diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
commit | 46651ce6fe013220ed397add242004d764fc0153 (patch) | |
tree | 6e5299f990f88e60174a1d3ae6e48eedd2688b2b /contrib/pgcrypto/rijndael.c | |
parent | Initial commit. (diff) | |
download | postgresql-14-46651ce6fe013220ed397add242004d764fc0153.tar.xz postgresql-14-46651ce6fe013220ed397add242004d764fc0153.zip |
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'contrib/pgcrypto/rijndael.c')
-rw-r--r-- | contrib/pgcrypto/rijndael.c | 677 |
1 files changed, 677 insertions, 0 deletions
diff --git a/contrib/pgcrypto/rijndael.c b/contrib/pgcrypto/rijndael.c new file mode 100644 index 0000000..6938701 --- /dev/null +++ b/contrib/pgcrypto/rijndael.c @@ -0,0 +1,677 @@ +/* $OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */ + +/* contrib/pgcrypto/rijndael.c */ + +/* This is an independent implementation of the encryption algorithm: */ +/* */ +/* RIJNDAEL by Joan Daemen and Vincent Rijmen */ +/* */ +/* which is a candidate algorithm in the Advanced Encryption Standard */ +/* programme of the US National Institute of Standards and Technology. */ +/* */ +/* Copyright in this implementation is held by Dr B R Gladman but I */ +/* hereby give permission for its free direct or derivative use subject */ +/* to acknowledgment of its origin and compliance with any conditions */ +/* that the originators of the algorithm place on its exploitation. */ +/* */ +/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */ + +/* Timing data for Rijndael (rijndael.c) + +Algorithm: rijndael (rijndael.c) + +128 bit key: +Key Setup: 305/1389 cycles (encrypt/decrypt) +Encrypt: 374 cycles = 68.4 mbits/sec +Decrypt: 352 cycles = 72.7 mbits/sec +Mean: 363 cycles = 70.5 mbits/sec + +192 bit key: +Key Setup: 277/1595 cycles (encrypt/decrypt) +Encrypt: 439 cycles = 58.3 mbits/sec +Decrypt: 425 cycles = 60.2 mbits/sec +Mean: 432 cycles = 59.3 mbits/sec + +256 bit key: +Key Setup: 374/1960 cycles (encrypt/decrypt) +Encrypt: 502 cycles = 51.0 mbits/sec +Decrypt: 498 cycles = 51.4 mbits/sec +Mean: 500 cycles = 51.2 mbits/sec + +*/ + +#include "postgres.h" + +#include <sys/param.h> + +#include "px.h" +#include "rijndael.h" + +#define PRE_CALC_TABLES +#define LARGE_TABLES + +static void gen_tabs(void); + +/* 3. Basic macros for speeding up generic operations */ + +/* Circular rotate of 32 bit values */ + +#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n)))) +#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n)))) + +/* Invert byte order in a 32 bit variable */ + +#define bswap(x) ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00)) + +/* Extract byte from a 32 bit quantity (little endian notation) */ + +#define byte(x,n) ((u1byte)((x) >> (8 * (n)))) + +#ifdef WORDS_BIGENDIAN +#define io_swap(x) bswap(x) +#else +#define io_swap(x) (x) +#endif + +#ifdef PRINT_TABS +#undef PRE_CALC_TABLES +#endif + +#ifdef PRE_CALC_TABLES + +#include "rijndael.tbl" +#define tab_gen 1 +#else /* !PRE_CALC_TABLES */ + +static u1byte pow_tab[256]; +static u1byte log_tab[256]; +static u1byte sbx_tab[256]; +static u1byte isb_tab[256]; +static u4byte rco_tab[10]; +static