1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>64.3. Extensibility</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets V1.79.1" /><link rel="prev" href="gist-builtin-opclasses.html" title="64.2. Built-in Operator Classes" /><link rel="next" href="gist-implementation.html" title="64.4. Implementation" /></head><body id="docContent" class="container-fluid col-10"><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">64.3. Extensibility</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="gist-builtin-opclasses.html" title="64.2. Built-in Operator Classes">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="gist.html" title="Chapter 64. GiST Indexes">Up</a></td><th width="60%" align="center">Chapter 64. GiST Indexes</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 13.4 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="gist-implementation.html" title="64.4. Implementation">Next</a></td></tr></table><hr></hr></div><div class="sect1" id="GIST-EXTENSIBILITY"><div class="titlepage"><div><div><h2 class="title" style="clear: both">64.3. Extensibility</h2></div></div></div><p>
Traditionally, implementing a new index access method meant a lot of
difficult work. It was necessary to understand the inner workings of the
database, such as the lock manager and Write-Ahead Log. The
<acronym class="acronym">GiST</acronym> interface has a high level of abstraction,
requiring the access method implementer only to implement the semantics of
the data type being accessed. The <acronym class="acronym">GiST</acronym> layer itself
takes care of concurrency, logging and searching the tree structure.
</p><p>
This extensibility should not be confused with the extensibility of the
other standard search trees in terms of the data they can handle. For
example, <span class="productname">PostgreSQL</span> supports extensible B-trees
and hash indexes. That means that you can use
<span class="productname">PostgreSQL</span> to build a B-tree or hash over any
data type you want. But B-trees only support range predicates
(<code class="literal"><</code>, <code class="literal">=</code>, <code class="literal">></code>),
and hash indexes only support equality queries.
</p><p>
So if you index, say, an image collection with a
<span class="productname">PostgreSQL</span> B-tree, you can only issue queries
such as <span class="quote">“<span class="quote">is imagex equal to imagey</span>”</span>, <span class="quote">“<span class="quote">is imagex less
than imagey</span>”</span> and <span class="quote">“<span class="quote">is imagex greater than imagey</span>”</span>.
Depending on how you define <span class="quote">“<span class="quote">equals</span>”</span>, <span class="quote">“<span class="quote">less than</span>”</span>
and <span class="quote">“<span class="quote">greater than</span>”</span> in this context, this could be useful.
However, by using a <acronym class="acronym">GiST</acronym> based index, you could create
ways to ask domain-specific questions, perhaps <span class="quote">“<span class="quote">find all images of
horses</span>”</span> or <span class="quote">“<span class="quote">find all over-exposed images</span>”</span>.
</p><p>
All it takes to get a <acronym class="acronym">GiST</acronym> access method up and running
is to implement several user-defined methods, which define the behavior of
keys in the tree. Of course these methods have to be pretty fancy to
support fancy queries, but for all the standard queries (B-trees,
R-trees, etc.) they're relatively straightforward. In short,
<acronym class="acronym">GiST</acronym> combines extensibility along with generality, code
reuse, and a clean interface.
</p><p>
There are five methods that an index operator class for
<acronym class="acronym">GiST</acronym> must provide, and five that are optional.
Correctness of the index is ensured
by proper implementation of the <code class="function">same</code>, <code class="function">consistent</code>
and <code class="function">union</code> methods, while efficiency (size and speed) of the
index will depend on the <code class="function">penalty</code> and <code class="function">picksplit</code>
methods.
Two optional methods are <code class="function">compress</code> and
<code class="function">decompress</code>, which allow an index to have internal tree data of
a different type than the data it indexes. The leaves are to be of the
indexed data type, while the other tree nodes can be of any C struct (but
you still have to follow <span class="productname">PostgreSQL</span> data type rules here,
see about <code class="literal">varlena</code> for variable sized data). If the tree's
internal data type exists at the SQL level, the <code class="literal">STORAGE</code> option
of the <code class="command">CREATE OPERATOR CLASS</code> command can be used.
