summaryrefslogtreecommitdiffstats
path: root/src/backend/statistics/mcv.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/statistics/mcv.c
parentInitial commit. (diff)
downloadpostgresql-14-46651ce6fe013220ed397add242004d764fc0153.tar.xz
postgresql-14-46651ce6fe013220ed397add242004d764fc0153.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/statistics/mcv.c')
-rw-r--r--src/backend/statistics/mcv.c2180
1 files changed, 2180 insertions, 0 deletions
diff --git a/src/backend/statistics/mcv.c b/src/backend/statistics/mcv.c
new file mode 100644
index 0000000..0183775
--- /dev/null
+++ b/src/backend/statistics/mcv.c
@@ -0,0 +1,2180 @@
+/*-------------------------------------------------------------------------
+ *
+ * mcv.c
+ * POSTGRES multivariate MCV lists
+ *
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * src/backend/statistics/mcv.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include <math.h>
+
+#include "access/htup_details.h"
+#include "catalog/pg_collation.h"
+#include "catalog/pg_statistic_ext.h"
+#include "catalog/pg_statistic_ext_data.h"
+#include "fmgr.h"
+#include "funcapi.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "statistics/extended_stats_internal.h"
+#include "statistics/statistics.h"
+#include "utils/array.h"
+#include "utils/builtins.h"
+#include "utils/bytea.h"
+#include "utils/fmgroids.h"
+#include "utils/fmgrprotos.h"
+#include "utils/lsyscache.h"
+#include "utils/selfuncs.h"
+#include "utils/syscache.h"
+#include "utils/typcache.h"
+
+/*
+ * Computes size of a serialized MCV item, depending on the number of
+ * dimensions (columns) the statistic is defined on. The datum values are
+ * stored in a separate array (deduplicated, to minimize the size), and
+ * so the serialized items only store uint16 indexes into that array.
+ *
+ * Each serialized item stores (in this order):
+ *
+ * - indexes to values (ndim * sizeof(uint16))
+ * - null flags (ndim * sizeof(bool))
+ * - frequency (sizeof(double))
+ * - base_frequency (sizeof(double))
+ *
+ * There is no alignment padding within an MCV item.
+ * So in total each MCV item requires this many bytes:
+ *
+ * ndim * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double)
+ */
+#define ITEM_SIZE(ndims) \
+ ((ndims) * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double))
+
+/*
+ * Used to compute size of serialized MCV list representation.
+ */
+#define MinSizeOfMCVList \
+ (VARHDRSZ + sizeof(uint32) * 3 + sizeof(AttrNumber))
+
+/*
+ * Size of the serialized MCV list, excluding the space needed for
+ * deduplicated per-dimension values. The macro is meant to be used
+ * when it's not yet safe to access the serialized info about amount
+ * of data for each column.
+ */
+#define SizeOfMCVList(ndims,nitems) \
+ ((MinSizeOfMCVList + sizeof(Oid) * (ndims)) + \
+ ((ndims) * sizeof(DimensionInfo)) + \
+ ((nitems) * ITEM_SIZE(ndims)))
+
+static MultiSortSupport build_mss(StatsBuildData *data);
+
+static SortItem *build_distinct_groups(int numrows, SortItem *items,
+ MultiSortSupport mss, int *ndistinct);
+
+static SortItem **build_column_frequencies(SortItem *groups, int ngroups,
+ MultiSortSupport mss, int *ncounts);
+
+static int count_distinct_groups(int numrows, SortItem *items,
+ MultiSortSupport mss);
+
+/*
+ * Compute new value for bitmap item, considering whether it's used for
+ * clauses connected by AND/OR.
+ */
+#define RESULT_MERGE(value, is_or, match) \
+ ((is_or) ? ((value) || (match)) : ((value) && (match)))
+
+/*
+ * When processing a list of clauses, the bitmap item may get set to a value
+ * such that additional clauses can't change it. For example, when processing
+ * a list of clauses connected to AND, as soon as the item gets set to 'false'
+ * then it'll remain like that. Similarly clauses connected by OR and 'true'.
