summaryrefslogtreecommitdiffstats
path: root/src/backend/executor/nodeHash.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/executor/nodeHash.c
parentInitial commit. (diff)
downloadpostgresql-14-46651ce6fe013220ed397add242004d764fc0153.tar.xz
postgresql-14-46651ce6fe013220ed397add242004d764fc0153.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/executor/nodeHash.c')
-rw-r--r--src/backend/executor/nodeHash.c3434
1 files changed, 3434 insertions, 0 deletions
diff --git a/src/backend/executor/nodeHash.c b/src/backend/executor/nodeHash.c
new file mode 100644
index 0000000..15d8bbe
--- /dev/null
+++ b/src/backend/executor/nodeHash.c
@@ -0,0 +1,3434 @@
+/*-------------------------------------------------------------------------
+ *
+ * nodeHash.c
+ * Routines to hash relations for hashjoin
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/executor/nodeHash.c
+ *
+ * See note on parallelism in nodeHashjoin.c.
+ *
+ *-------------------------------------------------------------------------
+ */
+/*
+ * INTERFACE ROUTINES
+ * MultiExecHash - generate an in-memory hash table of the relation
+ * ExecInitHash - initialize node and subnodes
+ * ExecEndHash - shutdown node and subnodes
+ */
+
+#include "postgres.h"
+
+#include <math.h>
+#include <limits.h>
+
+#include "access/htup_details.h"
+#include "access/parallel.h"
+#include "catalog/pg_statistic.h"
+#include "commands/tablespace.h"
+#include "executor/execdebug.h"
+#include "executor/hashjoin.h"
+#include "executor/nodeHash.h"
+#include "executor/nodeHashjoin.h"
+#include "miscadmin.h"
+#include "pgstat.h"
+#include "port/atomics.h"
+#include "port/pg_bitutils.h"
+#include "utils/dynahash.h"
+#include "utils/guc.h"
+#include "utils/lsyscache.h"
+#include "utils/memutils.h"
+#include "utils/syscache.h"
+
+static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
+static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable);
+static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable);
+static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable);
+static void ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node,
+ int mcvsToUse);
+static void ExecHashSkewTableInsert(HashJoinTable hashtable,
+ TupleTableSlot *slot,
+ uint32 hashvalue,
+ int bucketNumber);
+static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable);
+
+static void *dense_alloc(HashJoinTable hashtable, Size size);
+static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable,
+ size_t size,
+ dsa_pointer *shared);
+static void MultiExecPrivateHash(HashState *node);
+static void MultiExecParallelHash(HashState *node);
+static inline HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable table,
+ int bucketno);
+static inline HashJoinTuple ExecParallelHashNextTuple(HashJoinTable table,
+ HashJoinTuple tuple);
+static inline void ExecParallelHashPushTuple(dsa_pointer_atomic *head,
+ HashJoinTuple tuple,
+ dsa_pointer tuple_shared);
+static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch);
+static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable);
+static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable);
+static void ExecParallelHashRepartitionRest(HashJoinTable hashtable);
+static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable table,
+ dsa_pointer *shared);
+static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable,
+ int batchno,
+ size_t size);
+static void ExecParallelHashMergeCounters(HashJoinTable hashtable);
+static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable);
+
+
+/* ----------------------------------------------------------------
+ * ExecHash
+ *
+ * stub for pro forma compliance
+ * ----------------------------------------------------------------
+ */
+static TupleTableSlot *
+ExecHash(PlanState *pstate)
+{
+ elog(ERROR, "Hash node does not support ExecProcNode call convention");
+ return NULL;
+}
+
+/* ----------------------------------------------------------------
+ * MultiExecHash
+ *
+ * build hash table for hashjoin, doing partitioning if more
+ * than one batch is required.
+ * ----------------------------------------------------------------
+ */
+Node *
+MultiExecHash(HashState *node)
+{
+ /* must provide our own instrumentation support */
+ if (node->ps.instrument)
+ InstrStartNode(node->ps.instrument);
+
+ if (node->parallel_state != NULL)
+ MultiExecParallelHash(node);
+ else
+ MultiExecPrivateHash(node);
+
+ /* must provide our own instrumentation support */
+ if (node->ps.instrument)
+ InstrStopNode(node->ps.instrument, node->hashtable->partialTuples);
+
+ /*
+ * We do not return the hash table directly because it's not a subtype of
+ * Node, and so would violate the MultiExecProcNode API. Instead, our
+ * parent Hashjoin node is expected to know how to fish it out of our node
+ * state. Ugly but not really worth cleaning up, since Hashjoin knows
+ * quite a bit more about Hash besides that.
+ */
+ return NULL;
+}
+
+/* ----------------------------------------------------------------
+ * MultiExecPrivateHash
+ *
+ * parallel-oblivious version, building a backend-private
+ * hash table and (if necessary) batch files.
+ * ----------------------------------------------------------------
+ */
+static void
+MultiExecPrivateHash(HashState *node)
+{
+ PlanState *outerNode;
+ List *hashkeys;
+ HashJoinTable hashtable;
+ TupleTableSlot *slot;
+ ExprContext *econtext;
+ uint32 hashvalue;
+
+ /*
+ * get state info from node
+ */
+ outerNode = outerPlanState(node);
+ hashtable = node->hashtable;
+
+ /*
+ * set expression context
+ */
+ hashkeys = node->hashkeys;
+ econtext = node->ps.ps_ExprContext;
+
+ /*
+ * Get all tuples from the node below the Hash node and insert into the
+ * hash table (or temp files).
+ */
+ for (;;)
+ {
+ slot = ExecProcNode(outerNode);
+ if (TupIsNull(slot))
+ break;
+ /* We have to compute the hash value */
+ econtext->ecxt_outertuple = slot;
+ if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
+ false, hashtable->keepNulls,
+ &hashvalue))
+ {
+ int bucketNumber;
+
+ bucketNumber = ExecHashGetSkewBucket(hashtable, hashvalue);
+ if (bucketNumber != INVALID_SKEW_BUCKET_NO)
+ {
+ /* It's a skew tuple, so put it into that hash table */
+ ExecHashSkewTableInsert(hashtable, slot, hashvalue,
+ bucketNumber);
+ hashtable->skewTuples += 1;
+ }
+ else
+ {
+ /* Not subject to skew optimization, so insert normally */
+ ExecHashTableInsert(hashtable, slot, hashvalue);
+ }
+ hashtable->totalTuples += 1;
+ }
+ }
+
+ /* resize the hash table if needed (NTUP_PER_BUCKET exceeded) */
+ if (hashtable->nbuckets != hashtable->nbuckets_optimal)
+ ExecHashIncreaseNumBuckets(hashtable);
+
+ /* Account for the buckets in spaceUsed (reported in EXPLAIN ANALYZE) */
+ hashtable->spaceUsed += hashtable->nbuckets * sizeof(HashJoinTuple);
+ if (hashtable->spaceUsed > hashtable->spacePeak)
+ hashtable->spacePeak = hashtable->spaceUsed;
+
+ hashtable->partialTuples = hashtable->totalTuples;
+}
+
+/* ----------------------------------------------------------------
+ * MultiExecParallelHash
+ *
+ * parallel-aware version, building a shared hash table and
+ * (if necessary) batch files using the combined effort of
+ * a set of co-operating backends.
+ * ----------------------------------------------------------------
+ */
+static void
+MultiExecParallelHash(HashState *node)
+{
+ ParallelHashJoinState *pstate;
+ PlanState *outerNode;
+ List *hashkeys;
+ HashJoinTable hashtable;
+ TupleTableSlot *slot;
+ ExprContext *econtext;
+ uint32 hashvalue;
+ Barrier *build_barrier;
+ int i;
+
+ /*
+ * get state info from node
+ */
+ outerNode = outerPlanState(node);
+ hashtable = node->hashtable;
+
+ /*
+ * set expression context
+ */
+ hashkeys = node->hashkeys;
+ econtext = node->ps.ps_ExprContext;
+
+ /*
+ * Synchronize the parallel hash table build. At this stage we know that
+ * the shared hash table has been or is being set up by
+ * ExecHashTableCreate(), but we don't know if our peers have returned
+ * from there or are here in MultiExecParallelHash(), and if so how far
+ * through they are. To find out, we check the build_barrier phase then
+ * and jump to the right step in the build algorithm.
+ */
+ pstate = hashtable->parallel_state;
+ build_barrier = &pstate->build_barrier;
+ Assert(BarrierPhase(build_barrier) >= PHJ_BUILD_ALLOCATING);
+ switch (BarrierPhase(build_barrier))
+ {
+ case PHJ_BUILD_ALLOCATING:
+
+ /*
+ * Either I just allocated the initial hash table in
+ * ExecHashTableCreate(), or someone else is doing that. Either
+ * way, wait for everyone to arrive here so we can proceed.
+ */
+ BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ALLOCATE);
+ /* Fall through. */
+
+ case PHJ_BUILD_HASHING_INNER:
+
+ /*
+ * It's time to begin hashing, or if we just arrived here then
+ * hashing is already underway, so join in that effort. While
+ * hashing we have to be prepared to help increase the number of
+ * batches or buckets at any time, and if we arrived here when
+ * that was already underway we'll have to help complete that work
+ * immediately so that it's safe to access batches and buckets
+ * below.
+ */
+ if (PHJ_GROW_BATCHES_PHASE(BarrierAttach(&pstate->grow_batches_barrier)) !=
+ PHJ_GROW_BATCHES_ELECTING)
+ ExecParallelHashIncreaseNumBatches(hashtable);
+ if (PHJ_GROW_BUCKETS_PHASE(BarrierAttach(&pstate->grow_buckets_barrier)) !=
+ PHJ_GROW_BUCKETS_ELECTING)
+ ExecParallelHashIncreaseNumBuckets(hashtable);
+ ExecParallelHashEnsureBatchAccessors(hashtable);
+ ExecParallelHashTableSetCurrentBatch(hashtable, 0);
+ for (;;)
+ {
+ slot = ExecProcNode(outerNode);
+ if (TupIsNull(slot))
+ break;
+ econtext->ecxt_outertuple = slot;
+ if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
+ false, hashtable->keepNulls,
+ &hashvalue))
+ ExecParallelHashTableInsert(hashtable, slot, hashvalue);
+ hashtable->partialTuples++;
+ }
+
+ /*
+ * Make sure that any tuples we wrote to disk are visible to
+ * others before anyone tries to load them.
+ */
+ for (i = 0; i < hashtable->nbatch; ++i)
+ sts_end_write(hashtable->batches[i].inner_tuples);
+
+ /*
+ * Update shared counters. We need an accurate total tuple count
+ * to control the empty table optimization.
+ */
+ ExecParallelHashMergeCounters(hashtable);
+
+ BarrierDetach(&pstate->grow_buckets_barrier);
+ BarrierDetach(&pstate->grow_batches_barrier);
+
+ /*
+ * Wait for everyone to finish building and flushing files and
+ * counters.
+ */
+ if (BarrierArriveAndWait(build_barrier,
+ WAIT_EVENT_HASH_BUILD_HASH_INNER))
+ {
+ /*
+ * Elect one backend to disable any further growth. Batches
+ * are now fixed. While building them we made sure they'd fit
+ * in our memory budget when we load them back in later (or we
+ * tried to do that and gave up because we detected extreme
+ * skew).
+ */
+ pstate->growth = PHJ_GROWTH_DISABLED;
+ }
+ }
+
+ /*
+ * We're not yet attached to a batch. We all agree on the dimensions and
+ * number of inner tuples (for the empty table optimization).
+ */
+ hashtable->curbatch = -1;
+ hashtable->nbuckets = pstate->nbuckets;
+ hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
+ hashtable->totalTuples = pstate->total_tuples;
+ ExecParallelHashEnsureBatchAccessors(hashtable);
+
+ /*
+ * The next synchronization point is in ExecHashJoin's HJ_BUILD_HASHTABLE
+ * case, which will bring the build phase to PHJ_BUILD_DONE (if it isn't
+ * there already).
+ */
+ Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER ||
+ BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
+}
+
+/* ----------------------------------------------------------------
+ * ExecInitHash
+ *
+ * Init routine for Hash node
+ * ----------------------------------------------------------------
+ */
+HashState *
+ExecInitHash(Hash *node, EState *estate, int eflags)
+{
+ HashState *hashstate;
+
+ /* check for unsupported flags */
+ Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
+
+ /*
+ * create state structure
+ */
+ hashstate = makeNode(HashState);
+ hashstate->ps.plan = (Plan *) node;
+ hashstate->ps.state = estate;
+ hashstate->ps.ExecProcNode = ExecHash;
+ hashstate->hashtable = NULL;
+ hashstate->hashkeys = NIL; /* will be set by parent HashJoin */
+
+ /*
+ * Miscellaneous initialization
+ *
+ * create expression context for node
+ */
+ ExecAssignExprContext(estate, &hashstate->ps);
+
+ /*
+ * initialize child nodes
+ */
+ outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);
+
+ /*
+ * initialize our result slot and type. No need to build projection
+ * because this node doesn't do projections.
+ */
+ ExecInitResultTupleSlotTL(&hashstate->ps, &TTSOpsMinimalTuple);
+ hashstate->ps.ps_ProjInfo = NULL;
+
+ /*
+ * initialize child expressions
+ */
+ Assert(node->plan.qual == NIL);
+ hashstate->hashkeys =
+ ExecInitExprList(node->hashkeys, (PlanState *) hashstate);
+
+ return hashstate;
+}
+
+/* ---------------------------------------------------------------
+ * ExecEndHash
+ *
+ * clean up routine for Hash node
+ * ----------------------------------------------------------------
+ */
+void
+ExecEndHash(HashState *node)
+{
+ PlanState *outerPlan;
+
+ /*
+ * free exprcontext
+ */
+ ExecFreeExprContext(&node->ps);
+
+ /*
+ * shut down the subplan
+ */
+ outerPlan = outerPlanState(node);
+ ExecEndNode(outerPlan);
+}
+
+
+/* ----------------------------------------------------------------
+ * ExecHashTableCreate
+ *
+ * create an empty hashtable data structure for hashjoin.
+ * ----------------------------------------------------------------
+ */
+HashJoinTable
+ExecHashTableCreate(HashState *state, List *hashOperators, List *hashCollations, bool keepNulls)
+{
+ Hash *node;
+ HashJoinTable hashtable;
+ Plan *outerNode;
+ size_t space_allowed;
+ int nbuckets;
+ int nbatch;
+ double rows;
+ int num_skew_mcvs;
+ int log2_nbuckets;
+ int nkeys;
+ int i;
+ ListCell *ho;
+ ListCell *hc;
+ MemoryContext oldcxt;
+
+ /*
+ * Get information about the size of the relation to be hashed (it's the
+ * "outer" subtree of this node, but the inner relation of the hashjoin).