The optional eighth method is <code class="function">distance</code>, which is needed
if the operator class wishes to support ordered scans (nearest-neighbor
searches). The optional ninth method <code class="function">fetch</code> is needed if the
operator class wishes to support index-only scans, except when the
<code class="function">compress</code> method is omitted. The optional tenth method
<code class="function">options</code> is needed if the operator class provides
the user-specified parameters.
</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><code class="function">consistent</code></span></dt><dd><p>
Given an index entry <code class="literal">p</code> and a query value <code class="literal">q</code>,
this function determines whether the index entry is
<span class="quote">“<span class="quote">consistent</span>”</span> with the query; that is, could the predicate
<span class="quote">“<span class="quote"><em class="replaceable"><code>indexed_column</code></em>
<em class="replaceable"><code>indexable_operator</code></em> <code class="literal">q</code></span>”</span> be true for
any row represented by the index entry? For a leaf index entry this is
equivalent to testing the indexable condition, while for an internal
tree node this determines whether it is necessary to scan the subtree
of the index represented by the tree node. When the result is
<code class="literal">true</code>, a <code class="literal">recheck</code> flag must also be returned.
This indicates whether the predicate is certainly true or only possibly
true. If <code class="literal">recheck</code> = <code class="literal">false</code> then the index has
tested the predicate condition exactly, whereas if <code class="literal">recheck</code>
= <code class="literal">true</code> the row is only a candidate match. In that case the
system will automatically evaluate the
<em class="replaceable"><code>indexable_operator</code></em> against the actual row value to see
if it is really a match. This convention allows
<acronym class="acronym">GiST</acronym> to support both lossless and lossy index
structures.
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid, internal)
RETURNS bool
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</pre><p>
And the matching code in the C module could then follow this skeleton:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(my_consistent);
Datum
my_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
data_type *query = PG_GETARG_DATA_TYPE_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
data_type *key = DatumGetDataType(entry->key);
bool retval;
/*
* determine return value as a function of strategy, key and query.
*
* Use GIST_LEAF(entry) to know where you're called in the index tree,
* which comes handy when supporting the = operator for example (you could
* check for non empty union() in non-leaf nodes and equality in leaf
* nodes).
*/
*recheck = true; /* or false if check is exact */
PG_RETURN_BOOL(retval);
}
</pre><p>
Here, <code class="varname">key</code> is an element in the index and <code class="varname">query</code>
the value being looked up in the index. The <code class="literal">StrategyNumber</code>
parameter indicates which operator of your operator class is being
applied — it matches one of the operator numbers in the
<code class="command">CREATE OPERATOR CLASS</code> command.
</p><p>
Depending on which operators you have included in the class, the data
type of <code class="varname">query</code> could vary with the operator, since it will
be whatever type is on the righthand side of the operator, which might
be different from the indexed data type appearing on the lefthand side.
(The above code skeleton assumes that only one type is possible; if
not, fetching the <code class="varname">query</code> argument value would have to depend
on the operator.) It is recommended that the SQL declaration of
the <code class="function">consistent</code> function use the opclass's indexed data
type for the <code class="varname">query</code> argument, even though the actual type
might be something else depending on the operator.
</p></dd><dt><span class="term"><code class="function">union</code></span></dt><dd><p>
This method consolidates information in the tree. Given a set of
entries, this function generates a new index entry that represents
all the given entries.
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS storage_type
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</pre><p>
And the matching code in the C module could then follow this skeleton:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(my_union);
Datum
my_union(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
GISTENTRY *ent = entryvec->vector;
data_type *out,
*tmp,
*old;
int numranges,
i = 0;
numranges = entryvec->n;
tmp = DatumGetDataType(ent[0].key);
out = tmp;
if (numranges == 1)
{
out = data_type_deep_copy(tmp);
PG_RETURN_DATA_TYPE_P(out);
}
for (i = 1; i < numranges; i++)
{
old = out;
tmp = DatumGetDataType(ent[i].key);
out = my_union_implementation(out, tmp);
}
PG_RETURN_DATA_TYPE_P(out);
}
</pre><p>
</p><p>
As you can see, in this skeleton we're dealing with a data type
where <code class="literal">union(X, Y, Z) = union(union(X, Y), Z)</code>. It's easy
enough to support data types where this is not the case, by
implementing the proper union algorithm in this
<acronym class="acronym">GiST</acronym> support method.