+ *
+ * Returns true when the value in the bitmap can't change no matter how the
+ * remaining clauses are evaluated.
+ */
+#define RESULT_IS_FINAL(value, is_or) ((is_or) ? (value) : (!(value)))
+
+/*
+ * get_mincount_for_mcv_list
+ * Determine the minimum number of times a value needs to appear in
+ * the sample for it to be included in the MCV list.
+ *
+ * We want to keep only values that appear sufficiently often in the
+ * sample that it is reasonable to extrapolate their sample frequencies to
+ * the entire table. We do this by placing an upper bound on the relative
+ * standard error of the sample frequency, so that any estimates the
+ * planner generates from the MCV statistics can be expected to be
+ * reasonably accurate.
+ *
+ * Since we are sampling without replacement, the sample frequency of a
+ * particular value is described by a hypergeometric distribution. A
+ * common rule of thumb when estimating errors in this situation is to
+ * require at least 10 instances of the value in the sample, in which case
+ * the distribution can be approximated by a normal distribution, and
+ * standard error analysis techniques can be applied. Given a sample size
+ * of n, a population size of N, and a sample frequency of p=cnt/n, the
+ * standard error of the proportion p is given by
+ * SE = sqrt(p*(1-p)/n) * sqrt((N-n)/(N-1))
+ * where the second term is the finite population correction. To get
+ * reasonably accurate planner estimates, we impose an upper bound on the
+ * relative standard error of 20% -- i.e., SE/p < 0.2. This 20% relative
+ * error bound is fairly arbitrary, but has been found empirically to work
+ * well. Rearranging this formula gives a lower bound on the number of
+ * instances of the value seen:
+ * cnt > n*(N-n) / (N-n+0.04*n*(N-1))
+ * This bound is at most 25, and approaches 0 as n approaches 0 or N. The
+ * case where n approaches 0 cannot happen in practice, since the sample
+ * size is at least 300. The case where n approaches N corresponds to
+ * sampling the whole the table, in which case it is reasonable to keep
+ * the whole MCV list (have no lower bound), so it makes sense to apply
+ * this formula for all inputs, even though the above derivation is
+ * technically only valid when the right hand side is at least around 10.
+ *
+ * An alternative way to look at this formula is as follows -- assume that
+ * the number of instances of the value seen scales up to the entire
+ * table, so that the population count is K=N*cnt/n. Then the distribution
+ * in the sample is a hypergeometric distribution parameterised by N, n
+ * and K, and the bound above is mathematically equivalent to demanding
+ * that the standard deviation of that distribution is less than 20% of
+ * its mean. Thus the relative errors in any planner estimates produced
+ * from the MCV statistics are likely to be not too large.
+ */
+static double
+get_mincount_for_mcv_list(int samplerows, double totalrows)
+{
+ double n = samplerows;
+ double N = totalrows;
+ double numer,
+ denom;
+
+ numer = n * (N - n);
+ denom = N - n + 0.04 * n * (N - 1);
+
+ /* Guard against division by zero (possible if n = N = 1) */
+ if (denom == 0.0)
+ return 0.0;
+
+ return numer / denom;
+}
+
+/*
+ * Builds MCV list from the set of sampled rows.
