summaryrefslogtreecommitdiffstats
path: root/src/backend/parser/parse_agg.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/parser/parse_agg.c
parentInitial commit. (diff)
downloadpostgresql-14-46651ce6fe013220ed397add242004d764fc0153.tar.xz
postgresql-14-46651ce6fe013220ed397add242004d764fc0153.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/parser/parse_agg.c')
-rw-r--r--src/backend/parser/parse_agg.c2149
1 files changed, 2149 insertions, 0 deletions
diff --git a/src/backend/parser/parse_agg.c b/src/backend/parser/parse_agg.c
new file mode 100644
index 0000000..00c0c00
--- /dev/null
+++ b/src/backend/parser/parse_agg.c
@@ -0,0 +1,2149 @@
+/*-------------------------------------------------------------------------
+ *
+ * parse_agg.c
+ * handle aggregates and window functions in parser
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/parser/parse_agg.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "catalog/pg_aggregate.h"
+#include "catalog/pg_constraint.h"
+#include "catalog/pg_type.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/optimizer.h"
+#include "parser/parse_agg.h"
+#include "parser/parse_clause.h"
+#include "parser/parse_coerce.h"
+#include "parser/parse_expr.h"
+#include "parser/parsetree.h"
+#include "rewrite/rewriteManip.h"
+#include "utils/builtins.h"
+#include "utils/lsyscache.h"
+
+
+typedef struct
+{
+ ParseState *pstate;
+ int min_varlevel;
+ int min_agglevel;
+ int sublevels_up;
+} check_agg_arguments_context;
+
+typedef struct
+{
+ ParseState *pstate;
+ Query *qry;
+ bool hasJoinRTEs;
+ List *groupClauses;
+ List *groupClauseCommonVars;
+ bool have_non_var_grouping;
+ List **func_grouped_rels;
+ int sublevels_up;
+ bool in_agg_direct_args;
+} check_ungrouped_columns_context;
+
+static int check_agg_arguments(ParseState *pstate,
+ List *directargs,
+ List *args,
+ Expr *filter);
+static bool check_agg_arguments_walker(Node *node,
+ check_agg_arguments_context *context);
+static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
+ List *groupClauses, List *groupClauseCommonVars,
+ bool have_non_var_grouping,
+ List **func_grouped_rels);
+static bool check_ungrouped_columns_walker(Node *node,
+ check_ungrouped_columns_context *context);
+static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
+ List *groupClauses, bool hasJoinRTEs,
+ bool have_non_var_grouping);
+static bool finalize_grouping_exprs_walker(Node *node,
+ check_ungrouped_columns_context *context);
+static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
+static List *expand_groupingset_node(GroupingSet *gs);
+static Node *make_agg_arg(Oid argtype, Oid argcollation);
+
+
+/*
+ * transformAggregateCall -
+ * Finish initial transformation of an aggregate call
+ *
+ * parse_func.c has recognized the function as an aggregate, and has set up
+ * all the fields of the Aggref except aggargtypes, aggdirectargs, args,
+ * aggorder, aggdistinct and agglevelsup. The passed-in args list has been
+ * through standard expression transformation and type coercion to match the
+ * agg's declared arg types, while the passed-in aggorder list hasn't been
+ * transformed at all.
+ *
+ * Here we separate the args list into direct and aggregated args, storing the
+ * former in agg->aggdirectargs and the latter in agg->args. The regular
+ * args, but not the direct args, are converted into a targetlist by inserting
+ * TargetEntry nodes. We then transform the aggorder and agg_distinct
+ * specifications to produce lists of SortGroupClause nodes for agg->aggorder
+ * and agg->aggdistinct. (For a regular aggregate, this might result in
+ * adding resjunk expressions to the targetlist; but for ordered-set
+ * aggregates the aggorder list will always be one-to-one with the aggregated
+ * args.)
+ *
+ * We must also determine which query level the aggregate actually belongs to,
+ * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
+ * pstate level.
+ */
+void
+transformAggregateCall(ParseState *pstate, Aggref *agg,
+ List *args, List *aggorder, bool agg_distinct)
+{
+ List *argtypes = NIL;
+ List *tlist = NIL;
+ List *torder = NIL;
+ List *tdistinct = NIL;
+ AttrNumber attno = 1;
+ int save_next_resno;
+ ListCell *lc;
+
+ /*
+ * Before separating the args into direct and aggregated args, make a list
+ * of their data type OIDs for use later.
+ */
+ foreach(lc, args)
+ {
+ Expr *arg = (Expr *) lfirst(lc);
+
+ argtypes = lappend_oid(argtypes, exprType((Node *) arg));
+ }
+ agg->aggargtypes = argtypes;
+
+ if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
+ {
+ /*
+ * For an ordered-set agg, the args list includes direct args and
+ * aggregated args; we must split them apart.
+ */
+ int numDirectArgs = list_length(args) - list_length(aggorder);
+ List *aargs;
+ ListCell *lc2;
+
+ Assert(numDirectArgs >= 0);
+
+ aargs = list_copy_tail(args, numDirectArgs);
+ agg->aggdirectargs = list_truncate(args, numDirectArgs);
+
+ /*
+ * Build a tlist from the aggregated args, and make a sortlist entry
+ * for each one. Note that the expressions in the SortBy nodes are
+ * ignored (they are the raw versions of the transformed args); we are
+ * just looking at the sort information in the SortBy nodes.
+ */
+ forboth(lc, aargs, lc2, aggorder)
+ {
+ Expr *arg = (Expr *) lfirst(lc);
+ SortBy *sortby = (SortBy *) lfirst(lc2);
+ TargetEntry *tle;
+
+ /* We don't bother to assign column names to the entries */
+ tle = makeTargetEntry(arg, attno++, NULL, false);
+ tlist = lappend(tlist, tle);
+
+ torder = addTargetToSortList(pstate, tle,
+ torder, tlist, sortby);
+ }
+
+ /* Never any DISTINCT in an ordered-set agg */
+ Assert(!agg_distinct);
+ }
+ else
+ {
+ /* Regular aggregate, so it has no direct args */
+ agg->aggdirectargs = NIL;
+
+ /*
+ * Transform the plain list of Exprs into a targetlist.
+ */
+ foreach(lc, args)
+ {
+ Expr *arg = (Expr *) lfirst(lc);
+ TargetEntry *tle;
+
+ /* We don't bother to assign column names to the entries */
+ tle = makeTargetEntry(arg, attno++, NULL, false);
+ tlist = lappend(tlist, tle);
+ }
+
+ /*
+ * If we have an ORDER BY, transform it. This will add columns to the
+ * tlist if they appear in ORDER BY but weren't already in the arg
+ * list. They will be marked resjunk = true so we can tell them apart
+ * from regular aggregate arguments later.
+ *
+ * We need to mess with p_next_resno since it will be used to number
+ * any new targetlist entries.
+ */
+ save_next_resno = pstate->p_next_resno;
+ pstate->p_next_resno = attno;
+
+ torder = transformSortClause(pstate,
+ aggorder,
+ &tlist,
+ EXPR_KIND_ORDER_BY,
+ true /* force SQL99 rules */ );
+
+ /*
+ * If we have DISTINCT, transform that to produce a distinctList.
+ */
+ if (agg_distinct)
+ {
+ tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
+
+ /*
+ * Remove this check if executor support for hashed distinct for
+ * aggregates is ever added.
+ */
+ foreach(lc, tdistinct)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
+
+ if (!OidIsValid(sortcl->sortop))
+ {
+ Node *expr = get_sortgroupclause_expr(sortcl, tlist);
+
+ ereport(ERROR,
+ (errcode(ERRCODE_UNDEFINED_FUNCTION),
+ errmsg("could not identify an ordering operator for type %s",
+ format_type_be(exprType(expr))),
+ errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
+ parser_errposition(pstate, exprLocation(expr))));
+ }
+ }
+ }
+
+ pstate->p_next_resno = save_next_resno;
+ }
+
+ /* Update the Aggref with the transformation results */
+ agg->args = tlist;
+ agg->aggorder = torder;
+ agg->aggdistinct = tdistinct;
+
+ check_agglevels_and_constraints(pstate, (Node *) agg);
+}
+
+/*
+ * transformGroupingFunc
+ * Transform a GROUPING expression
+ *
+ * GROUPING() behaves very like an aggregate. Processing of levels and nesting
+ * is done as for aggregates. We set p_hasAggs for these expressions too.