+ * Compute the appropriate size of the hash table.
+ */
+ node = (Hash *) state->ps.plan;
+ outerNode = outerPlan(node);
+
+ /*
+ * If this is shared hash table with a partial plan, then we can't use
+ * outerNode->plan_rows to estimate its size. We need an estimate of the
+ * total number of rows across all copies of the partial plan.
+ */
+ rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;
+
+ ExecChooseHashTableSize(rows, outerNode->plan_width,
+ OidIsValid(node->skewTable),
+ state->parallel_state != NULL,
+ state->parallel_state != NULL ?
+ state->parallel_state->nparticipants - 1 : 0,
+ &space_allowed,
+ &nbuckets, &nbatch, &num_skew_mcvs);
+
+ /* nbuckets must be a power of 2 */
+ log2_nbuckets = my_log2(nbuckets);
+ Assert(nbuckets == (1 << log2_nbuckets));
+
+ /*
+ * Initialize the hash table control block.
+ *
+ * The hashtable control block is just palloc'd from the executor's
+ * per-query memory context. Everything else should be kept inside the
+ * subsidiary hashCxt or batchCxt.
+ */
+ hashtable = (HashJoinTable) palloc(sizeof(HashJoinTableData));
+ hashtable->nbuckets = nbuckets;
+ hashtable->nbuckets_original = nbuckets;
+ hashtable->nbuckets_optimal = nbuckets;
+ hashtable->log2_nbuckets = log2_nbuckets;
+ hashtable->log2_nbuckets_optimal = log2_nbuckets;
+ hashtable->buckets.unshared = NULL;
+ hashtable->keepNulls = keepNulls;
+ hashtable->skewEnabled = false;
+ hashtable->skewBucket = NULL;
+ hashtable->skewBucketLen = 0;
+ hashtable->nSkewBuckets = 0;
+ hashtable->skewBucketNums = NULL;
+ hashtable->nbatch = nbatch;
+ hashtable->curbatch = 0;
+ hashtable->nbatch_original = nbatch;
+ hashtable->nbatch_outstart = nbatch;
+ hashtable->growEnabled = true;
+ hashtable->totalTuples = 0;
+ hashtable->partialTuples = 0;
+ hashtable->skewTuples = 0;
+ hashtable->innerBatchFile = NULL;
+ hashtable->outerBatchFile = NULL;
+ hashtable->spaceUsed = 0;
+ hashtable->spacePeak = 0;
+ hashtable->spaceAllowed = space_allowed;
+ hashtable->spaceUsedSkew = 0;
+ hashtable->spaceAllowedSkew =
+ hashtable->spaceAllowed * SKEW_HASH_MEM_PERCENT / 100;
+ hashtable->chunks = NULL;
+ hashtable->current_chunk = NULL;
+ hashtable->parallel_state = state->parallel_state;
+ hashtable->area = state->ps.state->es_query_dsa;
+ hashtable->batches = NULL;
+
+#ifdef HJDEBUG
+ printf("Hashjoin %p: initial nbatch = %d, nbuckets = %d\n",
+ hashtable, nbatch, nbuckets);
+#endif
+
+ /*
+ * Create temporary memory contexts in which to keep the hashtable working
+ * storage. See notes in executor/hashjoin.h.
+ */
+ hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
+ "HashTableContext",
+ ALLOCSET_DEFAULT_SIZES);
+
+ hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
+ "HashBatchContext",
+ ALLOCSET_DEFAULT_SIZES);
+
+ /* Allocate data that will live for the life of the hashjoin */
+
+ oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
+
+ /*
+ * Get info about the hash functions to be used for each hash key. Also
+ * remember whether the join operators are strict.
+ */
+ nkeys = list_length(hashOperators);
+ hashtable->outer_hashfunctions =
+ (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
+ hashtable->inner_hashfunctions =
+ (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
+ hashtable->hashStrict = (bool *) palloc(nkeys * sizeof(bool));
+ hashtable->collations = (Oid *) palloc(nkeys * sizeof(Oid));
+ i = 0;
+ forboth(ho, hashOperators, hc, hashCollations)
+ {
+ Oid hashop = lfirst_oid(ho);
+ Oid left_hashfn;
+ Oid right_hashfn;
+
+ if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
+ elog(ERROR, "could not find hash function for hash operator %u",
+ hashop);
+ fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
+ fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
+ hashtable->hashStrict[i] = op_strict(hashop);
+ hashtable->collations[i] = lfirst_oid(hc);
+ i++;
+ }
+
+ if (nbatch > 1 && hashtable->parallel_state == NULL)
+ {
+ /*
+ * allocate and initialize the file arrays in hashCxt (not needed for
+ * parallel case which uses shared tuplestores instead of raw files)
+ */
+ hashtable->innerBatchFile = (BufFile **)
+ palloc0(nbatch * sizeof(BufFile *));
+ hashtable->outerBatchFile = (BufFile **)
+ palloc0(nbatch * sizeof(BufFile *));
+ /* The files will not be opened until needed... */
+ /* ... but make sure we have temp tablespaces established for them */
+ PrepareTempTablespaces();
+ }
+
+ MemoryContextSwitchTo(oldcxt);
+
+ if (hashtable->parallel_state)
+ {
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ Barrier *build_barrier;
+
+ /*
+ * Attach to the build barrier. The corresponding detach operation is
+ * in ExecHashTableDetach. Note that we won't attach to the
+ * batch_barrier for batch 0 yet. We'll attach later and start it out
+ * in PHJ_BATCH_PROBING phase, because batch 0 is allocated up front
+ * and then loaded while hashing (the standard hybrid hash join
+ * algorithm), and we'll coordinate that using build_barrier.
+ */
+ build_barrier = &pstate->build_barrier;
+ BarrierAttach(build_barrier);
+
+ /*
+ * So far we have no idea whether there are any other participants,
+ * and if so, what phase they are working on. The only thing we care
+ * about at this point is whether someone has already created the
+ * SharedHashJoinBatch objects and the hash table for batch 0. One
+ * backend will be elected to do that now if necessary.
+ */
+ if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECTING &&
+ BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECT))
+ {
+ pstate->nbatch = nbatch;
+ pstate->space_allowed = space_allowed;
+ pstate->growth = PHJ_GROWTH_OK;
+
+ /* Set up the shared state for coordinating batches. */
+ ExecParallelHashJoinSetUpBatches(hashtable, nbatch);
+
+ /*
+ * Allocate batch 0's hash table up front so we can load it
+ * directly while hashing.
+ */
+ pstate->nbuckets = nbuckets;
+ ExecParallelHashTableAlloc(hashtable, 0);
+ }
+
+ /*
+ * The next Parallel Hash synchronization point is in
+ * MultiExecParallelHash(), which will progress it all the way to
+ * PHJ_BUILD_DONE. The caller must not return control from this
+ * executor node between now and then.
+ */
+ }
+ else
+ {
+ /*
+ * Prepare context for the first-scan space allocations; allocate the
+ * hashbucket array therein, and set each bucket "empty".
+ */
+ MemoryContextSwitchTo(hashtable->batchCxt);
+
+ hashtable->buckets.unshared = (HashJoinTuple *)
+ palloc0(nbuckets * sizeof(HashJoinTuple));
+
+ /*
+ * Set up for skew optimization, if possible and there's a need for
+ * more than one batch. (In a one-batch join, there's no point in
+ * it.)
+ */
+ if (nbatch > 1)
+ ExecHashBuildSkewHash(hashtable, node, num_skew_mcvs);
+
+ MemoryContextSwitchTo(oldcxt);
+ }
+
+ return hashtable;
+}
+
+
+/*
+ * Compute appropriate size for hashtable given the estimated size of the
+ * relation to be hashed (number of rows and average row width).
+ *
+ * This is exported so that the planner's costsize.c can use it.
+ */
+
+/* Target bucket loading (tuples per bucket) */
+#define NTUP_PER_BUCKET 1
+
+void
+ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
+ bool try_combined_hash_mem,
+ int parallel_workers,
+ size_t *space_allowed,
+ int *numbuckets,
+ int *numbatches,
+ int *num_skew_mcvs)
+{
+ int tupsize;
+ double inner_rel_bytes;
+ size_t hash_table_bytes;
+ size_t bucket_bytes;
+ size_t max_pointers;
+ int nbatch = 1;
+ int nbuckets;
+ double dbuckets;
+
+ /* Force a plausible relation size if no info */
+ if (ntuples <= 0.0)
+ ntuples = 1000.0;
+
+ /*
+ * Estimate tupsize based on footprint of tuple in hashtable... note this
+ * does not allow for any palloc overhead. The manipulations of spaceUsed
+ * don't count palloc overhead either.
+ */
+ tupsize = HJTUPLE_OVERHEAD +
+ MAXALIGN(SizeofMinimalTupleHeader) +
+ MAXALIGN(tupwidth);
+ inner_rel_bytes = ntuples * tupsize;
+
+ /*
+ * Compute in-memory hashtable size limit from GUCs.
+ */
+ hash_table_bytes = get_hash_memory_limit();
+
+ /*
+ * Parallel Hash tries to use the combined hash_mem of all workers to
+ * avoid the need to batch. If that won't work, it falls back to hash_mem
+ * per worker and tries to process batches in parallel.
+ */
+ if (try_combined_hash_mem)
+ {
+ /* Careful, this could overflow size_t */
+ double newlimit;
+
+ newlimit = (double) hash_table_bytes * (double) (parallel_workers + 1);
+ newlimit = Min(newlimit, (double) SIZE_MAX);
+ hash_table_bytes = (size_t) newlimit;
+ }
+
+ *space_allowed = hash_table_bytes;
+
+ /*
+ * If skew optimization is possible, estimate the number of skew buckets
+ * that will fit in the memory allowed, and decrement the assumed space
+ * available for the main hash table accordingly.
+ *
+ * We make the optimistic assumption that each skew bucket will contain
+ * one inner-relation tuple. If that turns out to be low, we will recover
+ * at runtime by reducing the number of skew buckets.
+ *
+ * hashtable->skewBucket will have up to 8 times as many HashSkewBucket
+ * pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
+ * will round up to the next power of 2 and then multiply by 4 to reduce
+ * collisions.
+ */
+ if (useskew)
+ {
+ size_t bytes_per_mcv;
+ size_t skew_mcvs;
+
+ /*----------
+ * Compute number of MCVs we could hold in hash_table_bytes
+ *
+ * Divisor is:
+ * size of a hash tuple +
+ * worst-case size of skewBucket[] per MCV +
+ * size of skewBucketNums[] entry +
+ * size of skew bucket struct itself
+ *----------
+ */
+ bytes_per_mcv = tupsize +
+ (8 * sizeof(HashSkewBucket *)) +
+ sizeof(int) +
+ SKEW_BUCKET_OVERHEAD;
+ skew_mcvs = hash_table_bytes / bytes_per_mcv;
+
+ /*
+ * Now scale by SKEW_HASH_MEM_PERCENT (we do it in this order so as
+ * not to worry about size_t overflow in the multiplication)
+ */
+ skew_mcvs = (skew_mcvs * SKEW_HASH_MEM_PERCENT) / 100;
+
+ /* Now clamp to integer range */
+ skew_mcvs = Min(skew_mcvs, INT_MAX);
+
+ *num_skew_mcvs = (int) skew_mcvs;
+
+ /* Reduce hash_table_bytes by the amount needed for the skew table */
+ if (skew_mcvs > 0)
+ hash_table_bytes -= skew_mcvs * bytes_per_mcv;
+ }
+ else
+ *num_skew_mcvs = 0;
+
+ /*
+ * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
+ * memory is filled, assuming a single batch; but limit the value so that
+ * the pointer arrays we'll try to allocate do not exceed hash_table_bytes
+ * nor MaxAllocSize.
+ *
+ * Note that both nbuckets and nbatch must be powers of 2 to make
+ * ExecHashGetBucketAndBatch fast.
+ */
+ max_pointers = hash_table_bytes / sizeof(HashJoinTuple);
+ max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));
+ /* If max_pointers isn't a power of 2, must round it down to one */
+ max_pointers = pg_prevpower2_size_t(max_pointers);
+
+ /* Also ensure we avoid integer overflow in nbatch and nbuckets */
+ /* (this step is redundant given the current value of MaxAllocSize) */
+ max_pointers = Min(max_pointers, INT_MAX / 2 + 1);
+
+ dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
+ dbuckets = Min(dbuckets, max_pointers);
+ nbuckets = (int) dbuckets;
+ /* don't let nbuckets be really small, though ... */
+ nbuckets = Max(nbuckets, 1024);
+ /* ... and force it to be a power of 2. */
+ nbuckets = pg_nextpower2_32(nbuckets);
+
+ /*
+ * If there's not enough space to store the projected number of tuples and
+ * the required bucket headers, we will need multiple batches.
+ */
+ bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
+ if (inner_rel_bytes + bucket_bytes > hash_table_bytes)
+ {
+ /* We'll need multiple batches */
+ size_t sbuckets;
+ double dbatch;
+ int minbatch;
+ size_t bucket_size;
+
+ /*
+ * If Parallel Hash with combined hash_mem would still need multiple
+ * batches, we'll have to fall back to regular hash_mem budget.
+ */
+ if (try_combined_hash_mem)
+ {
+ ExecChooseHashTableSize(ntuples, tupwidth, useskew,
+ false, parallel_workers,
+ space_allowed,
+ numbuckets,
+ numbatches,
+ num_skew_mcvs);
+ return;
+ }
+
+ /*
+ * Estimate the number of buckets we'll want to have when hash_mem is
+ * entirely full. Each bucket will contain a bucket pointer plus
+ * NTUP_PER_BUCKET tuples, whose projected size already includes
+ * overhead for the hash code, pointer to the next tuple, etc.
+ */
+ bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple));
+ sbuckets = pg_nextpower2_size_t(hash_table_bytes / bucket_size);
+ sbuckets = Min(sbuckets, max_pointers);
+ nbuckets = (int) sbuckets;
+ nbuckets = pg_nextpower2_32(nbuckets);
+ bucket_bytes = nbuckets * sizeof(HashJoinTuple);
+
+ /*
+ * Buckets are simple pointers to hashjoin tuples, while tupsize
+ * includes the pointer, hash code, and MinimalTupleData. So buckets
+ * should never really exceed 25% of hash_mem (even for
+ * NTUP_PER_BUCKET=1); except maybe for hash_mem values that are not
+ * 2^N bytes, where we might get more because of doubling. So let's
+ * look for 50% here.