+ *
+ * The algorithm is quite simple:
+ *
+ * (1) sort the data (default collation, '<' for the data type)
+ *
+ * (2) count distinct groups, decide how many to keep
+ *
+ * (3) build the MCV list using the threshold determined in (2)
+ *
+ * (4) remove rows represented by the MCV from the sample
+ *
+ */
+MCVList *
+statext_mcv_build(StatsBuildData *data, double totalrows, int stattarget)
+{
+ int i,
+ numattrs,
+ numrows,
+ ngroups,
+ nitems;
+ double mincount;
+ SortItem *items;
+ SortItem *groups;
+ MCVList *mcvlist = NULL;
+ MultiSortSupport mss;
+
+ /* comparator for all the columns */
+ mss = build_mss(data);
+
+ /* sort the rows */
+ items = build_sorted_items(data, &nitems, mss,
+ data->nattnums, data->attnums);
+
+ if (!items)
+ return NULL;
+
+ /* for convenience */
+ numattrs = data->nattnums;
+ numrows = data->numrows;
+
+ /* transform the sorted rows into groups (sorted by frequency) */
+ groups = build_distinct_groups(nitems, items, mss, &ngroups);
+
+ /*
+ * The maximum number of MCV items to store, based on the statistics
+ * target we computed for the statistics object (from the target set for
+ * the object itself, attributes and the system default). In any case, we
+ * can't keep more groups than we have available.
+ */
+ nitems = stattarget;
+ if (nitems > ngroups)
+ nitems = ngroups;
+
+ /*
+ * Decide how many items to keep in the MCV list. We can't use the same
+ * algorithm as per-column MCV lists, because that only considers the
+ * actual group frequency - but we're primarily interested in how the
+ * actual frequency differs from the base frequency (product of simple
+ * per-column frequencies, as if the columns were independent).
+ *
+ * Using the same algorithm might exclude items that are close to the
+ * "average" frequency of the sample. But that does not say whether the
+ * observed frequency is close to the base frequency or not. We also need
+ * to consider unexpectedly uncommon items (again, compared to the base
+ * frequency), and the single-column algorithm does not have to.
+ *
+ * We simply decide how many items to keep by computing the minimum count
+ * using get_mincount_for_mcv_list() and then keep all items that seem to
+ * be more common than that.
+ */
+ mincount = get_mincount_for_mcv_list(numrows, totalrows);
+
+ /*
+ * Walk the groups until we find the first group with a count below the
+ * mincount threshold (the index of that group is the number of groups we
+ * want to keep).
+ */
+ for (i = 0; i < nitems; i++)
+ {
+ if (groups[i].count < mincount)
+ {
+ nitems = i;
+ break;
+ }
+ }
+
+ /*
+ * At this point, we know the number of items for the MCV list. There
+ * might be none (for uniform distribution with many groups), and in that
+ * case, there will be no MCV list. Otherwise, construct the MCV list.
+ */
+ if (nitems > 0)
+ {
+ int j;
+ SortItem key;
+ MultiSortSupport tmp;
+
+ /* frequencies for values in each attribute */
+ SortItem **freqs;
+ int *nfreqs;
+
+ /* used to search values */
+ tmp = (MultiSortSupport) palloc(offsetof(MultiSortSupportData, ssup)
+ + sizeof(SortSupportData));
+
+ /* compute frequencies for values in each column */
+ nfreqs = (int *) palloc0(sizeof(int) * numattrs);
+ freqs = build_column_frequencies(groups, ngroups, mss, nfreqs);
+
+ /*
+ * Allocate the MCV list structure, set the global parameters.
