summaryrefslogtreecommitdiffstats
path: root/src/backend/optimizer/util/predtest.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/optimizer/util/predtest.c
parentInitial commit. (diff)
downloadpostgresql-14-46651ce6fe013220ed397add242004d764fc0153.tar.xz
postgresql-14-46651ce6fe013220ed397add242004d764fc0153.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/optimizer/util/predtest.c')
-rw-r--r--src/backend/optimizer/util/predtest.c2224
1 files changed, 2224 insertions, 0 deletions
diff --git a/src/backend/optimizer/util/predtest.c b/src/backend/optimizer/util/predtest.c
new file mode 100644
index 0000000..f8be728
--- /dev/null
+++ b/src/backend/optimizer/util/predtest.c
@@ -0,0 +1,2224 @@
+/*-------------------------------------------------------------------------
+ *
+ * predtest.c
+ * Routines to attempt to prove logical implications between predicate
+ * expressions.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/util/predtest.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "catalog/pg_proc.h"
+#include "catalog/pg_type.h"
+#include "executor/executor.h"
+#include "miscadmin.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "nodes/pathnodes.h"
+#include "optimizer/optimizer.h"
+#include "utils/array.h"
+#include "utils/inval.h"
+#include "utils/lsyscache.h"
+#include "utils/syscache.h"
+
+
+/*
+ * Proof attempts involving large arrays in ScalarArrayOpExpr nodes are
+ * likely to require O(N^2) time, and more often than not fail anyway.
+ * So we set an arbitrary limit on the number of array elements that
+ * we will allow to be treated as an AND or OR clause.
+ * XXX is it worth exposing this as a GUC knob?
+ */
+#define MAX_SAOP_ARRAY_SIZE 100
+
+/*
+ * To avoid redundant coding in predicate_implied_by_recurse and
+ * predicate_refuted_by_recurse, we need to abstract out the notion of
+ * iterating over the components of an expression that is logically an AND
+ * or OR structure. There are multiple sorts of expression nodes that can
+ * be treated as ANDs or ORs, and we don't want to code each one separately.
+ * Hence, these types and support routines.
+ */
+typedef enum
+{
+ CLASS_ATOM, /* expression that's not AND or OR */
+ CLASS_AND, /* expression with AND semantics */
+ CLASS_OR /* expression with OR semantics */
+} PredClass;
+
+typedef struct PredIterInfoData *PredIterInfo;
+
+typedef struct PredIterInfoData
+{
+ /* node-type-specific iteration state */
+ void *state;
+ List *state_list;
+ /* initialize to do the iteration */
+ void (*startup_fn) (Node *clause, PredIterInfo info);
+ /* next-component iteration function */
+ Node *(*next_fn) (PredIterInfo info);
+ /* release resources when done with iteration */
+ void (*cleanup_fn) (PredIterInfo info);
+} PredIterInfoData;
+
+#define iterate_begin(item, clause, info) \
+ do { \
+ Node *item; \
+ (info).startup_fn((clause), &(info)); \
+ while ((item = (info).next_fn(&(info))) != NULL)
+
+#define iterate_end(info) \
+ (info).cleanup_fn(&(info)); \
+ } while (0)
+
+
+static bool predicate_implied_by_recurse(Node *clause, Node *predicate,
+ bool weak);
+static bool predicate_refuted_by_recurse(Node *clause, Node *predicate,
+ bool weak);
+static PredClass predicate_classify(Node *clause, PredIterInfo info);
+static void list_startup_fn(Node *clause, PredIterInfo info);
+static Node *list_next_fn(PredIterInfo info);
+static void list_cleanup_fn(PredIterInfo info);
+static void boolexpr_startup_fn(Node *clause, PredIterInfo info);
+static void arrayconst_startup_fn(Node *clause, PredIterInfo info);
+static Node *arrayconst_next_fn(PredIterInfo info);
+static void arrayconst_cleanup_fn(PredIterInfo info);
+static void arrayexpr_startup_fn(Node *clause, PredIterInfo info);
+static Node *arrayexpr_next_fn(PredIterInfo info);
+static void arrayexpr_cleanup_fn(PredIterInfo info);
+static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause,
+ bool weak);
+static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause,
+ bool weak);
+static Node *extract_not_arg(Node *clause);
+static Node *extract_strong_not_arg(Node *clause);
+static bool clause_is_strict_for(Node *clause, Node *subexpr, bool allow_false);
+static bool operator_predicate_proof(Expr *predicate, Node *clause,
+ bool refute_it, bool weak);
+static bool operator_same_subexprs_proof(Oid pred_op, Oid clause_op,
+ bool refute_it);
+static bool operator_same_subexprs_lookup(Oid pred_op, Oid clause_op,
+ bool refute_it);
+static Oid get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it);
+static void InvalidateOprProofCacheCallBack(Datum arg, int cacheid, uint32 hashvalue);
+
+
+/*
+ * predicate_implied_by
+ * Recursively checks whether the clauses in clause_list imply that the
+ * given predicate is true.
+ *
+ * We support two definitions of implication:
+ *
+ * "Strong" implication: A implies B means that truth of A implies truth of B.
+ * We use this to prove that a row satisfying one WHERE clause or index
+ * predicate must satisfy another one.
+ *
+ * "Weak" implication: A implies B means that non-falsity of A implies
+ * non-falsity of B ("non-false" means "either true or NULL"). We use this to
+ * prove that a row satisfying one CHECK constraint must satisfy another one.
+ *
+ * Strong implication can also be used to prove that a WHERE clause implies a
+ * CHECK constraint, although it will fail to prove a few cases where we could
+ * safely conclude that the implication holds. There's no support for proving
+ * the converse case, since only a few kinds of CHECK constraint would allow
+ * deducing anything.
+ *
+ * The top-level List structure of each list corresponds to an AND list.
+ * We assume that eval_const_expressions() has been applied and so there
+ * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
+ * including AND just below the top-level List structure).
+ * If this is not true we might fail to prove an implication that is
+ * valid, but no worse consequences will ensue.
+ *
+ * We assume the predicate has already been checked to contain only
+ * immutable functions and operators. (In many current uses this is known
+ * true because the predicate is part of an index predicate that has passed
+ * CheckPredicate(); otherwise, the caller must check it.) We dare not make
+ * deductions based on non-immutable functions, because they might change
+ * answers between the time we make the plan and the time we execute the plan.
+ * Immutability of functions in the clause_list is checked here, if necessary.
+ */
+bool
+predicate_implied_by(List *predicate_list, List *clause_list,
+ bool weak)
+{
+ Node *p,
+ *c;
+
+ if (predicate_list == NIL)
+ return true; /* no predicate: implication is vacuous */
+ if (clause_list == NIL)
+ return false; /* no restriction: implication must fail */
+
+ /*
+ * If either input is a single-element list, replace it with its lone
+ * member; this avoids one useless level of AND-recursion. We only need
+ * to worry about this at top level, since eval_const_expressions should
+ * have gotten rid of any trivial ANDs or ORs below that.
+ */
+ if (list_length(predicate_list) == 1)
+ p = (Node *) linitial(predicate_list);
+ else
+ p = (Node *) predicate_list;
+ if (list_length(clause_list) == 1)
+ c = (Node *) linitial(clause_list);
+ else
+ c = (Node *) clause_list;
+
+ /* And away we go ... */
+ return predicate_implied_by_recurse(c, p, weak);
+}
+
+/*
+ * predicate_refuted_by
+ * Recursively checks whether the clauses in clause_list refute the given
+ * predicate (that is, prove it false).
+ *
+ * This is NOT the same as !(predicate_implied_by), though it is similar
+ * in the technique and structure of the code.
+ *
+ * We support two definitions of refutation:
+ *
+ * "Strong" refutation: A refutes B means truth of A implies falsity of B.
+ * We use this to disprove a CHECK constraint given a WHERE clause, i.e.,
+ * prove that any row satisfying the WHERE clause would violate the CHECK
+ * constraint. (Observe we must prove B yields false, not just not-true.)
+ *
+ * "Weak" refutation: A refutes B means truth of A implies non-truth of B
+ * (i.e., B must yield false or NULL). We use this to detect mutually
+ * contradictory WHERE clauses.
+ *
+ * Weak refutation can be proven in some cases where strong refutation doesn't
+ * hold, so it's useful to use it when possible. We don't currently have
+ * support for disproving one CHECK constraint based on another one, nor for
+ * disproving WHERE based on CHECK. (As with implication, the last case
+ * doesn't seem very practical. CHECK-vs-CHECK might be useful, but isn't
+ * currently needed anywhere.)
+ *
+ * The top-level List structure of each list corresponds to an AND list.
+ * We assume that eval_const_expressions() has been applied and so there
+ * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
+ * including AND just below the top-level List structure).
+ * If this is not true we might fail to prove an implication that is
+ * valid, but no worse consequences will ensue.
+ *
+ * We assume the predicate has already been checked to contain only
+ * immutable functions and operators. We dare not make deductions based on
+ * non-immutable functions, because they might change answers between the
+ * time we make the plan and the time we execute the plan.
+ * Immutability of functions in the clause_list is checked here, if necessary.
