summaryrefslogtreecommitdiffstats
path: root/contrib/pgcrypto/crypt-des.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /contrib/pgcrypto/crypt-des.c
parentInitial commit. (diff)
downloadpostgresql-14-upstream.tar.xz
postgresql-14-upstream.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--contrib/pgcrypto/crypt-des.c791
1 files changed, 791 insertions, 0 deletions
diff --git a/contrib/pgcrypto/crypt-des.c b/contrib/pgcrypto/crypt-des.c
new file mode 100644
index 0000000..98c30ea
--- /dev/null
+++ b/contrib/pgcrypto/crypt-des.c
@@ -0,0 +1,791 @@
+/*
+ * FreeSec: libcrypt for NetBSD
+ *
+ * contrib/pgcrypto/crypt-des.c
+ *
+ * Copyright (c) 1994 David Burren
+ * All rights reserved.
+ *
+ * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
+ * this file should now *only* export crypt(), in order to make
+ * binaries of libcrypt exportable from the USA
+ *
+ * Adapted for FreeBSD-4.0 by Mark R V Murray
+ * this file should now *only* export px_crypt_des(), in order to make
+ * a module that can be optionally included in libcrypt.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the author nor the names of other contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $
+ *
+ * This is an original implementation of the DES and the crypt(3) interfaces
+ * by David Burren <davidb@werj.com.au>.
+ *
+ * An excellent reference on the underlying algorithm (and related
+ * algorithms) is:
+ *
+ * B. Schneier, Applied Cryptography: protocols, algorithms,
+ * and source code in C, John Wiley & Sons, 1994.
+ *
+ * Note that in that book's description of DES the lookups for the initial,
+ * pbox, and final permutations are inverted (this has been brought to the
+ * attention of the author). A list of errata for this book has been
+ * posted to the sci.crypt newsgroup by the author and is available for FTP.
+ *
+ * ARCHITECTURE ASSUMPTIONS:
+ * It is assumed that the 8-byte arrays passed by reference can be
+ * addressed as arrays of uint32's (ie. the CPU is not picky about
+ * alignment).
+ */
+
+#include "postgres.h"
+#include "miscadmin.h"
+#include "port/pg_bswap.h"
+
+#include "px-crypt.h"
+
+#define _PASSWORD_EFMT1 '_'
+
+static const char _crypt_a64[] =
+"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+
+static uint8 IP[64] = {
+ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
+ 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
+ 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
+ 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
+};
+
+static uint8 inv_key_perm[64];
+static uint8 u_key_perm[56];
+static uint8 key_perm[56] = {
+ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
+ 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
+ 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
+ 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
+};
+
+static uint8 key_shifts[16] = {
+ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
+};
+
+static uint8 inv_comp_perm[56];
+static uint8 comp_perm[48] = {
+ 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
+ 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
+ 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
+ 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
+};
+
+/*
+ * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
+ */
+
+static uint8 u_sbox[8][64];
+static uint8 sbox[8][64] = {
+ {
+ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
+ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
+ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
+ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
+ },
+ {
+ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
+ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
+ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
+ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
+ },
+ {
+ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
+ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
+ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
+ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
+ },
+ {
+ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
+ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
+ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
+ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
+ },
+ {
+ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
+ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
+ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
+ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
+ },
+ {
+ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
+ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
+ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
+ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
+ },
+ {
+ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
+ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
+ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
+ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
+ },
+ {
+ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
+ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
+ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
+ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
+ }
+};
+
+static uint8 un_pbox[32];
+static uint8 pbox[32] = {
+ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
+ 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
+};
+
+static uint32 _crypt_bits32[32] =
+{
+ 0x80000000, 0x40000000, 0x20000000, 0x10000000,
+ 0x08000000, 0x04000000, 0x02000000, 0x01000000,
+ 0x00800000, 0x00400000, 0x00200000, 0x00100000,
+ 0x00080000, 0x00040000, 0x00020000, 0x00010000,
+ 0x00008000, 0x00004000, 0x00002000, 0x00001000,
+ 0x00000800, 0x00000400, 0x00000200, 0x00000100,
+ 0x00000080, 0x00000040, 0x00000020, 0x00000010,
+ 0x00000008, 0x00000004, 0x00000002, 0x00000001
+};
+
+static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
+
+static uint32 saltbits;
+static long old_salt;
+static uint32 *bits28,
+ *bits24;
+static uint8 init_perm[64],
+ final_perm[64];
+static uint32 en_keysl[16],
+ en_keysr[16];
+static uint32 de_keysl[16],
+ de_keysr[16];
+static int des_initialised = 0;
+static uint8 m_sbox[4][4096];
+static uint32 psbox[4][256];
+static uint32 ip_maskl[8][256],
+ ip_maskr[8][256];
+static uint32 fp_maskl[8][256],
+ fp_maskr[8][256];
+static uint32 key_perm_maskl[8][128],
+ key_perm_maskr[8][128];
+static uint32 comp_maskl[8][128],
+ comp_maskr[8][128];
+static uint32 old_rawkey0,
+ old_rawkey1;
+
+static inline int
+ascii_to_bin(char ch)
+{
+ if (ch > 'z')
+ return 0;
+ if (ch >= 'a')
+ return (ch - 'a' + 38);
+ if (ch > 'Z')
+ return 0;
+ if (ch >= 'A')
+ return (ch - 'A' + 12);
+ if (ch > '9')
+ return 0;
+ if (ch >= '.')