+ */
+ mcvlist = (MCVList *) palloc0(offsetof(MCVList, items) +
+ sizeof(MCVItem) * nitems);
+
+ mcvlist->magic = STATS_MCV_MAGIC;
+ mcvlist->type = STATS_MCV_TYPE_BASIC;
+ mcvlist->ndimensions = numattrs;
+ mcvlist->nitems = nitems;
+
+ /* store info about data type OIDs */
+ for (i = 0; i < numattrs; i++)
+ mcvlist->types[i] = data->stats[i]->attrtypid;
+
+ /* Copy the first chunk of groups into the result. */
+ for (i = 0; i < nitems; i++)
+ {
+ /* just pointer to the proper place in the list */
+ MCVItem *item = &mcvlist->items[i];
+
+ item->values = (Datum *) palloc(sizeof(Datum) * numattrs);
+ item->isnull = (bool *) palloc(sizeof(bool) * numattrs);
+
+ /* copy values for the group */
+ memcpy(item->values, groups[i].values, sizeof(Datum) * numattrs);
+ memcpy(item->isnull, groups[i].isnull, sizeof(bool) * numattrs);
+
+ /* groups should be sorted by frequency in descending order */
+ Assert((i == 0) || (groups[i - 1].count >= groups[i].count));
+
+ /* group frequency */
+ item->frequency = (double) groups[i].count / numrows;
+
+ /* base frequency, if the attributes were independent */
+ item->base_frequency = 1.0;
+ for (j = 0; j < numattrs; j++)
+ {
+ SortItem *freq;
+
+ /* single dimension */
+ tmp->ndims = 1;
+ tmp->ssup[0] = mss->ssup[j];
+
+ /* fill search key */
+ key.values = &groups[i].values[j];
+ key.isnull = &groups[i].isnull[j];
+
+ freq = (SortItem *) bsearch_arg(&key, freqs[j], nfreqs[j],
+ sizeof(SortItem),
+ multi_sort_compare, tmp);
+
+ item->base_frequency *= ((double) freq->count) / numrows;
+ }
+ }
+
+ pfree(nfreqs);
+ pfree(freqs);
+ }
+
+ pfree(items);
+ pfree(groups);
+
+ return mcvlist;
+}
+
+/*
+ * build_mss
+ * Build a MultiSortSupport for the given StatsBuildData.
+ */
+static MultiSortSupport
+build_mss(StatsBuildData *data)
+{
+ int i;
+ int numattrs = data->nattnums;
+
+ /* Sort by multiple columns (using array of SortSupport) */
+ MultiSortSupport mss = multi_sort_init(numattrs);
+
+ /* prepare the sort functions for all the attributes */
+ for (i = 0; i < numattrs; i++)
+ {
+ VacAttrStats *colstat = data->stats[i];
+ TypeCacheEntry *type;
+
+ type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
+ if (type->lt_opr == InvalidOid) /* shouldn't happen */
+ elog(ERROR, "cache lookup failed for ordering operator for type %u",
+ colstat->attrtypid);
+
+ multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid);
+ }
+
+ return mss;
+}
+
+/*
+ * count_distinct_groups
+ * Count distinct combinations of SortItems in the array.
+ *
+ * The array is assumed to be sorted according to the MultiSortSupport.
+ */
+static int
+count_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss)
+{
+ int i;
+ int ndistinct;
+
+ ndistinct = 1;
+ for (i = 1; i < numrows; i++)
+ {
+ /* make sure the array really is sorted */
+ Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
+
+ if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
+ ndistinct += 1;
+ }
+
+ return ndistinct;
+}
+
+/*
+ * compare_sort_item_count
+ * Comparator for sorting items by count (frequencies) in descending
+ * order.
+ */
+static int
+compare_sort_item_count(const void *a, const void *b, void *arg)
+{
+ SortItem *ia = (SortItem *) a;
+ SortItem *ib = (SortItem *) b;
+
+ if (ia->count == ib->count)
+ return 0;
+ else if (ia->count > ib->count)
+ return -1;
+
+ return 1;
+}
+
+/*
+ * build_distinct_groups
+ * Build an array of SortItems for distinct groups and counts matching
+ * items.
+ *
+ * The 'items' array is assumed to be sorted.