+ */
+ Assert(bucket_bytes <= hash_table_bytes / 2);
+
+ /* Calculate required number of batches. */
+ dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
+ dbatch = Min(dbatch, max_pointers);
+ minbatch = (int) dbatch;
+ nbatch = pg_nextpower2_32(Max(2, minbatch));
+ }
+
+ Assert(nbuckets > 0);
+ Assert(nbatch > 0);
+
+ *numbuckets = nbuckets;
+ *numbatches = nbatch;
+}
+
+
+/* ----------------------------------------------------------------
+ * ExecHashTableDestroy
+ *
+ * destroy a hash table
+ * ----------------------------------------------------------------
+ */
+void
+ExecHashTableDestroy(HashJoinTable hashtable)
+{
+ int i;
+
+ /*
+ * Make sure all the temp files are closed. We skip batch 0, since it
+ * can't have any temp files (and the arrays might not even exist if
+ * nbatch is only 1). Parallel hash joins don't use these files.
+ */
+ if (hashtable->innerBatchFile != NULL)
+ {
+ for (i = 1; i < hashtable->nbatch; i++)
+ {
+ if (hashtable->innerBatchFile[i])
+ BufFileClose(hashtable->innerBatchFile[i]);
+ if (hashtable->outerBatchFile[i])
+ BufFileClose(hashtable->outerBatchFile[i]);
+ }
+ }
+
+ /* Release working memory (batchCxt is a child, so it goes away too) */
+ MemoryContextDelete(hashtable->hashCxt);
+
+ /* And drop the control block */
+ pfree(hashtable);
+}
+
+/*
+ * ExecHashIncreaseNumBatches
+ * increase the original number of batches in order to reduce
+ * current memory consumption
+ */
+static void
+ExecHashIncreaseNumBatches(HashJoinTable hashtable)
+{
+ int oldnbatch = hashtable->nbatch;
+ int curbatch = hashtable->curbatch;
+ int nbatch;
+ MemoryContext oldcxt;
+ long ninmemory;
+ long nfreed;
+ HashMemoryChunk oldchunks;
+
+ /* do nothing if we've decided to shut off growth */
+ if (!hashtable->growEnabled)
+ return;
+
+ /* safety check to avoid overflow */
+ if (oldnbatch > Min(INT_MAX / 2, MaxAllocSize / (sizeof(void *) * 2)))
+ return;
+
+ nbatch = oldnbatch * 2;
+ Assert(nbatch > 1);
+
+#ifdef HJDEBUG
+ printf("Hashjoin %p: increasing nbatch to %d because space = %zu\n",
+ hashtable, nbatch, hashtable->spaceUsed);
+#endif
+
+ oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
+
+ if (hashtable->innerBatchFile == NULL)
+ {
+ /* we had no file arrays before */
+ hashtable->innerBatchFile = (BufFile **)
+ palloc0(nbatch * sizeof(BufFile *));
+ hashtable->outerBatchFile = (BufFile **)
+ palloc0(nbatch * sizeof(BufFile *));
+ /* time to establish the temp tablespaces, too */
+ PrepareTempTablespaces();
+ }
+ else
+ {
+ /* enlarge arrays and zero out added entries */
+ hashtable->innerBatchFile = (BufFile **)
+ repalloc(hashtable->innerBatchFile, nbatch * sizeof(BufFile *));
+ hashtable->outerBatchFile = (BufFile **)
+ repalloc(hashtable->outerBatchFile, nbatch * sizeof(BufFile *));
+ MemSet(hashtable->innerBatchFile + oldnbatch, 0,
+ (nbatch - oldnbatch) * sizeof(BufFile *));
+ MemSet(hashtable->outerBatchFile + oldnbatch, 0,
+ (nbatch - oldnbatch) * sizeof(BufFile *));
+ }
+
+ MemoryContextSwitchTo(oldcxt);
+
+ hashtable->nbatch = nbatch;
+
+ /*
+ * Scan through the existing hash table entries and dump out any that are
+ * no longer of the current batch.
+ */
+ ninmemory = nfreed = 0;
+
+ /* If know we need to resize nbuckets, we can do it while rebatching. */
+ if (hashtable->nbuckets_optimal != hashtable->nbuckets)
+ {
+ /* we never decrease the number of buckets */
+ Assert(hashtable->nbuckets_optimal > hashtable->nbuckets);
+
+ hashtable->nbuckets = hashtable->nbuckets_optimal;
+ hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
+
+ hashtable->buckets.unshared =
+ repalloc(hashtable->buckets.unshared,
+ sizeof(HashJoinTuple) * hashtable->nbuckets);
+ }
+
+ /*
+ * We will scan through the chunks directly, so that we can reset the
+ * buckets now and not have to keep track which tuples in the buckets have
+ * already been processed. We will free the old chunks as we go.
+ */
+ memset(hashtable->buckets.unshared, 0,
+ sizeof(HashJoinTuple) * hashtable->nbuckets);
+ oldchunks = hashtable->chunks;
+ hashtable->chunks = NULL;
+
+ /* so, let's scan through the old chunks, and all tuples in each chunk */
+ while (oldchunks != NULL)
+ {
+ HashMemoryChunk nextchunk = oldchunks->next.unshared;
+
+ /* position within the buffer (up to oldchunks->used) */
+ size_t idx = 0;
+
+ /* process all tuples stored in this chunk (and then free it) */
+ while (idx < oldchunks->used)
+ {
+ HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(oldchunks) + idx);
+ MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
+ int hashTupleSize = (HJTUPLE_OVERHEAD + tuple->t_len);
+ int bucketno;
+ int batchno;
+
+ ninmemory++;
+ ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
+ &bucketno, &batchno);
+
+ if (batchno == curbatch)
+ {
+ /* keep tuple in memory - copy it into the new chunk */
+ HashJoinTuple copyTuple;
+
+ copyTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
+ memcpy(copyTuple, hashTuple, hashTupleSize);
+
+ /* and add it back to the appropriate bucket */
+ copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
+ hashtable->buckets.unshared[bucketno] = copyTuple;
+ }
+ else
+ {
+ /* dump it out */
+ Assert(batchno > curbatch);
+ ExecHashJoinSaveTuple(HJTUPLE_MINTUPLE(hashTuple),
+ hashTuple->hashvalue,
+ &hashtable->innerBatchFile[batchno]);
+
+ hashtable->spaceUsed -= hashTupleSize;
+ nfreed++;
+ }
+
+ /* next tuple in this chunk */
+ idx += MAXALIGN(hashTupleSize);
+
+ /* allow this loop to be cancellable */
+ CHECK_FOR_INTERRUPTS();
+ }
+
+ /* we're done with this chunk - free it and proceed to the next one */
+ pfree(oldchunks);
+ oldchunks = nextchunk;
+ }
+
+#ifdef HJDEBUG
+ printf("Hashjoin %p: freed %ld of %ld tuples, space now %zu\n",
+ hashtable, nfreed, ninmemory, hashtable->spaceUsed);
+#endif
+
+ /*
+ * If we dumped out either all or none of the tuples in the table, disable
+ * further expansion of nbatch. This situation implies that we have
+ * enough tuples of identical hashvalues to overflow spaceAllowed.
+ * Increasing nbatch will not fix it since there's no way to subdivide the
+ * group any more finely. We have to just gut it out and hope the server
+ * has enough RAM.
+ */
+ if (nfreed == 0 || nfreed == ninmemory)
+ {
+ hashtable->growEnabled = false;
+#ifdef HJDEBUG
+ printf("Hashjoin %p: disabling further increase of nbatch\n",
+ hashtable);
+#endif
+ }
+}
+
+/*
+ * ExecParallelHashIncreaseNumBatches
+ * Every participant attached to grow_batches_barrier must run this
+ * function when it observes growth == PHJ_GROWTH_NEED_MORE_BATCHES.
+ */
+static void
+ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable)
+{
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ int i;
+
+ Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
+
+ /*
+ * It's unlikely, but we need to be prepared for new participants to show
+ * up while we're in the middle of this operation so we need to switch on
+ * barrier phase here.
+ */
+ switch (PHJ_GROW_BATCHES_PHASE(BarrierPhase(&pstate->grow_batches_barrier)))
+ {
+ case PHJ_GROW_BATCHES_ELECTING:
+
+ /*
+ * Elect one participant to prepare to grow the number of batches.
+ * This involves reallocating or resetting the buckets of batch 0
+ * in preparation for all participants to begin repartitioning the
+ * tuples.
+ */
+ if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
+ WAIT_EVENT_HASH_GROW_BATCHES_ELECT))
+ {
+ dsa_pointer_atomic *buckets;
+ ParallelHashJoinBatch *old_batch0;
+ int new_nbatch;
+ int i;
+
+ /* Move the old batch out of the way. */
+ old_batch0 = hashtable->batches[0].shared;
+ pstate->old_batches = pstate->batches;
+ pstate->old_nbatch = hashtable->nbatch;
+ pstate->batches = InvalidDsaPointer;
+
+ /* Free this backend's old accessors. */
+ ExecParallelHashCloseBatchAccessors(hashtable);
+
+ /* Figure out how many batches to use. */
+ if (hashtable->nbatch == 1)
+ {
+ /*
+ * We are going from single-batch to multi-batch. We need
+ * to switch from one large combined memory budget to the
+ * regular hash_mem budget.
+ */
+ pstate->space_allowed = get_hash_memory_limit();
+
+ /*
+ * The combined hash_mem of all participants wasn't
+ * enough. Therefore one batch per participant would be
+ * approximately equivalent and would probably also be
+ * insufficient. So try two batches per participant,
+ * rounded up to a power of two.
+ */
+ new_nbatch = pg_nextpower2_32(pstate->nparticipants * 2);
+ }
+ else
+ {
+ /*
+ * We were already multi-batched. Try doubling the number
+ * of batches.
+ */
+ new_nbatch = hashtable->nbatch * 2;
+ }
+
+ /* Allocate new larger generation of batches. */
+ Assert(hashtable->nbatch == pstate->nbatch);
+ ExecParallelHashJoinSetUpBatches(hashtable, new_nbatch);
+ Assert(hashtable->nbatch == pstate->nbatch);
+
+ /* Replace or recycle batch 0's bucket array. */
+ if (pstate->old_nbatch == 1)
+ {
+ double dtuples;
+ double dbuckets;
+ int new_nbuckets;
+
+ /*
+ * We probably also need a smaller bucket array. How many
+ * tuples do we expect per batch, assuming we have only
+ * half of them so far? Normally we don't need to change
+ * the bucket array's size, because the size of each batch
+ * stays the same as we add more batches, but in this
+ * special case we move from a large batch to many smaller
+ * batches and it would be wasteful to keep the large
+ * array.
+ */
+ dtuples = (old_batch0->ntuples * 2.0) / new_nbatch;
+ dbuckets = ceil(dtuples / NTUP_PER_BUCKET);
+ dbuckets = Min(dbuckets,
+ MaxAllocSize / sizeof(dsa_pointer_atomic));
+ new_nbuckets = (int) dbuckets;
+ new_nbuckets = Max(new_nbuckets, 1024);
+ new_nbuckets = pg_nextpower2_32(new_nbuckets);
+ dsa_free(hashtable->area, old_batch0->buckets);
+ hashtable->batches[0].shared->buckets =
+ dsa_allocate(hashtable->area,
+ sizeof(dsa_pointer_atomic) * new_nbuckets);
+ buckets = (dsa_pointer_atomic *)
+ dsa_get_address(hashtable->area,
+ hashtable->batches[0].shared->buckets);
+ for (i = 0; i < new_nbuckets; ++i)
+ dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
+ pstate->nbuckets = new_nbuckets;
+ }
+ else
+ {
+ /* Recycle the existing bucket array. */
+ hashtable->batches[0].shared->buckets = old_batch0->buckets;
+ buckets = (dsa_pointer_atomic *)
+ dsa_get_address(hashtable->area, old_batch0->buckets);
+ for (i = 0; i < hashtable->nbuckets; ++i)
+ dsa_pointer_atomic_write(&buckets[i], InvalidDsaPointer);
+ }
+
+ /* Move all chunks to the work queue for parallel processing. */
+ pstate->chunk_work_queue = old_batch0->chunks;
+
+ /* Disable further growth temporarily while we're growing. */
+ pstate->growth = PHJ_GROWTH_DISABLED;
+ }
+ else
+ {
+ /* All other participants just flush their tuples to disk. */
+ ExecParallelHashCloseBatchAccessors(hashtable);
+ }
+ /* Fall through. */
+
+ case PHJ_GROW_BATCHES_ALLOCATING:
+ /* Wait for the above to be finished. */
+ BarrierArriveAndWait(&pstate->grow_batches_barrier,
+ WAIT_EVENT_HASH_GROW_BATCHES_ALLOCATE);
+ /* Fall through. */
+
+ case PHJ_GROW_BATCHES_REPARTITIONING:
+ /* Make sure that we have the current dimensions and buckets. */
+ ExecParallelHashEnsureBatchAccessors(hashtable);
+ ExecParallelHashTableSetCurrentBatch(hashtable, 0);
+ /* Then partition, flush counters. */
+ ExecParallelHashRepartitionFirst(hashtable);
+ ExecParallelHashRepartitionRest(hashtable);
+ ExecParallelHashMergeCounters(hashtable);
+ /* Wait for the above to be finished. */
+ BarrierArriveAndWait(&pstate->grow_batches_barrier,
+ WAIT_EVENT_HASH_GROW_BATCHES_REPARTITION);
+ /* Fall through. */
+
+ case PHJ_GROW_BATCHES_DECIDING:
+
+ /*
+ * Elect one participant to clean up and decide whether further
+ * repartitioning is needed, or should be disabled because it's
+ * not helping.
+ */
+ if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
+ WAIT_EVENT_HASH_GROW_BATCHES_DECIDE))
+ {
+ bool space_exhausted = false;
+ bool extreme_skew_detected = false;
+
+ /* Make sure that we have the current dimensions and buckets. */
+ ExecParallelHashEnsureBatchAccessors(hashtable);
+ ExecParallelHashTableSetCurrentBatch(hashtable, 0);
+
+ /* Are any of the new generation of batches exhausted? */
+ for (i = 0; i < hashtable->nbatch; ++i)
+ {
+ ParallelHashJoinBatch *batch = hashtable->batches[i].shared;
+
+ if (batch->space_exhausted ||
+ batch->estimated_size > pstate->space_allowed)
+ {
+ int parent;
+
+ space_exhausted = true;
+
+ /*
+ * Did this batch receive ALL of the tuples from its
+ * parent batch? That would indicate that further
+ * repartitioning isn't going to help (the hash values
+ * are probably all the same).