+ */
+Node *
+transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
+{
+ ListCell *lc;
+ List *args = p->args;
+ List *result_list = NIL;
+ GroupingFunc *result = makeNode(GroupingFunc);
+
+ if (list_length(args) > 31)
+ ereport(ERROR,
+ (errcode(ERRCODE_TOO_MANY_ARGUMENTS),
+ errmsg("GROUPING must have fewer than 32 arguments"),
+ parser_errposition(pstate, p->location)));
+
+ foreach(lc, args)
+ {
+ Node *current_result;
+
+ current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
+
+ /* acceptability of expressions is checked later */
+
+ result_list = lappend(result_list, current_result);
+ }
+
+ result->args = result_list;
+ result->location = p->location;
+
+ check_agglevels_and_constraints(pstate, (Node *) result);
+
+ return (Node *) result;
+}
+
+/*
+ * Aggregate functions and grouping operations (which are combined in the spec
+ * as <set function specification>) are very similar with regard to level and
+ * nesting restrictions (though we allow a lot more things than the spec does).
+ * Centralise those restrictions here.
+ */
+static void
+check_agglevels_and_constraints(ParseState *pstate, Node *expr)
+{
+ List *directargs = NIL;
+ List *args = NIL;
+ Expr *filter = NULL;
+ int min_varlevel;
+ int location = -1;
+ Index *p_levelsup;
+ const char *err;
+ bool errkind;
+ bool isAgg = IsA(expr, Aggref);
+
+ if (isAgg)
+ {
+ Aggref *agg = (Aggref *) expr;
+
+ directargs = agg->aggdirectargs;
+ args = agg->args;
+ filter = agg->aggfilter;
+ location = agg->location;
+ p_levelsup = &agg->agglevelsup;
+ }
+ else
+ {
+ GroupingFunc *grp = (GroupingFunc *) expr;
+
+ args = grp->args;
+ location = grp->location;
+ p_levelsup = &grp->agglevelsup;
+ }
+
+ /*
+ * Check the arguments to compute the aggregate's level and detect
+ * improper nesting.
+ */
+ min_varlevel = check_agg_arguments(pstate,
+ directargs,
+ args,
+ filter);
+
+ *p_levelsup = min_varlevel;
+
+ /* Mark the correct pstate level as having aggregates */
+ while (min_varlevel-- > 0)
+ pstate = pstate->parentParseState;
+ pstate->p_hasAggs = true;
+
+ /*
+ * Check to see if the aggregate function is in an invalid place within
+ * its aggregation query.
+ *
+ * For brevity we support two schemes for reporting an error here: set
+ * "err" to a custom message, or set "errkind" true if the error context
+ * is sufficiently identified by what ParseExprKindName will return, *and*
+ * what it will return is just a SQL keyword. (Otherwise, use a custom
+ * message to avoid creating translation problems.)
+ */
+ err = NULL;
+ errkind = false;
+ switch (pstate->p_expr_kind)
+ {
+ case EXPR_KIND_NONE:
+ Assert(false); /* can't happen */
+ break;
+ case EXPR_KIND_OTHER:
+
+ /*
+ * Accept aggregate/grouping here; caller must throw error if
+ * wanted
+ */
+ break;
+ case EXPR_KIND_JOIN_ON:
+ case EXPR_KIND_JOIN_USING:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in JOIN conditions");
+ else
+ err = _("grouping operations are not allowed in JOIN conditions");
+
+ break;
+ case EXPR_KIND_FROM_SUBSELECT:
+ /* Should only be possible in a LATERAL subquery */
+ Assert(pstate->p_lateral_active);
+
+ /*
+ * Aggregate/grouping scope rules make it worth being explicit
+ * here
+ */
+ if (isAgg)
+ err = _("aggregate functions are not allowed in FROM clause of their own query level");
+ else
+ err = _("grouping operations are not allowed in FROM clause of their own query level");
+
+ break;
+ case EXPR_KIND_FROM_FUNCTION:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in functions in FROM");
+ else
+ err = _("grouping operations are not allowed in functions in FROM");
+
+ break;
+ case EXPR_KIND_WHERE:
+ errkind = true;
+ break;
+ case EXPR_KIND_POLICY:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in policy expressions");
+ else
+ err = _("grouping operations are not allowed in policy expressions");
+
+ break;
+ case EXPR_KIND_HAVING:
+ /* okay */
+ break;
+ case EXPR_KIND_FILTER:
+ errkind = true;
+ break;
+ case EXPR_KIND_WINDOW_PARTITION:
+ /* okay */
+ break;
+ case EXPR_KIND_WINDOW_ORDER:
+ /* okay */
+ break;
+ case EXPR_KIND_WINDOW_FRAME_RANGE:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in window RANGE");
+ else
+ err = _("grouping operations are not allowed in window RANGE");
+
+ break;
+ case EXPR_KIND_WINDOW_FRAME_ROWS:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in window ROWS");
+ else
+ err = _("grouping operations are not allowed in window ROWS");
+
+ break;
+ case EXPR_KIND_WINDOW_FRAME_GROUPS:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in window GROUPS");
+ else
+ err = _("grouping operations are not allowed in window GROUPS");
+
+ break;
+ case EXPR_KIND_SELECT_TARGET:
+ /* okay */
+ break;
+ case EXPR_KIND_INSERT_TARGET:
+ case EXPR_KIND_UPDATE_SOURCE:
+ case EXPR_KIND_UPDATE_TARGET:
+ errkind = true;
+ break;
+ case EXPR_KIND_GROUP_BY:
+ errkind = true;
+ break;
+ case EXPR_KIND_ORDER_BY:
+ /* okay */
+ break;
+ case EXPR_KIND_DISTINCT_ON:
+ /* okay */
+ break;
+ case EXPR_KIND_LIMIT:
+ case EXPR_KIND_OFFSET:
+ errkind = true;
+ break;
+ case EXPR_KIND_RETURNING:
+ errkind = true;
+ break;
+ case EXPR_KIND_VALUES:
+ case EXPR_KIND_VALUES_SINGLE:
+ errkind = true;
+ break;
+ case EXPR_KIND_CHECK_CONSTRAINT:
+ case EXPR_KIND_DOMAIN_CHECK:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in check constraints");
+ else
+ err = _("grouping operations are not allowed in check constraints");
+
+ break;
+ case EXPR_KIND_COLUMN_DEFAULT:
+ case EXPR_KIND_FUNCTION_DEFAULT:
+
+ if (isAgg)
+ err = _("aggregate functions are not allowed in DEFAULT expressions");
+ else
+ err = _("grouping operations are not allowed in DEFAULT expressions");
+
+ break;
+ case EXPR_KIND_INDEX_EXPRESSION:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in index expressions");
+ else
+ err = _("grouping operations are not allowed in index expressions");
+
+ break;
+ case EXPR_KIND_INDEX_PREDICATE:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in index predicates");
+ else
+ err = _("grouping operations are not allowed in index predicates");
+
+ break;
+ case EXPR_KIND_STATS_EXPRESSION:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in statistics expressions");
+ else
+ err = _("grouping operations are not allowed in statistics expressions");
+
+ break;
+ case EXPR_KIND_ALTER_COL_TRANSFORM:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in transform expressions");
+ else
+ err = _("grouping operations are not allowed in transform expressions");
+
+ break;
+ case EXPR_KIND_EXECUTE_PARAMETER:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in EXECUTE parameters");
+ else
+ err = _("grouping operations are not allowed in EXECUTE parameters");
+
+ break;
+ case EXPR_KIND_TRIGGER_WHEN:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in trigger WHEN conditions");
+ else
+ err = _("grouping operations are not allowed in trigger WHEN conditions");
+
+ break;
+ case EXPR_KIND_PARTITION_BOUND:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in partition bound");
+ else
+ err = _("grouping operations are not allowed in partition bound");
+
+ break;
+ case EXPR_KIND_PARTITION_EXPRESSION:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in partition key expressions");
+ else
+ err = _("grouping operations are not allowed in partition key expressions");
+
+ break;
+ case EXPR_KIND_GENERATED_COLUMN:
+
+ if (isAgg)
+ err = _("aggregate functions are not allowed in column generation expressions");
+ else
+ err = _("grouping operations are not allowed in column generation expressions");
+
+ break;
+
+ case EXPR_KIND_CALL_ARGUMENT:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in CALL arguments");
+ else
+ err = _("grouping operations are not allowed in CALL arguments");
+
+ break;
+
+ case EXPR_KIND_COPY_WHERE:
+ if (isAgg)
+ err = _("aggregate functions are not allowed in COPY FROM WHERE conditions");
+ else
+ err = _("grouping operations are not allowed in COPY FROM WHERE conditions");
+
+ break;
+
+ case EXPR_KIND_CYCLE_MARK:
+ errkind = true;
+ break;
+
+ /*
+ * There is intentionally no default: case here, so that the
+ * compiler will warn if we add a new ParseExprKind without
+ * extending this switch. If we do see an unrecognized value at
+ * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
+ * which is sane anyway.