+ */
+static SortItem *
+build_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss,
+ int *ndistinct)
+{
+ int i,
+ j;
+ int ngroups = count_distinct_groups(numrows, items, mss);
+
+ SortItem *groups = (SortItem *) palloc(ngroups * sizeof(SortItem));
+
+ j = 0;
+ groups[0] = items[0];
+ groups[0].count = 1;
+
+ for (i = 1; i < numrows; i++)
+ {
+ /* Assume sorted in ascending order. */
+ Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
+
+ /* New distinct group detected. */
+ if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
+ {
+ groups[++j] = items[i];
+ groups[j].count = 0;
+ }
+
+ groups[j].count++;
+ }
+
+ /* ensure we filled the expected number of distinct groups */
+ Assert(j + 1 == ngroups);
+
+ /* Sort the distinct groups by frequency (in descending order). */
+ qsort_interruptible((void *) groups, ngroups, sizeof(SortItem),
+ compare_sort_item_count, NULL);
+
+ *ndistinct = ngroups;
+ return groups;
+}
+
+/* compare sort items (single dimension) */
+static int
+sort_item_compare(const void *a, const void *b, void *arg)
+{
+ SortSupport ssup = (SortSupport) arg;
+ SortItem *ia = (SortItem *) a;
+ SortItem *ib = (SortItem *) b;
+
+ return ApplySortComparator(ia->values[0], ia->isnull[0],
+ ib->values[0], ib->isnull[0],
+ ssup);
+}
+
+/*
+ * build_column_frequencies
+ * Compute frequencies of values in each column.
+ *
+ * This returns an array of SortItems for each attribute the MCV is built
+ * on, with a frequency (number of occurrences) for each value. This is
+ * then used to compute "base" frequency of MCV items.
+ *
+ * All the memory is allocated in a single chunk, so that a single pfree
+ * is enough to release it. We do not allocate space for values/isnull
+ * arrays in the SortItems, because we can simply point into the input
+ * groups directly.
+ */
+static SortItem **
+build_column_frequencies(SortItem *groups, int ngroups,
+ MultiSortSupport mss, int *ncounts)
+{
+ int i,
+ dim;
+ SortItem **result;
+ char *ptr;
+
+ Assert(groups);
+ Assert(ncounts);
+
+ /* allocate arrays for all columns as a single chunk */
+ ptr = palloc(MAXALIGN(sizeof(SortItem *) * mss->ndims) +
+ mss->ndims * MAXALIGN(sizeof(SortItem) * ngroups));
+
+ /* initial array of pointers */
+ result = (SortItem **) ptr;
+ ptr += MAXALIGN(sizeof(SortItem *) * mss->ndims);
+
+ for (dim = 0; dim < mss->ndims; dim++)
+ {
+ SortSupport ssup = &mss->ssup[dim];
+
+ /* array of values for a single column */
+ result[dim] = (SortItem *) ptr;
+ ptr += MAXALIGN(sizeof(SortItem) * ngroups);
+
+ /* extract data for the dimension */
+ for (i = 0; i < ngroups; i++)
+ {
+ /* point into the input groups */
+ result[dim][i].values = &groups[i].values[dim];
+ result[dim][i].isnull = &groups[i].isnull[dim];
+ result[dim][i].count = groups[i].count;
+ }
+
+ /* sort the values, deduplicate */
+ qsort_interruptible((void *) result[dim], ngroups, sizeof(SortItem),
+ sort_item_compare, ssup);
+
+ /*
+ * Identify distinct values, compute frequency (there might be
+ * multiple MCV items containing this value, so we need to sum counts
+ * from all of them.
+ */
+ ncounts[dim] = 1;
+ for (i = 1; i < ngroups; i++)
+ {
+ if (sort_item_compare(&result[dim][i - 1], &result[dim][i], ssup) == 0)
+ {
+ result[dim][ncounts[dim] - 1].count += result[dim][i].count;
+ continue;
+ }
+
+ result[dim][ncounts[dim]] = result[dim][i];
+
+ ncounts[dim]++;
+ }
+ }
+
+ return result;
+}
+
+/*
+ * statext_mcv_load
+ * Load the MCV list for the indicated pg_statistic_ext tuple.