+ */
+ parent = i % pstate->old_nbatch;
+ if (batch->ntuples == hashtable->batches[parent].shared->old_ntuples)
+ extreme_skew_detected = true;
+ }
+ }
+
+ /* Don't keep growing if it's not helping or we'd overflow. */
+ if (extreme_skew_detected || hashtable->nbatch >= INT_MAX / 2)
+ pstate->growth = PHJ_GROWTH_DISABLED;
+ else if (space_exhausted)
+ pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
+ else
+ pstate->growth = PHJ_GROWTH_OK;
+
+ /* Free the old batches in shared memory. */
+ dsa_free(hashtable->area, pstate->old_batches);
+ pstate->old_batches = InvalidDsaPointer;
+ }
+ /* Fall through. */
+
+ case PHJ_GROW_BATCHES_FINISHING:
+ /* Wait for the above to complete. */
+ BarrierArriveAndWait(&pstate->grow_batches_barrier,
+ WAIT_EVENT_HASH_GROW_BATCHES_FINISH);
+ }
+}
+
+/*
+ * Repartition the tuples currently loaded into memory for inner batch 0
+ * because the number of batches has been increased. Some tuples are retained
+ * in memory and some are written out to a later batch.
+ */
+static void
+ExecParallelHashRepartitionFirst(HashJoinTable hashtable)
+{
+ dsa_pointer chunk_shared;
+ HashMemoryChunk chunk;
+
+ Assert(hashtable->nbatch == hashtable->parallel_state->nbatch);
+
+ while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_shared)))
+ {
+ size_t idx = 0;
+
+ /* Repartition all tuples in this chunk. */
+ while (idx < chunk->used)
+ {
+ HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
+ MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
+ HashJoinTuple copyTuple;
+ dsa_pointer shared;
+ int bucketno;
+ int batchno;
+
+ ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
+ &bucketno, &batchno);
+
+ Assert(batchno < hashtable->nbatch);
+ if (batchno == 0)
+ {
+ /* It still belongs in batch 0. Copy to a new chunk. */
+ copyTuple =
+ ExecParallelHashTupleAlloc(hashtable,
+ HJTUPLE_OVERHEAD + tuple->t_len,
+ &shared);
+ copyTuple->hashvalue = hashTuple->hashvalue;
+ memcpy(HJTUPLE_MINTUPLE(copyTuple), tuple, tuple->t_len);
+ ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
+ copyTuple, shared);
+ }
+ else
+ {
+ size_t tuple_size =
+ MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
+
+ /* It belongs in a later batch. */
+ hashtable->batches[batchno].estimated_size += tuple_size;
+ sts_puttuple(hashtable->batches[batchno].inner_tuples,
+ &hashTuple->hashvalue, tuple);
+ }
+
+ /* Count this tuple. */
+ ++hashtable->batches[0].old_ntuples;
+ ++hashtable->batches[batchno].ntuples;
+
+ idx += MAXALIGN(HJTUPLE_OVERHEAD +
+ HJTUPLE_MINTUPLE(hashTuple)->t_len);
+ }
+
+ /* Free this chunk. */
+ dsa_free(hashtable->area, chunk_shared);
+
+ CHECK_FOR_INTERRUPTS();
+ }
+}
+
+/*
+ * Help repartition inner batches 1..n.
+ */
+static void
+ExecParallelHashRepartitionRest(HashJoinTable hashtable)
+{
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ int old_nbatch = pstate->old_nbatch;
+ SharedTuplestoreAccessor **old_inner_tuples;
+ ParallelHashJoinBatch *old_batches;
+ int i;
+
+ /* Get our hands on the previous generation of batches. */
+ old_batches = (ParallelHashJoinBatch *)
+ dsa_get_address(hashtable->area, pstate->old_batches);
+ old_inner_tuples = palloc0(sizeof(SharedTuplestoreAccessor *) * old_nbatch);
+ for (i = 1; i < old_nbatch; ++i)
+ {
+ ParallelHashJoinBatch *shared =
+ NthParallelHashJoinBatch(old_batches, i);
+
+ old_inner_tuples[i] = sts_attach(ParallelHashJoinBatchInner(shared),
+ ParallelWorkerNumber + 1,
+ &pstate->fileset);
+ }
+
+ /* Join in the effort to repartition them. */
+ for (i = 1; i < old_nbatch; ++i)
+ {
+ MinimalTuple tuple;
+ uint32 hashvalue;
+
+ /* Scan one partition from the previous generation. */
+ sts_begin_parallel_scan(old_inner_tuples[i]);
+ while ((tuple = sts_parallel_scan_next(old_inner_tuples[i], &hashvalue)))
+ {
+ size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
+ int bucketno;
+ int batchno;
+
+ /* Decide which partition it goes to in the new generation. */
+ ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno,
+ &batchno);
+
+ hashtable->batches[batchno].estimated_size += tuple_size;
+ ++hashtable->batches[batchno].ntuples;
+ ++hashtable->batches[i].old_ntuples;
+
+ /* Store the tuple its new batch. */
+ sts_puttuple(hashtable->batches[batchno].inner_tuples,
+ &hashvalue, tuple);
+
+ CHECK_FOR_INTERRUPTS();
+ }
+ sts_end_parallel_scan(old_inner_tuples[i]);
+ }
+
+ pfree(old_inner_tuples);
+}
+
+/*
+ * Transfer the backend-local per-batch counters to the shared totals.
+ */
+static void
+ExecParallelHashMergeCounters(HashJoinTable hashtable)
+{
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ int i;
+
+ LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
+ pstate->total_tuples = 0;
+ for (i = 0; i < hashtable->nbatch; ++i)
+ {
+ ParallelHashJoinBatchAccessor *batch = &hashtable->batches[i];
+
+ batch->shared->size += batch->size;
+ batch->shared->estimated_size += batch->estimated_size;
+ batch->shared->ntuples += batch->ntuples;
+ batch->shared->old_ntuples += batch->old_ntuples;
+ batch->size = 0;
+ batch->estimated_size = 0;
+ batch->ntuples = 0;
+ batch->old_ntuples = 0;
+ pstate->total_tuples += batch->shared->ntuples;
+ }
+ LWLockRelease(&pstate->lock);
+}
+
+/*
+ * ExecHashIncreaseNumBuckets
+ * increase the original number of buckets in order to reduce
+ * number of tuples per bucket
+ */
+static void
+ExecHashIncreaseNumBuckets(HashJoinTable hashtable)
+{
+ HashMemoryChunk chunk;
+
+ /* do nothing if not an increase (it's called increase for a reason) */
+ if (hashtable->nbuckets >= hashtable->nbuckets_optimal)
+ return;
+
+#ifdef HJDEBUG
+ printf("Hashjoin %p: increasing nbuckets %d => %d\n",
+ hashtable, hashtable->nbuckets, hashtable->nbuckets_optimal);
+#endif
+
+ hashtable->nbuckets = hashtable->nbuckets_optimal;
+ hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
+
+ Assert(hashtable->nbuckets > 1);
+ Assert(hashtable->nbuckets <= (INT_MAX / 2));
+ Assert(hashtable->nbuckets == (1 << hashtable->log2_nbuckets));
+
+ /*
+ * Just reallocate the proper number of buckets - we don't need to walk
+ * through them - we can walk the dense-allocated chunks (just like in
+ * ExecHashIncreaseNumBatches, but without all the copying into new
+ * chunks)
+ */
+ hashtable->buckets.unshared =
+ (HashJoinTuple *) repalloc(hashtable->buckets.unshared,
+ hashtable->nbuckets * sizeof(HashJoinTuple));
+
+ memset(hashtable->buckets.unshared, 0,
+ hashtable->nbuckets * sizeof(HashJoinTuple));
+
+ /* scan through all tuples in all chunks to rebuild the hash table */
+ for (chunk = hashtable->chunks; chunk != NULL; chunk = chunk->next.unshared)
+ {
+ /* process all tuples stored in this chunk */
+ size_t idx = 0;
+
+ while (idx < chunk->used)
+ {
+ HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
+ int bucketno;
+ int batchno;
+
+ ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
+ &bucketno, &batchno);
+
+ /* add the tuple to the proper bucket */
+ hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
+ hashtable->buckets.unshared[bucketno] = hashTuple;
+
+ /* advance index past the tuple */
+ idx += MAXALIGN(HJTUPLE_OVERHEAD +
+ HJTUPLE_MINTUPLE(hashTuple)->t_len);
+ }
+
+ /* allow this loop to be cancellable */
+ CHECK_FOR_INTERRUPTS();
+ }
+}
+
+static void
+ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable)
+{
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ int i;
+ HashMemoryChunk chunk;
+ dsa_pointer chunk_s;
+
+ Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
+
+ /*
+ * It's unlikely, but we need to be prepared for new participants to show
+ * up while we're in the middle of this operation so we need to switch on
+ * barrier phase here.
+ */
+ switch (PHJ_GROW_BUCKETS_PHASE(BarrierPhase(&pstate->grow_buckets_barrier)))
+ {
+ case PHJ_GROW_BUCKETS_ELECTING:
+ /* Elect one participant to prepare to increase nbuckets. */
+ if (BarrierArriveAndWait(&pstate->grow_buckets_barrier,
+ WAIT_EVENT_HASH_GROW_BUCKETS_ELECT))
+ {
+ size_t size;
+ dsa_pointer_atomic *buckets;
+
+ /* Double the size of the bucket array. */
+ pstate->nbuckets *= 2;
+ size = pstate->nbuckets * sizeof(dsa_pointer_atomic);
+ hashtable->batches[0].shared->size += size / 2;
+ dsa_free(hashtable->area, hashtable->batches[0].shared->buckets);
+ hashtable->batches[0].shared->buckets =
+ dsa_allocate(hashtable->area, size);
+ buckets = (dsa_pointer_atomic *)
+ dsa_get_address(hashtable->area,
+ hashtable->batches[0].shared->buckets);
+ for (i = 0; i < pstate->nbuckets; ++i)
+ dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
+
+ /* Put the chunk list onto the work queue. */
+ pstate->chunk_work_queue = hashtable->batches[0].shared->chunks;
+
+ /* Clear the flag. */
+ pstate->growth = PHJ_GROWTH_OK;
+ }
+ /* Fall through. */
+
+ case PHJ_GROW_BUCKETS_ALLOCATING:
+ /* Wait for the above to complete. */
+ BarrierArriveAndWait(&pstate->grow_buckets_barrier,
+ WAIT_EVENT_HASH_GROW_BUCKETS_ALLOCATE);
+ /* Fall through. */
+
+ case PHJ_GROW_BUCKETS_REINSERTING:
+ /* Reinsert all tuples into the hash table. */
+ ExecParallelHashEnsureBatchAccessors(hashtable);
+ ExecParallelHashTableSetCurrentBatch(hashtable, 0);
+ while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_s)))
+ {
+ size_t idx = 0;
+
+ while (idx < chunk->used)
+ {
+ HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
+ dsa_pointer shared = chunk_s + HASH_CHUNK_HEADER_SIZE + idx;
+ int bucketno;
+ int batchno;
+
+ ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
+ &bucketno, &batchno);
+ Assert(batchno == 0);
+
+ /* add the tuple to the proper bucket */
+ ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
+ hashTuple, shared);
+
+ /* advance index past the tuple */
+ idx += MAXALIGN(HJTUPLE_OVERHEAD +
+ HJTUPLE_MINTUPLE(hashTuple)->t_len);
+ }
+
+ /* allow this loop to be cancellable */
+ CHECK_FOR_INTERRUPTS();
+ }
+ BarrierArriveAndWait(&pstate->grow_buckets_barrier,
+ WAIT_EVENT_HASH_GROW_BUCKETS_REINSERT);
+ }
+}
+
+/*
+ * ExecHashTableInsert
+ * insert a tuple into the hash table depending on the hash value
+ * it may just go to a temp file for later batches
+ *
+ * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
+ * tuple; the minimal case in particular is certain to happen while reloading
+ * tuples from batch files. We could save some cycles in the regular-tuple
+ * case by not forcing the slot contents into minimal form; not clear if it's
+ * worth the messiness required.
+ */
+void
+ExecHashTableInsert(HashJoinTable hashtable,
+ TupleTableSlot *slot,
+ uint32 hashvalue)
+{
+ bool shouldFree;
+ MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
+ int bucketno;
+ int batchno;
+
+ ExecHashGetBucketAndBatch(hashtable, hashvalue,
+ &bucketno, &batchno);
+
+ /*
+ * decide whether to put the tuple in the hash table or a temp file
+ */
+ if (batchno == hashtable->curbatch)
+ {
+ /*
+ * put the tuple in hash table
+ */
+ HashJoinTuple hashTuple;
+ int hashTupleSize;
+ double ntuples = (hashtable->totalTuples - hashtable->skewTuples);
+
+ /* Create the HashJoinTuple */
+ hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
+ hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
+
+ hashTuple->hashvalue = hashvalue;
+ memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
+
+ /*
+ * We always reset the tuple-matched flag on insertion. This is okay
+ * even when reloading a tuple from a batch file, since the tuple
+ * could not possibly have been matched to an outer tuple before it
+ * went into the batch file.
+ */
+ HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
+
+ /* Push it onto the front of the bucket's list */
+ hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
+ hashtable->buckets.unshared[bucketno] = hashTuple;
+
+ /*
+ * Increase the (optimal) number of buckets if we just exceeded the
+ * NTUP_PER_BUCKET threshold, but only when there's still a single
+ * batch.