+ */
+bool
+predicate_refuted_by(List *predicate_list, List *clause_list,
+ bool weak)
+{
+ Node *p,
+ *c;
+
+ if (predicate_list == NIL)
+ return false; /* no predicate: no refutation is possible */
+ if (clause_list == NIL)
+ return false; /* no restriction: refutation must fail */
+
+ /*
+ * If either input is a single-element list, replace it with its lone
+ * member; this avoids one useless level of AND-recursion. We only need
+ * to worry about this at top level, since eval_const_expressions should
+ * have gotten rid of any trivial ANDs or ORs below that.
+ */
+ if (list_length(predicate_list) == 1)
+ p = (Node *) linitial(predicate_list);
+ else
+ p = (Node *) predicate_list;
+ if (list_length(clause_list) == 1)
+ c = (Node *) linitial(clause_list);
+ else
+ c = (Node *) clause_list;
+
+ /* And away we go ... */
+ return predicate_refuted_by_recurse(c, p, weak);
+}
+
+/*----------
+ * predicate_implied_by_recurse
+ * Does the predicate implication test for non-NULL restriction and
+ * predicate clauses.
+ *
+ * The logic followed here is ("=>" means "implies"):
+ * atom A => atom B iff: predicate_implied_by_simple_clause says so
+ * atom A => AND-expr B iff: A => each of B's components
+ * atom A => OR-expr B iff: A => any of B's components
+ * AND-expr A => atom B iff: any of A's components => B
+ * AND-expr A => AND-expr B iff: A => each of B's components
+ * AND-expr A => OR-expr B iff: A => any of B's components,
+ * *or* any of A's components => B
+ * OR-expr A => atom B iff: each of A's components => B
+ * OR-expr A => AND-expr B iff: A => each of B's components
+ * OR-expr A => OR-expr B iff: each of A's components => any of B's
+ *
+ * An "atom" is anything other than an AND or OR node. Notice that we don't
+ * have any special logic to handle NOT nodes; these should have been pushed
+ * down or eliminated where feasible during eval_const_expressions().
+ *
+ * All of these rules apply equally to strong or weak implication.
+ *
+ * We can't recursively expand either side first, but have to interleave
+ * the expansions per the above rules, to be sure we handle all of these
+ * examples:
+ * (x OR y) => (x OR y OR z)
+ * (x AND y AND z) => (x AND y)
+ * (x AND y) => ((x AND y) OR z)
+ * ((x OR y) AND z) => (x OR y)
+ * This is still not an exhaustive test, but it handles most normal cases
+ * under the assumption that both inputs have been AND/OR flattened.
+ *
+ * We have to be prepared to handle RestrictInfo nodes in the restrictinfo
+ * tree, though not in the predicate tree.
+ *----------
+ */
+static bool
+predicate_implied_by_recurse(Node *clause, Node *predicate,
+ bool weak)
+{
+ PredIterInfoData clause_info;
+ PredIterInfoData pred_info;
+ PredClass pclass;
+ bool result;
+
+ /* skip through RestrictInfo */
+ Assert(clause != NULL);
+ if (IsA(clause, RestrictInfo))
+ clause = (Node *) ((RestrictInfo *) clause)->clause;
+
+ pclass = predicate_classify(predicate, &pred_info);
+
+ switch (predicate_classify(clause, &clause_info))
+ {
+ case CLASS_AND:
+ switch (pclass)
+ {
+ case CLASS_AND:
+
+ /*
+ * AND-clause => AND-clause if A implies each of B's items
+ */
+ result = true;
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (!predicate_implied_by_recurse(clause, pitem,
+ weak))
+ {
+ result = false;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ return result;
+
+ case CLASS_OR:
+
+ /*
+ * AND-clause => OR-clause if A implies any of B's items
+ *
+ * Needed to handle (x AND y) => ((x AND y) OR z)
+ */
+ result = false;
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (predicate_implied_by_recurse(clause, pitem,
+ weak))
+ {
+ result = true;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ if (result)
+ return result;
+
+ /*
+ * Also check if any of A's items implies B
+ *
+ * Needed to handle ((x OR y) AND z) => (x OR y)
+ */
+ iterate_begin(citem, clause, clause_info)
+ {
+ if (predicate_implied_by_recurse(citem, predicate,
+ weak))
+ {
+ result = true;
+ break;
+ }
+ }
+ iterate_end(clause_info);
+ return result;
+
+ case CLASS_ATOM:
+
+ /*
+ * AND-clause => atom if any of A's items implies B
+ */
+ result = false;
+ iterate_begin(citem, clause, clause_info)
+ {
+ if (predicate_implied_by_recurse(citem, predicate,
+ weak))
+ {
+ result = true;
+ break;
+ }
+ }
+ iterate_end(clause_info);
+ return result;
+ }
+ break;
+
+ case CLASS_OR:
+ switch (pclass)
+ {
+ case CLASS_OR:
+
+ /*
+ * OR-clause => OR-clause if each of A's items implies any
+ * of B's items. Messy but can't do it any more simply.
+ */
+ result = true;
+ iterate_begin(citem, clause, clause_info)
+ {
+ bool presult = false;
+
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (predicate_implied_by_recurse(citem, pitem,
+ weak))
+ {
+ presult = true;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ if (!presult)
+ {
+ result = false; /* doesn't imply any of B's */
+ break;
+ }
+ }
+ iterate_end(clause_info);
+ return result;
+
+ case CLASS_AND:
+ case CLASS_ATOM:
+
+ /*
+ * OR-clause => AND-clause if each of A's items implies B
+ *
+ * OR-clause => atom if each of A's items implies B
+ */
+ result = true;
+ iterate_begin(citem, clause, clause_info)
+ {
+ if (!predicate_implied_by_recurse(citem, predicate,
+ weak))
+ {
+ result = false;
+ break;
+ }
+ }
+ iterate_end(clause_info);
+ return result;
+ }
+ break;
+
+ case CLASS_ATOM:
+ switch (pclass)
+ {
+ case CLASS_AND:
+
+ /*
+ * atom => AND-clause if A implies each of B's items
+ */
+ result = true;
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (!predicate_implied_by_recurse(clause, pitem,
+ weak))
+ {
+ result = false;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ return result;
+
+ case CLASS_OR:
+
+ /*
+ * atom => OR-clause if A implies any of B's items
+ */
+ result = false;
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (predicate_implied_by_recurse(clause, pitem,
+ weak))
+ {
+ result = true;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ return result;
+
+ case CLASS_ATOM:
+
+ /*
+ * atom => atom is the base case
+ */
+ return
+ predicate_implied_by_simple_clause((Expr *) predicate,
+ clause,
+ weak);
+ }
+ break;
+ }
+
+ /* can't get here */
+ elog(ERROR, "predicate_classify returned a bogus value");
+ return false;
+}
+
+/*----------
+ * predicate_refuted_by_recurse
+ * Does the predicate refutation test for non-NULL restriction and
+ * predicate clauses.
+ *
+ * The logic followed here is ("R=>" means "refutes"):
+ * atom A R=> atom B iff: predicate_refuted_by_simple_clause says so
+ * atom A R=> AND-expr B iff: A R=> any of B's components
+ * atom A R=> OR-expr B iff: A R=> each of B's components
+ * AND-expr A R=> atom B iff: any of A's components R=> B
+ * AND-expr A R=> AND-expr B iff: A R=> any of B's components,
+ * *or* any of A's components R=> B
+ * AND-expr A R=> OR-expr B iff: A R=> each of B's components
+ * OR-expr A R=> atom B iff: each of A's components R=> B
+ * OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's
+ * OR-expr A R=> OR-expr B iff: A R=> each of B's components
+ *
+ * All of the above rules apply equally to strong or weak refutation.
+ *
+ * In addition, if the predicate is a NOT-clause then we can use
+ * A R=> NOT B if: A => B
+ * This works for several different SQL constructs that assert the non-truth
+ * of their argument, ie NOT, IS FALSE, IS NOT TRUE, IS UNKNOWN, although some
+ * of them require that we prove strong implication. Likewise, we can use
+ * NOT A R=> B if: B => A
+ * but here we must be careful about strong vs. weak refutation and make
+ * the appropriate type of implication proof (weak or strong respectively).
+ *
+ * Other comments are as for predicate_implied_by_recurse().
+ *----------
+ */
+static bool
+predicate_refuted_by_recurse(Node *clause, Node *predicate,
+ bool weak)
+{
+ PredIterInfoData clause_info;
+ PredIterInfoData pred_info;
+ PredClass pclass;
+ Node *not_arg;
+ bool result;
+
+ /* skip through RestrictInfo */
+ Assert(clause != NULL);
+ if (IsA(clause, RestrictInfo))
+ clause = (Node *) ((RestrictInfo *) clause)->clause;
+
+ pclass = predicate_classify(predicate, &pred_info);
+
+ switch (predicate_classify(clause, &clause_info))
+ {
+ case CLASS_AND:
+ switch (pclass)
+ {
+ case CLASS_AND:
+
+ /*
+ * AND-clause R=> AND-clause if A refutes any of B's items
+ *
+ * Needed to handle (x AND y) R=> ((!x OR !y) AND z)
+ */
+ result = false;
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (predicate_refuted_by_recurse(clause, pitem,
+ weak))
+ {
+ result = true;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ if (result)
+ return result;
+
+ /*
+ * Also check if any of A's items refutes B
+ *
+ * Needed to handle ((x OR y) AND z) R=> (!x AND !y)
+ */
+ iterate_begin(citem, clause, clause_info)
+ {
+ if (predicate_refuted_by_recurse(citem, predicate,
+ weak))
+ {
+ result = true;
+ break;
+ }
+ }
+ iterate_end(clause_info);
+ return result;
+
+ case CLASS_OR:
+
+ /*
+ * AND-clause R=> OR-clause if A refutes each of B's items
+ */
+ result = true;
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (!predicate_refuted_by_recurse(clause, pitem,
+ weak))
+ {
+ result = false;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ return result;
+
+ case CLASS_ATOM:
+
+ /*
+ * If B is a NOT-type clause, A R=> B if A => B's arg
+ *
+ * Since, for either type of refutation, we are starting
+ * with the premise that A is true, we can use a strong
+ * implication test in all cases. That proves B's arg is
+ * true, which is more than we need for weak refutation if
+ * B is a simple NOT, but it allows not worrying about
+ * exactly which kind of negation clause we have.