+ */
+MCVList *
+statext_mcv_load(Oid mvoid)
+{
+ MCVList *result;
+ bool isnull;
+ Datum mcvlist;
+ HeapTuple htup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(mvoid));
+
+ if (!HeapTupleIsValid(htup))
+ elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
+
+ mcvlist = SysCacheGetAttr(STATEXTDATASTXOID, htup,
+ Anum_pg_statistic_ext_data_stxdmcv, &isnull);
+
+ if (isnull)
+ elog(ERROR,
+ "requested statistics kind \"%c\" is not yet built for statistics object %u",
+ STATS_EXT_DEPENDENCIES, mvoid);
+
+ result = statext_mcv_deserialize(DatumGetByteaP(mcvlist));
+
+ ReleaseSysCache(htup);
+
+ return result;
+}
+
+
+/*
+ * statext_mcv_serialize
+ * Serialize MCV list into a pg_mcv_list value.
+ *
+ * The MCV items may include values of various data types, and it's reasonable
+ * to expect redundancy (values for a given attribute, repeated for multiple
+ * MCV list items). So we deduplicate the values into arrays, and then replace
+ * the values by indexes into those arrays.
+ *
+ * The overall structure of the serialized representation looks like this:
+ *
+ * +---------------+----------------+---------------------+-------+
+ * | header fields | dimension info | deduplicated values | items |
+ * +---------------+----------------+---------------------+-------+
+ *
+ * Where dimension info stores information about the type of the K-th
+ * attribute (e.g. typlen, typbyval and length of deduplicated values).
+ * Deduplicated values store deduplicated values for each attribute. And
+ * items store the actual MCV list items, with values replaced by indexes into
+ * the arrays.
+ *
+ * When serializing the items, we use uint16 indexes. The number of MCV items
+ * is limited by the statistics target (which is capped to 10k at the moment).
+ * We might increase this to 65k and still fit into uint16, so there's a bit of
+ * slack. Furthermore, this limit is on the number of distinct values per column,
+ * and we usually have few of those (and various combinations of them for the
+ * those MCV list). So uint16 seems fine for now.
+ *
+ * We don't really expect the serialization to save as much space as for
+ * histograms, as we are not doing any bucket splits (which is the source
+ * of high redundancy in histograms).
+ *
+ * TODO: Consider packing boolean flags (NULL) for each item into a single char
+ * (or a longer type) instead of using an array of bool items.
+ */
+bytea *
+statext_mcv_serialize(MCVList *mcvlist, VacAttrStats **stats)
+{
+ int i;
+ int dim;
+ int ndims = mcvlist->ndimensions;
+
+ SortSupport ssup;
+ DimensionInfo *info;
+
+ Size total_length;
+
+ /* serialized items (indexes into arrays, etc.) */
+ bytea *raw;
+ char *ptr;
+ char *endptr PG_USED_FOR_ASSERTS_ONLY;
+
+ /* values per dimension (and number of non-NULL values) */
+ Datum **values = (Datum **) palloc0(sizeof(Datum *) * ndims);
+ int *counts = (int *) palloc0(sizeof(int) * ndims);
+
+ /*
+ * We'll include some rudimentary information about the attribute types
+ * (length, by-val flag), so that we don't have to look them up while
+ * deserializing the MCV list (we already have the type OID in the
+ * header). This is safe because when changing the type of the attribute
+ * the statistics gets dropped automatically. We need to store the info
+ * about the arrays of deduplicated values anyway.
+ */
+ info = (DimensionInfo *) palloc0(sizeof(DimensionInfo) * ndims);
+
+ /* sort support data for all attributes included in the MCV list */
+ ssup = (SortSupport) palloc0(sizeof(SortSupportData) * ndims);
+
+ /* collect and deduplicate values for each dimension (attribute) */
+ for (dim = 0; dim < ndims; dim++)
+ {
+ int ndistinct;
+ TypeCacheEntry *typentry;
+
+ /*
+ * Lookup the LT operator (can't get it from stats extra_data, as we
+ * don't know how to interpret that - scalar vs. array etc.).