u4byte ft_tab[4][256]; +static u4byte it_tab[4][256]; + +#ifdef LARGE_TABLES +static u4byte fl_tab[4][256]; +static u4byte il_tab[4][256]; +#endif + +static u4byte tab_gen = 0; +#endif /* !PRE_CALC_TABLES */ + +#define ff_mult(a,b) ((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0) + +#define f_rn(bo, bi, n, k) \ + (bo)[n] = ft_tab[0][byte((bi)[n],0)] ^ \ + ft_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \ + ft_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \ + ft_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n)) + +#define i_rn(bo, bi, n, k) \ + (bo)[n] = it_tab[0][byte((bi)[n],0)] ^ \ + it_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \ + it_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \ + it_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n)) + +#ifdef LARGE_TABLES + +#define ls_box(x) \ + ( fl_tab[0][byte(x, 0)] ^ \ + fl_tab[1][byte(x, 1)] ^ \ + fl_tab[2][byte(x, 2)] ^ \ + fl_tab[3][byte(x, 3)] ) + +#define f_rl(bo, bi, n, k) \ + (bo)[n] = fl_tab[0][byte((bi)[n],0)] ^ \ + fl_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \ + fl_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \ + fl_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n)) + +#define i_rl(bo, bi, n, k) \ + (bo)[n] = il_tab[0][byte((bi)[n],0)] ^ \ + il_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \ + il_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \ + il_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n)) +#else + +#define ls_box(x) \ + ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \ + ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \ + ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \ + ((u4byte)sbx_tab[byte(x, 3)] << 24) + +#define f_rl(bo, bi, n, k) \ + (bo)[n] = (u4byte)sbx_tab[byte((bi)[n],0)] ^ \ + rotl(((u4byte)sbx_tab[byte((bi)[((n) + 1) & 3],1)]), 8) ^ \ + rotl(((u4byte)sbx_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \ + rotl(((u4byte)sbx_tab[byte((bi)[((n) + 3) & 3],3)]), 24) ^ *((k) + (n)) + +#define i_rl(bo, bi, n, k) \ + (bo)[n] = (u4byte)isb_tab[byte((bi)[n],0)] ^ \ + rotl(((u4byte)isb_tab[byte((bi)[((n) + 3) & 3],1)]), 8) ^ \ + rotl(((u4byte)isb_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \ + rotl(((u4byte)isb_tab[byte((bi)[((n) + 1) & 3],3)]), 24) ^ *((k) + (n)) +#endif + +static void +gen_tabs(void) +{ +#ifndef PRE_CALC_TABLES + u4byte i, + t; + u1byte p, + q; + + /* log and power tables for GF(2**8) finite field with */ + /* 0x11b as modular polynomial - the simplest primitive */ + /* root is 0x11, used here to generate the tables */ + + for (i = 0, p = 1; i < 256; ++i) + { + pow_tab[i] = (u1byte) p; + log_tab[p] = (u1byte) i; + + p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0); + } + + log_tab[1] = 0; + p = 1; + + for (i = 0; i < 10; ++i) + { + rco_tab[i] = p; + + p = (p << 1) ^ (p & 0x80 ? 