+ */
+ }
+
+ if (err)
+ ereport(ERROR,
+ (errcode(ERRCODE_GROUPING_ERROR),
+ errmsg_internal("%s", err),
+ parser_errposition(pstate, location)));
+
+ if (errkind)
+ {
+ if (isAgg)
+ /* translator: %s is name of a SQL construct, eg GROUP BY */
+ err = _("aggregate functions are not allowed in %s");
+ else
+ /* translator: %s is name of a SQL construct, eg GROUP BY */
+ err = _("grouping operations are not allowed in %s");
+
+ ereport(ERROR,
+ (errcode(ERRCODE_GROUPING_ERROR),
+ errmsg_internal(err,
+ ParseExprKindName(pstate->p_expr_kind)),
+ parser_errposition(pstate, location)));
+ }
+}
+
+/*
+ * check_agg_arguments
+ * Scan the arguments of an aggregate function to determine the
+ * aggregate's semantic level (zero is the current select's level,
+ * one is its parent, etc).
+ *
+ * The aggregate's level is the same as the level of the lowest-level variable
+ * or aggregate in its aggregated arguments (including any ORDER BY columns)
+ * or filter expression; or if it contains no variables at all, we presume it
+ * to be local.
+ *
+ * Vars/Aggs in direct arguments are *not* counted towards determining the
+ * agg's level, as those arguments aren't evaluated per-row but only
+ * per-group, and so in some sense aren't really agg arguments. However,
+ * this can mean that we decide an agg is upper-level even when its direct
+ * args contain lower-level Vars/Aggs, and that case has to be disallowed.
+ * (This is a little strange, but the SQL standard seems pretty definite that
+ * direct args are not to be considered when setting the agg's level.)
+ *
+ * We also take this opportunity to detect any aggregates or window functions
+ * nested within the arguments. We can throw error immediately if we find
+ * a window function. Aggregates are a bit trickier because it's only an
+ * error if the inner aggregate is of the same semantic level as the outer,
+ * which we can't know until we finish scanning the arguments.
+ */
+static int
+check_agg_arguments(ParseState *pstate,
+ List *directargs,
+ List *args,
+ Expr *filter)
+{
+ int agglevel;
+ check_agg_arguments_context context;
+
+ context.pstate = pstate;
+ context.min_varlevel = -1; /* signifies nothing found yet */
+ context.min_agglevel = -1;
+ context.sublevels_up = 0;
+
+ (void) check_agg_arguments_walker((Node *) args, &context);
+ (void) check_agg_arguments_walker((Node *) filter, &context);
+
+ /*
+ * If we found no vars nor aggs at all, it's a level-zero aggregate;
+ * otherwise, its level is the minimum of vars or aggs.
+ */
+ if (context.min_varlevel < 0)
+ {
+ if (context.min_agglevel < 0)
+ agglevel = 0;
+ else
+ agglevel = context.min_agglevel;
+ }
+ else if (context.min_agglevel < 0)
+ agglevel = context.min_varlevel;
+ else
+ agglevel = Min(context.min_varlevel, context.min_agglevel);
+
+ /*
+ * If there's a nested aggregate of the same semantic level, complain.
+ */
+ if (agglevel == context.min_agglevel)
+ {
+ int aggloc;
+
+ aggloc = locate_agg_of_level((Node *) args, agglevel);
+ if (aggloc < 0)
+ aggloc = locate_agg_of_level((Node *) filter, agglevel);
+ ereport(ERROR,
+ (errcode(ERRCODE_GROUPING_ERROR),
+ errmsg("aggregate function calls cannot be nested"),
+ parser_errposition(pstate, aggloc)));
+ }
+
+ /*
+ * Now check for vars/aggs in the direct arguments, and throw error if
+ * needed. Note that we allow a Var of the agg's semantic level, but not
+ * an Agg of that level. In principle such Aggs could probably be
+ * supported, but it would create an ordering dependency among the
+ * aggregates at execution time. Since the case appears neither to be
+ * required by spec nor particularly useful, we just treat it as a
+ * nested-aggregate situation.
+ */
+ if (directargs)
+ {
+ context.min_varlevel = -1;
+ context.min_agglevel = -1;
+ (void) check_agg_arguments_walker((Node *) directargs, &context);
+ if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
+ ereport(ERROR,
+ (errcode(ERRCODE_GROUPING_ERROR),
+ errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
+ parser_errposition(pstate,
+ locate_var_of_level((Node *) directargs,
+ context.min_varlevel))));
+ if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
+ ereport(ERROR,
+ (errcode(ERRCODE_GROUPING_ERROR),
+ errmsg("aggregate function calls cannot be nested"),
+ parser_errposition(pstate,
+ locate_agg_of_level((Node *) directargs,
+ context.min_agglevel))));
+ }
+ return agglevel;
+}
+
+static bool
+check_agg_arguments_walker(Node *node,
+ check_agg_arguments_context *context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Var))
+ {
+ int varlevelsup = ((Var *) node)->varlevelsup;
+
+ /* convert levelsup to frame of reference of original query */
+ varlevelsup -= context->sublevels_up;
+ /* ignore local vars of subqueries */
+ if (varlevelsup >= 0)
+ {
+ if (context->min_varlevel < 0 ||
+ context->min_varlevel > varlevelsup)
+ context->min_varlevel = varlevelsup;
+ }
+ return false;
+ }
+ if (IsA(node, Aggref))
+ {
+ int agglevelsup = ((Aggref *) node)->agglevelsup;
+
+ /* convert levelsup to frame of reference of original query */
+ agglevelsup -= context->sublevels_up;
+ /* ignore local aggs of subqueries */
+ if (agglevelsup >= 0)
+ {
+ if (context->min_agglevel < 0 ||
+ context->min_agglevel > agglevelsup)
+ context->min_agglevel = agglevelsup;
+ }
+ /* no need to examine args of the inner aggregate */
+ return false;
+ }
+ if (IsA(node, GroupingFunc))
+ {
+ int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
+
+ /* convert levelsup to frame of reference of original query */
+ agglevelsup -= context->sublevels_up;
+ /* ignore local aggs of subqueries */
+ if (agglevelsup >= 0)
+ {
+ if (context->min_agglevel < 0 ||
+ context->min_agglevel > agglevelsup)
+ context->min_agglevel = agglevelsup;
+ }
+ /* Continue and descend into subtree */
+ }
+
+ /*
+ * SRFs and window functions can be rejected immediately, unless we are
+ * within a sub-select within the aggregate's arguments; in that case
+ * they're OK.
+ */
+ if (context->sublevels_up == 0)
+ {
+ if ((IsA(node, FuncExpr) && ((FuncExpr *) node)->funcretset) ||
+ (IsA(node, OpExpr) && ((OpExpr *) node)->opretset))
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("aggregate function calls cannot contain set-returning function calls"),
+ errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
+ parser_errposition(context->pstate, exprLocation(node))));
+ if (IsA(node, WindowFunc))
+ ereport(ERROR,
+ (errcode(ERRCODE_GROUPING_ERROR),
+ errmsg("aggregate function calls cannot contain window function calls"),
+ parser_errposition(context->pstate,
+ ((WindowFunc *) node)->location)));
+ }
+ if (IsA(node, Query))
+ {
+ /* Recurse into subselects */
+ bool result;
+
+ context->sublevels_up++;
+ result = query_tree_walker((Query *) node,
+ check_agg_arguments_walker,
+ (void *) context,
+ 0);
+ context->sublevels_up--;
+ return result;
+ }
+
+ return expression_tree_walker(node,
+ check_agg_arguments_walker,
+ (void *) context);
+}
+
+/*
+ * transformWindowFuncCall -
+ * Finish initial transformation of a window function call
+ *
+ * parse_func.c has recognized the function as a window function, and has set
+ * up all the fields of the WindowFunc except winref. Here we must (1) add
+ * the WindowDef to the pstate (if not a duplicate of one already present) and
+ * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
+ * Unlike aggregates, only the most closely nested pstate level need be
+ * considered --- there are no "outer window functions" per SQL spec.