</p><p>
The result of the <code class="function">union</code> function must be a value of the
index's storage type, whatever that is (it might or might not be
different from the indexed column's type). The <code class="function">union</code>
function should return a pointer to newly <code class="function">palloc()</code>ed
memory. You can't just return the input value as-is, even if there is
no type change.
</p><p>
As shown above, the <code class="function">union</code> function's
first <code class="type">internal</code> argument is actually
a <code class="structname">GistEntryVector</code> pointer. The second argument is a
pointer to an integer variable, which can be ignored. (It used to be
required that the <code class="function">union</code> function store the size of its
result value into that variable, but this is no longer necessary.)
</p></dd><dt><span class="term"><code class="function">compress</code></span></dt><dd><p>
Converts a data item into a format suitable for physical storage in
an index page.
If the <code class="function">compress</code> method is omitted, data items are stored
in the index without modification.
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</pre><p>
And the matching code in the C module could then follow this skeleton:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(my_compress);
Datum
my_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *retval;
if (entry->leafkey)
{
/* replace entry->key with a compressed version */
compressed_data_type *compressed_data = palloc(sizeof(compressed_data_type));
/* fill *compressed_data from entry->key ... */
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(compressed_data),
entry->rel, entry->page, entry->offset, FALSE);
}
else
{
/* typically we needn't do anything with non-leaf entries */
retval = entry;
}
PG_RETURN_POINTER(retval);
}
</pre><p>
</p><p>
You have to adapt <em class="replaceable"><code>compressed_data_type</code></em> to the specific
type you're converting to in order to compress your leaf nodes, of
course.
</p></dd><dt><span class="term"><code class="function">decompress</code></span></dt><dd><p>
Converts the stored representation of a data item into a format that
can be manipulated by the other GiST methods in the operator class.
If the <code class="function">decompress</code> method is omitted, it is assumed that
the other GiST methods can work directly on the stored data format.
(<code class="function">decompress</code> is not necessarily the reverse of
the <code class="function">compress</code> method; in particular,
if <code class="function">compress</code> is lossy then it's impossible
for <code class="function">decompress</code> to exactly reconstruct the original
data. <code class="function">decompress</code> is not necessarily equivalent
to <code class="function">fetch</code>, either, since the other GiST methods might not
require full reconstruction of the data.)
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</pre><p>
And the matching code in the C module could then follow this skeleton:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(my_decompress);
Datum
my_decompress(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}
</pre><p>
The above skeleton is suitable for the case where no decompression
is needed. (But, of course, omitting the method altogether is even
easier, and is recommended in such cases.)
</p></dd><dt><span class="term"><code class="function">penalty</code></span></dt><dd><p>
Returns a value indicating the <span class="quote">“<span class="quote">cost</span>”</span> of inserting the new
entry into a particular branch of the tree. Items will be inserted
down the path of least <code class="function">penalty</code> in the tree.
Values returned by <code class="function">penalty</code> should be non-negative.
If a negative value is returned, it will be treated as zero.
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT; -- in some cases penalty functions need not be strict
</pre><p>
And the matching code in the C module could then follow this skeleton:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(my_penalty);
Datum
my_penalty(PG_FUNCTION_ARGS)
{
GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
float *penalty = (float *) PG_GETARG_POINTER(2);
data_type *orig = DatumGetDataType(origentry->key);
data_type *new = DatumGetDataType(newentry->key);
*penalty = my_penalty_implementation(orig, new);
PG_RETURN_POINTER(penalty);
}
</pre><p>
For historical reasons, the <code class="function">penalty</code> function doesn't
just return a <code class="type">float</code> result; instead it has to store the value
at the location indicated by the third argument. The return
value per se is ignored, though it's conventional to pass back the
address of that argument.
</p><p>
The <code class="function">penalty</code> function is crucial to good performance of
the index. It'll get used at insertion time to determine which branch
to follow when choosing where to add the new entry in the tree. At
query time, the more balanced the index, the quicker the lookup.
</p></dd><dt><span class="term"><code class="function">picksplit</code></span></dt><dd><p>
When an index page split is necessary, this function decides which
entries on the page are to stay on the old page, and which are to move
to the new page.