0x1b : 0); + } + + /* note that the affine byte transformation matrix in */ + /* rijndael specification is in big endian format with */ + /* bit 0 as the most significant bit. In the remainder */ + /* of the specification the bits are numbered from the */ + /* least significant end of a byte. */ + + for (i = 0; i < 256; ++i) + { + p = (i ? pow_tab[255 - log_tab[i]] : 0); + q = p; + q = (q >> 7) | (q << 1); + p ^= q; + q = (q >> 7) | (q << 1); + p ^= q; + q = (q >> 7) | (q << 1); + p ^= q; + q = (q >> 7) | (q << 1); + p ^= q ^ 0x63; + sbx_tab[i] = (u1byte) p; + isb_tab[p] = (u1byte) i; + } + + for (i = 0; i < 256; ++i) + { + p = sbx_tab[i]; + +#ifdef LARGE_TABLES + + t = p; + fl_tab[0][i] = t; + fl_tab[1][i] = rotl(t, 8); + fl_tab[2][i] = rotl(t, 16); + fl_tab[3][i] = rotl(t, 24); +#endif + t = ((u4byte) ff_mult(2, p)) | + ((u4byte) p << 8) | + ((u4byte) p << 16) | + ((u4byte) ff_mult(3, p) << 24); + + ft_tab[0][i] = t; + ft_tab[1][i] = rotl(t, 8); + ft_tab[2][i] = rotl(t, 16); + ft_tab[3][i] = rotl(t, 24); + + p = isb_tab[i]; + +#ifdef LARGE_TABLES + + t = p; + il_tab[0][i] = t; + il_tab[1][i] = rotl(t, 8); + il_tab[2][i] = rotl(t, 16); + il_tab[3][i] = rotl(t, 24); +#endif + t = ((u4byte) ff_mult(14, p)) | + ((u4byte) ff_mult(9, p) << 8) | + ((u4byte) ff_mult(13, p) << 16) | + ((u4byte) ff_mult(11, p) << 24); + + it_tab[0][i] = t; + it_tab[1][i] = rotl(t, 8); + it_tab[2][i] = rotl(t, 16); + it_tab[3][i] = rotl(t, 24); + } + + tab_gen = 1; +#endif /* !PRE_CALC_TABLES */ +} + + +#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) + +#define imix_col(y,x) \ +do { \ + u = star_x(x); \ + v = star_x(u); \ + w = star_x(v); \ + t = w ^ (x); \ + (y) = u ^ v ^ w; \ + (y) ^= rotr(u ^ t, 8) ^ \ + rotr(v ^ t, 16) ^ \ + rotr(t,24); \ +} while (0) + +/* initialise the key schedule from the user supplied key */ + +#define loop4(i) \ +do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ + t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \ + t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \ + t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \ + t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \ +} while (0) + +#define loop6(i) \ +do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ + t ^= e_key[6 * (i)]; e_key[6 * (i) + 6] = t; \ + t ^= e_key[6 * (i) + 1]; e_key[6 * (i) + 7] = t; \ + t ^= e_key[6 * (i) + 2]; e_key[6 * (i) + 8] = t; \ + t ^= e_key[6 * (i) + 3]; e_key[6 * (i) + 9] = t; \ + t ^= e_key[6 * (i) + 4]; e_key[6 * (i) + 10] = t; \ + t ^= e_key[6 * (i) + 5]; e_key[6 * (i) + 11] = t; \ +} while (0) + +#define loop8(i) \ +do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ + t ^= e_key[8 * (i)]; e_key[8 * (i) + 8] = t; \ + t ^= e_key[8 * (i) + 1]; e_key[8 * (i) + 9] = t; \ + t ^= e_key[8 * (i) + 2]; e_key[8 * (i) + 10] = t; \ + t ^= e_key[8 * (i) + 3]; e_key[8 * (i) + 11] = t; \ + t = e_key[8 * (i) + 4] ^ ls_box(t); \ + e_key[8 * (i) + 12] = t; \ + t ^= e_key[8 * (i) + 5]; e_key[8 * (i) + 13] = t; \ + t ^= e_key[8 * (i) + 6]; e_key[8 * (i) + 14] = t; \ + t ^= e_key[8 * (i) + 7]; e_key[8 * (i) + 15] = t; \ +} while (0) + +rijndael_ctx * +rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len, + int encrypt) +{ + u4byte i, + t, + u, + v, + w; + u4byte *e_key = ctx->e_key; + u4byte *d_key = ctx->d_key; + + ctx->decrypt = !encrypt; + + if (!tab_gen) + gen_tabs(); + + ctx->k_len = (key_len + 31) / 