+ return (ch - '.');
+ return 0;
+}
+
+static void
+des_init(void)
+{
+ int i,
+ j,
+ b,
+ k,
+ inbit,
+ obit;
+ uint32 *p,
+ *il,
+ *ir,
+ *fl,
+ *fr;
+
+ old_rawkey0 = old_rawkey1 = 0L;
+ saltbits = 0L;
+ old_salt = 0L;
+ bits24 = (bits28 = _crypt_bits32 + 4) + 4;
+
+ /*
+ * Invert the S-boxes, reordering the input bits.
+ */
+ for (i = 0; i < 8; i++)
+ for (j = 0; j < 64; j++)
+ {
+ b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
+ u_sbox[i][j] = sbox[i][b];
+ }
+
+ /*
+ * Convert the inverted S-boxes into 4 arrays of 8 bits. Each will handle
+ * 12 bits of the S-box input.
+ */
+ for (b = 0; b < 4; b++)
+ for (i = 0; i < 64; i++)
+ for (j = 0; j < 64; j++)
+ m_sbox[b][(i << 6) | j] =
+ (u_sbox[(b << 1)][i] << 4) |
+ u_sbox[(b << 1) + 1][j];
+
+ /*
+ * Set up the initial & final permutations into a useful form, and
+ * initialise the inverted key permutation.
+ */
+ for (i = 0; i < 64; i++)
+ {
+ init_perm[final_perm[i] = IP[i] - 1] = i;
+ inv_key_perm[i] = 255;
+ }
+
+ /*
+ * Invert the key permutation and initialise the inverted key compression
+ * permutation.
+ */
+ for (i = 0; i < 56; i++)
+ {
+ u_key_perm[i] = key_perm[i] - 1;
+ inv_key_perm[key_perm[i] - 1] = i;
+ inv_comp_perm[i] = 255;
+ }
+
+ /*
+ * Invert the key compression permutation.
+ */
+ for (i = 0; i < 48; i++)
+ inv_comp_perm[comp_perm[i] - 1] = i;
+
+ /*
+ * Set up the OR-mask arrays for the initial and final permutations, and
+ * for the key initial and compression permutations.
+ */
+ for (k = 0; k < 8; k++)
+ {
+ for (i = 0; i < 256; i++)
+ {
+ *(il = &ip_maskl[k][i]) = 0L;
+ *(ir = &ip_maskr[k][i]) = 0L;
+ *(fl = &fp_maskl[k][i]) = 0L;
+ *(fr = &fp_maskr[k][i]) = 0L;
+ for (j = 0; j < 8; j++)
+ {
+ inbit = 8 * k + j;
+ if (i & _crypt_bits8[j])
+ {
+ if ((obit = init_perm[inbit]) < 32)
+ *il |= _crypt_bits32[obit];
+ else
+ *ir |= _crypt_bits32[obit - 32];
+ if ((obit = final_perm[inbit]) < 32)
+ *fl |= _crypt_bits32[obit];
+ else
+ *fr |= _crypt_bits32[obit - 32];
+ }
+ }
+ }
+ for (i = 0; i < 128; i++)
+ {
+ *(il = &key_perm_maskl[k][i]) = 0L;
+ *(ir = &key_perm_maskr[k][i]) = 0L;
+ for (j = 0; j < 7; j++)
+ {
+ inbit = 8 * k + j;
+ if (i & _crypt_bits8[j + 1])
+ {
+ if ((obit = inv_key_perm[inbit]) == 255)
+ continue;
+ if (obit < 28)
+ *il |= bits28[obit];
+ else
+ *ir |= bits28[obit - 28];
+ }
+ }
+ *(il = &comp_maskl[k][i]) = 0L;
+ *(ir = &comp_maskr[k][i]) = 0L;
+ for (j = 0; j < 7; j++)
+ {
+ inbit = 7 * k + j;
+ if (i & _crypt_bits8[j + 1])
+ {
+ if ((obit = inv_comp_perm[inbit]) == 255)
+ continue;
+ if (obit < 24)
+ *il |= bits24[obit];
+ else
+ *ir |= bits24[obit - 24];
+ }
+ }
+ }
+ }
+
+ /*
+ * Invert the P-box permutation, and convert into OR-masks for handling
+ * the output of the S-box arrays setup above.