+ */
+void
+transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
+ WindowDef *windef)
+{
+ const char *err;
+ bool errkind;
+
+ /*
+ * A window function call can't contain another one (but aggs are OK). XXX
+ * is this required by spec, or just an unimplemented feature?
+ *
+ * Note: we don't need to check the filter expression here, because the
+ * context checks done below and in transformAggregateCall would have
+ * already rejected any window funcs or aggs within the filter.
+ */
+ if (pstate->p_hasWindowFuncs &&
+ contain_windowfuncs((Node *) wfunc->args))
+ ereport(ERROR,
+ (errcode(ERRCODE_WINDOWING_ERROR),
+ errmsg("window function calls cannot be nested"),
+ parser_errposition(pstate,
+ locate_windowfunc((Node *) wfunc->args))));
+
+ /*
+ * Check to see if the window function is in an invalid place within the
+ * query.
+ *
+ * For brevity we support two schemes for reporting an error here: set
+ * "err" to a custom message, or set "errkind" true if the error context
+ * is sufficiently identified by what ParseExprKindName will return, *and*
+ * what it will return is just a SQL keyword. (Otherwise, use a custom
+ * message to avoid creating translation problems.)
+ */
+ err = NULL;
+ errkind = false;
+ switch (pstate->p_expr_kind)
+ {
+ case EXPR_KIND_NONE:
+ Assert(false); /* can't happen */
+ break;
+ case EXPR_KIND_OTHER:
+ /* Accept window func here; caller must throw error if wanted */
+ break;
+ case EXPR_KIND_JOIN_ON:
+ case EXPR_KIND_JOIN_USING:
+ err = _("window functions are not allowed in JOIN conditions");
+ break;
+ case EXPR_KIND_FROM_SUBSELECT:
+ /* can't get here, but just in case, throw an error */
+ errkind = true;
+ break;
+ case EXPR_KIND_FROM_FUNCTION:
+ err = _("window functions are not allowed in functions in FROM");
+ break;
+ case EXPR_KIND_WHERE:
+ errkind = true;
+ break;
+ case EXPR_KIND_POLICY:
+ err = _("window functions are not allowed in policy expressions");
+ break;
+ case EXPR_KIND_HAVING:
+ errkind = true;
+ break;
+ case EXPR_KIND_FILTER:
+ errkind = true;
+ break;
+ case EXPR_KIND_WINDOW_PARTITION:
+ case EXPR_KIND_WINDOW_ORDER:
+ case EXPR_KIND_WINDOW_FRAME_RANGE:
+ case EXPR_KIND_WINDOW_FRAME_ROWS:
+ case EXPR_KIND_WINDOW_FRAME_GROUPS:
+ err = _("window functions are not allowed in window definitions");
+ break;
+ case EXPR_KIND_SELECT_TARGET:
+ /* okay */
+ break;
+ case EXPR_KIND_INSERT_TARGET:
+ case EXPR_KIND_UPDATE_SOURCE:
+ case EXPR_KIND_UPDATE_TARGET:
+ errkind = true;
+ break;
+ case EXPR_KIND_GROUP_BY:
+ errkind = true;
+ break;
+ case EXPR_KIND_ORDER_BY:
+ /* okay */
+ break;
+ case EXPR_KIND_DISTINCT_ON:
+ /* okay */
+ break;
+ case EXPR_KIND_LIMIT:
+ case EXPR_KIND_OFFSET:
+ errkind = true;
+ break;
+ case EXPR_KIND_RETURNING:
+ errkind = true;
+ break;
+ case EXPR_KIND_VALUES:
+ case EXPR_KIND_VALUES_SINGLE:
+ errkind = true;
+ break;
+ case EXPR_KIND_CHECK_CONSTRAINT:
+ case EXPR_KIND_DOMAIN_CHECK:
+ err = _("window functions are not allowed in check constraints");
+ break;
+ case EXPR_KIND_COLUMN_DEFAULT:
+ case EXPR_KIND_FUNCTION_DEFAULT:
+ err = _("window functions are not allowed in DEFAULT expressions");
+ break;
+ case EXPR_KIND_INDEX_EXPRESSION:
+ err = _("window functions are not allowed in index expressions");
+ break;
+ case EXPR_KIND_STATS_EXPRESSION:
+ err = _("window functions are not allowed in statistics expressions");
+ break;
+ case EXPR_KIND_INDEX_PREDICATE:
+ err = _("window functions are not allowed in index predicates");
+ break;
+ case EXPR_KIND_ALTER_COL_TRANSFORM:
+ err = _("window functions are not allowed in transform expressions");
+ break;
+ case EXPR_KIND_EXECUTE_PARAMETER:
+ err = _("window functions are not allowed in EXECUTE parameters");
+ break;
+ case EXPR_KIND_TRIGGER_WHEN:
+ err = _("window functions are not allowed in trigger WHEN conditions");
+ break;
+ case EXPR_KIND_PARTITION_BOUND:
+ err = _("window functions are not allowed in partition bound");
+ break;
+ case EXPR_KIND_PARTITION_EXPRESSION:
+ err = _("window functions are not allowed in partition key expressions");
+ break;
+ case EXPR_KIND_CALL_ARGUMENT:
+ err = _("window functions are not allowed in CALL arguments");
+ break;
+ case EXPR_KIND_COPY_WHERE:
+ err = _("window functions are not allowed in COPY FROM WHERE conditions");
+ break;
+ case EXPR_KIND_GENERATED_COLUMN:
+ err = _("window functions are not allowed in column generation expressions");
+ break;
+ case EXPR_KIND_CYCLE_MARK:
+ errkind = true;
+ break;
+
+ /*
+ * There is intentionally no default: case here, so that the
+ * compiler will warn if we add a new ParseExprKind without
+ * extending this switch. If we do see an unrecognized value at
+ * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
+ * which is sane anyway.
+ */
+ }
+ if (err)
+ ereport(ERROR,
+ (errcode(ERRCODE_WINDOWING_ERROR),
+ errmsg_internal("%s", err),
+ parser_errposition(pstate, wfunc->location)));
+ if (errkind)
+ ereport(ERROR,
+ (errcode(ERRCODE_WINDOWING_ERROR),
+ /* translator: %s is name of a SQL construct, eg GROUP BY */
+ errmsg("window functions are not allowed in %s",
+ ParseExprKindName(pstate->p_expr_kind)),
+ parser_errposition(pstate, wfunc->location)));
+
+ /*
+ * If the OVER clause just specifies a window name, find that WINDOW
+ * clause (which had better be present). Otherwise, try to match all the
+ * properties of the OVER clause, and make a new entry in the p_windowdefs
+ * list if no luck.
+ */
+ if (windef->name)
+ {
+ Index winref = 0;
+ ListCell *lc;
+
+ Assert(windef->refname == NULL &&
+ windef->partitionClause == NIL &&
+ windef->orderClause == NIL &&
+ windef->frameOptions == FRAMEOPTION_DEFAULTS);
+
+ foreach(lc, pstate->p_windowdefs)
+ {
+ WindowDef *refwin = (WindowDef *) lfirst(lc);
+
+ winref++;
+ if (refwin->name && strcmp(refwin->name, windef->name) == 0)
+ {
+ wfunc->winref = winref;
+ break;
+ }
+ }
+ if (lc == NULL) /* didn't find it? */
+ ereport(ERROR,
+ (errcode(ERRCODE_UNDEFINED_OBJECT),
+ errmsg("window \"%s\" does not exist", windef->name),
+ parser_errposition(pstate, windef->location)));
+ }
+ else
+ {
+ Index winref = 0;
+ ListCell *lc;
+
+ foreach(lc, pstate->p_windowdefs)
+ {
+ WindowDef *refwin = (WindowDef *) lfirst(lc);
+
+ winref++;
+ if (refwin->refname && windef->refname &&
+ strcmp(refwin->refname, windef->refname) == 0)
+ /* matched on refname */ ;
+ else if (!refwin->refname && !windef->refname)
+ /* matched, no refname */ ;
+ else
+ continue;
+ if (equal(refwin->partitionClause, windef->partitionClause) &&
+ equal(refwin->orderClause, windef->orderClause) &&
+ refwin->frameOptions == windef->frameOptions &&
+ equal(refwin->startOffset, windef->startOffset) &&
+ equal(refwin->endOffset, windef->endOffset))
+ {
+ /* found a duplicate window specification */
+ wfunc->winref = winref;
+ break;
+ }
+ }
+ if (lc == NULL) /* didn't find it? */
+ {
+ pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
+ wfunc->winref = list_length(pstate->p_windowdefs);
+ }
+ }
+
+ pstate->p_hasWindowFuncs = true;
+}
+
+/*
+ * parseCheckAggregates
+ * Check for aggregates where they shouldn't be and improper grouping.