+ */
+ if (hashtable->nbatch == 1 &&
+ ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET))
+ {
+ /* Guard against integer overflow and alloc size overflow */
+ if (hashtable->nbuckets_optimal <= INT_MAX / 2 &&
+ hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple))
+ {
+ hashtable->nbuckets_optimal *= 2;
+ hashtable->log2_nbuckets_optimal += 1;
+ }
+ }
+
+ /* Account for space used, and back off if we've used too much */
+ hashtable->spaceUsed += hashTupleSize;
+ if (hashtable->spaceUsed > hashtable->spacePeak)
+ hashtable->spacePeak = hashtable->spaceUsed;
+ if (hashtable->spaceUsed +
+ hashtable->nbuckets_optimal * sizeof(HashJoinTuple)
+ > hashtable->spaceAllowed)
+ ExecHashIncreaseNumBatches(hashtable);
+ }
+ else
+ {
+ /*
+ * put the tuple into a temp file for later batches
+ */
+ Assert(batchno > hashtable->curbatch);
+ ExecHashJoinSaveTuple(tuple,
+ hashvalue,
+ &hashtable->innerBatchFile[batchno]);
+ }
+
+ if (shouldFree)
+ heap_free_minimal_tuple(tuple);
+}
+
+/*
+ * ExecParallelHashTableInsert
+ * insert a tuple into a shared hash table or shared batch tuplestore
+ */
+void
+ExecParallelHashTableInsert(HashJoinTable hashtable,
+ TupleTableSlot *slot,
+ uint32 hashvalue)
+{
+ bool shouldFree;
+ MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
+ dsa_pointer shared;
+ int bucketno;
+ int batchno;
+
+retry:
+ ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
+
+ if (batchno == 0)
+ {
+ HashJoinTuple hashTuple;
+
+ /* Try to load it into memory. */
+ Assert(BarrierPhase(&hashtable->parallel_state->build_barrier) ==
+ PHJ_BUILD_HASHING_INNER);
+ hashTuple = ExecParallelHashTupleAlloc(hashtable,
+ HJTUPLE_OVERHEAD + tuple->t_len,
+ &shared);
+ if (hashTuple == NULL)
+ goto retry;
+
+ /* Store the hash value in the HashJoinTuple header. */
+ hashTuple->hashvalue = hashvalue;
+ memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
+
+ /* Push it onto the front of the bucket's list */
+ ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
+ hashTuple, shared);
+ }
+ else
+ {
+ size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
+
+ Assert(batchno > 0);
+
+ /* Try to preallocate space in the batch if necessary. */
+ if (hashtable->batches[batchno].preallocated < tuple_size)
+ {
+ if (!ExecParallelHashTuplePrealloc(hashtable, batchno, tuple_size))
+ goto retry;
+ }
+
+ Assert(hashtable->batches[batchno].preallocated >= tuple_size);
+ hashtable->batches[batchno].preallocated -= tuple_size;
+ sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue,
+ tuple);
+ }
+ ++hashtable->batches[batchno].ntuples;
+
+ if (shouldFree)
+ heap_free_minimal_tuple(tuple);
+}
+
+/*
+ * Insert a tuple into the current hash table. Unlike
+ * ExecParallelHashTableInsert, this version is not prepared to send the tuple
+ * to other batches or to run out of memory, and should only be called with
+ * tuples that belong in the current batch once growth has been disabled.
+ */
+void
+ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable,
+ TupleTableSlot *slot,
+ uint32 hashvalue)
+{
+ bool shouldFree;
+ MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
+ HashJoinTuple hashTuple;
+ dsa_pointer shared;
+ int batchno;
+ int bucketno;
+
+ ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
+ Assert(batchno == hashtable->curbatch);
+ hashTuple = ExecParallelHashTupleAlloc(hashtable,
+ HJTUPLE_OVERHEAD + tuple->t_len,
+ &shared);
+ hashTuple->hashvalue = hashvalue;
+ memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
+ HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
+ ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
+ hashTuple, shared);
+
+ if (shouldFree)
+ heap_free_minimal_tuple(tuple);
+}
+
+/*
+ * ExecHashGetHashValue
+ * Compute the hash value for a tuple
+ *
+ * The tuple to be tested must be in econtext->ecxt_outertuple (thus Vars in
+ * the hashkeys expressions need to have OUTER_VAR as varno). If outer_tuple
+ * is false (meaning it's the HashJoin's inner node, Hash), econtext,
+ * hashkeys, and slot need to be from Hash, with hashkeys/slot referencing and
+ * being suitable for tuples from the node below the Hash. Conversely, if
+ * outer_tuple is true, econtext is from HashJoin, and hashkeys/slot need to
+ * be appropriate for tuples from HashJoin's outer node.
+ *
+ * A true result means the tuple's hash value has been successfully computed
+ * and stored at *hashvalue. A false result means the tuple cannot match
+ * because it contains a null attribute, and hence it should be discarded
+ * immediately. (If keep_nulls is true then false is never returned.)
+ */
+bool
+ExecHashGetHashValue(HashJoinTable hashtable,
+ ExprContext *econtext,
+ List *hashkeys,
+ bool outer_tuple,
+ bool keep_nulls,
+ uint32 *hashvalue)
+{
+ uint32 hashkey = 0;
+ FmgrInfo *hashfunctions;
+ ListCell *hk;
+ int i = 0;
+ MemoryContext oldContext;
+
+ /*
+ * We reset the eval context each time to reclaim any memory leaked in the
+ * hashkey expressions.
+ */
+ ResetExprContext(econtext);
+
+ oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
+
+ if (outer_tuple)
+ hashfunctions = hashtable->outer_hashfunctions;
+ else
+ hashfunctions = hashtable->inner_hashfunctions;
+
+ foreach(hk, hashkeys)
+ {
+ ExprState *keyexpr = (ExprState *) lfirst(hk);
+ Datum keyval;
+ bool isNull;
+
+ /* rotate hashkey left 1 bit at each step */
+ hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
+
+ /*
+ * Get the join attribute value of the tuple
+ */
+ keyval = ExecEvalExpr(keyexpr, econtext, &isNull);
+
+ /*
+ * If the attribute is NULL, and the join operator is strict, then
+ * this tuple cannot pass the join qual so we can reject it
+ * immediately (unless we're scanning the outside of an outer join, in
+ * which case we must not reject it). Otherwise we act like the
+ * hashcode of NULL is zero (this will support operators that act like
+ * IS NOT DISTINCT, though not any more-random behavior). We treat
+ * the hash support function as strict even if the operator is not.
+ *
+ * Note: currently, all hashjoinable operators must be strict since
+ * the hash index AM assumes that. However, it takes so little extra
+ * code here to allow non-strict that we may as well do it.
+ */
+ if (isNull)
+ {
+ if (hashtable->hashStrict[i] && !keep_nulls)
+ {
+ MemoryContextSwitchTo(oldContext);
+ return false; /* cannot match */
+ }
+ /* else, leave hashkey unmodified, equivalent to hashcode 0 */
+ }
+ else
+ {
+ /* Compute the hash function */
+ uint32 hkey;
+
+ hkey = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[i], hashtable->collations[i], keyval));
+ hashkey ^= hkey;
+ }
+
+ i++;
+ }
+
+ MemoryContextSwitchTo(oldContext);
+
+ *hashvalue = hashkey;
+ return true;
+}
+
+/*
+ * ExecHashGetBucketAndBatch
+ * Determine the bucket number and batch number for a hash value
+ *
+ * Note: on-the-fly increases of nbatch must not change the bucket number
+ * for a given hash code (since we don't move tuples to different hash
+ * chains), and must only cause the batch number to remain the same or
+ * increase. Our algorithm is
+ * bucketno = hashvalue MOD nbuckets
+ * batchno = ROR(hashvalue, log2_nbuckets) MOD nbatch
+ * where nbuckets and nbatch are both expected to be powers of 2, so we can
+ * do the computations by shifting and masking. (This assumes that all hash
+ * functions are good about randomizing all their output bits, else we are
+ * likely to have very skewed bucket or batch occupancy.)
+ *
+ * nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
+ * bucket count growth. Once we start batching, the value is fixed and does
+ * not change over the course of the join (making it possible to compute batch
+ * number the way we do here).
+ *
+ * nbatch is always a power of 2; we increase it only by doubling it. This
+ * effectively adds one more bit to the top of the batchno. In very large
+ * joins, we might run out of bits to add, so we do this by rotating the hash
+ * value. This causes batchno to steal bits from bucketno when the number of
+ * virtual buckets exceeds 2^32. It's better to have longer bucket chains
+ * than to lose the ability to divide batches.
+ */
+void
+ExecHashGetBucketAndBatch(HashJoinTable hashtable,
+ uint32 hashvalue,
+ int *bucketno,
+ int *batchno)
+{
+ uint32 nbuckets = (uint32) hashtable->nbuckets;
+ uint32 nbatch = (uint32) hashtable->nbatch;
+
+ if (nbatch > 1)
+ {
+ *bucketno = hashvalue & (nbuckets - 1);
+ *batchno = pg_rotate_right32(hashvalue,
+ hashtable->log2_nbuckets) & (nbatch - 1);
+ }
+ else
+ {
+ *bucketno = hashvalue & (nbuckets - 1);
+ *batchno = 0;
+ }
+}
+
+/*
+ * ExecScanHashBucket
+ * scan a hash bucket for matches to the current outer tuple
+ *
+ * The current outer tuple must be stored in econtext->ecxt_outertuple.
+ *
+ * On success, the inner tuple is stored into hjstate->hj_CurTuple and
+ * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
+ * for the latter.
+ */
+bool
+ExecScanHashBucket(HashJoinState *hjstate,
+ ExprContext *econtext)
+{
+ ExprState *hjclauses = hjstate->hashclauses;
+ HashJoinTable hashtable = hjstate->hj_HashTable;
+ HashJoinTuple hashTuple = hjstate->hj_CurTuple;
+ uint32 hashvalue = hjstate->hj_CurHashValue;
+
+ /*
+ * hj_CurTuple is the address of the tuple last returned from the current
+ * bucket, or NULL if it's time to start scanning a new bucket.
+ *
+ * If the tuple hashed to a skew bucket then scan the skew bucket
+ * otherwise scan the standard hashtable bucket.
+ */
+ if (hashTuple != NULL)
+ hashTuple = hashTuple->next.unshared;
+ else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)
+ hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;
+ else
+ hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
+
+ while (hashTuple != NULL)
+ {
+ if (hashTuple->hashvalue == hashvalue)
+ {
+ TupleTableSlot *inntuple;
+
+ /* insert hashtable's tuple into exec slot so ExecQual sees it */
+ inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
+ hjstate->hj_HashTupleSlot,
+ false); /* do not pfree */
+ econtext->ecxt_innertuple = inntuple;
+
+ if (ExecQualAndReset(hjclauses, econtext))
+ {
+ hjstate->hj_CurTuple = hashTuple;
+ return true;
+ }
+ }
+
+ hashTuple = hashTuple->next.unshared;
+ }
+
+ /*
+ * no match
+ */
+ return false;
+}
+
+/*
+ * ExecParallelScanHashBucket
+ * scan a hash bucket for matches to the current outer tuple
+ *
+ * The current outer tuple must be stored in econtext->ecxt_outertuple.
+ *
+ * On success, the inner tuple is stored into hjstate->hj_CurTuple and
+ * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
+ * for the latter.
+ */
+bool
+ExecParallelScanHashBucket(HashJoinState *hjstate,
+ ExprContext *econtext)
+{
+ ExprState *hjclauses = hjstate->hashclauses;
+ HashJoinTable hashtable = hjstate->hj_HashTable;
+ HashJoinTuple hashTuple = hjstate->hj_CurTuple;
+ uint32 hashvalue = hjstate->hj_CurHashValue;
+
+ /*
+ * hj_CurTuple is the address of the tuple last returned from the current
+ * bucket, or NULL if it's time to start scanning a new bucket.
+ */
+ if (hashTuple != NULL)
+ hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
+ else
+ hashTuple = ExecParallelHashFirstTuple(hashtable,
+ hjstate->hj_CurBucketNo);
+
+ while (hashTuple != NULL)
+ {
+ if (hashTuple->hashvalue == hashvalue)
+ {
+ TupleTableSlot *inntuple;
+
+ /* insert hashtable's tuple into exec slot so ExecQual sees it */
+ inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
+ hjstate->hj_HashTupleSlot,
+ false); /* do not pfree */
+ econtext->ecxt_innertuple = inntuple;
+
+ if (ExecQualAndReset(hjclauses, econtext))
+ {
+ hjstate->hj_CurTuple = hashTuple;
+ return true;
+ }
+ }
+
+ hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
+ }
+
+ /*
+ * no match
+ */
+ return false;
+}
+
+/*
+ * ExecPrepHashTableForUnmatched
+ * set up for a series of ExecScanHashTableForUnmatched calls
+ */
+void
+ExecPrepHashTableForUnmatched(HashJoinState *hjstate)
+{
+ /*----------
+ * During this scan we use the HashJoinState fields as follows:
+ *
+ * hj_CurBucketNo: next regular bucket to scan
+ * hj_CurSkewBucketNo: next skew bucket (an index into skewBucketNums)
+ * hj_CurTuple: last tuple returned, or NULL to start next bucket
+ *----------
+ */
+ hjstate->hj_CurBucketNo = 0;
+ hjstate->hj_CurSkewBucketNo = 0;
+ hjstate->hj_CurTuple = NULL;
+}
+
+/*
+ * ExecScanHashTableForUnmatched
+ * scan the hash table for unmatched inner tuples
+ *
+ * On success, the inner tuple is stored into hjstate->hj_CurTuple and
+ * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
+ * for the latter.
+ */
+bool
+ExecScanHashTableForUnmatched(HashJoinState *hjstate, ExprContext *econtext)
+{
+ HashJoinTable hashtable = hjstate->hj_HashTable;
+ HashJoinTuple hashTuple = hjstate->hj_CurTuple;
+
+ for (;;)
+ {
+ /*
+ * hj_CurTuple is the address of the tuple last returned from the
+ * current bucket, or NULL if it's time to start scanning a new
+ * bucket.
+ */
+ if (hashTuple != NULL)
+ hashTuple = hashTuple->next.unshared;
+ else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
+ {
+ hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
+ hjstate->hj_CurBucketNo++;
+ }
+ else if (hjstate->hj_CurSkewBucketNo < hashtable->nSkewBuckets)
+ {
+ int j = hashtable->skewBucketNums[hjstate->hj_CurSkewBucketNo];
+
+ hashTuple = hashtable->skewBucket[j]->tuples;
+ hjstate->hj_CurSkewBucketNo++;
+ }
+ else
+ break; /* finished all buckets */
+
+ while (hashTuple != NULL)
+ {
+ if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple)))
+ {
+ TupleTableSlot *inntuple;
+
+ /* insert hashtable's tuple into exec slot */
+ inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
+ hjstate->hj_HashTupleSlot,
+ false); /* do not pfree */
+ econtext->ecxt_innertuple = inntuple;
+
+ /*
+ * Reset temp memory each time; although this function doesn't
+ * do any qual eval, the caller will, so let's keep it
+ * parallel to ExecScanHashBucket.