32; + + e_key[0] = io_swap(in_key[0]); + e_key[1] = io_swap(in_key[1]); + e_key[2] = io_swap(in_key[2]); + e_key[3] = io_swap(in_key[3]); + + switch (ctx->k_len) + { + case 4: + t = e_key[3]; + for (i = 0; i < 10; ++i) + loop4(i); + break; + + case 6: + e_key[4] = io_swap(in_key[4]); + t = e_key[5] = io_swap(in_key[5]); + for (i = 0; i < 8; ++i) + loop6(i); + break; + + case 8: + e_key[4] = io_swap(in_key[4]); + e_key[5] = io_swap(in_key[5]); + e_key[6] = io_swap(in_key[6]); + t = e_key[7] = io_swap(in_key[7]); + for (i = 0; i < 7; ++i) + loop8(i); + break; + } + + if (!encrypt) + { + d_key[0] = e_key[0]; + d_key[1] = e_key[1]; + d_key[2] = e_key[2]; + d_key[3] = e_key[3]; + + for (i = 4; i < 4 * ctx->k_len + 24; ++i) + imix_col(d_key[i], e_key[i]); + } + + return ctx; +} + +/* encrypt a block of text */ + +#define f_nround(bo, bi, k) \ +do { \ + f_rn(bo, bi, 0, k); \ + f_rn(bo, bi, 1, k); \ + f_rn(bo, bi, 2, k); \ + f_rn(bo, bi, 3, k); \ + k += 4; \ +} while (0) + +#define f_lround(bo, bi, k) \ +do { \ + f_rl(bo, bi, 0, k); \ + f_rl(bo, bi, 1, k); \ + f_rl(bo, bi, 2, k); \ + f_rl(bo, bi, 3, k); \ +} while (0) + +void +rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk) +{ + u4byte k_len = ctx->k_len; + u4byte *e_key = ctx->e_key; + u4byte b0[4], + b1[4], + *kp; + + b0[0] = io_swap(in_blk[0]) ^ e_key[0]; + b0[1] = io_swap(in_blk[1]) ^ e_key[1]; + b0[2] = io_swap(in_blk[2]) ^ e_key[2]; + b0[3] = io_swap(in_blk[3]) ^ e_key[3]; + + kp = e_key + 4; + + if (k_len > 6) + { + f_nround(b1, b0, kp); + f_nround(b0, b1, kp); + } + + if (k_len > 4) + { + f_nround(b1, b0, kp); + f_nround(b0, b1, kp); + } + + f_nround(b1, b0, kp); + f_nround(b0, b1, kp); + f_nround(b1, b0, kp); + f_nround(b0, b1, kp); + f_nround(b1, b0, kp); + f_nround(b0, b1, kp); + f_nround(b1, b0, kp); + f_nround(b0, b1, kp); + f_nround(b1, b0, kp); + f_lround(b0, b1, kp); + + out_blk[0] = io_swap(b0[0]); + out_blk[1] = io_swap(b0[1]); + out_blk[2] = io_swap(b0[2]); + out_blk[3] = io_swap(b0[3]); +} + +/* decrypt a block of text */ + +#define i_nround(bo, bi, k) \ +do { \ + i_rn(bo, bi, 0, k); \ + i_rn(bo, bi, 1, k); \ + i_rn(bo, bi, 2, k); \ + i_rn(bo, bi, 3, k); \ + k -= 4; \ +} while (0) + +#define i_lround(bo, bi, k) \ +do { \ + i_rl(bo, bi, 0, k); \ + i_rl(bo, bi, 1, k); \ + i_rl(bo, bi, 2, k); \ + i_rl(bo, bi, 3, k); \ +} while (0) + +void +rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk) +{ + u4byte b0[4], + b1[4], + *kp; + u4byte k_len = ctx->k_len; + u4byte *e_key = ctx->e_key; + u4byte *d_key = ctx->d_key; + + b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24]; + b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25]; + b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26]; + b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27]; + + kp = d_key + 4 * (k_len + 5); + + if (k_len > 6) + { + i_nround(b1, b0, kp); + i_nround(b0, b1, kp); + } + + if (k_len > 4) + { + i_nround(b1, b0, kp); + i_nround(b0, b1, kp); + } + + i_nround(b1, b0, kp); + i_nround(b0, b1, kp); + i_nround(b1, b0, kp); + i_nround(b0, b1, kp); + i_nround(b1, b0, kp); + i_nround(b0, b1, kp); + i_nround(b1, b0, kp); + i_nround(b0, b1, kp); + i_nround(b1, b0, kp); + i_lround(b0, b1, kp); + + out_blk[0] = io_swap(b0[0]); + out_blk[1] = io_swap(b0[1]); + out_blk[2] = io_swap(b0[2]); + out_blk[3] = io_swap(b0[3]); +} + +/* + * conventional