+ * This function should be called after the target list and qualifications
+ * are finalized.
+ *
+ * Misplaced aggregates are now mostly detected in transformAggregateCall,
+ * but it seems more robust to check for aggregates in recursive queries
+ * only after everything is finalized. In any case it's hard to detect
+ * improper grouping on-the-fly, so we have to make another pass over the
+ * query for that.
+ */
+void
+parseCheckAggregates(ParseState *pstate, Query *qry)
+{
+ List *gset_common = NIL;
+ List *groupClauses = NIL;
+ List *groupClauseCommonVars = NIL;
+ bool have_non_var_grouping;
+ List *func_grouped_rels = NIL;
+ ListCell *l;
+ bool hasJoinRTEs;
+ bool hasSelfRefRTEs;
+ Node *clause;
+
+ /* This should only be called if we found aggregates or grouping */
+ Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
+
+ /*
+ * If we have grouping sets, expand them and find the intersection of all
+ * sets.
+ */
+ if (qry->groupingSets)
+ {
+ /*
+ * The limit of 4096 is arbitrary and exists simply to avoid resource
+ * issues from pathological constructs.
+ */
+ List *gsets = expand_grouping_sets(qry->groupingSets, qry->groupDistinct, 4096);
+
+ if (!gsets)
+ ereport(ERROR,
+ (errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
+ errmsg("too many grouping sets present (maximum 4096)"),
+ parser_errposition(pstate,
+ qry->groupClause
+ ? exprLocation((Node *) qry->groupClause)
+ : exprLocation((Node *) qry->groupingSets))));
+
+ /*
+ * The intersection will often be empty, so help things along by
+ * seeding the intersect with the smallest set.
+ */
+ gset_common = linitial(gsets);
+
+ if (gset_common)
+ {
+ for_each_from(l, gsets, 1)
+ {
+ gset_common = list_intersection_int(gset_common, lfirst(l));
+ if (!gset_common)
+ break;
+ }
+ }
+
+ /*
+ * If there was only one grouping set in the expansion, AND if the
+ * groupClause is non-empty (meaning that the grouping set is not
+ * empty either), then we can ditch the grouping set and pretend we
+ * just had a normal GROUP BY.
+ */
+ if (list_length(gsets) == 1 && qry->groupClause)
+ qry->groupingSets = NIL;
+ }
+
+ /*
+ * Scan the range table to see if there are JOIN or self-reference CTE
+ * entries. We'll need this info below.
+ */
+ hasJoinRTEs = hasSelfRefRTEs = false;
+ foreach(l, pstate->p_rtable)
+ {
+ RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
+
+ if (rte->rtekind == RTE_JOIN)
+ hasJoinRTEs = true;
+ else if (rte->rtekind == RTE_CTE && rte->self_reference)
+ hasSelfRefRTEs = true;
+ }
+
+ /*
+ * Build a list of the acceptable GROUP BY expressions for use by
+ * check_ungrouped_columns().
+ *
+ * We get the TLE, not just the expr, because GROUPING wants to know the
+ * sortgroupref.
+ */
+ foreach(l, qry->groupClause)
+ {
+ SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
+ TargetEntry *expr;
+
+ expr = get_sortgroupclause_tle(grpcl, qry->targetList);
+ if (expr == NULL)
+ continue; /* probably cannot happen */
+
+ groupClauses = lappend(groupClauses, expr);
+ }
+
+ /*
+ * If there are join alias vars involved, we have to flatten them to the
+ * underlying vars, so that aliased and unaliased vars will be correctly
+ * taken as equal. We can skip the expense of doing this if no rangetable
+ * entries are RTE_JOIN kind.
+ */
+ if (hasJoinRTEs)
+ groupClauses = (List *) flatten_join_alias_vars(qry,
+ (Node *) groupClauses);
+
+ /*
+ * Detect whether any of the grouping expressions aren't simple Vars; if
+ * they're all Vars then we don't have to work so hard in the recursive
+ * scans. (Note we have to flatten aliases before this.)
+ *
+ * Track Vars that are included in all grouping sets separately in
+ * groupClauseCommonVars, since these are the only ones we can use to
+ * check for functional dependencies.
+ */
+ have_non_var_grouping = false;
+ foreach(l, groupClauses)
+ {
+ TargetEntry *tle = lfirst(l);
+
+ if (!IsA(tle->expr, Var))
+ {
+ have_non_var_grouping = true;
+ }
+ else if (!qry->groupingSets ||
+ list_member_int(gset_common, tle->ressortgroupref))
+ {
+ groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
+ }
+ }
+
+ /*
+ * Check the targetlist and HAVING clause for ungrouped variables.
+ *
+ * Note: because we check resjunk tlist elements as well as regular ones,
+ * this will also find ungrouped variables that came from ORDER BY and
+ * WINDOW clauses. For that matter, it's also going to examine the
+ * grouping expressions themselves --- but they'll all pass the test ...
+ *
+ * We also finalize GROUPING expressions, but for that we need to traverse
+ * the original (unflattened) clause in order to modify nodes.
+ */
+ clause = (Node *) qry->targetList;
+ finalize_grouping_exprs(clause, pstate, qry,
+ groupClauses, hasJoinRTEs,
+ have_non_var_grouping);
+ if (hasJoinRTEs)
+ clause = flatten_join_alias_vars(qry, clause);
+ check_ungrouped_columns(clause, pstate, qry,
+ groupClauses, groupClauseCommonVars,
+ have_non_var_grouping,
+ &func_grouped_rels);
+
+ clause = (Node *) qry->havingQual;
+ finalize_grouping_exprs(clause, pstate, qry,
+ groupClauses, hasJoinRTEs,
+ have_non_var_grouping);
+ if (hasJoinRTEs)
+ clause = flatten_join_alias_vars(qry, clause);
+ check_ungrouped_columns(clause, pstate, qry,
+ groupClauses, groupClauseCommonVars,
+ have_non_var_grouping,
+ &func_grouped_rels);
+
+ /*
+ * Per spec, aggregates can't appear in a recursive term.
+ */
+ if (pstate->p_hasAggs && hasSelfRefRTEs)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_RECURSION),
+ errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
+ parser_errposition(pstate,
+ locate_agg_of_level((Node *) qry, 0))));
+}
+
+/*
+ * check_ungrouped_columns -
+ * Scan the given expression tree for ungrouped variables (variables
+ * that are not listed in the groupClauses list and are not within
+ * the arguments of aggregate functions). Emit a suitable error message
+ * if any are found.
+ *
+ * NOTE: we assume that the given clause has been transformed suitably for
+ * parser output. This means we can use expression_tree_walker.
+ *
+ * NOTE: we recognize grouping expressions in the main query, but only
+ * grouping Vars in subqueries. For example, this will be rejected,
+ * although it could be allowed:
+ * SELECT
+ * (SELECT x FROM bar where y = (foo.a + foo.b))
+ * FROM foo
+ * GROUP BY a + b;
+ * The difficulty is the need to account for different sublevels_up.
+ * This appears to require a whole custom version of equal(), which is
+ * way more pain than the feature seems worth.
+ */
+static void
+check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
+ List *groupClauses, List *groupClauseCommonVars,
+ bool have_non_var_grouping,
+ List **func_grouped_rels)
+{
+ check_ungrouped_columns_context context;
+
+ context.pstate = pstate;
+ context.qry = qry;
+ context.hasJoinRTEs = false; /* assume caller flattened join Vars */
+ context.groupClauses = groupClauses;
+ context.groupClauseCommonVars = groupClauseCommonVars;
+ context.have_non_var_grouping = have_non_var_grouping;
+ context.func_grouped_rels = func_grouped_rels;
+ context.sublevels_up = 0;
+ context.in_agg_direct_args = false;
+ check_ungrouped_columns_walker(node, &context);
+}
+
+static bool
+check_ungrouped_columns_walker(Node *node,
+ check_ungrouped_columns_context *context)
+{
+ ListCell *gl;
+
+ if (node == NULL)
+ return false;
+ if (IsA(node, Const) ||
+ IsA(node, Param))
+ return false; /* constants are always acceptable */
+
+ if (IsA(node, Aggref))
+ {
+ Aggref *agg = (Aggref *) node;
+
+ if ((int) agg->agglevelsup == context->sublevels_up)
+ {
+ /*
+ * If we find an aggregate call of the original level, do not
+ * recurse into its normal arguments, ORDER BY arguments, or
+ * filter; ungrouped vars there are not an error. But we should
+ * check direct arguments as though they weren't in an aggregate.