+ */
+ not_arg = extract_not_arg(predicate);
+ if (not_arg &&
+ predicate_implied_by_recurse(clause, not_arg,
+ false))
+ return true;
+
+ /*
+ * AND-clause R=> atom if any of A's items refutes B
+ */
+ result = false;
+ iterate_begin(citem, clause, clause_info)
+ {
+ if (predicate_refuted_by_recurse(citem, predicate,
+ weak))
+ {
+ result = true;
+ break;
+ }
+ }
+ iterate_end(clause_info);
+ return result;
+ }
+ break;
+
+ case CLASS_OR:
+ switch (pclass)
+ {
+ case CLASS_OR:
+
+ /*
+ * OR-clause R=> OR-clause if A refutes each of B's items
+ */
+ result = true;
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (!predicate_refuted_by_recurse(clause, pitem,
+ weak))
+ {
+ result = false;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ return result;
+
+ case CLASS_AND:
+
+ /*
+ * OR-clause R=> AND-clause if each of A's items refutes
+ * any of B's items.
+ */
+ result = true;
+ iterate_begin(citem, clause, clause_info)
+ {
+ bool presult = false;
+
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (predicate_refuted_by_recurse(citem, pitem,
+ weak))
+ {
+ presult = true;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ if (!presult)
+ {
+ result = false; /* citem refutes nothing */
+ break;
+ }
+ }
+ iterate_end(clause_info);
+ return result;
+
+ case CLASS_ATOM:
+
+ /*
+ * If B is a NOT-type clause, A R=> B if A => B's arg
+ *
+ * Same logic as for the AND-clause case above.
+ */
+ not_arg = extract_not_arg(predicate);
+ if (not_arg &&
+ predicate_implied_by_recurse(clause, not_arg,
+ false))
+ return true;
+
+ /*
+ * OR-clause R=> atom if each of A's items refutes B
+ */
+ result = true;
+ iterate_begin(citem, clause, clause_info)
+ {
+ if (!predicate_refuted_by_recurse(citem, predicate,
+ weak))
+ {
+ result = false;
+ break;
+ }
+ }
+ iterate_end(clause_info);
+ return result;
+ }
+ break;
+
+ case CLASS_ATOM:
+
+ /*
+ * If A is a strong NOT-clause, A R=> B if B => A's arg
+ *
+ * Since A is strong, we may assume A's arg is false (not just
+ * not-true). If B weakly implies A's arg, then B can be neither
+ * true nor null, so that strong refutation is proven. If B
+ * strongly implies A's arg, then B cannot be true, so that weak
+ * refutation is proven.
+ */
+ not_arg = extract_strong_not_arg(clause);
+ if (not_arg &&
+ predicate_implied_by_recurse(predicate, not_arg,
+ !weak))
+ return true;
+
+ switch (pclass)
+ {
+ case CLASS_AND:
+
+ /*
+ * atom R=> AND-clause if A refutes any of B's items
+ */
+ result = false;
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (predicate_refuted_by_recurse(clause, pitem,
+ weak))
+ {
+ result = true;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ return result;
+
+ case CLASS_OR:
+
+ /*
+ * atom R=> OR-clause if A refutes each of B's items
+ */
+ result = true;
+ iterate_begin(pitem, predicate, pred_info)
+ {
+ if (!predicate_refuted_by_recurse(clause, pitem,
+ weak))
+ {
+ result = false;
+ break;
+ }
+ }
+ iterate_end(pred_info);
+ return result;
+
+ case CLASS_ATOM:
+
+ /*
+ * If B is a NOT-type clause, A R=> B if A => B's arg
+ *
+ * Same logic as for the AND-clause case above.
+ */
+ not_arg = extract_not_arg(predicate);
+ if (not_arg &&
+ predicate_implied_by_recurse(clause, not_arg,
+ false))
+ return true;
+
+ /*
+ * atom R=> atom is the base case
+ */
+ return
+ predicate_refuted_by_simple_clause((Expr *) predicate,
+ clause,
+ weak);
+ }
+ break;
+ }
+
+ /* can't get here */
+ elog(ERROR, "predicate_classify returned a bogus value");
+ return false;
+}
+
+
+/*
+ * predicate_classify
+ * Classify an expression node as AND-type, OR-type, or neither (an atom).
+ *
+ * If the expression is classified as AND- or OR-type, then *info is filled
+ * in with the functions needed to iterate over its components.
+ *
+ * This function also implements enforcement of MAX_SAOP_ARRAY_SIZE: if a
+ * ScalarArrayOpExpr's array has too many elements, we just classify it as an
+ * atom. (This will result in its being passed as-is to the simple_clause
+ * functions, many of which will fail to prove anything about it.) Note that we
+ * cannot just stop after considering MAX_SAOP_ARRAY_SIZE elements; in general
+ * that would result in wrong proofs, rather than failing to prove anything.
+ */
+static PredClass
+predicate_classify(Node *clause, PredIterInfo info)
+{
+ /* Caller should not pass us NULL, nor a RestrictInfo clause */
+ Assert(clause != NULL);
+ Assert(!IsA(clause, RestrictInfo));
+
+ /*
+ * If we see a List, assume it's an implicit-AND list; this is the correct
+ * semantics for lists of RestrictInfo nodes.
+ */
+ if (IsA(clause, List))
+ {
+ info->startup_fn = list_startup_fn;
+ info->next_fn = list_next_fn;
+ info->cleanup_fn = list_cleanup_fn;
+ return CLASS_AND;
+ }
+
+ /* Handle normal AND and OR boolean clauses */
+ if (is_andclause(clause))
+ {
+ info->startup_fn = boolexpr_startup_fn;
+ info->next_fn = list_next_fn;
+ info->cleanup_fn = list_cleanup_fn;
+ return CLASS_AND;
+ }
+ if (is_orclause(clause))
+ {
+ info->startup_fn = boolexpr_startup_fn;
+ info->next_fn = list_next_fn;
+ info->cleanup_fn = list_cleanup_fn;
+ return CLASS_OR;
+ }
+
+ /* Handle ScalarArrayOpExpr */
+ if (IsA(clause, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
+ Node *arraynode = (Node *) lsecond(saop->args);
+
+ /*
+ * We can break this down into an AND or OR structure, but only if we
+ * know how to iterate through expressions for the array's elements.
+ * We can do that if the array operand is a non-null constant or a
+ * simple ArrayExpr.
+ */
+ if (arraynode && IsA(arraynode, Const) &&
+ !((Const *) arraynode)->constisnull)
+ {
+ ArrayType *arrayval;
+ int nelems;
+
+ arrayval = DatumGetArrayTypeP(((Const *) arraynode)->constvalue);
+ nelems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
+ if (nelems <= MAX_SAOP_ARRAY_SIZE)
+ {
+ info->startup_fn = arrayconst_startup_fn;
+ info->next_fn = arrayconst_next_fn;
+ info->cleanup_fn = arrayconst_cleanup_fn;
+ return saop->useOr ? CLASS_OR : CLASS_AND;
+ }
+ }
+ else if (arraynode && IsA(arraynode, ArrayExpr) &&
+ !((ArrayExpr *) arraynode)->multidims &&
+ list_length(((ArrayExpr *) arraynode)->elements) <= MAX_SAOP_ARRAY_SIZE)
+ {
+ info->startup_fn = arrayexpr_startup_fn;
+ info->next_fn = arrayexpr_next_fn;
+ info->cleanup_fn = arrayexpr_cleanup_fn;
+ return saop->useOr ? CLASS_OR : CLASS_AND;
+ }
+ }
+
+ /* None of the above, so it's an atom */
+ return CLASS_ATOM;
+}
+
+/*
+ * PredIterInfo routines for iterating over regular Lists. The iteration
+ * state variable is the next ListCell to visit.
+ */
+static void
+list_startup_fn(Node *clause, PredIterInfo info)
+{
+ info->state_list = (List *) clause;
+ info->state = (void *) list_head(info->state_list);
+}
+
+static Node *
+list_next_fn(PredIterInfo info)
+{
+ ListCell *l = (ListCell *) info->state;
+ Node *n;
+
+ if (l == NULL)
+ return NULL;
+ n = lfirst(l);
+ info->state = (void *) lnext(info->state_list, l);
+ return n;
+}
+
+static void
+list_cleanup_fn(PredIterInfo info)
+{
+ /* Nothing to clean up */
+}
+
+/*
+ * BoolExpr needs its own startup function, but can use list_next_fn and
+ * list_cleanup_fn.