interface + * + * ATM it hopes all data is 4-byte aligned - which + * should be true for PX. -marko + */ + +void +aes_set_key(rijndael_ctx *ctx, const uint8 *key, unsigned keybits, int enc) +{ + uint32 *k; + + k = (uint32 *) key; + rijndael_set_key(ctx, k, keybits, enc); +} + +void +aes_ecb_encrypt(rijndael_ctx *ctx, uint8 *data, unsigned len) +{ + unsigned bs = 16; + uint32 *d; + + while (len >= bs) + { + d = (uint32 *) data; + rijndael_encrypt(ctx, d, d); + + len -= bs; + data += bs; + } +} + +void +aes_ecb_decrypt(rijndael_ctx *ctx, uint8 *data, unsigned len) +{ + unsigned bs = 16; + uint32 *d; + + while (len >= bs) + { + d = (uint32 *) data; + rijndael_decrypt(ctx, d, d); + + len -= bs; + data += bs; + } +} + +void +aes_cbc_encrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len) +{ + uint32 *iv = (uint32 *) iva; + uint32 *d = (uint32 *) data; + unsigned bs = 16; + + while (len >= bs) + { + d[0] ^= iv[0]; + d[1] ^= iv[1]; + d[2] ^= iv[2]; + d[3] ^= iv[3]; + + rijndael_encrypt(ctx, d, d); + + iv = d; + d += bs / 4; + len -= bs; + } +} + +void +aes_cbc_decrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len) +{ + uint32 *d = (uint32 *) data; + unsigned bs = 16; + uint32 buf[4], + iv[4]; + + memcpy(iv, iva, bs); + while (len >= bs) + { + buf[0] = d[0]; + buf[1] = d[1]; + buf[2] = d[2]; + buf[3] = d[3]; + + rijndael_decrypt(ctx, buf, d); + + d[0] ^= iv[0]; + d[1] ^= iv[1]; + d[2] ^= iv[2]; + d[3] ^= iv[3]; + + iv[0] = buf[0]; + iv[1] = buf[1]; + iv[2] = buf[2]; + iv[3] = buf[3]; + d += 4; + len -= bs; + } +} + +/* + * pre-calculate tables. + * + * On i386 lifts 17k from .bss to .rodata + * and avoids 1k code and setup time. + * -marko + */ +#ifdef PRINT_TABS + +static void +show256u8(char *name, uint8 *data) +{ + int i; + + printf("static const u1byte %s[256] = {\n ", name); + for (i = 0; i < 256;) + { + printf("%u", pow_tab[i++]); + if (i < 256) + printf(i % 16 ? ", " : ",\n "); + } + printf("\n};\n\n"); +} + + +static void +show4x256u32(char *name, uint32 data[4][256]) +{ + int i, + j; + + printf("static const u4byte %s[4][256] = {\n{\n ", name); + for (i = 0; i < 4; i++) + { + for (j = 0; j < 256;) + { + printf("0x%08x", data[i][j]); + j++; + if (j < 256) + printf(j % 4 ? ", " : ",\n "); + } + printf(i < 3 ? "\n}, {\n " : "\n}\n"); + } + printf("};\n\n"); +} + +int +main() +{ + int i; + char *hdr = "/* Generated by rijndael.c */\n\n"; + + gen_tabs(); + + printf(hdr); + show256u8("pow_tab", pow_tab); + show256u8("log_tab", log_tab); + show256u8("sbx_tab", sbx_tab); + show256u8("isb_tab", isb_tab); + + show4x256u32("ft_tab", ft_tab); + show4x256u32("it_tab", it_tab); +#ifdef LARGE_TABLES + show4x256u32("fl_tab", fl_tab); + show4x256u32("il_tab", il_tab); +#endif + printf("static const u4byte rco_tab[10] = {\n "); + for (i = 0; i < 10; i++) + { + printf("0x%08x", rco_tab[i]); + if (i < 9) + printf(", "); + if (i == 4) + printf("\n "); + } + printf("\n};\n\n"); + return 0; +} + +#endif |