+ * We set a special flag in the context to help produce a useful
+ * error message for ungrouped vars in direct arguments.
+ */
+ bool result;
+
+ Assert(!context->in_agg_direct_args);
+ context->in_agg_direct_args = true;
+ result = check_ungrouped_columns_walker((Node *) agg->aggdirectargs,
+ context);
+ context->in_agg_direct_args = false;
+ return result;
+ }
+
+ /*
+ * We can skip recursing into aggregates of higher levels altogether,
+ * since they could not possibly contain Vars of concern to us (see
+ * transformAggregateCall). We do need to look at aggregates of lower
+ * levels, however.
+ */
+ if ((int) agg->agglevelsup > context->sublevels_up)
+ return false;
+ }
+
+ if (IsA(node, GroupingFunc))
+ {
+ GroupingFunc *grp = (GroupingFunc *) node;
+
+ /* handled GroupingFunc separately, no need to recheck at this level */
+
+ if ((int) grp->agglevelsup >= context->sublevels_up)
+ return false;
+ }
+
+ /*
+ * If we have any GROUP BY items that are not simple Vars, check to see if
+ * subexpression as a whole matches any GROUP BY item. We need to do this
+ * at every recursion level so that we recognize GROUPed-BY expressions
+ * before reaching variables within them. But this only works at the outer
+ * query level, as noted above.
+ */
+ if (context->have_non_var_grouping && context->sublevels_up == 0)
+ {
+ foreach(gl, context->groupClauses)
+ {
+ TargetEntry *tle = lfirst(gl);
+
+ if (equal(node, tle->expr))
+ return false; /* acceptable, do not descend more */
+ }
+ }
+
+ /*
+ * If we have an ungrouped Var of the original query level, we have a
+ * failure. Vars below the original query level are not a problem, and
+ * neither are Vars from above it. (If such Vars are ungrouped as far as
+ * their own query level is concerned, that's someone else's problem...)
+ */
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+ RangeTblEntry *rte;
+ char *attname;
+
+ if (var->varlevelsup != context->sublevels_up)
+ return false; /* it's not local to my query, ignore */
+
+ /*
+ * Check for a match, if we didn't do it above.
+ */
+ if (!context->have_non_var_grouping || context->sublevels_up != 0)
+ {
+ foreach(gl, context->groupClauses)
+ {
+ Var *gvar = (Var *) ((TargetEntry *) lfirst(gl))->expr;
+
+ if (IsA(gvar, Var) &&
+ gvar->varno == var->varno &&
+ gvar->varattno == var->varattno &&
+ gvar->varlevelsup == 0)
+ return false; /* acceptable, we're okay */
+ }
+ }
+
+ /*
+ * Check whether the Var is known functionally dependent on the GROUP
+ * BY columns. If so, we can allow the Var to be used, because the
+ * grouping is really a no-op for this table. However, this deduction
+ * depends on one or more constraints of the table, so we have to add
+ * those constraints to the query's constraintDeps list, because it's
+ * not semantically valid anymore if the constraint(s) get dropped.
+ * (Therefore, this check must be the last-ditch effort before raising
+ * error: we don't want to add dependencies unnecessarily.)
+ *
+ * Because this is a pretty expensive check, and will have the same
+ * outcome for all columns of a table, we remember which RTEs we've
+ * already proven functional dependency for in the func_grouped_rels
+ * list. This test also prevents us from adding duplicate entries to
+ * the constraintDeps list.
+ */
+ if (list_member_int(*context->func_grouped_rels, var->varno))
+ return false; /* previously proven acceptable */
+
+ Assert(var->varno > 0 &&
+ (int) var->varno <= list_length(context->pstate->p_rtable));
+ rte = rt_fetch(var->varno, context->pstate->p_rtable);
+ if (rte->rtekind == RTE_RELATION)
+ {
+ if (check_functional_grouping(rte->relid,
+ var->varno,
+ 0,
+ context->groupClauseCommonVars,
+ &context->qry->constraintDeps))
+ {
+ *context->func_grouped_rels =
+ lappend_int(*context->func_grouped_rels, var->varno);
+ return false; /* acceptable */
+ }
+ }
+
+ /* Found an ungrouped local variable; generate error message */
+ attname = get_rte_attribute_name(rte, var->varattno);
+ if (context->sublevels_up == 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_GROUPING_ERROR),
+ errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
+ rte->eref->aliasname, attname),
+ context->in_agg_direct_args ?
+ errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
+ parser_errposition(context->pstate, var->location)));
+ else
+ ereport(ERROR,
+ (errcode(ERRCODE_GROUPING_ERROR),
+ errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
+ rte->eref->aliasname, attname),
+ parser_errposition(context->pstate, var->location)));
+ }
+
+ if (IsA(node, Query))
+ {
+ /* Recurse into subselects */
+ bool result;
+
+ context->sublevels_up++;
+ result = query_tree_walker((Query *) node,
+ check_ungrouped_columns_walker,
+ (void *) context,
+ 0);
+ context->sublevels_up--;
+ return result;
+ }
+ return expression_tree_walker(node, check_ungrouped_columns_walker,
+ (void *) context);
+}
+
+/*
+ * finalize_grouping_exprs -
+ * Scan the given expression tree for GROUPING() and related calls,
+ * and validate and process their arguments.
+ *
+ * This is split out from check_ungrouped_columns above because it needs
+ * to modify the nodes (which it does in-place, not via a mutator) while
+ * check_ungrouped_columns may see only a copy of the original thanks to
+ * flattening of join alias vars. So here, we flatten each individual
+ * GROUPING argument as we see it before comparing it.
+ */
+static void
+finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
+ List *groupClauses, bool hasJoinRTEs,
+ bool have_non_var_grouping)
+{
+ check_ungrouped_columns_context context;
+
+ context.pstate = pstate;
+ context.qry = qry;
+ context.hasJoinRTEs = hasJoinRTEs;
+ context.groupClauses = groupClauses;
+ context.groupClauseCommonVars = NIL;
+ context.have_non_var_grouping = have_non_var_grouping;
+ context.func_grouped_rels = NULL;
+ context.sublevels_up = 0;
+ context.in_agg_direct_args = false;
+ finalize_grouping_exprs_walker(node, &context);
+}
+
+static bool
+finalize_grouping_exprs_walker(Node *node,
+ check_ungrouped_columns_context *context)
+{
+ ListCell *gl;
+
+ if (node == NULL)
+ return false;
+ if (IsA(node, Const) ||
+ IsA(node, Param))
+ return false; /* constants are always acceptable */
+
+ if (IsA(node, Aggref))
+ {
+ Aggref *agg = (Aggref *) node;
+
+ if ((int) agg->agglevelsup == context->sublevels_up)
+ {
+ /*
+ * If we find an aggregate call of the original level, do not
+ * recurse into its normal arguments, ORDER BY arguments, or
+ * filter; GROUPING exprs of this level are not allowed there. But
+ * check direct arguments as though they weren't in an aggregate.
+ */
+ bool result;
+
+ Assert(!context->in_agg_direct_args);
+ context->in_agg_direct_args = true;
+ result = finalize_grouping_exprs_walker((Node *) agg->aggdirectargs,
+ context);
+ context->in_agg_direct_args = false;
+ return result;
+ }
+
+ /*
+ * We can skip recursing into aggregates of higher levels altogether,
+ * since they could not possibly contain exprs of concern to us (see
+ * transformAggregateCall). We do need to look at aggregates of lower
+ * levels, however.
+ */
+ if ((int) agg->agglevelsup > context->sublevels_up)
+ return false;
+ }
+
+ if (IsA(node, GroupingFunc))
+ {
+ GroupingFunc *grp = (GroupingFunc *) node;
+
+ /*
+ * We only need to check GroupingFunc nodes at the exact level to
+ * which they belong, since they cannot mix levels in arguments.
+ */
+
+ if ((int) grp->agglevelsup == context->sublevels_up)
+ {
+ ListCell *lc;
+ List *ref_list = NIL;
+
+ foreach(lc, grp->args)
+ {
+ Node *expr = lfirst(lc);
+ Index ref = 0;
+
+ if (context->hasJoinRTEs)
+ expr = flatten_join_alias_vars(context->qry, expr);
+
+ /*
+ * Each expression must match a grouping entry at the current
+ * query level. Unlike the general expression case, we don't
+ * allow functional dependencies or outer references.