+ */
+static void
+boolexpr_startup_fn(Node *clause, PredIterInfo info)
+{
+ info->state_list = ((BoolExpr *) clause)->args;
+ info->state = (void *) list_head(info->state_list);
+}
+
+/*
+ * PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
+ * constant array operand.
+ */
+typedef struct
+{
+ OpExpr opexpr;
+ Const constexpr;
+ int next_elem;
+ int num_elems;
+ Datum *elem_values;
+ bool *elem_nulls;
+} ArrayConstIterState;
+
+static void
+arrayconst_startup_fn(Node *clause, PredIterInfo info)
+{
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
+ ArrayConstIterState *state;
+ Const *arrayconst;
+ ArrayType *arrayval;
+ int16 elmlen;
+ bool elmbyval;
+ char elmalign;
+
+ /* Create working state struct */
+ state = (ArrayConstIterState *) palloc(sizeof(ArrayConstIterState));
+ info->state = (void *) state;
+
+ /* Deconstruct the array literal */
+ arrayconst = (Const *) lsecond(saop->args);
+ arrayval = DatumGetArrayTypeP(arrayconst->constvalue);
+ get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
+ &elmlen, &elmbyval, &elmalign);
+ deconstruct_array(arrayval,
+ ARR_ELEMTYPE(arrayval),
+ elmlen, elmbyval, elmalign,
+ &state->elem_values, &state->elem_nulls,
+ &state->num_elems);
+
+ /* Set up a dummy OpExpr to return as the per-item node */
+ state->opexpr.xpr.type = T_OpExpr;
+ state->opexpr.opno = saop->opno;
+ state->opexpr.opfuncid = saop->opfuncid;
+ state->opexpr.opresulttype = BOOLOID;
+ state->opexpr.opretset = false;
+ state->opexpr.opcollid = InvalidOid;
+ state->opexpr.inputcollid = saop->inputcollid;
+ state->opexpr.args = list_copy(saop->args);
+
+ /* Set up a dummy Const node to hold the per-element values */
+ state->constexpr.xpr.type = T_Const;
+ state->constexpr.consttype = ARR_ELEMTYPE(arrayval);
+ state->constexpr.consttypmod = -1;
+ state->constexpr.constcollid = arrayconst->constcollid;
+ state->constexpr.constlen = elmlen;
+ state->constexpr.constbyval = elmbyval;
+ lsecond(state->opexpr.args) = &state->constexpr;
+
+ /* Initialize iteration state */
+ state->next_elem = 0;
+}
+
+static Node *
+arrayconst_next_fn(PredIterInfo info)
+{
+ ArrayConstIterState *state = (ArrayConstIterState *) info->state;
+
+ if (state->next_elem >= state->num_elems)
+ return NULL;
+ state->constexpr.constvalue = state->elem_values[state->next_elem];
+ state->constexpr.constisnull = state->elem_nulls[state->next_elem];
+ state->next_elem++;
+ return (Node *) &(state->opexpr);
+}
+
+static void
+arrayconst_cleanup_fn(PredIterInfo info)
+{
+ ArrayConstIterState *state = (ArrayConstIterState *) info->state;
+
+ pfree(state->elem_values);
+ pfree(state->elem_nulls);
+ list_free(state->opexpr.args);
+ pfree(state);
+}
+
+/*
+ * PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
+ * one-dimensional ArrayExpr array operand.
+ */
+typedef struct
+{
+ OpExpr opexpr;
+ ListCell *next;
+} ArrayExprIterState;
+
+static void
+arrayexpr_startup_fn(Node *clause, PredIterInfo info)
+{
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
+ ArrayExprIterState *state;
+ ArrayExpr *arrayexpr;
+
+ /* Create working state struct */
+ state = (ArrayExprIterState *) palloc(sizeof(ArrayExprIterState));
+ info->state = (void *) state;
+
+ /* Set up a dummy OpExpr to return as the per-item node */
+ state->opexpr.xpr.type = T_OpExpr;
+ state->opexpr.opno = saop->opno;
+ state->opexpr.opfuncid = saop->opfuncid;
+ state->opexpr.opresulttype = BOOLOID;
+ state->opexpr.opretset = false;
+ state->opexpr.opcollid = InvalidOid;
+ state->opexpr.inputcollid = saop->inputcollid;
+ state->opexpr.args = list_copy(saop->args);
+
+ /* Initialize iteration variable to first member of ArrayExpr */
+ arrayexpr = (ArrayExpr *) lsecond(saop->args);
+ info->state_list = arrayexpr->elements;
+ state->next = list_head(arrayexpr->elements);
+}
+
+static Node *
+arrayexpr_next_fn(PredIterInfo info)
+{
+ ArrayExprIterState *state = (ArrayExprIterState *) info->state;
+
+ if (state->next == NULL)
+ return NULL;
+ lsecond(state->opexpr.args) = lfirst(state->next);
+ state->next = lnext(info->state_list, state->next);
+ return (Node *) &(state->opexpr);
+}
+
+static void
+arrayexpr_cleanup_fn(PredIterInfo info)
+{
+ ArrayExprIterState *state = (ArrayExprIterState *) info->state;
+
+ list_free(state->opexpr.args);
+ pfree(state);
+}
+
+
+/*----------
+ * predicate_implied_by_simple_clause
+ * Does the predicate implication test for a "simple clause" predicate
+ * and a "simple clause" restriction.
+ *
+ * We return true if able to prove the implication, false if not.
+ *
+ * We have three strategies for determining whether one simple clause
+ * implies another:
+ *
+ * A simple and general way is to see if they are equal(); this works for any
+ * kind of expression, and for either implication definition. (Actually,
+ * there is an implied assumption that the functions in the expression are
+ * immutable --- but this was checked for the predicate by the caller.)
+ *
+ * If the predicate is of the form "foo IS NOT NULL", and we are considering
+ * strong implication, we can conclude that the predicate is implied if the
+ * clause is strict for "foo", i.e., it must yield false or NULL when "foo"
+ * is NULL. In that case truth of the clause ensures that "foo" isn't NULL.
+ * (Again, this is a safe conclusion because "foo" must be immutable.)
+ * This doesn't work for weak implication, though.
+ *
+ * Finally, if both clauses are binary operator expressions, we may be able
+ * to prove something using the system's knowledge about operators; those
+ * proof rules are encapsulated in operator_predicate_proof().
+ *----------
+ */
+static bool
+predicate_implied_by_simple_clause(Expr *predicate, Node *clause,
+ bool weak)
+{
+ /* Allow interrupting long proof attempts */
+ CHECK_FOR_INTERRUPTS();
+
+ /* First try the equal() test */
+ if (equal((Node *) predicate, clause))
+ return true;
+
+ /* Next try the IS NOT NULL case */
+ if (!weak &&
+ predicate && IsA(predicate, NullTest))
+ {
+ NullTest *ntest = (NullTest *) predicate;
+
+ /* row IS NOT NULL does not act in the simple way we have in mind */
+ if (ntest->nulltesttype == IS_NOT_NULL &&
+ !ntest->argisrow)
+ {
+ /* strictness of clause for foo implies foo IS NOT NULL */
+ if (clause_is_strict_for(clause, (Node *) ntest->arg, true))
+ return true;
+ }
+ return false; /* we can't succeed below... */
+ }
+
+ /* Else try operator-related knowledge */
+ return operator_predicate_proof(predicate, clause, false, weak);
+}
+
+/*----------
+ * predicate_refuted_by_simple_clause
+ * Does the predicate refutation test for a "simple clause" predicate
+ * and a "simple clause" restriction.
+ *
+ * We return true if able to prove the refutation, false if not.
+ *
+ * Unlike the implication case, checking for equal() clauses isn't helpful.
+ * But relation_excluded_by_constraints() checks for self-contradictions in a
+ * list of clauses, so that we may get here with predicate and clause being
+ * actually pointer-equal, and that is worth eliminating quickly.
+ *
+ * When the predicate is of the form "foo IS NULL", we can conclude that
+ * the predicate is refuted if the clause is strict for "foo" (see notes for
+ * implication case), or is "foo IS NOT NULL". That works for either strong
+ * or weak refutation.
+ *
+ * A clause "foo IS NULL" refutes a predicate "foo IS NOT NULL" in all cases.
+ * If we are considering weak refutation, it also refutes a predicate that
+ * is strict for "foo", since then the predicate must yield false or NULL
+ * (and since "foo" appears in the predicate, it's known immutable).
+ *
+ * (The main motivation for covering these IS [NOT] NULL cases is to support
+ * using IS NULL/IS NOT NULL as partition-defining constraints.)
+ *
+ * Finally, if both clauses are binary operator expressions, we may be able
+ * to prove something using the system's knowledge about operators; those
+ * proof rules are encapsulated in operator_predicate_proof().