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</pre><p>
And the matching code in the C module could then follow this skeleton:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(my_picksplit);
Datum
my_picksplit(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
OffsetNumber maxoff = entryvec->n - 1;
GISTENTRY *ent = entryvec->vector;
int i,
nbytes;
OffsetNumber *left,
*right;
data_type *tmp_union;
data_type *unionL;
data_type *unionR;
GISTENTRY **raw_entryvec;
maxoff = entryvec->n - 1;
nbytes = (maxoff + 1) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
left = v->spl_left;
v->spl_nleft = 0;
v->spl_right = (OffsetNumber *) palloc(nbytes);
right = v->spl_right;
v->spl_nright = 0;
unionL = NULL;
unionR = NULL;
/* Initialize the raw entry vector. */
raw_entryvec = (GISTENTRY **) malloc(entryvec->n * sizeof(void *));
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
raw_entryvec[i] = &(entryvec->vector[i]);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
int real_index = raw_entryvec[i] - entryvec->vector;
tmp_union = DatumGetDataType(entryvec->vector[real_index].key);
Assert(tmp_union != NULL);
/*
* Choose where to put the index entries and update unionL and unionR
* accordingly. Append the entries to either v->spl_left or
* v->spl_right, and care about the counters.
*/
if (my_choice_is_left(unionL, curl, unionR, curr))
{
if (unionL == NULL)
unionL = tmp_union;
else
unionL = my_union_implementation(unionL, tmp_union);
*left = real_index;
++left;
++(v->spl_nleft);
}
else
{
/*
* Same on the right
*/
}
}
v->spl_ldatum = DataTypeGetDatum(unionL);
v->spl_rdatum = DataTypeGetDatum(unionR);
PG_RETURN_POINTER(v);
}
</pre><p>
Notice that the <code class="function">picksplit</code> function's result is delivered
by modifying the passed-in <code class="structname">v</code> structure. The return
value per se is ignored, though it's conventional to pass back the
address of <code class="structname">v</code>.
</p><p>
Like <code class="function">penalty</code>, the <code class="function">picksplit</code> function
is crucial to good performance of the index. Designing suitable
<code class="function">penalty</code> and <code class="function">picksplit</code> implementations
is where the challenge of implementing well-performing
<acronym class="acronym">GiST</acronym> indexes lies.
</p></dd><dt><span class="term"><code class="function">same</code></span></dt><dd><p>
Returns true if two index entries are identical, false otherwise.
(An <span class="quote">“<span class="quote">index entry</span>”</span> is a value of the index's storage type,
not necessarily the original indexed column's type.)
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_same(storage_type, storage_type, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</pre><p>
And the matching code in the C module could then follow this skeleton:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(my_same);
Datum
my_same(PG_FUNCTION_ARGS)
{
prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
bool *result = (bool *) PG_GETARG_POINTER(2);
*result = my_eq(v1, v2);
PG_RETURN_POINTER(result);
}
</pre><p>
For historical reasons, the <code class="function">same</code> function doesn't
just return a Boolean result; instead it has to store the flag
at the location indicated by the third argument. The return
value per se is ignored, though it's conventional to pass back the
address of that argument.
</p></dd><dt><span class="term"><code class="function">distance</code></span></dt><dd><p>
Given an index entry <code class="literal">p</code> and a query value <code class="literal">q</code>,
this function determines the index entry's
<span class="quote">“<span class="quote">distance</span>”</span> from the query value. This function must be
supplied if the operator class contains any ordering operators.
A query using the ordering operator will be implemented by returning
index entries with the smallest <span class="quote">“<span class="quote">distance</span>”</span> values first,
so the results must be consistent with the operator's semantics.
For a leaf index entry the result just represents the distance to
the index entry; for an internal tree node, the result must be the
smallest distance that any child entry could have.
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_distance(internal, data_type, smallint, oid, internal)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</pre><p>
And the matching code in the C module could then follow this skeleton:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(my_distance);
Datum
my_distance(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
data_type *query = PG_GETARG_DATA_TYPE_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
/* bool *recheck = (bool *) PG_GETARG_POINTER(4); */
data_type *key = DatumGetDataType(entry->key);
double retval;
/*
* determine return value as a function of strategy, key and query.