+ */
+
+ if (IsA(expr, Var))
+ {
+ Var *var = (Var *) expr;
+
+ if (var->varlevelsup == context->sublevels_up)
+ {
+ foreach(gl, context->groupClauses)
+ {
+ TargetEntry *tle = lfirst(gl);
+ Var *gvar = (Var *) tle->expr;
+
+ if (IsA(gvar, Var) &&
+ gvar->varno == var->varno &&
+ gvar->varattno == var->varattno &&
+ gvar->varlevelsup == 0)
+ {
+ ref = tle->ressortgroupref;
+ break;
+ }
+ }
+ }
+ }
+ else if (context->have_non_var_grouping &&
+ context->sublevels_up == 0)
+ {
+ foreach(gl, context->groupClauses)
+ {
+ TargetEntry *tle = lfirst(gl);
+
+ if (equal(expr, tle->expr))
+ {
+ ref = tle->ressortgroupref;
+ break;
+ }
+ }
+ }
+
+ if (ref == 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_GROUPING_ERROR),
+ errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
+ parser_errposition(context->pstate,
+ exprLocation(expr))));
+
+ ref_list = lappend_int(ref_list, ref);
+ }
+
+ grp->refs = ref_list;
+ }
+
+ if ((int) grp->agglevelsup > context->sublevels_up)
+ return false;
+ }
+
+ if (IsA(node, Query))
+ {
+ /* Recurse into subselects */
+ bool result;
+
+ context->sublevels_up++;
+ result = query_tree_walker((Query *) node,
+ finalize_grouping_exprs_walker,
+ (void *) context,
+ 0);
+ context->sublevels_up--;
+ return result;
+ }
+ return expression_tree_walker(node, finalize_grouping_exprs_walker,
+ (void *) context);
+}
+
+
+/*
+ * Given a GroupingSet node, expand it and return a list of lists.
+ *
+ * For EMPTY nodes, return a list of one empty list.
+ *
+ * For SIMPLE nodes, return a list of one list, which is the node content.
+ *
+ * For CUBE and ROLLUP nodes, return a list of the expansions.
+ *
+ * For SET nodes, recursively expand contained CUBE and ROLLUP.
+ */
+static List *
+expand_groupingset_node(GroupingSet *gs)
+{
+ List *result = NIL;
+
+ switch (gs->kind)
+ {
+ case GROUPING_SET_EMPTY:
+ result = list_make1(NIL);
+ break;
+
+ case GROUPING_SET_SIMPLE:
+ result = list_make1(gs->content);
+ break;
+
+ case GROUPING_SET_ROLLUP:
+ {
+ List *rollup_val = gs->content;
+ ListCell *lc;
+ int curgroup_size = list_length(gs->content);
+
+ while (curgroup_size > 0)
+ {
+ List *current_result = NIL;
+ int i = curgroup_size;
+
+ foreach(lc, rollup_val)
+ {
+ GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
+
+ Assert(gs_current->kind == GROUPING_SET_SIMPLE);
+
+ current_result = list_concat(current_result,
+ gs_current->content);
+
+ /* If we are done with making the current group, break */
+ if (--i == 0)
+ break;
+ }
+
+ result = lappend(result, current_result);
+ --curgroup_size;
+ }
+
+ result = lappend(result, NIL);
+ }
+ break;
+
+ case GROUPING_SET_CUBE:
+ {
+ List *cube_list = gs->content;
+ int number_bits = list_length(cube_list);
+ uint32 num_sets;
+ uint32 i;
+
+ /* parser should cap this much lower */
+ Assert(number_bits < 31);
+
+ num_sets = (1U << number_bits);
+
+ for (i = 0; i < num_sets; i++)
+ {
+ List *current_result = NIL;
+ ListCell *lc;
+ uint32 mask = 1U;
+
+ foreach(lc, cube_list)
+ {
+ GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
+
+ Assert(gs_current->kind == GROUPING_SET_SIMPLE);
+
+ if (mask & i)
+ current_result = list_concat(current_result,
+ gs_current->content);
+
+ mask <<= 1;
+ }
+
+ result = lappend(result, current_result);
+ }
+ }
+ break;
+
+ case GROUPING_SET_SETS:
+ {
+ ListCell *lc;
+
+ foreach(lc, gs->content)
+ {
+ List *current_result = expand_groupingset_node(lfirst(lc));
+
+ result = list_concat(result, current_result);
+ }
+ }
+ break;
+ }
+
+ return result;
+}
+
+/* list_sort comparator to sort sub-lists by length */
+static int
+cmp_list_len_asc(const ListCell *a, const ListCell *b)
+{
+ int la = list_length((const List *) lfirst(a));
+ int lb = list_length((const List *) lfirst(b));
+
+ return (la > lb) ? 1 : (la == lb) ? 0 : -1;
+}
+
+/* list_sort comparator to sort sub-lists by length and contents */
+static int
+cmp_list_len_contents_asc(const ListCell *a, const ListCell *b)
+{
+ int res = cmp_list_len_asc(a, b);
+
+ if (res == 0)
+ {
+ List *la = (List *) lfirst(a);
+ List *lb = (List *) lfirst(b);
+ ListCell *lca;
+ ListCell *lcb;
+
+ forboth(lca, la, lcb, lb)
+ {
+ int va = lfirst_int(lca);
+ int vb = lfirst_int(lcb);
+
+ if (va > vb)
+ return 1;
+ if (va < vb)
+ return -1;
+ }
+ }
+
+ return res;
+}
+
+/*
+ * Expand a groupingSets clause to a flat list of grouping sets.
+ * The returned list is sorted by length, shortest sets first.
+ *
+ * This is mainly for the planner, but we use it here too to do
+ * some consistency checks.
+ */
+List *
+expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
+{
+ List *expanded_groups = NIL;
+ List *result = NIL;
+ double numsets = 1;
+ ListCell *lc;
+
+ if (groupingSets == NIL)
+ return NIL;
+
+ foreach(lc, groupingSets)
+ {
+ List *current_result = NIL;
+ GroupingSet *gs = lfirst(lc);
+
+ current_result = expand_groupingset_node(gs);
+
+ Assert(current_result != NIL);
+
+ numsets *= list_length(current_result);
+
+ if (limit >= 0 && numsets > limit)
+ return NIL;
+
+ expanded_groups = lappend(expanded_groups, current_result);
+ }
+
+ /*
+ * Do cartesian product between sublists of expanded_groups. While at it,
+ * remove any duplicate elements from individual grouping sets (we must
+ * NOT change the number of sets though)
+ */
+
+ foreach(lc, (List *) linitial(expanded_groups))
+ {
+ result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
+ }
+
+ for_each_from(lc, expanded_groups, 1)
+ {
+ List *p = lfirst(lc);
+ List *new_result = NIL;
+ ListCell *lc2;
+
+ foreach(lc2, result)
+ {
+ List *q = lfirst(lc2);
+ ListCell *lc3;
+
+ foreach(lc3, p)
+ {
+ new_result = lappend(new_result,
+ list_union_int(q, (List *) lfirst(lc3)));
+ }
+ }
+ result = new_result;
+ }
+
+ /* Now sort the lists by length and deduplicate if necessary */
+ if (!groupDistinct || list_length(result) < 2)
+ list_sort(result, cmp_list_len_asc);
+ else
+ {
+ ListCell *cell;
+ List *prev;
+
+ /* Sort each groupset individually */
+ foreach(cell, result)
+ list_sort(lfirst(cell), list_int_cmp);
+
+ /* Now sort the list of groupsets by length and contents */
+ list_sort(result, cmp_list_len_contents_asc);
+
+ /* Finally, remove duplicates */
+ prev = linitial(result);
+ for_each_from(cell, result, 1)
+ {
+ if (equal(lfirst(cell), prev))
+ result = foreach_delete_current(result, cell);
+ else
+ prev = lfirst(cell);
+ }
+ }
+
+ return result;
+}
+
+/*
+ * get_aggregate_argtypes
+ * Identify the specific datatypes passed to an aggregate call.
+ *
+ * Given an Aggref, extract the actual datatypes of the input arguments.
+ * The input datatypes are reported in a way that matches up with the
+ * aggregate's declaration, ie, any ORDER BY columns attached to a plain
+ * aggregate are ignored, but we report both direct and aggregated args of
+ * an ordered-set aggregate.
+ *
+ * Datatypes are returned into inputTypes[], which must reference an array
+ * of length FUNC_MAX_ARGS.
+ *
+ * The function result is the number of actual arguments.