+ */
+ for (i = 0; i < 32; i++)
+ un_pbox[pbox[i] - 1] = i;
+
+ for (b = 0; b < 4; b++)
+ for (i = 0; i < 256; i++)
+ {
+ *(p = &psbox[b][i]) = 0L;
+ for (j = 0; j < 8; j++)
+ {
+ if (i & _crypt_bits8[j])
+ *p |= _crypt_bits32[un_pbox[8 * b + j]];
+ }
+ }
+
+ des_initialised = 1;
+}
+
+static void
+setup_salt(long salt)
+{
+ uint32 obit,
+ saltbit;
+ int i;
+
+ if (salt == old_salt)
+ return;
+ old_salt = salt;
+
+ saltbits = 0L;
+ saltbit = 1;
+ obit = 0x800000;
+ for (i = 0; i < 24; i++)
+ {
+ if (salt & saltbit)
+ saltbits |= obit;
+ saltbit <<= 1;
+ obit >>= 1;
+ }
+}
+
+static int
+des_setkey(const char *key)
+{
+ uint32 k0,
+ k1,
+ rawkey0,
+ rawkey1;
+ int shifts,
+ round;
+
+ if (!des_initialised)
+ des_init();
+
+ rawkey0 = pg_ntoh32(*(const uint32 *) key);
+ rawkey1 = pg_ntoh32(*(const uint32 *) (key + 4));
+
+ if ((rawkey0 | rawkey1)
+ && rawkey0 == old_rawkey0
+ && rawkey1 == old_rawkey1)
+ {
+ /*
+ * Already setup for this key. This optimization fails on a zero key
+ * (which is weak and has bad parity anyway) in order to simplify the
+ * starting conditions.
+ */
+ return 0;
+ }
+ old_rawkey0 = rawkey0;
+ old_rawkey1 = rawkey1;
+
+ /*
+ * Do key permutation and split into two 28-bit subkeys.
+ */
+ k0 = key_perm_maskl[0][rawkey0 >> 25]
+ | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskl[4][rawkey1 >> 25]
+ | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
+ k1 = key_perm_maskr[0][rawkey0 >> 25]
+ | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskr[4][rawkey1 >> 25]
+ | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
+
+ /*
+ * Rotate subkeys and do compression permutation.
+ */
+ shifts = 0;
+ for (round = 0; round < 16; round++)
+ {
+ uint32 t0,
+ t1;
+
+ shifts += key_shifts[round];
+
+ t0 = (k0 << shifts) | (k0 >> (28 - shifts));
+ t1 = (k1 << shifts) | (k1 >> (28 - shifts));
+
+ de_keysl[15 - round] =
+ en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
+ | comp_maskl[1][(t0 >> 14) & 0x7f]
+ | comp_maskl[2][(t0 >> 7) & 0x7f]
+ | comp_maskl[3][t0 & 0x7f]
+ | comp_maskl[4][(t1 >> 21) & 0x7f]
+ | comp_maskl[5][(t1 >> 14) & 0x7f]
+ | comp_maskl[6][(t1 >> 7) & 0x7f]
+ | comp_maskl[7][t1 & 0x7f];
+
+ de_keysr[15 - round] =
+ en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
+ | comp_maskr[1][(t0 >> 14) & 0x7f]
+ | comp_maskr[2][(t0 >> 7) & 0x7f]
+ | comp_maskr[3][t0 & 0x7f]
+ | comp_maskr[4][(t1 >> 21) & 0x7f]
+ | comp_maskr[5][(t1 >> 14) & 0x7f]
+ | comp_maskr[6][(t1 >> 7) & 0x7f]
+ | comp_maskr[7][t1 & 0x7f];
+ }
+ return 0;
+}
+
+static int
+do_des(uint32 l_in, uint32 r_in, uint32 *l_out, uint32 *r_out, int count)
+{
+ /*
+ * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
+ */
+ uint32 l,
+ r,
+ *kl,
+ *kr,
+ *kl1,
+ *kr1;
+ uint32 f,
+ r48l,
+ r48r;
+ int round;
+
+ if (count == 0)
+ return 1;
+ else if (count > 0)
+ {
+ /*
+ * Encrypting
+ */
+ kl1 = en_keysl;
+ kr1 = en_keysr;
+ }
+ else
+ {
+ /*
+ * Decrypting
+ */
+ count = -count;
+ kl1 = de_keysl;
+ kr1 = de_keysr;
+ }
+
+ /*
+ * Do initial permutation (IP).