+ */
+ ResetExprContext(econtext);
+
+ hjstate->hj_CurTuple = hashTuple;
+ return true;
+ }
+
+ hashTuple = hashTuple->next.unshared;
+ }
+
+ /* allow this loop to be cancellable */
+ CHECK_FOR_INTERRUPTS();
+ }
+
+ /*
+ * no more unmatched tuples
+ */
+ return false;
+}
+
+/*
+ * ExecHashTableReset
+ *
+ * reset hash table header for new batch
+ */
+void
+ExecHashTableReset(HashJoinTable hashtable)
+{
+ MemoryContext oldcxt;
+ int nbuckets = hashtable->nbuckets;
+
+ /*
+ * Release all the hash buckets and tuples acquired in the prior pass, and
+ * reinitialize the context for a new pass.
+ */
+ MemoryContextReset(hashtable->batchCxt);
+ oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
+
+ /* Reallocate and reinitialize the hash bucket headers. */
+ hashtable->buckets.unshared = (HashJoinTuple *)
+ palloc0(nbuckets * sizeof(HashJoinTuple));
+
+ hashtable->spaceUsed = 0;
+
+ MemoryContextSwitchTo(oldcxt);
+
+ /* Forget the chunks (the memory was freed by the context reset above). */
+ hashtable->chunks = NULL;
+}
+
+/*
+ * ExecHashTableResetMatchFlags
+ * Clear all the HeapTupleHeaderHasMatch flags in the table
+ */
+void
+ExecHashTableResetMatchFlags(HashJoinTable hashtable)
+{
+ HashJoinTuple tuple;
+ int i;
+
+ /* Reset all flags in the main table ... */
+ for (i = 0; i < hashtable->nbuckets; i++)
+ {
+ for (tuple = hashtable->buckets.unshared[i]; tuple != NULL;
+ tuple = tuple->next.unshared)
+ HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
+ }
+
+ /* ... and the same for the skew buckets, if any */
+ for (i = 0; i < hashtable->nSkewBuckets; i++)
+ {
+ int j = hashtable->skewBucketNums[i];
+ HashSkewBucket *skewBucket = hashtable->skewBucket[j];
+
+ for (tuple = skewBucket->tuples; tuple != NULL; tuple = tuple->next.unshared)
+ HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
+ }
+}
+
+
+void
+ExecReScanHash(HashState *node)
+{
+ /*
+ * if chgParam of subnode is not null then plan will be re-scanned by
+ * first ExecProcNode.
+ */
+ if (node->ps.lefttree->chgParam == NULL)
+ ExecReScan(node->ps.lefttree);
+}
+
+
+/*
+ * ExecHashBuildSkewHash
+ *
+ * Set up for skew optimization if we can identify the most common values
+ * (MCVs) of the outer relation's join key. We make a skew hash bucket
+ * for the hash value of each MCV, up to the number of slots allowed
+ * based on available memory.
+ */
+static void
+ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node, int mcvsToUse)
+{
+ HeapTupleData *statsTuple;
+ AttStatsSlot sslot;
+
+ /* Do nothing if planner didn't identify the outer relation's join key */
+ if (!OidIsValid(node->skewTable))
+ return;
+ /* Also, do nothing if we don't have room for at least one skew bucket */
+ if (mcvsToUse <= 0)
+ return;
+
+ /*
+ * Try to find the MCV statistics for the outer relation's join key.
+ */
+ statsTuple = SearchSysCache3(STATRELATTINH,
+ ObjectIdGetDatum(node->skewTable),
+ Int16GetDatum(node->skewColumn),
+ BoolGetDatum(node->skewInherit));
+ if (!HeapTupleIsValid(statsTuple))
+ return;
+
+ if (get_attstatsslot(&sslot, statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
+ {
+ double frac;
+ int nbuckets;
+ FmgrInfo *hashfunctions;
+ int i;
+
+ if (mcvsToUse > sslot.nvalues)
+ mcvsToUse = sslot.nvalues;
+
+ /*
+ * Calculate the expected fraction of outer relation that will
+ * participate in the skew optimization. If this isn't at least
+ * SKEW_MIN_OUTER_FRACTION, don't use skew optimization.
+ */
+ frac = 0;
+ for (i = 0; i < mcvsToUse; i++)
+ frac += sslot.numbers[i];
+ if (frac < SKEW_MIN_OUTER_FRACTION)
+ {
+ free_attstatsslot(&sslot);
+ ReleaseSysCache(statsTuple);
+ return;
+ }
+
+ /*
+ * Okay, set up the skew hashtable.
+ *
+ * skewBucket[] is an open addressing hashtable with a power of 2 size
+ * that is greater than the number of MCV values. (This ensures there
+ * will be at least one null entry, so searches will always
+ * terminate.)
+ *
+ * Note: this code could fail if mcvsToUse exceeds INT_MAX/8 or
+ * MaxAllocSize/sizeof(void *)/8, but that is not currently possible
+ * since we limit pg_statistic entries to much less than that.
+ */
+ nbuckets = pg_nextpower2_32(mcvsToUse + 1);
+ /* use two more bits just to help avoid collisions */
+ nbuckets <<= 2;
+
+ hashtable->skewEnabled = true;
+ hashtable->skewBucketLen = nbuckets;
+
+ /*
+ * We allocate the bucket memory in the hashtable's batch context. It
+ * is only needed during the first batch, and this ensures it will be
+ * automatically removed once the first batch is done.
+ */
+ hashtable->skewBucket = (HashSkewBucket **)
+ MemoryContextAllocZero(hashtable->batchCxt,
+ nbuckets * sizeof(HashSkewBucket *));
+ hashtable->skewBucketNums = (int *)
+ MemoryContextAllocZero(hashtable->batchCxt,
+ mcvsToUse * sizeof(int));
+
+ hashtable->spaceUsed += nbuckets * sizeof(HashSkewBucket *)
+ + mcvsToUse * sizeof(int);
+ hashtable->spaceUsedSkew += nbuckets * sizeof(HashSkewBucket *)
+ + mcvsToUse * sizeof(int);
+ if (hashtable->spaceUsed > hashtable->spacePeak)
+ hashtable->spacePeak = hashtable->spaceUsed;
+
+ /*
+ * Create a skew bucket for each MCV hash value.
+ *
+ * Note: it is very important that we create the buckets in order of
+ * decreasing MCV frequency. If we have to remove some buckets, they
+ * must be removed in reverse order of creation (see notes in
+ * ExecHashRemoveNextSkewBucket) and we want the least common MCVs to
+ * be removed first.
+ */
+ hashfunctions = hashtable->outer_hashfunctions;
+
+ for (i = 0; i < mcvsToUse; i++)
+ {
+ uint32 hashvalue;
+ int bucket;
+
+ hashvalue = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[0],
+ hashtable->collations[0],
+ sslot.values[i]));
+
+ /*
+ * While we have not hit a hole in the hashtable and have not hit
+ * the desired bucket, we have collided with some previous hash
+ * value, so try the next bucket location. NB: this code must
+ * match ExecHashGetSkewBucket.
+ */
+ bucket = hashvalue & (nbuckets - 1);
+ while (hashtable->skewBucket[bucket] != NULL &&
+ hashtable->skewBucket[bucket]->hashvalue != hashvalue)
+ bucket = (bucket + 1) & (nbuckets - 1);
+
+ /*
+ * If we found an existing bucket with the same hashvalue, leave
+ * it alone. It's okay for two MCVs to share a hashvalue.
+ */
+ if (hashtable->skewBucket[bucket] != NULL)
+ continue;
+
+ /* Okay, create a new skew bucket for this hashvalue. */
+ hashtable->skewBucket[bucket] = (HashSkewBucket *)
+ MemoryContextAlloc(hashtable->batchCxt,
+ sizeof(HashSkewBucket));
+ hashtable->skewBucket[bucket]->hashvalue = hashvalue;
+ hashtable->skewBucket[bucket]->tuples = NULL;
+ hashtable->skewBucketNums[hashtable->nSkewBuckets] = bucket;
+ hashtable->nSkewBuckets++;
+ hashtable->spaceUsed += SKEW_BUCKET_OVERHEAD;
+ hashtable->spaceUsedSkew += SKEW_BUCKET_OVERHEAD;
+ if (hashtable->spaceUsed > hashtable->spacePeak)
+ hashtable->spacePeak = hashtable->spaceUsed;
+ }
+
+ free_attstatsslot(&sslot);
+ }
+
+ ReleaseSysCache(statsTuple);
+}
+
+/*
+ * ExecHashGetSkewBucket
+ *
+ * Returns the index of the skew bucket for this hashvalue,
+ * or INVALID_SKEW_BUCKET_NO if the hashvalue is not
+ * associated with any active skew bucket.
+ */
+int
+ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
+{
+ int bucket;
+
+ /*
+ * Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
+ * particular, this happens after the initial batch is done).
+ */
+ if (!hashtable->skewEnabled)
+ return INVALID_SKEW_BUCKET_NO;
+
+ /*
+ * Since skewBucketLen is a power of 2, we can do a modulo by ANDing.
+ */
+ bucket = hashvalue & (hashtable->skewBucketLen - 1);
+
+ /*
+ * While we have not hit a hole in the hashtable and have not hit the
+ * desired bucket, we have collided with some other hash value, so try the
+ * next bucket location.
+ */
+ while (hashtable->skewBucket[bucket] != NULL &&
+ hashtable->skewBucket[bucket]->hashvalue != hashvalue)
+ bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);
+
+ /*
+ * Found the desired bucket?
+ */
+ if (hashtable->skewBucket[bucket] != NULL)
+ return bucket;
+
+ /*
+ * There must not be any hashtable entry for this hash value.
+ */
+ return INVALID_SKEW_BUCKET_NO;
+}
+
+/*
+ * ExecHashSkewTableInsert
+ *
+ * Insert a tuple into the skew hashtable.
+ *
+ * This should generally match up with the current-batch case in
+ * ExecHashTableInsert.
+ */
+static void
+ExecHashSkewTableInsert(HashJoinTable hashtable,
+ TupleTableSlot *slot,
+ uint32 hashvalue,
+ int bucketNumber)
+{
+ bool shouldFree;
+ MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
+ HashJoinTuple hashTuple;
+ int hashTupleSize;
+
+ /* Create the HashJoinTuple */
+ hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
+ hashTuple = (HashJoinTuple) MemoryContextAlloc(hashtable->batchCxt,
+ hashTupleSize);
+ hashTuple->hashvalue = hashvalue;
+ memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
+ HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
+
+ /* Push it onto the front of the skew bucket's list */
+ hashTuple->next.unshared = hashtable->skewBucket[bucketNumber]->tuples;
+ hashtable->skewBucket[bucketNumber]->tuples = hashTuple;
+ Assert(hashTuple != hashTuple->next.unshared);
+
+ /* Account for space used, and back off if we've used too much */
+ hashtable->spaceUsed += hashTupleSize;
+ hashtable->spaceUsedSkew += hashTupleSize;
+ if (hashtable->spaceUsed > hashtable->spacePeak)
+ hashtable->spacePeak = hashtable->spaceUsed;
+ while (hashtable->spaceUsedSkew > hashtable->spaceAllowedSkew)
+ ExecHashRemoveNextSkewBucket(hashtable);
+
+ /* Check we are not over the total spaceAllowed, either */
+ if (hashtable->spaceUsed > hashtable->spaceAllowed)
+ ExecHashIncreaseNumBatches(hashtable);
+
+ if (shouldFree)
+ heap_free_minimal_tuple(tuple);
+}
+
+/*
+ * ExecHashRemoveNextSkewBucket
+ *
+ * Remove the least valuable skew bucket by pushing its tuples into
+ * the main hash table.
+ */
+static void
+ExecHashRemoveNextSkewBucket(HashJoinTable hashtable)
+{
+ int bucketToRemove;
+ HashSkewBucket *bucket;
+ uint32 hashvalue;
+ int bucketno;
+ int batchno;
+ HashJoinTuple hashTuple;
+
+ /* Locate the bucket to remove */
+ bucketToRemove = hashtable->skewBucketNums[hashtable->nSkewBuckets - 1];
+ bucket = hashtable->skewBucket[bucketToRemove];
+
+ /*
+ * Calculate which bucket and batch the tuples belong to in the main
+ * hashtable. They all have the same hash value, so it's the same for all
+ * of them. Also note that it's not possible for nbatch to increase while
+ * we are processing the tuples.
+ */
+ hashvalue = bucket->hashvalue;
+ ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
+
+ /* Process all tuples in the bucket */
+ hashTuple = bucket->tuples;
+ while (hashTuple != NULL)
+ {
+ HashJoinTuple nextHashTuple = hashTuple->next.unshared;
+ MinimalTuple tuple;
+ Size tupleSize;
+
+ /*
+ * This code must agree with ExecHashTableInsert. We do not use
+ * ExecHashTableInsert directly as ExecHashTableInsert expects a
+ * TupleTableSlot while we already have HashJoinTuples.
+ */
+ tuple = HJTUPLE_MINTUPLE(hashTuple);
+ tupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
+
+ /* Decide whether to put the tuple in the hash table or a temp file */
+ if (batchno == hashtable->curbatch)
+ {
+ /* Move the tuple to the main hash table */
+ HashJoinTuple copyTuple;
+
+ /*
+ * We must copy the tuple into the dense storage, else it will not
+ * be found by, eg, ExecHashIncreaseNumBatches.
+ */
+ copyTuple = (HashJoinTuple) dense_alloc(hashtable, tupleSize);
+ memcpy(copyTuple, hashTuple, tupleSize);
+ pfree(hashTuple);
+
+ copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
+ hashtable->buckets.unshared[bucketno] = copyTuple;
+
+ /* We have reduced skew space, but overall space doesn't change */
+ hashtable->spaceUsedSkew -= tupleSize;
+ }
+ else
+ {
+ /* Put the tuple into a temp file for later batches */
+ Assert(batchno > hashtable->curbatch);
+ ExecHashJoinSaveTuple(tuple, hashvalue,
+ &hashtable->innerBatchFile[batchno]);
+ pfree(hashTuple);
+ hashtable->spaceUsed -= tupleSize;
+ hashtable->spaceUsedSkew -= tupleSize;
+ }
+
+ hashTuple = nextHashTuple;
+
+ /* allow this loop to be cancellable */
+ CHECK_FOR_INTERRUPTS();
+ }
+
+ /*
+ * Free the bucket struct itself and reset the hashtable entry to NULL.
+ *
+ * NOTE: this is not nearly as simple as it looks on the surface, because
+ * of the possibility of collisions in the hashtable. Suppose that hash
+ * values A and B collide at a particular hashtable entry, and that A was
+ * entered first so B gets shifted to a different table entry. If we were
+ * to remove A first then ExecHashGetSkewBucket would mistakenly start
+ * reporting that B is not in the hashtable, because it would hit the NULL
+ * before finding B. However, we always remove entries in the reverse
+ * order of creation, so this failure cannot happen.