+ */
+int
+get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
+{
+ int numArguments = 0;
+ ListCell *lc;
+
+ Assert(list_length(aggref->aggargtypes) <= FUNC_MAX_ARGS);
+
+ foreach(lc, aggref->aggargtypes)
+ {
+ inputTypes[numArguments++] = lfirst_oid(lc);
+ }
+
+ return numArguments;
+}
+
+/*
+ * resolve_aggregate_transtype
+ * Identify the transition state value's datatype for an aggregate call.
+ *
+ * This function resolves a polymorphic aggregate's state datatype.
+ * It must be passed the aggtranstype from the aggregate's catalog entry,
+ * as well as the actual argument types extracted by get_aggregate_argtypes.
+ * (We could fetch pg_aggregate.aggtranstype internally, but all existing
+ * callers already have the value at hand, so we make them pass it.)
+ */
+Oid
+resolve_aggregate_transtype(Oid aggfuncid,
+ Oid aggtranstype,
+ Oid *inputTypes,
+ int numArguments)
+{
+ /* resolve actual type of transition state, if polymorphic */
+ if (IsPolymorphicType(aggtranstype))
+ {
+ /* have to fetch the agg's declared input types... */
+ Oid *declaredArgTypes;
+ int agg_nargs;
+
+ (void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
+
+ /*
+ * VARIADIC ANY aggs could have more actual than declared args, but
+ * such extra args can't affect polymorphic type resolution.
+ */
+ Assert(agg_nargs <= numArguments);
+
+ aggtranstype = enforce_generic_type_consistency(inputTypes,
+ declaredArgTypes,
+ agg_nargs,
+ aggtranstype,
+ false);
+ pfree(declaredArgTypes);
+ }
+ return aggtranstype;
+}
+
+/*
+ * Create an expression tree for the transition function of an aggregate.
+ * This is needed so that polymorphic functions can be used within an
+ * aggregate --- without the expression tree, such functions would not know
+ * the datatypes they are supposed to use. (The trees will never actually
+ * be executed, however, so we can skimp a bit on correctness.)
+ *
+ * agg_input_types and agg_state_type identifies the input types of the
+ * aggregate. These should be resolved to actual types (ie, none should
+ * ever be ANYELEMENT etc).
+ * agg_input_collation is the aggregate function's input collation.
+ *
+ * For an ordered-set aggregate, remember that agg_input_types describes
+ * the direct arguments followed by the aggregated arguments.
+ *
+ * transfn_oid and invtransfn_oid identify the funcs to be called; the
+ * latter may be InvalidOid, however if invtransfn_oid is set then
+ * transfn_oid must also be set.
+ *
+ * Pointers to the constructed trees are returned into *transfnexpr,
+ * *invtransfnexpr. If there is no invtransfn, the respective pointer is set
+ * to NULL. Since use of the invtransfn is optional, NULL may be passed for
+ * invtransfnexpr.
+ */
+void
+build_aggregate_transfn_expr(Oid *agg_input_types,
+ int agg_num_inputs,
+ int agg_num_direct_inputs,
+ bool agg_variadic,
+ Oid agg_state_type,
+ Oid agg_input_collation,
+ Oid transfn_oid,
+ Oid invtransfn_oid,
+ Expr **transfnexpr,
+ Expr **invtransfnexpr)
+{
+ List *args;
+ FuncExpr *fexpr;
+ int i;
+
+ /*
+ * Build arg list to use in the transfn FuncExpr node.
+ */
+ args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
+
+ for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
+ {
+ args = lappend(args,
+ make_agg_arg(agg_input_types[i], agg_input_collation));
+ }
+
+ fexpr = makeFuncExpr(transfn_oid,
+ agg_state_type,
+ args,
+ InvalidOid,
+ agg_input_collation,
+ COERCE_EXPLICIT_CALL);
+ fexpr->funcvariadic = agg_variadic;
+ *transfnexpr = (Expr *) fexpr;
+
+ /*
+ * Build invtransfn expression if requested, with same args as transfn
+ */
+ if (invtransfnexpr != NULL)
+ {
+ if (OidIsValid(invtransfn_oid))
+ {
+ fexpr = makeFuncExpr(invtransfn_oid,
+ agg_state_type,
+ args,
+ InvalidOid,
+ agg_input_collation,
+ COERCE_EXPLICIT_CALL);
+ fexpr->funcvariadic = agg_variadic;
+ *invtransfnexpr = (Expr *) fexpr;
+ }
+ else
+ *invtransfnexpr = NULL;
+ }
+}
+
+/*
+ * Like build_aggregate_transfn_expr, but creates an expression tree for the
+ * combine function of an aggregate, rather than the transition function.
+ */
+void
+build_aggregate_combinefn_expr(Oid agg_state_type,
+ Oid agg_input_collation,
+ Oid combinefn_oid,
+ Expr **combinefnexpr)
+{
+ Node *argp;
+ List *args;
+ FuncExpr *fexpr;
+
+ /* combinefn takes two arguments of the aggregate state type */
+ argp = make_agg_arg(agg_state_type, agg_input_collation);
+
+ args = list_make2(argp, argp);
+
+ fexpr = makeFuncExpr(combinefn_oid,
+ agg_state_type,
+ args,
+ InvalidOid,
+ agg_input_collation,
+ COERCE_EXPLICIT_CALL);
+ /* combinefn is currently never treated as variadic */
+ *combinefnexpr = (Expr *) fexpr;
+}
+
+/*
+ * Like build_aggregate_transfn_expr, but creates an expression tree for the
+ * serialization function of an aggregate.
+ */
+void
+build_aggregate_serialfn_expr(Oid serialfn_oid,
+ Expr **serialfnexpr)
+{
+ List *args;
+ FuncExpr *fexpr;
+
+ /* serialfn always takes INTERNAL and returns BYTEA */
+ args = list_make1(make_agg_arg(INTERNALOID, InvalidOid));
+
+ fexpr = makeFuncExpr(serialfn_oid,
+ BYTEAOID,
+ args,
+ InvalidOid,
+ InvalidOid,
+ COERCE_EXPLICIT_CALL);
+ *serialfnexpr = (Expr *) fexpr;
+}
+
+/*
+ * Like build_aggregate_transfn_expr, but creates an expression tree for the
+ * deserialization function of an aggregate.
+ */
+void
+build_aggregate_deserialfn_expr(Oid deserialfn_oid,
+ Expr **deserialfnexpr)
+{
+ List *args;
+ FuncExpr *fexpr;
+
+ /* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
+ args = list_make2(make_agg_arg(BYTEAOID, InvalidOid),
+ make_agg_arg(INTERNALOID, InvalidOid));
+
+ fexpr = makeFuncExpr(deserialfn_oid,
+ INTERNALOID,
+ args,
+ InvalidOid,
+ InvalidOid,
+ COERCE_EXPLICIT_CALL);
+ *deserialfnexpr = (Expr *) fexpr;
+}
+
+/*
+ * Like build_aggregate_transfn_expr, but creates an expression tree for the
+ * final function of an aggregate, rather than the transition function.
+ */
+void
+build_aggregate_finalfn_expr(Oid *agg_input_types,
+ int num_finalfn_inputs,
+ Oid agg_state_type,
+ Oid agg_result_type,
+ Oid agg_input_collation,
+ Oid finalfn_oid,
+ Expr **finalfnexpr)
+{
+ List *args;
+ int i;
+
+ /*
+ * Build expr tree for final function
+ */
+ args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
+
+ /* finalfn may take additional args, which match agg's input types */
+ for (i = 0; i < num_finalfn_inputs - 1; i++)
+ {
+ args = lappend(args,
+ make_agg_arg(agg_input_types[i], agg_input_collation));
+ }
+
+ *finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
+ agg_result_type,
+ args,
+ InvalidOid,
+ agg_input_collation,
+ COERCE_EXPLICIT_CALL);
+ /* finalfn is currently never treated as variadic */
+}
+
+/*
+ * Convenience function to build dummy argument expressions for aggregates.
+ *
+ * We really only care that an aggregate support function can discover its
+ * actual argument types at runtime using get_fn_expr_argtype(), so it's okay
+ * to use Param nodes that don't correspond to any real Param.
+ */
+static Node *
+make_agg_arg(Oid argtype, Oid argcollation)
+{
+ Param *argp = makeNode(Param);
+
+ argp->paramkind = PARAM_EXEC;
+ argp->paramid = -1;
+ argp->paramtype = argtype;
+ argp->paramtypmod = -1;
+ argp->paramcollid = argcollation;
+ argp->location = -1;
+ return (Node *) argp;
+}