+ *----------
+ */
+static bool
+predicate_refuted_by_simple_clause(Expr *predicate, Node *clause,
+ bool weak)
+{
+ /* Allow interrupting long proof attempts */
+ CHECK_FOR_INTERRUPTS();
+
+ /* A simple clause can't refute itself */
+ /* Worth checking because of relation_excluded_by_constraints() */
+ if ((Node *) predicate == clause)
+ return false;
+
+ /* Try the predicate-IS-NULL case */
+ if (predicate && IsA(predicate, NullTest) &&
+ ((NullTest *) predicate)->nulltesttype == IS_NULL)
+ {
+ Expr *isnullarg = ((NullTest *) predicate)->arg;
+
+ /* row IS NULL does not act in the simple way we have in mind */
+ if (((NullTest *) predicate)->argisrow)
+ return false;
+
+ /* strictness of clause for foo refutes foo IS NULL */
+ if (clause_is_strict_for(clause, (Node *) isnullarg, true))
+ return true;
+
+ /* foo IS NOT NULL refutes foo IS NULL */
+ if (clause && IsA(clause, NullTest) &&
+ ((NullTest *) clause)->nulltesttype == IS_NOT_NULL &&
+ !((NullTest *) clause)->argisrow &&
+ equal(((NullTest *) clause)->arg, isnullarg))
+ return true;
+
+ return false; /* we can't succeed below... */
+ }
+
+ /* Try the clause-IS-NULL case */
+ if (clause && IsA(clause, NullTest) &&
+ ((NullTest *) clause)->nulltesttype == IS_NULL)
+ {
+ Expr *isnullarg = ((NullTest *) clause)->arg;
+
+ /* row IS NULL does not act in the simple way we have in mind */
+ if (((NullTest *) clause)->argisrow)
+ return false;
+
+ /* foo IS NULL refutes foo IS NOT NULL */
+ if (predicate && IsA(predicate, NullTest) &&
+ ((NullTest *) predicate)->nulltesttype == IS_NOT_NULL &&
+ !((NullTest *) predicate)->argisrow &&
+ equal(((NullTest *) predicate)->arg, isnullarg))
+ return true;
+
+ /* foo IS NULL weakly refutes any predicate that is strict for foo */
+ if (weak &&
+ clause_is_strict_for((Node *) predicate, (Node *) isnullarg, true))
+ return true;
+
+ return false; /* we can't succeed below... */
+ }
+
+ /* Else try operator-related knowledge */
+ return operator_predicate_proof(predicate, clause, true, weak);
+}
+
+
+/*
+ * If clause asserts the non-truth of a subclause, return that subclause;
+ * otherwise return NULL.
+ */
+static Node *
+extract_not_arg(Node *clause)
+{
+ if (clause == NULL)
+ return NULL;
+ if (IsA(clause, BoolExpr))
+ {
+ BoolExpr *bexpr = (BoolExpr *) clause;
+
+ if (bexpr->boolop == NOT_EXPR)
+ return (Node *) linitial(bexpr->args);
+ }
+ else if (IsA(clause, BooleanTest))
+ {
+ BooleanTest *btest = (BooleanTest *) clause;
+
+ if (btest->booltesttype == IS_NOT_TRUE ||
+ btest->booltesttype == IS_FALSE ||
+ btest->booltesttype == IS_UNKNOWN)
+ return (Node *) btest->arg;
+ }
+ return NULL;
+}
+
+/*
+ * If clause asserts the falsity of a subclause, return that subclause;
+ * otherwise return NULL.
+ */
+static Node *
+extract_strong_not_arg(Node *clause)
+{
+ if (clause == NULL)
+ return NULL;
+ if (IsA(clause, BoolExpr))
+ {
+ BoolExpr *bexpr = (BoolExpr *) clause;
+
+ if (bexpr->boolop == NOT_EXPR)
+ return (Node *) linitial(bexpr->args);
+ }
+ else if (IsA(clause, BooleanTest))
+ {
+ BooleanTest *btest = (BooleanTest *) clause;
+
+ if (btest->booltesttype == IS_FALSE)
+ return (Node *) btest->arg;
+ }
+ return NULL;
+}
+
+
+/*
+ * Can we prove that "clause" returns NULL (or FALSE) if "subexpr" is
+ * assumed to yield NULL?
+ *
+ * In most places in the planner, "strictness" refers to a guarantee that
+ * an expression yields NULL output for a NULL input, and that's mostly what
+ * we're looking for here. However, at top level where the clause is known
+ * to yield boolean, it may be sufficient to prove that it cannot return TRUE
+ * when "subexpr" is NULL. The caller should pass allow_false = true when
+ * this weaker property is acceptable. (When this function recurses
+ * internally, we pass down allow_false = false since we need to prove actual
+ * nullness of the subexpression.)
+ *
+ * We assume that the caller checked that least one of the input expressions
+ * is immutable. All of the proof rules here involve matching "subexpr" to
+ * some portion of "clause", so that this allows assuming that "subexpr" is
+ * immutable without a separate check.
+ *
+ * The base case is that clause and subexpr are equal().
+ *
+ * We can also report success if the subexpr appears as a subexpression
+ * of "clause" in a place where it'd force nullness of the overall result.
+ */
+static bool
+clause_is_strict_for(Node *clause, Node *subexpr, bool allow_false)
+{
+ ListCell *lc;
+
+ /* safety checks */
+ if (clause == NULL || subexpr == NULL)
+ return false;
+
+ /*
+ * Look through any RelabelType nodes, so that we can match, say,
+ * varcharcol with lower(varcharcol::text). (In general we could recurse
+ * through any nullness-preserving, immutable operation.) We should not
+ * see stacked RelabelTypes here.
+ */
+ if (IsA(clause, RelabelType))
+ clause = (Node *) ((RelabelType *) clause)->arg;
+ if (IsA(subexpr, RelabelType))
+ subexpr = (Node *) ((RelabelType *) subexpr)->arg;
+
+ /* Base case */
+ if (equal(clause, subexpr))
+ return true;
+
+ /*
+ * If we have a strict operator or function, a NULL result is guaranteed
+ * if any input is forced NULL by subexpr. This is OK even if the op or
+ * func isn't immutable, since it won't even be called on NULL input.
+ */
+ if (is_opclause(clause) &&
+ op_strict(((OpExpr *) clause)->opno))
+ {
+ foreach(lc, ((OpExpr *) clause)->args)
+ {
+ if (clause_is_strict_for((Node *) lfirst(lc), subexpr, false))
+ return true;
+ }
+ return false;
+ }
+ if (is_funcclause(clause) &&
+ func_strict(((FuncExpr *) clause)->funcid))
+ {
+ foreach(lc, ((FuncExpr *) clause)->args)
+ {
+ if (clause_is_strict_for((Node *) lfirst(lc), subexpr, false))
+ return true;
+ }
+ return false;
+ }
+
+ /*
+ * CoerceViaIO is strict (whether or not the I/O functions it calls are).
+ * Likewise, ArrayCoerceExpr is strict for its array argument (regardless
+ * of what the per-element expression is), ConvertRowtypeExpr is strict at
+ * the row level, and CoerceToDomain is strict too. These are worth
+ * checking mainly because it saves us having to explain to users why some
+ * type coercions are known strict and others aren't.
+ */
+ if (IsA(clause, CoerceViaIO))
+ return clause_is_strict_for((Node *) ((CoerceViaIO *) clause)->arg,
+ subexpr, false);
+ if (IsA(clause, ArrayCoerceExpr))
+ return clause_is_strict_for((Node *) ((ArrayCoerceExpr *) clause)->arg,
+ subexpr, false);
+ if (IsA(clause, ConvertRowtypeExpr))
+ return clause_is_strict_for((Node *) ((ConvertRowtypeExpr *) clause)->arg,
+ subexpr, false);
+ if (IsA(clause, CoerceToDomain))
+ return clause_is_strict_for((Node *) ((CoerceToDomain *) clause)->arg,
+ subexpr, false);
+
+ /*
+ * ScalarArrayOpExpr is a special case. Note that we'd only reach here
+ * with a ScalarArrayOpExpr clause if we failed to deconstruct it into an
+ * AND or OR tree, as for example if it has too many array elements.
+ */
+ if (IsA(clause, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
+ Node *scalarnode = (Node *) linitial(saop->args);
+ Node *arraynode = (Node *) lsecond(saop->args);
+
+ /*
+ * If we can prove the scalar input to be null, and the operator is
+ * strict, then the SAOP result has to be null --- unless the array is
+ * empty. For an empty array, we'd get either false (for ANY) or true
+ * (for ALL). So if allow_false = true then the proof succeeds anyway
+ * for the ANY case; otherwise we can only make the proof if we can
+ * prove the array non-empty.
+ */
+ if (clause_is_strict_for(scalarnode, subexpr, false) &&
+ op_strict(saop->opno))
+ {
+ int nelems = 0;
+
+ if (allow_false && saop->useOr)
+ return true; /* can succeed even if array is empty */
+
+ if (arraynode && IsA(arraynode, Const))
+ {
+ Const *arrayconst = (Const *) arraynode;
+ ArrayType *arrval;
+
+ /*
+ * If array is constant NULL then we can succeed, as in the
+ * case below.
+ */
+ if (arrayconst->constisnull)
+ return true;
+
+ /* Otherwise, we can compute the number of elements. */
+ arrval = DatumGetArrayTypeP(arrayconst->constvalue);
+ nelems = ArrayGetNItems(ARR_NDIM(arrval), ARR_DIMS(arrval));
+ }
+ else if (arraynode && IsA(arraynode, ArrayExpr) &&
+ !((ArrayExpr *) arraynode)->multidims)
+ {
+ /*
+ * We can also reliably count the number of array elements if
+ * the input is a non-multidim ARRAY[] expression.
+ */
+ nelems = list_length(((ArrayExpr *) arraynode)->elements);
+ }
+
+ /* Proof succeeds if array is definitely non-empty */
+ if (nelems > 0)
+ return true;
+ }
+
+ /*
+ * If we can prove the array input to be null, the proof succeeds in
+ * all cases, since ScalarArrayOpExpr will always return NULL for a
+ * NULL array. Otherwise, we're done here.
