> Result Output: 1 One-Time Filter: (hjtest_2.id = 1) SubPlan 3 -> Result Output: (hjtest_2.c * 5) SubPlan 2 -> Result Output: (hjtest_1.b * 5) (28 rows) SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2 FROM hjtest_1, hjtest_2 WHERE hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1) AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5) AND (SELECT hjtest_1.b * 5) < 50 AND (SELECT hjtest_2.c * 5) < 55 AND hjtest_1.a <> hjtest_2.b; a1 | a2 | t1 | t2 ------+----+----------+---------- text | t | hjtest_1 | hjtest_2 (1 row) EXPLAIN (COSTS OFF, VERBOSE) SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2 FROM hjtest_2, hjtest_1 WHERE hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1) AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5) AND (SELECT hjtest_1.b * 5) < 50 AND (SELECT hjtest_2.c * 5) < 55 AND hjtest_1.a <> hjtest_2.b; QUERY PLAN ------------------------------------------------------------------------------------------------ Hash Join Output: hjtest_1.a, hjtest_2.a, (hjtest_1.tableoid)::regclass, (hjtest_2.tableoid)::regclass Hash Cond: (((SubPlan 1) = hjtest_1.id) AND ((SubPlan 3) = (SubPlan 2))) Join Filter: (hjtest_1.a <> hjtest_2.b) -> Seq Scan on public.hjtest_2 Output: hjtest_2.a, hjtest_2.tableoid, hjtest_2.id, hjtest_2.c, hjtest_2.b Filter: ((SubPlan 5) < 55) SubPlan 5 -> Result Output: (hjtest_2.c * 5) -> Hash Output: hjtest_1.a, hjtest_1.tableoid, hjtest_1.id, hjtest_1.b -> Seq Scan on public.hjtest_1 Output: hjtest_1.a, hjtest_1.tableoid, hjtest_1.id, hjtest_1.b Filter: ((SubPlan 4) < 50) SubPlan 4 -> Result Output: (hjtest_1.b * 5) SubPlan 2 -> Result Output: (hjtest_1.b * 5) SubPlan 1 -> Result Output: 1 One-Time Filter: (hjtest_2.id = 1) SubPlan 3 -> Result Output: (hjtest_2.c * 5) (28 rows) SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2 FROM hjtest_2, hjtest_1 WHERE hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1) AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5) AND (SELECT hjtest_1.b * 5) < 50 AND (SELECT hjtest_2.c * 5) < 55 AND hjtest_1.a <> hjtest_2.b; a1 | a2 | t1 | t2 ------+----+----------+---------- text | t | hjtest_1 | hjtest_2 (1 row) ROLLBACK;