+ */
+ hashtable->skewBucket[bucketToRemove] = NULL;
+ hashtable->nSkewBuckets--;
+ pfree(bucket);
+ hashtable->spaceUsed -= SKEW_BUCKET_OVERHEAD;
+ hashtable->spaceUsedSkew -= SKEW_BUCKET_OVERHEAD;
+
+ /*
+ * If we have removed all skew buckets then give up on skew optimization.
+ * Release the arrays since they aren't useful any more.
+ */
+ if (hashtable->nSkewBuckets == 0)
+ {
+ hashtable->skewEnabled = false;
+ pfree(hashtable->skewBucket);
+ pfree(hashtable->skewBucketNums);
+ hashtable->skewBucket = NULL;
+ hashtable->skewBucketNums = NULL;
+ hashtable->spaceUsed -= hashtable->spaceUsedSkew;
+ hashtable->spaceUsedSkew = 0;
+ }
+}
+
+/*
+ * Reserve space in the DSM segment for instrumentation data.
+ */
+void
+ExecHashEstimate(HashState *node, ParallelContext *pcxt)
+{
+ size_t size;
+
+ /* don't need this if not instrumenting or no workers */
+ if (!node->ps.instrument || pcxt->nworkers == 0)
+ return;
+
+ size = mul_size(pcxt->nworkers, sizeof(HashInstrumentation));
+ size = add_size(size, offsetof(SharedHashInfo, hinstrument));
+ shm_toc_estimate_chunk(&pcxt->estimator, size);
+ shm_toc_estimate_keys(&pcxt->estimator, 1);
+}
+
+/*
+ * Set up a space in the DSM for all workers to record instrumentation data
+ * about their hash table.
+ */
+void
+ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
+{
+ size_t size;
+
+ /* don't need this if not instrumenting or no workers */
+ if (!node->ps.instrument || pcxt->nworkers == 0)
+ return;
+
+ size = offsetof(SharedHashInfo, hinstrument) +
+ pcxt->nworkers * sizeof(HashInstrumentation);
+ node->shared_info = (SharedHashInfo *) shm_toc_allocate(pcxt->toc, size);
+
+ /* Each per-worker area must start out as zeroes. */
+ memset(node->shared_info, 0, size);
+
+ node->shared_info->num_workers = pcxt->nworkers;
+ shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id,
+ node->shared_info);
+}
+
+/*
+ * Locate the DSM space for hash table instrumentation data that we'll write
+ * to at shutdown time.
+ */
+void
+ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
+{
+ SharedHashInfo *shared_info;
+
+ /* don't need this if not instrumenting */
+ if (!node->ps.instrument)
+ return;
+
+ /*
+ * Find our entry in the shared area, and set up a pointer to it so that
+ * we'll accumulate stats there when shutting down or rebuilding the hash
+ * table.
+ */
+ shared_info = (SharedHashInfo *)
+ shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
+ node->hinstrument = &shared_info->hinstrument[ParallelWorkerNumber];
+}
+
+/*
+ * Collect EXPLAIN stats if needed, saving them into DSM memory if
+ * ExecHashInitializeWorker was called, or local storage if not. In the
+ * parallel case, this must be done in ExecShutdownHash() rather than
+ * ExecEndHash() because the latter runs after we've detached from the DSM
+ * segment.
+ */
+void
+ExecShutdownHash(HashState *node)
+{
+ /* Allocate save space if EXPLAIN'ing and we didn't do so already */
+ if (node->ps.instrument && !node->hinstrument)
+ node->hinstrument = (HashInstrumentation *)
+ palloc0(sizeof(HashInstrumentation));
+ /* Now accumulate data for the current (final) hash table */
+ if (node->hinstrument && node->hashtable)
+ ExecHashAccumInstrumentation(node->hinstrument, node->hashtable);
+}
+
+/*
+ * Retrieve instrumentation data from workers before the DSM segment is
+ * detached, so that EXPLAIN can access it.
+ */
+void
+ExecHashRetrieveInstrumentation(HashState *node)
+{
+ SharedHashInfo *shared_info = node->shared_info;
+ size_t size;
+
+ if (shared_info == NULL)
+ return;
+
+ /* Replace node->shared_info with a copy in backend-local memory. */
+ size = offsetof(SharedHashInfo, hinstrument) +
+ shared_info->num_workers * sizeof(HashInstrumentation);
+ node->shared_info = palloc(size);
+ memcpy(node->shared_info, shared_info, size);
+}
+
+/*
+ * Accumulate instrumentation data from 'hashtable' into an
+ * initially-zeroed HashInstrumentation struct.
+ *
+ * This is used to merge information across successive hash table instances
+ * within a single plan node. We take the maximum values of each interesting
+ * number. The largest nbuckets and largest nbatch values might have occurred
+ * in different instances, so there's some risk of confusion from reporting
+ * unrelated numbers; but there's a bigger risk of misdiagnosing a performance
+ * issue if we don't report the largest values. Similarly, we want to report
+ * the largest spacePeak regardless of whether it happened in the same
+ * instance as the largest nbuckets or nbatch. All the instances should have
+ * the same nbuckets_original and nbatch_original; but there's little value
+ * in depending on that here, so handle them the same way.
+ */
+void
+ExecHashAccumInstrumentation(HashInstrumentation *instrument,
+ HashJoinTable hashtable)
+{
+ instrument->nbuckets = Max(instrument->nbuckets,
+ hashtable->nbuckets);
+ instrument->nbuckets_original = Max(instrument->nbuckets_original,
+ hashtable->nbuckets_original);
+ instrument->nbatch = Max(instrument->nbatch,
+ hashtable->nbatch);
+ instrument->nbatch_original = Max(instrument->nbatch_original,
+ hashtable->nbatch_original);
+ instrument->space_peak = Max(instrument->space_peak,
+ hashtable->spacePeak);
+}
+
+/*
+ * Allocate 'size' bytes from the currently active HashMemoryChunk
+ */
+static void *
+dense_alloc(HashJoinTable hashtable, Size size)
+{
+ HashMemoryChunk newChunk;
+ char *ptr;
+
+ /* just in case the size is not already aligned properly */
+ size = MAXALIGN(size);
+
+ /*
+ * If tuple size is larger than threshold, allocate a separate chunk.
+ */
+ if (size > HASH_CHUNK_THRESHOLD)
+ {
+ /* allocate new chunk and put it at the beginning of the list */
+ newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
+ HASH_CHUNK_HEADER_SIZE + size);
+ newChunk->maxlen = size;
+ newChunk->used = size;
+ newChunk->ntuples = 1;
+
+ /*
+ * Add this chunk to the list after the first existing chunk, so that
+ * we don't lose the remaining space in the "current" chunk.
+ */
+ if (hashtable->chunks != NULL)
+ {
+ newChunk->next = hashtable->chunks->next;
+ hashtable->chunks->next.unshared = newChunk;
+ }
+ else
+ {
+ newChunk->next.unshared = hashtable->chunks;
+ hashtable->chunks = newChunk;
+ }
+
+ return HASH_CHUNK_DATA(newChunk);
+ }
+
+ /*
+ * See if we have enough space for it in the current chunk (if any). If
+ * not, allocate a fresh chunk.
+ */
+ if ((hashtable->chunks == NULL) ||
+ (hashtable->chunks->maxlen - hashtable->chunks->used) < size)
+ {
+ /* allocate new chunk and put it at the beginning of the list */
+ newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
+ HASH_CHUNK_HEADER_SIZE + HASH_CHUNK_SIZE);
+
+ newChunk->maxlen = HASH_CHUNK_SIZE;
+ newChunk->used = size;
+ newChunk->ntuples = 1;
+
+ newChunk->next.unshared = hashtable->chunks;
+ hashtable->chunks = newChunk;
+
+ return HASH_CHUNK_DATA(newChunk);
+ }
+
+ /* There is enough space in the current chunk, let's add the tuple */
+ ptr = HASH_CHUNK_DATA(hashtable->chunks) + hashtable->chunks->used;
+ hashtable->chunks->used += size;
+ hashtable->chunks->ntuples += 1;
+
+ /* return pointer to the start of the tuple memory */
+ return ptr;
+}
+
+/*
+ * Allocate space for a tuple in shared dense storage. This is equivalent to
+ * dense_alloc but for Parallel Hash using shared memory.
+ *
+ * While loading a tuple into shared memory, we might run out of memory and
+ * decide to repartition, or determine that the load factor is too high and
+ * decide to expand the bucket array, or discover that another participant has
+ * commanded us to help do that. Return NULL if number of buckets or batches
+ * has changed, indicating that the caller must retry (considering the
+ * possibility that the tuple no longer belongs in the same batch).
+ */
+static HashJoinTuple
+ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size,
+ dsa_pointer *shared)
+{
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ dsa_pointer chunk_shared;
+ HashMemoryChunk chunk;
+ Size chunk_size;
+ HashJoinTuple result;
+ int curbatch = hashtable->curbatch;
+
+ size = MAXALIGN(size);
+
+ /*
+ * Fast path: if there is enough space in this backend's current chunk,
+ * then we can allocate without any locking.
+ */
+ chunk = hashtable->current_chunk;
+ if (chunk != NULL &&
+ size <= HASH_CHUNK_THRESHOLD &&
+ chunk->maxlen - chunk->used >= size)
+ {
+
+ chunk_shared = hashtable->current_chunk_shared;
+ Assert(chunk == dsa_get_address(hashtable->area, chunk_shared));
+ *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE + chunk->used;
+ result = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + chunk->used);
+ chunk->used += size;
+
+ Assert(chunk->used <= chunk->maxlen);
+ Assert(result == dsa_get_address(hashtable->area, *shared));
+
+ return result;
+ }
+
+ /* Slow path: try to allocate a new chunk. */
+ LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
+
+ /*
+ * Check if we need to help increase the number of buckets or batches.
+ */
+ if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
+ pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
+ {
+ ParallelHashGrowth growth = pstate->growth;
+
+ hashtable->current_chunk = NULL;
+ LWLockRelease(&pstate->lock);
+
+ /* Another participant has commanded us to help grow. */
+ if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
+ ExecParallelHashIncreaseNumBatches(hashtable);
+ else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
+ ExecParallelHashIncreaseNumBuckets(hashtable);
+
+ /* The caller must retry. */
+ return NULL;
+ }
+
+ /* Oversized tuples get their own chunk. */
+ if (size > HASH_CHUNK_THRESHOLD)
+ chunk_size = size + HASH_CHUNK_HEADER_SIZE;
+ else
+ chunk_size = HASH_CHUNK_SIZE;
+
+ /* Check if it's time to grow batches or buckets. */
+ if (pstate->growth != PHJ_GROWTH_DISABLED)
+ {
+ Assert(curbatch == 0);
+ Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
+
+ /*
+ * Check if our space limit would be exceeded. To avoid choking on
+ * very large tuples or very low hash_mem setting, we'll always allow
+ * each backend to allocate at least one chunk.
+ */
+ if (hashtable->batches[0].at_least_one_chunk &&
+ hashtable->batches[0].shared->size +
+ chunk_size > pstate->space_allowed)
+ {
+ pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
+ hashtable->batches[0].shared->space_exhausted = true;
+ LWLockRelease(&pstate->lock);
+
+ return NULL;
+ }
+
+ /* Check if our load factor limit would be exceeded. */
+ if (hashtable->nbatch == 1)
+ {
+ hashtable->batches[0].shared->ntuples += hashtable->batches[0].ntuples;
+ hashtable->batches[0].ntuples = 0;
+ /* Guard against integer overflow and alloc size overflow */
+ if (hashtable->batches[0].shared->ntuples + 1 >
+ hashtable->nbuckets * NTUP_PER_BUCKET &&
+ hashtable->nbuckets < (INT_MAX / 2) &&
+ hashtable->nbuckets * 2 <=
+ MaxAllocSize / sizeof(dsa_pointer_atomic))
+ {
+ pstate->growth = PHJ_GROWTH_NEED_MORE_BUCKETS;
+ LWLockRelease(&pstate->lock);
+
+ return NULL;
+ }
+ }
+ }
+
+ /* We are cleared to allocate a new chunk. */
+ chunk_shared = dsa_allocate(hashtable->area, chunk_size);
+ hashtable->batches[curbatch].shared->size += chunk_size;
+ hashtable->batches[curbatch].at_least_one_chunk = true;
+
+ /* Set up the chunk. */
+ chunk = (HashMemoryChunk) dsa_get_address(hashtable->area, chunk_shared);
+ *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE;
+ chunk->maxlen = chunk_size - HASH_CHUNK_HEADER_SIZE;
+ chunk->used = size;
+
+ /*
+ * Push it onto the list of chunks, so that it can be found if we need to
+ * increase the number of buckets or batches (batch 0 only) and later for
+ * freeing the memory (all batches).
+ */
+ chunk->next.shared = hashtable->batches[curbatch].shared->chunks;
+ hashtable->batches[curbatch].shared->chunks = chunk_shared;
+
+ if (size <= HASH_CHUNK_THRESHOLD)
+ {
+ /*
+ * Make this the current chunk so that we can use the fast path to
+ * fill the rest of it up in future calls.
+ */
+ hashtable->current_chunk = chunk;
+ hashtable->current_chunk_shared = chunk_shared;
+ }
+ LWLockRelease(&pstate->lock);
+
+ Assert(HASH_CHUNK_DATA(chunk) == dsa_get_address(hashtable->area, *shared));
+ result = (HashJoinTuple) HASH_CHUNK_DATA(chunk);
+
+ return result;
+}
+
+/*
+ * One backend needs to set up the shared batch state including tuplestores.
+ * Other backends will ensure they have correctly configured accessors by
+ * called ExecParallelHashEnsureBatchAccessors().
+ */
+static void
+ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch)
+{
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ ParallelHashJoinBatch *batches;
+ MemoryContext oldcxt;
+ int i;
+
+ Assert(hashtable->batches == NULL);
+
+ /* Allocate space. */
+ pstate->batches =
+ dsa_allocate0(hashtable->area,
+ EstimateParallelHashJoinBatch(hashtable) * nbatch);
+ pstate->nbatch = nbatch;
+ batches = dsa_get_address(hashtable->area, pstate->batches);
+
+ /* Use hash join memory context. */
+ oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
+
+ /* Allocate this backend's accessor array. */
+ hashtable->nbatch = nbatch;
+ hashtable->batches = (ParallelHashJoinBatchAccessor *)
+ palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
+
+ /* Set up the shared state, tuplestores and backend-local accessors. */
+ for (i = 0; i < hashtable->nbatch; ++i)
+ {
+ ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
+ ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
+ char name[MAXPGPATH];
+
+ /*
+ * All members of shared were zero-initialized. We just need to set
+ * up the Barrier.