+ */
+ return clause_is_strict_for(arraynode, subexpr, false);
+ }
+
+ /*
+ * When recursing into an expression, we might find a NULL constant.
+ * That's certainly NULL, whether it matches subexpr or not.
+ */
+ if (IsA(clause, Const))
+ return ((Const *) clause)->constisnull;
+
+ return false;
+}
+
+
+/*
+ * Define "operator implication tables" for btree operators ("strategies"),
+ * and similar tables for refutation.
+ *
+ * The strategy numbers defined by btree indexes (see access/stratnum.h) are:
+ * 1 < 2 <= 3 = 4 >= 5 >
+ * and in addition we use 6 to represent <>. <> is not a btree-indexable
+ * operator, but we assume here that if an equality operator of a btree
+ * opfamily has a negator operator, the negator behaves as <> for the opfamily.
+ * (This convention is also known to get_op_btree_interpretation().)
+ *
+ * BT_implies_table[] and BT_refutes_table[] are used for cases where we have
+ * two identical subexpressions and we want to know whether one operator
+ * expression implies or refutes the other. That is, if the "clause" is
+ * EXPR1 clause_op EXPR2 and the "predicate" is EXPR1 pred_op EXPR2 for the
+ * same two (immutable) subexpressions:
+ * BT_implies_table[clause_op-1][pred_op-1]
+ * is true if the clause implies the predicate
+ * BT_refutes_table[clause_op-1][pred_op-1]
+ * is true if the clause refutes the predicate
+ * where clause_op and pred_op are strategy numbers (from 1 to 6) in the
+ * same btree opfamily. For example, "x < y" implies "x <= y" and refutes
+ * "x > y".
+ *
+ * BT_implic_table[] and BT_refute_table[] are used where we have two
+ * constants that we need to compare. The interpretation of:
+ *
+ * test_op = BT_implic_table[clause_op-1][pred_op-1]
+ *
+ * where test_op, clause_op and pred_op are strategy numbers (from 1 to 6)
+ * of btree operators, is as follows:
+ *
+ * If you know, for some EXPR, that "EXPR clause_op CONST1" is true, and you
+ * want to determine whether "EXPR pred_op CONST2" must also be true, then
+ * you can use "CONST2 test_op CONST1" as a test. If this test returns true,
+ * then the predicate expression must be true; if the test returns false,
+ * then the predicate expression may be false.
+ *
+ * For example, if clause is "Quantity > 10" and pred is "Quantity > 5"
+ * then we test "5 <= 10" which evals to true, so clause implies pred.
+ *
+ * Similarly, the interpretation of a BT_refute_table entry is:
+ *
+ * If you know, for some EXPR, that "EXPR clause_op CONST1" is true, and you
+ * want to determine whether "EXPR pred_op CONST2" must be false, then
+ * you can use "CONST2 test_op CONST1" as a test. If this test returns true,
+ * then the predicate expression must be false; if the test returns false,
+ * then the predicate expression may be true.
+ *
+ * For example, if clause is "Quantity > 10" and pred is "Quantity < 5"
+ * then we test "5 <= 10" which evals to true, so clause refutes pred.
+ *
+ * An entry where test_op == 0 means the implication cannot be determined.
+ */
+
+#define BTLT BTLessStrategyNumber
+#define BTLE BTLessEqualStrategyNumber
+#define BTEQ BTEqualStrategyNumber
+#define BTGE BTGreaterEqualStrategyNumber
+#define BTGT BTGreaterStrategyNumber
+#define BTNE ROWCOMPARE_NE
+
+/* We use "none" for 0/false to make the tables align nicely */
+#define none 0
+
+static const bool BT_implies_table[6][6] = {
+/*
+ * The predicate operator:
+ * LT LE EQ GE GT NE
+ */
+ {true, true, none, none, none, true}, /* LT */
+ {none, true, none, none, none, none}, /* LE */
+ {none, true, true, true, none, none}, /* EQ */
+ {none, none, none, true, none, none}, /* GE */
+ {none, none, none, true, true, true}, /* GT */
+ {none, none, none, none, none, true} /* NE */
+};
+
+static const bool BT_refutes_table[6][6] = {
+/*
+ * The predicate operator:
+ * LT LE EQ GE GT NE
+ */
+ {none, none, true, true, true, none}, /* LT */
+ {none, none, none, none, true, none}, /* LE */
+ {true, none, none, none, true, true}, /* EQ */
+ {true, none, none, none, none, none}, /* GE */
+ {true, true, true, none, none, none}, /* GT */
+ {none, none, true, none, none, none} /* NE */
+};
+
+static const StrategyNumber BT_implic_table[6][6] = {
+/*
+ * The predicate operator:
+ * LT LE EQ GE GT NE
+ */
+ {BTGE, BTGE, none, none, none, BTGE}, /* LT */
+ {BTGT, BTGE, none, none, none, BTGT}, /* LE */
+ {BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
+ {none, none, none, BTLE, BTLT, BTLT}, /* GE */
+ {none, none, none, BTLE, BTLE, BTLE}, /* GT */
+ {none, none, none, none, none, BTEQ} /* NE */
+};
+
+static const StrategyNumber BT_refute_table[6][6] = {
+/*
+ * The predicate operator:
+ * LT LE EQ GE GT NE
+ */
+ {none, none, BTGE, BTGE, BTGE, none}, /* LT */
+ {none, none, BTGT, BTGT, BTGE, none}, /* LE */
+ {BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */
+ {BTLE, BTLT, BTLT, none, none, none}, /* GE */
+ {BTLE, BTLE, BTLE, none, none, none}, /* GT */
+ {none, none, BTEQ, none, none, none} /* NE */
+};
+
+
+/*
+ * operator_predicate_proof
+ * Does the predicate implication or refutation test for a "simple clause"
+ * predicate and a "simple clause" restriction, when both are operator
+ * clauses using related operators and identical input expressions.
+ *
+ * When refute_it == false, we want to prove the predicate true;
+ * when refute_it == true, we want to prove the predicate false.
+ * (There is enough common code to justify handling these two cases
+ * in one routine.) We return true if able to make the proof, false
+ * if not able to prove it.
+ *
+ * We mostly need not distinguish strong vs. weak implication/refutation here.
+ * This depends on the assumption that a pair of related operators (i.e.,
+ * commutators, negators, or btree opfamily siblings) will not return one NULL
+ * and one non-NULL result for the same inputs. Then, for the proof types
+ * where we start with an assumption of truth of the clause, the predicate
+ * operator could not return NULL either, so it doesn't matter whether we are
+ * trying to make a strong or weak proof. For weak implication, it could be
+ * that the clause operator returned NULL, but then the predicate operator
+ * would as well, so that the weak implication still holds. This argument
+ * doesn't apply in the case where we are considering two different constant
+ * values, since then the operators aren't being given identical inputs. But
+ * we only support that for btree operators, for which we can assume that all
+ * non-null inputs result in non-null outputs, so that it doesn't matter which
+ * two non-null constants we consider. If either constant is NULL, we have
+ * to think harder, but sometimes the proof still works, as explained below.
+ *
+ * We can make proofs involving several expression forms (here "foo" and "bar"
+ * represent subexpressions that are identical according to equal()):
+ * "foo op1 bar" refutes "foo op2 bar" if op1 is op2's negator
+ * "foo op1 bar" implies "bar op2 foo" if op1 is op2's commutator
+ * "foo op1 bar" refutes "bar op2 foo" if op1 is negator of op2's commutator
+ * "foo op1 bar" can imply/refute "foo op2 bar" based on btree semantics
+ * "foo op1 bar" can imply/refute "bar op2 foo" based on btree semantics
+ * "foo op1 const1" can imply/refute "foo op2 const2" based on btree semantics
+ *
+ * For the last three cases, op1 and op2 have to be members of the same btree
+ * operator family. When both subexpressions are identical, the idea is that,
+ * for instance, x < y implies x <= y, independently of exactly what x and y
+ * are. If we have two different constants compared to the same expression
+ * foo, we have to execute a comparison between the two constant values
+ * in order to determine the result; for instance, foo < c1 implies foo < c2
+ * if c1 <= c2. We assume it's safe to compare the constants at plan time
+ * if the comparison operator is immutable.
+ *
+ * Note: all the operators and subexpressions have to be immutable for the
+ * proof to be safe. We assume the predicate expression is entirely immutable,
+ * so no explicit check on the subexpressions is needed here, but in some
+ * cases we need an extra check of operator immutability. In particular,
+ * btree opfamilies can contain cross-type operators that are merely stable,
+ * and we dare not make deductions with those.
+ */
+static bool
+operator_predicate_proof(Expr *predicate, Node *clause,
+ bool refute_it, bool weak)
+{
+ OpExpr *pred_opexpr,
+ *clause_opexpr;
+ Oid pred_collation,
+ clause_collation;
+ Oid pred_op,
+ clause_op,
+ test_op;
+ Node *pred_leftop,
+ *pred_rightop,
+ *clause_leftop,
+ *clause_rightop;
+ Const *pred_const,
+ *clause_const;
+ Expr *test_expr;
+ ExprState *test_exprstate;
+ Datum test_result;
+ bool isNull;
+ EState *estate;
+ MemoryContext oldcontext;
+
+ /*
+ * Both expressions must be binary opclauses, else we can't do anything.