*/
PG_RETURN_FLOAT8(retval);
}
</pre><p>
The arguments to the <code class="function">distance</code> function are identical to
the arguments of the <code class="function">consistent</code> function.
</p><p>
Some approximation is allowed when determining the distance, so long
as the result is never greater than the entry's actual distance. Thus,
for example, distance to a bounding box is usually sufficient in
geometric applications. For an internal tree node, the distance
returned must not be greater than the distance to any of the child
nodes. If the returned distance is not exact, the function must set
<code class="literal">*recheck</code> to true. (This is not necessary for internal tree
nodes; for them, the calculation is always assumed to be inexact.) In
this case the executor will calculate the accurate distance after
fetching the tuple from the heap, and reorder the tuples if necessary.
</p><p>
If the distance function returns <code class="literal">*recheck = true</code> for any
leaf node, the original ordering operator's return type must
be <code class="type">float8</code> or <code class="type">float4</code>, and the distance function's
result values must be comparable to those of the original ordering
operator, since the executor will sort using both distance function
results and recalculated ordering-operator results. Otherwise, the
distance function's result values can be any finite <code class="type">float8</code>
values, so long as the relative order of the result values matches the
order returned by the ordering operator. (Infinity and minus infinity
are used internally to handle cases such as nulls, so it is not
recommended that <code class="function">distance</code> functions return these values.)
</p></dd><dt><span class="term"><code class="function">fetch</code></span></dt><dd><p>
Converts the compressed index representation of a data item into the
original data type, for index-only scans. The returned data must be an
exact, non-lossy copy of the originally indexed value.
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_fetch(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</pre><p>
The argument is a pointer to a <code class="structname">GISTENTRY</code> struct. On
entry, its <code class="structfield">key</code> field contains a non-NULL leaf datum in
compressed form. The return value is another <code class="structname">GISTENTRY</code>
struct, whose <code class="structfield">key</code> field contains the same datum in its
original, uncompressed form. If the opclass's compress function does
nothing for leaf entries, the <code class="function">fetch</code> method can return the
argument as-is. Or, if the opclass does not have a compress function,
the <code class="function">fetch</code> method can be omitted as well, since it would
necessarily be a no-op.
</p><p>
The matching code in the C module could then follow this skeleton:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(my_fetch);
Datum
my_fetch(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
input_data_type *in = DatumGetPointer(entry->key);
fetched_data_type *fetched_data;
GISTENTRY *retval;
retval = palloc(sizeof(GISTENTRY));
fetched_data = palloc(sizeof(fetched_data_type));
/*
* Convert 'fetched_data' into the a Datum of the original datatype.
*/
/* fill *retval from fetched_data. */
gistentryinit(*retval, PointerGetDatum(converted_datum),
entry->rel, entry->page, entry->offset, FALSE);
PG_RETURN_POINTER(retval);
}
</pre><p>
</p><p>
If the compress method is lossy for leaf entries, the operator class
cannot support index-only scans, and must not define
a <code class="function">fetch</code> function.
</p></dd><dt><span class="term"><code class="function">options</code></span></dt><dd><p>
Allows definition of user-visible parameters that control operator
class behavior.
</p><p>
The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</pre><p>
</p><p>
The function is passed a pointer to a <em class="replaceable"><code>local_relopts</code></em>
struct, which needs to be filled with a set of operator class
specific options. The options can be accessed from other support
functions using the <code class="literal">PG_HAS_OPCLASS_OPTIONS()</code> and
<code class="literal">PG_GET_OPCLASS_OPTIONS()</code> macros.
</p><p>
An example implementation of my_options() and parameters use
from other support functions are given below:
</p><pre class="programlisting">
typedef enum MyEnumType
{
MY_ENUM_ON,
MY_ENUM_OFF,
MY_ENUM_AUTO
} MyEnumType;
typedef struct
{
int32 vl_len_; /* varlena header (do not touch directly!) */
int int_param; /* integer parameter */
double real_param; /* real parameter */
MyEnumType enum_param; /* enum parameter */
int str_param; /* string parameter */
} MyOptionsStruct;
/* String representation of enum values */
static relopt_enum_elt_def myEnumValues[] =
{
{"on", MY_ENUM_ON},
{"off", MY_ENUM_OFF},
{"auto", MY_ENUM_AUTO},
{(const char *) NULL} /* list terminator */
};
static char *str_param_default = "default";
/*
* Sample validator: checks that string is not longer than 8 bytes.