+ */
+ l = ip_maskl[0][l_in >> 24]
+ | ip_maskl[1][(l_in >> 16) & 0xff]
+ | ip_maskl[2][(l_in >> 8) & 0xff]
+ | ip_maskl[3][l_in & 0xff]
+ | ip_maskl[4][r_in >> 24]
+ | ip_maskl[5][(r_in >> 16) & 0xff]
+ | ip_maskl[6][(r_in >> 8) & 0xff]
+ | ip_maskl[7][r_in & 0xff];
+ r = ip_maskr[0][l_in >> 24]
+ | ip_maskr[1][(l_in >> 16) & 0xff]
+ | ip_maskr[2][(l_in >> 8) & 0xff]
+ | ip_maskr[3][l_in & 0xff]
+ | ip_maskr[4][r_in >> 24]
+ | ip_maskr[5][(r_in >> 16) & 0xff]
+ | ip_maskr[6][(r_in >> 8) & 0xff]
+ | ip_maskr[7][r_in & 0xff];
+
+ while (count--)
+ {
+ CHECK_FOR_INTERRUPTS();
+
+ /*
+ * Do each round.
+ */
+ kl = kl1;
+ kr = kr1;
+ round = 16;
+ while (round--)
+ {
+ /*
+ * Expand R to 48 bits (simulate the E-box).
+ */
+ r48l = ((r & 0x00000001) << 23)
+ | ((r & 0xf8000000) >> 9)
+ | ((r & 0x1f800000) >> 11)
+ | ((r & 0x01f80000) >> 13)
+ | ((r & 0x001f8000) >> 15);
+
+ r48r = ((r & 0x0001f800) << 7)
+ | ((r & 0x00001f80) << 5)
+ | ((r & 0x000001f8) << 3)
+ | ((r & 0x0000001f) << 1)
+ | ((r & 0x80000000) >> 31);
+
+ /*
+ * Do salting for crypt() and friends, and XOR with the permuted
+ * key.
+ */
+ f = (r48l ^ r48r) & saltbits;
+ r48l ^= f ^ *kl++;
+ r48r ^= f ^ *kr++;
+
+ /*
+ * Do sbox lookups (which shrink it back to 32 bits) and do the
+ * pbox permutation at the same time.
+ */
+ f = psbox[0][m_sbox[0][r48l >> 12]]
+ | psbox[1][m_sbox[1][r48l & 0xfff]]
+ | psbox[2][m_sbox[2][r48r >> 12]]
+ | psbox[3][m_sbox[3][r48r & 0xfff]];
+
+ /*
+ * Now that we've permuted things, complete f().
+ */
+ f ^= l;
+ l = r;
+ r = f;
+ }
+ r = l;
+ l = f;
+ }
+
+ /*
+ * Do final permutation (inverse of IP).
+ */
+ *l_out = fp_maskl[0][l >> 24]
+ | fp_maskl[1][(l >> 16) & 0xff]
+ | fp_maskl[2][(l >> 8) & 0xff]
+ | fp_maskl[3][l & 0xff]
+ | fp_maskl[4][r >> 24]
+ | fp_maskl[5][(r >> 16) & 0xff]
+ | fp_maskl[6][(r >> 8) & 0xff]
+ | fp_maskl[7][r & 0xff];
+ *r_out = fp_maskr[0][l >> 24]
+ | fp_maskr[1][(l >> 16) & 0xff]
+ | fp_maskr[2][(l >> 8) & 0xff]
+ | fp_maskr[3][l & 0xff]
+ | fp_maskr[4][r >> 24]
+ | fp_maskr[5][(r >> 16) & 0xff]
+ | fp_maskr[6][(r >> 8) & 0xff]
+ | fp_maskr[7][r & 0xff];
+ return 0;
+}
+
+static int
+des_cipher(const char *in, char *out, long salt, int count)
+{
+ uint32 buffer[2];
+ uint32 l_out,
+ r_out,
+ rawl,
+ rawr;
+ int retval;
+
+ if (!des_initialised)
+ des_init();
+
+ setup_salt(salt);
+
+ /* copy data to avoid assuming input is word-aligned */
+ memcpy(buffer, in, sizeof(buffer));
+
+ rawl = pg_ntoh32(buffer[0]);
+ rawr = pg_ntoh32(buffer[1]);
+
+ retval = do_des(rawl, rawr, &l_out, &r_out, count);
+ if (retval)
+ return retval;
+
+ buffer[0] = pg_hton32(l_out);
+ buffer[1] = pg_hton32(r_out);
+
+ /* copy data to avoid assuming output is word-aligned */
+ memcpy(out, buffer, sizeof(buffer));
+
+ return retval;
+}
+
+char *
+px_crypt_des(const char *key, const char *setting)
+{
+ int i;
+ uint32 count,
+ salt,
+ l,
+ r0,
+ r1,
+ keybuf[2];
+ char *p;
+ uint8 *q;
+ static char output[21];
+
+ if (!des_initialised)
+ des_init();
+
+
+ /*
+ * Copy the key, shifting each character up by one bit and padding with
+ * zeros.