+ *
+ * Note: in future we might extend this logic to other operator-based
+ * constructs such as DistinctExpr. But the planner isn't very smart
+ * about DistinctExpr in general, and this probably isn't the first place
+ * to fix if you want to improve that.
+ */
+ if (!is_opclause(predicate))
+ return false;
+ pred_opexpr = (OpExpr *) predicate;
+ if (list_length(pred_opexpr->args) != 2)
+ return false;
+ if (!is_opclause(clause))
+ return false;
+ clause_opexpr = (OpExpr *) clause;
+ if (list_length(clause_opexpr->args) != 2)
+ return false;
+
+ /*
+ * If they're marked with different collations then we can't do anything.
+ * This is a cheap test so let's get it out of the way early.
+ */
+ pred_collation = pred_opexpr->inputcollid;
+ clause_collation = clause_opexpr->inputcollid;
+ if (pred_collation != clause_collation)
+ return false;
+
+ /* Grab the operator OIDs now too. We may commute these below. */
+ pred_op = pred_opexpr->opno;
+ clause_op = clause_opexpr->opno;
+
+ /*
+ * We have to match up at least one pair of input expressions.
+ */
+ pred_leftop = (Node *) linitial(pred_opexpr->args);
+ pred_rightop = (Node *) lsecond(pred_opexpr->args);
+ clause_leftop = (Node *) linitial(clause_opexpr->args);
+ clause_rightop = (Node *) lsecond(clause_opexpr->args);
+
+ if (equal(pred_leftop, clause_leftop))
+ {
+ if (equal(pred_rightop, clause_rightop))
+ {
+ /* We have x op1 y and x op2 y */
+ return operator_same_subexprs_proof(pred_op, clause_op, refute_it);
+ }
+ else
+ {
+ /* Fail unless rightops are both Consts */
+ if (pred_rightop == NULL || !IsA(pred_rightop, Const))
+ return false;
+ pred_const = (Const *) pred_rightop;
+ if (clause_rightop == NULL || !IsA(clause_rightop, Const))
+ return false;
+ clause_const = (Const *) clause_rightop;
+ }
+ }
+ else if (equal(pred_rightop, clause_rightop))
+ {
+ /* Fail unless leftops are both Consts */
+ if (pred_leftop == NULL || !IsA(pred_leftop, Const))
+ return false;
+ pred_const = (Const *) pred_leftop;
+ if (clause_leftop == NULL || !IsA(clause_leftop, Const))
+ return false;
+ clause_const = (Const *) clause_leftop;
+ /* Commute both operators so we can assume Consts are on the right */
+ pred_op = get_commutator(pred_op);
+ if (!OidIsValid(pred_op))
+ return false;
+ clause_op = get_commutator(clause_op);
+ if (!OidIsValid(clause_op))
+ return false;
+ }
+ else if (equal(pred_leftop, clause_rightop))
+ {
+ if (equal(pred_rightop, clause_leftop))
+ {
+ /* We have x op1 y and y op2 x */
+ /* Commute pred_op that we can treat this like a straight match */
+ pred_op = get_commutator(pred_op);
+ if (!OidIsValid(pred_op))
+ return false;
+ return operator_same_subexprs_proof(pred_op, clause_op, refute_it);
+ }
+ else
+ {
+ /* Fail unless pred_rightop/clause_leftop are both Consts */
+ if (pred_rightop == NULL || !IsA(pred_rightop, Const))
+ return false;
+ pred_const = (Const *) pred_rightop;
+ if (clause_leftop == NULL || !IsA(clause_leftop, Const))
+ return false;
+ clause_const = (Const *) clause_leftop;
+ /* Commute clause_op so we can assume Consts are on the right */
+ clause_op = get_commutator(clause_op);
+ if (!OidIsValid(clause_op))
+ return false;
+ }
+ }
+ else if (equal(pred_rightop, clause_leftop))
+ {
+ /* Fail unless pred_leftop/clause_rightop are both Consts */
+ if (pred_leftop == NULL || !IsA(pred_leftop, Const))
+ return false;
+ pred_const = (Const *) pred_leftop;
+ if (clause_rightop == NULL || !IsA(clause_rightop, Const))
+ return false;
+ clause_const = (Const *) clause_rightop;
+ /* Commute pred_op so we can assume Consts are on the right */
+ pred_op = get_commutator(pred_op);
+ if (!OidIsValid(pred_op))
+ return false;
+ }
+ else
+ {
+ /* Failed to match up any of the subexpressions, so we lose */
+ return false;
+ }
+
+ /*
+ * We have two identical subexpressions, and two other subexpressions that
+ * are not identical but are both Consts; and we have commuted the
+ * operators if necessary so that the Consts are on the right. We'll need
+ * to compare the Consts' values. If either is NULL, we can't do that, so
+ * usually the proof fails ... but in some cases we can claim success.
+ */
+ if (clause_const->constisnull)
+ {
+ /* If clause_op isn't strict, we can't prove anything */
+ if (!op_strict(clause_op))
+ return false;
+
+ /*
+ * At this point we know that the clause returns NULL. For proof
+ * types that assume truth of the clause, this means the proof is
+ * vacuously true (a/k/a "false implies anything"). That's all proof
+ * types except weak implication.
+ */
+ if (!(weak && !refute_it))
+ return true;
+
+ /*
+ * For weak implication, it's still possible for the proof to succeed,
+ * if the predicate can also be proven NULL. In that case we've got
+ * NULL => NULL which is valid for this proof type.
+ */
+ if (pred_const->constisnull && op_strict(pred_op))
+ return true;
+ /* Else the proof fails */
+ return false;
+ }
+ if (pred_const->constisnull)
+ {
+ /*
+ * If the pred_op is strict, we know the predicate yields NULL, which
+ * means the proof succeeds for either weak implication or weak
+ * refutation.
+ */
+ if (weak && op_strict(pred_op))
+ return true;
+ /* Else the proof fails */
+ return false;
+ }
+
+ /*
+ * Lookup the constant-comparison operator using the system catalogs and
+ * the operator implication tables.
+ */
+ test_op = get_btree_test_op(pred_op, clause_op, refute_it);
+
+ if (!OidIsValid(test_op))
+ {
+ /* couldn't find a suitable comparison operator */
+ return false;
+ }
+
+ /*
+ * Evaluate the test. For this we need an EState.
+ */
+ estate = CreateExecutorState();
+
+ /* We can use the estate's working context to avoid memory leaks. */
+ oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
+
+ /* Build expression tree */
+ test_expr = make_opclause(test_op,
+ BOOLOID,
+ false,
+ (Expr *) pred_const,
+ (Expr *) clause_const,
+ InvalidOid,
+ pred_collation);
+
+ /* Fill in opfuncids */
+ fix_opfuncids((Node *) test_expr);
+
+ /* Prepare it for execution */
+ test_exprstate = ExecInitExpr(test_expr, NULL);
+
+ /* And execute it. */
+ test_result = ExecEvalExprSwitchContext(test_exprstate,
+ GetPerTupleExprContext(estate),
+ &isNull);
+
+ /* Get back to outer memory context */
+ MemoryContextSwitchTo(oldcontext);
+
+ /* Release all the junk we just created */
+ FreeExecutorState(estate);
+
+ if (isNull)
+ {
+ /* Treat a null result as non-proof ... but it's a tad fishy ... */
+ elog(DEBUG2, "null predicate test result");
+ return false;
+ }
+ return DatumGetBool(test_result);
+}
+
+
+/*
+ * operator_same_subexprs_proof
+ * Assuming that EXPR1 clause_op EXPR2 is true, try to prove or refute
+ * EXPR1 pred_op EXPR2.
+ *
+ * Return true if able to make the proof, false if not able to prove it.
+ */
+static bool
+operator_same_subexprs_proof(Oid pred_op, Oid clause_op, bool refute_it)
+{
+ /*
+ * A simple and general rule is that the predicate is proven if clause_op
+ * and pred_op are the same, or refuted if they are each other's negators.
+ * We need not check immutability since the pred_op is already known
+ * immutable. (Actually, by this point we may have the commutator of a
+ * known-immutable pred_op, but that should certainly be immutable too.
+ * Likewise we don't worry whether the pred_op's negator is immutable.)
+ *
+ * Note: the "same" case won't get here if we actually had EXPR1 clause_op
+ * EXPR2 and EXPR1 pred_op EXPR2, because the overall-expression-equality
+ * test in predicate_implied_by_simple_clause would have caught it. But
+ * we can see the same operator after having commuted the pred_op.
+ */
+ if (refute_it)
+ {
+ if (get_negator(pred_op) == clause_op)
+ return true;
+ }
+ else
+ {
+ if (pred_op == clause_op)
+ return true;
+ }
+
+ /*
+ * Otherwise, see if we can determine the implication by finding the
+ * operators' relationship via some btree opfamily.
+ */
+ return operator_same_subexprs_lookup(pred_op, clause_op, refute_it);
+}
+
+
+/*
+ * We use a lookaside table to cache the result of btree proof operator
+ * lookups, since the actual lookup is pretty expensive and doesn't change
+ * for any given pair of operators (at least as long as pg_amop doesn't
+ * change). A single hash entry stores both implication and refutation
+ * results for a given pair of operators; but note we may have determined
+ * only one of those sets of results as yet.