*/
static void
validate_my_string_relopt(const char *value)
{
if (strlen(value) > 8)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("str_param must be at most 8 bytes")));
}
/*
* Sample filler: switches characters to lower case.
*/
static Size
fill_my_string_relopt(const char *value, void *ptr)
{
char *tmp = str_tolower(value, strlen(value), DEFAULT_COLLATION_OID);
int len = strlen(tmp);
if (ptr)
strcpy((char *) ptr, tmp);
pfree(tmp);
return len + 1;
}
PG_FUNCTION_INFO_V1(my_options);
Datum
my_options(PG_FUNCTION_ARGS)
{
local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
init_local_reloptions(relopts, sizeof(MyOptionsStruct));
add_local_int_reloption(relopts, "int_param", "integer parameter",
100, 0, 1000000,
offsetof(MyOptionsStruct, int_param));
add_local_real_reloption(relopts, "real_param", "real parameter",
1.0, 0.0, 1000000.0,
offsetof(MyOptionsStruct, real_param));
add_local_enum_reloption(relopts, "enum_param", "enum parameter",
myEnumValues, MY_ENUM_ON,
"Valid values are: \"on\", \"off\" and \"auto\".",
offsetof(MyOptionsStruct, enum_param));
add_local_string_reloption(relopts, "str_param", "string parameter",
str_param_default,
&validate_my_string_relopt,
&fill_my_string_relopt,
offsetof(MyOptionsStruct, str_param));
PG_RETURN_VOID();
}
PG_FUNCTION_INFO_V1(my_compress);
Datum
my_compress(PG_FUNCTION_ARGS)
{
int int_param = 100;
double real_param = 1.0;
MyEnumType enum_param = MY_ENUM_ON;
char *str_param = str_param_default;
/*
* Normally, when opclass contains 'options' method, then options are always
* passed to support functions. However, if you add 'options' method to
* existing opclass, previously defined indexes have no options, so the
* check is required.
*/
if (PG_HAS_OPCLASS_OPTIONS())
{
MyOptionsStruct *options = (MyOptionsStruct *) PG_GET_OPCLASS_OPTIONS();
int_param = options->int_param;
real_param = options->real_param;
enum_param = options->enum_param;
str_param = GET_STRING_RELOPTION(options, str_param);
}
/* the rest implementation of support function */
}
</pre><p>
</p><p>
Since the representation of the key in <acronym class="acronym">GiST</acronym> is
flexible, it may depend on user-specified parameters. For instance,
the length of key signature may be specified. See
<code class="literal">gtsvector_options()</code> for example.
</p></dd></dl></div><p>
All the GiST support methods are normally called in short-lived memory
contexts; that is, <code class="varname">CurrentMemoryContext</code> will get reset after
each tuple is processed. It is therefore not very important to worry about
pfree'ing everything you palloc. However, in some cases it's useful for a
support method to cache data across repeated calls. To do that, allocate
the longer-lived data in <code class="literal">fcinfo->flinfo->fn_mcxt</code>, and
keep a pointer to it in <code class="literal">fcinfo->flinfo->fn_extra</code>. Such
data will survive for the life of the index operation (e.g., a single GiST
index scan, index build, or index tuple insertion). Be careful to pfree
the previous value when replacing a <code class="literal">fn_extra</code> value, or the leak
will accumulate for the duration of the operation.
</p></div><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navfooter"><hr></hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="gist-builtin-opclasses.html" title="64.2. Built-in Operator Classes">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="gist.html" title="Chapter 64. GiST Indexes">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="gist-implementation.html" title="64.4. Implementation">Next</a></td></tr><tr><td width="40%" align="left" valign="top">64.2. Built-in Operator Classes </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 13.4 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 64.4. Implementation</td></tr></table></div></body></html>
|