+ */
+ BarrierInit(&shared->batch_barrier, 0);
+ if (i == 0)
+ {
+ /* Batch 0 doesn't need to be loaded. */
+ BarrierAttach(&shared->batch_barrier);
+ while (BarrierPhase(&shared->batch_barrier) < PHJ_BATCH_PROBING)
+ BarrierArriveAndWait(&shared->batch_barrier, 0);
+ BarrierDetach(&shared->batch_barrier);
+ }
+
+ /* Initialize accessor state. All members were zero-initialized. */
+ accessor->shared = shared;
+
+ /* Initialize the shared tuplestores. */
+ snprintf(name, sizeof(name), "i%dof%d", i, hashtable->nbatch);
+ accessor->inner_tuples =
+ sts_initialize(ParallelHashJoinBatchInner(shared),
+ pstate->nparticipants,
+ ParallelWorkerNumber + 1,
+ sizeof(uint32),
+ SHARED_TUPLESTORE_SINGLE_PASS,
+ &pstate->fileset,
+ name);
+ snprintf(name, sizeof(name), "o%dof%d", i, hashtable->nbatch);
+ accessor->outer_tuples =
+ sts_initialize(ParallelHashJoinBatchOuter(shared,
+ pstate->nparticipants),
+ pstate->nparticipants,
+ ParallelWorkerNumber + 1,
+ sizeof(uint32),
+ SHARED_TUPLESTORE_SINGLE_PASS,
+ &pstate->fileset,
+ name);
+ }
+
+ MemoryContextSwitchTo(oldcxt);
+}
+
+/*
+ * Free the current set of ParallelHashJoinBatchAccessor objects.
+ */
+static void
+ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable)
+{
+ int i;
+
+ for (i = 0; i < hashtable->nbatch; ++i)
+ {
+ /* Make sure no files are left open. */
+ sts_end_write(hashtable->batches[i].inner_tuples);
+ sts_end_write(hashtable->batches[i].outer_tuples);
+ sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
+ sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
+ }
+ pfree(hashtable->batches);
+ hashtable->batches = NULL;
+}
+
+/*
+ * Make sure this backend has up-to-date accessors for the current set of
+ * batches.
+ */
+static void
+ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable)
+{
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ ParallelHashJoinBatch *batches;
+ MemoryContext oldcxt;
+ int i;
+
+ if (hashtable->batches != NULL)
+ {
+ if (hashtable->nbatch == pstate->nbatch)
+ return;
+ ExecParallelHashCloseBatchAccessors(hashtable);
+ }
+
+ /*
+ * It's possible for a backend to start up very late so that the whole
+ * join is finished and the shm state for tracking batches has already
+ * been freed by ExecHashTableDetach(). In that case we'll just leave
+ * hashtable->batches as NULL so that ExecParallelHashJoinNewBatch() gives
+ * up early.
+ */
+ if (!DsaPointerIsValid(pstate->batches))
+ return;
+
+ /* Use hash join memory context. */
+ oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
+
+ /* Allocate this backend's accessor array. */
+ hashtable->nbatch = pstate->nbatch;
+ hashtable->batches = (ParallelHashJoinBatchAccessor *)
+ palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
+
+ /* Find the base of the pseudo-array of ParallelHashJoinBatch objects. */
+ batches = (ParallelHashJoinBatch *)
+ dsa_get_address(hashtable->area, pstate->batches);
+
+ /* Set up the accessor array and attach to the tuplestores. */
+ for (i = 0; i < hashtable->nbatch; ++i)
+ {
+ ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
+ ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
+
+ accessor->shared = shared;
+ accessor->preallocated = 0;
+ accessor->done = false;
+ accessor->inner_tuples =
+ sts_attach(ParallelHashJoinBatchInner(shared),
+ ParallelWorkerNumber + 1,
+ &pstate->fileset);
+ accessor->outer_tuples =
+ sts_attach(ParallelHashJoinBatchOuter(shared,
+ pstate->nparticipants),
+ ParallelWorkerNumber + 1,
+ &pstate->fileset);
+ }
+
+ MemoryContextSwitchTo(oldcxt);
+}
+
+/*
+ * Allocate an empty shared memory hash table for a given batch.
+ */
+void
+ExecParallelHashTableAlloc(HashJoinTable hashtable, int batchno)
+{
+ ParallelHashJoinBatch *batch = hashtable->batches[batchno].shared;
+ dsa_pointer_atomic *buckets;
+ int nbuckets = hashtable->parallel_state->nbuckets;
+ int i;
+
+ batch->buckets =
+ dsa_allocate(hashtable->area, sizeof(dsa_pointer_atomic) * nbuckets);
+ buckets = (dsa_pointer_atomic *)
+ dsa_get_address(hashtable->area, batch->buckets);
+ for (i = 0; i < nbuckets; ++i)
+ dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
+}
+
+/*
+ * If we are currently attached to a shared hash join batch, detach. If we
+ * are last to detach, clean up.
+ */
+void
+ExecHashTableDetachBatch(HashJoinTable hashtable)
+{
+ if (hashtable->parallel_state != NULL &&
+ hashtable->curbatch >= 0)
+ {
+ int curbatch = hashtable->curbatch;
+ ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
+
+ /* Make sure any temporary files are closed. */
+ sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
+ sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
+
+ /* Detach from the batch we were last working on. */
+ if (BarrierArriveAndDetach(&batch->batch_barrier))
+ {
+ /*
+ * Technically we shouldn't access the barrier because we're no
+ * longer attached, but since there is no way it's moving after
+ * this point it seems safe to make the following assertion.
+ */
+ Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_DONE);
+
+ /* Free shared chunks and buckets. */
+ while (DsaPointerIsValid(batch->chunks))
+ {
+ HashMemoryChunk chunk =
+ dsa_get_address(hashtable->area, batch->chunks);
+ dsa_pointer next = chunk->next.shared;
+
+ dsa_free(hashtable->area, batch->chunks);
+ batch->chunks = next;
+ }
+ if (DsaPointerIsValid(batch->buckets))
+ {
+ dsa_free(hashtable->area, batch->buckets);
+ batch->buckets = InvalidDsaPointer;
+ }
+ }
+
+ /*
+ * Track the largest batch we've been attached to. Though each
+ * backend might see a different subset of batches, explain.c will
+ * scan the results from all backends to find the largest value.
+ */
+ hashtable->spacePeak =
+ Max(hashtable->spacePeak,
+ batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
+
+ /* Remember that we are not attached to a batch. */
+ hashtable->curbatch = -1;
+ }
+}
+
+/*
+ * Detach from all shared resources. If we are last to detach, clean up.
+ */
+void
+ExecHashTableDetach(HashJoinTable hashtable)
+{
+ if (hashtable->parallel_state)
+ {
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ int i;
+
+ /* Make sure any temporary files are closed. */
+ if (hashtable->batches)
+ {
+ for (i = 0; i < hashtable->nbatch; ++i)
+ {
+ sts_end_write(hashtable->batches[i].inner_tuples);
+ sts_end_write(hashtable->batches[i].outer_tuples);
+ sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
+ sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
+ }
+ }
+
+ /* If we're last to detach, clean up shared memory. */
+ if (BarrierDetach(&pstate->build_barrier))
+ {
+ if (DsaPointerIsValid(pstate->batches))
+ {
+ dsa_free(hashtable->area, pstate->batches);
+ pstate->batches = InvalidDsaPointer;
+ }
+ }
+
+ hashtable->parallel_state = NULL;
+ }
+}
+
+/*
+ * Get the first tuple in a given bucket identified by number.
+ */
+static inline HashJoinTuple
+ExecParallelHashFirstTuple(HashJoinTable hashtable, int bucketno)
+{
+ HashJoinTuple tuple;
+ dsa_pointer p;
+
+ Assert(hashtable->parallel_state);
+ p = dsa_pointer_atomic_read(&hashtable->buckets.shared[bucketno]);
+ tuple = (HashJoinTuple) dsa_get_address(hashtable->area, p);
+
+ return tuple;
+}
+
+/*
+ * Get the next tuple in the same bucket as 'tuple'.
+ */
+static inline HashJoinTuple
+ExecParallelHashNextTuple(HashJoinTable hashtable, HashJoinTuple tuple)
+{
+ HashJoinTuple next;
+
+ Assert(hashtable->parallel_state);
+ next = (HashJoinTuple) dsa_get_address(hashtable->area, tuple->next.shared);
+
+ return next;
+}
+
+/*
+ * Insert a tuple at the front of a chain of tuples in DSA memory atomically.
+ */
+static inline void
+ExecParallelHashPushTuple(dsa_pointer_atomic *head,
+ HashJoinTuple tuple,
+ dsa_pointer tuple_shared)
+{
+ for (;;)
+ {
+ tuple->next.shared = dsa_pointer_atomic_read(head);
+ if (dsa_pointer_atomic_compare_exchange(head,
+ &tuple->next.shared,
+ tuple_shared))
+ break;
+ }
+}
+
+/*
+ * Prepare to work on a given batch.
+ */
+void
+ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable, int batchno)
+{
+ Assert(hashtable->batches[batchno].shared->buckets != InvalidDsaPointer);
+
+ hashtable->curbatch = batchno;
+ hashtable->buckets.shared = (dsa_pointer_atomic *)
+ dsa_get_address(hashtable->area,
+ hashtable->batches[batchno].shared->buckets);
+ hashtable->nbuckets = hashtable->parallel_state->nbuckets;
+ hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
+ hashtable->current_chunk = NULL;
+ hashtable->current_chunk_shared = InvalidDsaPointer;
+ hashtable->batches[batchno].at_least_one_chunk = false;
+}
+
+/*
+ * Take the next available chunk from the queue of chunks being worked on in
+ * parallel. Return NULL if there are none left. Otherwise return a pointer
+ * to the chunk, and set *shared to the DSA pointer to the chunk.
+ */
+static HashMemoryChunk
+ExecParallelHashPopChunkQueue(HashJoinTable hashtable, dsa_pointer *shared)
+{
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ HashMemoryChunk chunk;
+
+ LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
+ if (DsaPointerIsValid(pstate->chunk_work_queue))
+ {
+ *shared = pstate->chunk_work_queue;
+ chunk = (HashMemoryChunk)
+ dsa_get_address(hashtable->area, *shared);
+ pstate->chunk_work_queue = chunk->next.shared;
+ }
+ else
+ chunk = NULL;
+ LWLockRelease(&pstate->lock);
+
+ return chunk;
+}
+
+/*
+ * Increase the space preallocated in this backend for a given inner batch by
+ * at least a given amount. This allows us to track whether a given batch
+ * would fit in memory when loaded back in. Also increase the number of
+ * batches or buckets if required.
+ *
+ * This maintains a running estimation of how much space will be taken when we
+ * load the batch back into memory by simulating the way chunks will be handed
+ * out to workers. It's not perfectly accurate because the tuples will be
+ * packed into memory chunks differently by ExecParallelHashTupleAlloc(), but
+ * it should be pretty close. It tends to overestimate by a fraction of a
+ * chunk per worker since all workers gang up to preallocate during hashing,
+ * but workers tend to reload batches alone if there are enough to go around,
+ * leaving fewer partially filled chunks. This effect is bounded by
+ * nparticipants.
+ *
+ * Return false if the number of batches or buckets has changed, and the
+ * caller should reconsider which batch a given tuple now belongs in and call
+ * again.
+ */
+static bool
+ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
+{
+ ParallelHashJoinState *pstate = hashtable->parallel_state;
+ ParallelHashJoinBatchAccessor *batch = &hashtable->batches[batchno];
+ size_t want = Max(size, HASH_CHUNK_SIZE - HASH_CHUNK_HEADER_SIZE);
+
+ Assert(batchno > 0);
+ Assert(batchno < hashtable->nbatch);
+ Assert(size == MAXALIGN(size));
+
+ LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
+
+ /* Has another participant commanded us to help grow? */
+ if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
+ pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
+ {
+ ParallelHashGrowth growth = pstate->growth;
+
+ LWLockRelease(&pstate->lock);
+ if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
+ ExecParallelHashIncreaseNumBatches(hashtable);
+ else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
+ ExecParallelHashIncreaseNumBuckets(hashtable);
+
+ return false;
+ }
+
+ if (pstate->growth != PHJ_GROWTH_DISABLED &&
+ batch->at_least_one_chunk &&
+ (batch->shared->estimated_size + want + HASH_CHUNK_HEADER_SIZE
+ > pstate->space_allowed))
+ {
+ /*
+ * We have determined that this batch would exceed the space budget if
+ * loaded into memory. Command all participants to help repartition.
+ */
+ batch->shared->space_exhausted = true;
+ pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
+ LWLockRelease(&pstate->lock);
+
+ return false;
+ }
+
+ batch->at_least_one_chunk = true;
+ batch->shared->estimated_size += want + HASH_CHUNK_HEADER_SIZE;
+ batch->preallocated = want;
+ LWLockRelease(&pstate->lock);
+
+ return true;
+}
+
+/*
+ * Calculate the limit on how much memory can be used by Hash and similar
+ * plan types. This is work_mem times hash_mem_multiplier, and is
+ * expressed in bytes.
+ *
+ * Exported for use by the planner, as well as other hash-like executor
+ * nodes. This is a rather random place for this, but there is no better
+ * place.
+ */
+size_t
+get_hash_memory_limit(void)
+{
+ double mem_limit;
+
+ /* Do initial calculation in double arithmetic */
+ mem_limit = (double) work_mem * hash_mem_multiplier * 1024.0;
+
+ /* Clamp in case it doesn't fit in size_t */
+ mem_limit = Min(mem_limit, (double) SIZE_MAX);
+
+ return (size_t) mem_limit;
+}
+
+/*
+ * Convert the hash memory limit to an integer number of kilobytes,
+ * that is something comparable to work_mem. Like work_mem, we clamp
+ * the result to ensure that multiplying it by 1024 fits in a long int.
+ *
+ * This is deprecated since it may understate the actual memory limit.
+ * It is unused in core and will eventually be removed.
+ */
+int
+get_hash_mem(void)
+{
+ size_t mem_limit = get_hash_memory_limit();
+
+ /* Remove the kilobyte factor */
+ mem_limit /= 1024;
+
+ /* Clamp to MAX_KILOBYTES, like work_mem */
+ mem_limit = Min(mem_limit, (size_t) MAX_KILOBYTES);
+
+ return (int) mem_limit;
+}