+ */
+ q = (uint8 *) keybuf;
+ while (q - (uint8 *) keybuf - 8)
+ {
+ *q++ = *key << 1;
+ if (*key != '\0')
+ key++;
+ }
+ if (des_setkey((char *) keybuf))
+ return NULL;
+
+#ifndef DISABLE_XDES
+ if (*setting == _PASSWORD_EFMT1)
+ {
+ /*
+ * "new"-style: setting must be a 9-character (underscore, then 4
+ * bytes of count, then 4 bytes of salt) string. See CRYPT(3) under
+ * the "Extended crypt" heading for further details.
+ *
+ * Unlimited characters of the input key are used. This is known as
+ * the "Extended crypt" DES method.
+ *
+ */
+ if (strlen(setting) < 9)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
+ errmsg("invalid salt")));
+
+ for (i = 1, count = 0L; i < 5; i++)
+ count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
+
+ for (i = 5, salt = 0L; i < 9; i++)
+ salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
+
+ while (*key)
+ {
+ /*
+ * Encrypt the key with itself.
+ */
+ if (des_cipher((char *) keybuf, (char *) keybuf, 0L, 1))
+ return NULL;
+
+ /*
+ * And XOR with the next 8 characters of the key.
+ */
+ q = (uint8 *) keybuf;
+ while (q - (uint8 *) keybuf - 8 && *key)
+ *q++ ^= *key++ << 1;
+
+ if (des_setkey((char *) keybuf))
+ return NULL;
+ }
+ strlcpy(output, setting, 10);
+
+ /*
+ * Double check that we weren't given a short setting. If we were, the
+ * above code will probably have created weird values for count and
+ * salt, but we don't really care. Just make sure the output string
+ * doesn't have an extra NUL in it.
+ */
+ p = output + strlen(output);
+ }
+ else
+#endif /* !DISABLE_XDES */
+ {
+ /*
+ * "old"-style: setting - 2 bytes of salt key - only up to the first 8
+ * characters of the input key are used.
+ */
+ count = 25;
+
+ if (strlen(setting) < 2)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
+ errmsg("invalid salt")));
+
+ salt = (ascii_to_bin(setting[1]) << 6)
+ | ascii_to_bin(setting[0]);
+
+ output[0] = setting[0];
+
+ /*
+ * If the encrypted password that the salt was extracted from is only
+ * 1 character long, the salt will be corrupted. We need to ensure
+ * that the output string doesn't have an extra NUL in it!
+ */
+ output[1] = setting[1] ? setting[1] : output[0];
+
+ p = output + 2;
+ }
+ setup_salt(salt);
+
+ /*
+ * Do it.
+ */
+ if (do_des(0L, 0L, &r0, &r1, count))
+ return NULL;
+
+ /*
+ * Now encode the result...
+ */
+ l = (r0 >> 8);
+ *p++ = _crypt_a64[(l >> 18) & 0x3f];
+ *p++ = _crypt_a64[(l >> 12) & 0x3f];
+ *p++ = _crypt_a64[(l >> 6) & 0x3f];
+ *p++ = _crypt_a64[l & 0x3f];
+
+ l = (r0 << 16) | ((r1 >> 16) & 0xffff);
+ *p++ = _crypt_a64[(l >> 18) & 0x3f];
+ *p++ = _crypt_a64[(l >> 12) & 0x3f];
+ *p++ = _crypt_a64[(l >> 6) & 0x3f];
+ *p++ = _crypt_a64[l & 0x3f];
+
+ l = r1 << 2;
+ *p++ = _crypt_a64[(l >> 12) & 0x3f];
+ *p++ = _crypt_a64[(l >> 6) & 0x3f];
+ *p++ = _crypt_a64[l & 0x3f];
+ *p = 0;
+
+ return output;
+}