+ */
+typedef struct OprProofCacheKey
+{
+ Oid pred_op; /* predicate operator */
+ Oid clause_op; /* clause operator */
+} OprProofCacheKey;
+
+typedef struct OprProofCacheEntry
+{
+ /* the hash lookup key MUST BE FIRST */
+ OprProofCacheKey key;
+
+ bool have_implic; /* do we know the implication result? */
+ bool have_refute; /* do we know the refutation result? */
+ bool same_subexprs_implies; /* X clause_op Y implies X pred_op Y? */
+ bool same_subexprs_refutes; /* X clause_op Y refutes X pred_op Y? */
+ Oid implic_test_op; /* OID of the test operator, or 0 if none */
+ Oid refute_test_op; /* OID of the test operator, or 0 if none */
+} OprProofCacheEntry;
+
+static HTAB *OprProofCacheHash = NULL;
+
+
+/*
+ * lookup_proof_cache
+ * Get, and fill in if necessary, the appropriate cache entry.
+ */
+static OprProofCacheEntry *
+lookup_proof_cache(Oid pred_op, Oid clause_op, bool refute_it)
+{
+ OprProofCacheKey key;
+ OprProofCacheEntry *cache_entry;
+ bool cfound;
+ bool same_subexprs = false;
+ Oid test_op = InvalidOid;
+ bool found = false;
+ List *pred_op_infos,
+ *clause_op_infos;
+ ListCell *lcp,
+ *lcc;
+
+ /*
+ * Find or make a cache entry for this pair of operators.
+ */
+ if (OprProofCacheHash == NULL)
+ {
+ /* First time through: initialize the hash table */
+ HASHCTL ctl;
+
+ ctl.keysize = sizeof(OprProofCacheKey);
+ ctl.entrysize = sizeof(OprProofCacheEntry);
+ OprProofCacheHash = hash_create("Btree proof lookup cache", 256,
+ &ctl, HASH_ELEM | HASH_BLOBS);
+
+ /* Arrange to flush cache on pg_amop changes */
+ CacheRegisterSyscacheCallback(AMOPOPID,
+ InvalidateOprProofCacheCallBack,
+ (Datum) 0);
+ }
+
+ key.pred_op = pred_op;
+ key.clause_op = clause_op;
+ cache_entry = (OprProofCacheEntry *) hash_search(OprProofCacheHash,
+ (void *) &key,
+ HASH_ENTER, &cfound);
+ if (!cfound)
+ {
+ /* new cache entry, set it invalid */
+ cache_entry->have_implic = false;
+ cache_entry->have_refute = false;
+ }
+ else
+ {
+ /* pre-existing cache entry, see if we know the answer yet */
+ if (refute_it ? cache_entry->have_refute : cache_entry->have_implic)
+ return cache_entry;
+ }
+
+ /*
+ * Try to find a btree opfamily containing the given operators.
+ *
+ * We must find a btree opfamily that contains both operators, else the
+ * implication can't be determined. Also, the opfamily must contain a
+ * suitable test operator taking the operators' righthand datatypes.
+ *
+ * If there are multiple matching opfamilies, assume we can use any one to
+ * determine the logical relationship of the two operators and the correct
+ * corresponding test operator. This should work for any logically
+ * consistent opfamilies.
+ *
+ * Note that we can determine the operators' relationship for
+ * same-subexprs cases even from an opfamily that lacks a usable test
+ * operator. This can happen in cases with incomplete sets of cross-type
+ * comparison operators.
+ */
+ clause_op_infos = get_op_btree_interpretation(clause_op);
+ if (clause_op_infos)
+ pred_op_infos = get_op_btree_interpretation(pred_op);
+ else /* no point in looking */
+ pred_op_infos = NIL;
+
+ foreach(lcp, pred_op_infos)
+ {
+ OpBtreeInterpretation *pred_op_info = lfirst(lcp);
+ Oid opfamily_id = pred_op_info->opfamily_id;
+
+ foreach(lcc, clause_op_infos)
+ {
+ OpBtreeInterpretation *clause_op_info = lfirst(lcc);
+ StrategyNumber pred_strategy,
+ clause_strategy,
+ test_strategy;
+
+ /* Must find them in same opfamily */
+ if (opfamily_id != clause_op_info->opfamily_id)
+ continue;
+ /* Lefttypes should match */
+ Assert(clause_op_info->oplefttype == pred_op_info->oplefttype);
+
+ pred_strategy = pred_op_info->strategy;
+ clause_strategy = clause_op_info->strategy;
+
+ /*
+ * Check to see if we can make a proof for same-subexpressions
+ * cases based on the operators' relationship in this opfamily.
+ */
+ if (refute_it)
+ same_subexprs |= BT_refutes_table[clause_strategy - 1][pred_strategy - 1];
+ else
+ same_subexprs |= BT_implies_table[clause_strategy - 1][pred_strategy - 1];
+
+ /*
+ * Look up the "test" strategy number in the implication table
+ */
+ if (refute_it)
+ test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1];
+ else
+ test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
+
+ if (test_strategy == 0)
+ {
+ /* Can't determine implication using this interpretation */
+ continue;
+ }
+
+ /*
+ * See if opfamily has an operator for the test strategy and the
+ * datatypes.
+ */
+ if (test_strategy == BTNE)
+ {
+ test_op = get_opfamily_member(opfamily_id,
+ pred_op_info->oprighttype,
+ clause_op_info->oprighttype,
+ BTEqualStrategyNumber);
+ if (OidIsValid(test_op))
+ test_op = get_negator(test_op);
+ }
+ else
+ {
+ test_op = get_opfamily_member(opfamily_id,
+ pred_op_info->oprighttype,
+ clause_op_info->oprighttype,
+ test_strategy);
+ }
+
+ if (!OidIsValid(test_op))
+ continue;
+
+ /*
+ * Last check: test_op must be immutable.
+ *
+ * Note that we require only the test_op to be immutable, not the
+ * original clause_op. (pred_op is assumed to have been checked
+ * immutable by the caller.) Essentially we are assuming that the
+ * opfamily is consistent even if it contains operators that are
+ * merely stable.
+ */
+ if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
+ {
+ found = true;
+ break;
+ }
+ }
+
+ if (found)
+ break;
+ }
+
+ list_free_deep(pred_op_infos);
+ list_free_deep(clause_op_infos);
+
+ if (!found)
+ {
+ /* couldn't find a suitable comparison operator */
+ test_op = InvalidOid;
+ }
+
+ /*
+ * If we think we were able to prove something about same-subexpressions
+ * cases, check to make sure the clause_op is immutable before believing
+ * it completely. (Usually, the clause_op would be immutable if the
+ * pred_op is, but it's not entirely clear that this must be true in all
+ * cases, so let's check.)
+ */
+ if (same_subexprs &&
+ op_volatile(clause_op) != PROVOLATILE_IMMUTABLE)
+ same_subexprs = false;
+
+ /* Cache the results, whether positive or negative */
+ if (refute_it)
+ {
+ cache_entry->refute_test_op = test_op;
+ cache_entry->same_subexprs_refutes = same_subexprs;
+ cache_entry->have_refute = true;
+ }
+ else
+ {
+ cache_entry->implic_test_op = test_op;
+ cache_entry->same_subexprs_implies = same_subexprs;
+ cache_entry->have_implic = true;
+ }
+
+ return cache_entry;
+}
+
+/*
+ * operator_same_subexprs_lookup
+ * Convenience subroutine to look up the cached answer for
+ * same-subexpressions cases.
+ */
+static bool
+operator_same_subexprs_lookup(Oid pred_op, Oid clause_op, bool refute_it)
+{
+ OprProofCacheEntry *cache_entry;
+
+ cache_entry = lookup_proof_cache(pred_op, clause_op, refute_it);
+ if (refute_it)
+ return cache_entry->same_subexprs_refutes;
+ else
+ return cache_entry->same_subexprs_implies;
+}
+
+/*
+ * get_btree_test_op
+ * Identify the comparison operator needed for a btree-operator
+ * proof or refutation involving comparison of constants.
+ *
+ * Given the truth of a clause "var clause_op const1", we are attempting to
+ * prove or refute a predicate "var pred_op const2". The identities of the
+ * two operators are sufficient to determine the operator (if any) to compare
+ * const2 to const1 with.
+ *
+ * Returns the OID of the operator to use, or InvalidOid if no proof is
+ * possible.
+ */
+static Oid
+get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it)
+{
+ OprProofCacheEntry *cache_entry;
+
+ cache_entry = lookup_proof_cache(pred_op, clause_op, refute_it);
+ if (refute_it)
+ return cache_entry->refute_test_op;
+ else
+ return cache_entry->implic_test_op;
+}
+
+
+/*
+ * Callback for pg_amop inval events
+ */
+static void
+InvalidateOprProofCacheCallBack(Datum arg, int cacheid, uint32 hashvalue)
+{
+ HASH_SEQ_STATUS status;
+ OprProofCacheEntry *hentry;
+
+ Assert(OprProofCacheHash != NULL);
+
+ /* Currently we just reset all entries; hard to be smarter ... */
+ hash_seq_init(&status, OprProofCacheHash);
+
+ while ((hentry = (OprProofCacheEntry *) hash_seq_search(&status)) != NULL)
+ {
+ hentry->have_implic = false;
+ hentry->have_refute = false;
+ }
+}