+ */
+ typentry = lookup_type_cache(stats[dim]->attrtypid, TYPECACHE_LT_OPR);
+
+ /* copy important info about the data type (length, by-value) */
+ info[dim].typlen = stats[dim]->attrtype->typlen;
+ info[dim].typbyval = stats[dim]->attrtype->typbyval;
+
+ /* allocate space for values in the attribute and collect them */
+ values[dim] = (Datum *) palloc0(sizeof(Datum) * mcvlist->nitems);
+
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ /* skip NULL values - we don't need to deduplicate those */
+ if (mcvlist->items[i].isnull[dim])
+ continue;
+
+ /* append the value at the end */
+ values[dim][counts[dim]] = mcvlist->items[i].values[dim];
+ counts[dim] += 1;
+ }
+
+ /* if there are just NULL values in this dimension, we're done */
+ if (counts[dim] == 0)
+ continue;
+
+ /* sort and deduplicate the data */
+ ssup[dim].ssup_cxt = CurrentMemoryContext;
+ ssup[dim].ssup_collation = stats[dim]->attrcollid;
+ ssup[dim].ssup_nulls_first = false;
+
+ PrepareSortSupportFromOrderingOp(typentry->lt_opr, &ssup[dim]);
+
+ qsort_interruptible(values[dim], counts[dim], sizeof(Datum),
+ compare_scalars_simple, &ssup[dim]);
+
+ /*
+ * Walk through the array and eliminate duplicate values, but keep the
+ * ordering (so that we can do a binary search later). We know there's
+ * at least one item as (counts[dim] != 0), so we can skip the first
+ * element.
+ */
+ ndistinct = 1; /* number of distinct values */
+ for (i = 1; i < counts[dim]; i++)
+ {
+ /* expect sorted array */
+ Assert(compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]) <= 0);
+
+ /* if the value is the same as the previous one, we can skip it */
+ if (!compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]))
+ continue;
+
+ values[dim][ndistinct] = values[dim][i];
+ ndistinct += 1;
+ }
+
+ /* we must not exceed PG_UINT16_MAX, as we use uint16 indexes */
+ Assert(ndistinct <= PG_UINT16_MAX);
+
+ /*
+ * Store additional info about the attribute - number of deduplicated
+ * values, and also size of the serialized data. For fixed-length data
+ * types this is trivial to compute, for varwidth types we need to
+ * actually walk the array and sum the sizes.
+ */
+ info[dim].nvalues = ndistinct;
+
+ if (info[dim].typbyval) /* by-value data types */
+ {
+ info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
+
+ /*
+ * We copy the data into the MCV item during deserialization, so
+ * we don't need to allocate any extra space.
+ */
+ info[dim].nbytes_aligned = 0;
+ }
+ else if (info[dim].typlen > 0) /* fixed-length by-ref */
+ {
+ /*
+ * We don't care about alignment in the serialized data, so we
+ * pack the data as much as possible. But we also track how much
+ * data will be needed after deserialization, and in that case we
+ * need to account for alignment of each item.
+ *
+ * Note: As the items are fixed-length, we could easily compute
+ * this during deserialization, but we do it here anyway.
+ */
+ info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
+ info[dim].nbytes_aligned = info[dim].nvalues * MAXALIGN(info[dim].typlen);
+ }
+ else if (info[dim].typlen == -1) /* varlena */
+ {
+ info[dim].nbytes = 0;
+ info[dim].nbytes_aligned = 0;
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ Size len;
+
+ /*
+ * For varlena values, we detoast the values and store the
+ * length and data separately. We don't bother with alignment
+ * here, which means that during deserialization we need to
+ * copy the fields and only access the copies.
+ */
+ values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i]));
+
+ /* serialized length (uint32 length + data) */
+ len = VARSIZE_ANY_EXHDR(values[dim][i]);
+ info[dim].nbytes += sizeof(uint32); /* length */
+ info[dim].nbytes += len; /* value (no header) */
+
+ /*
+ * During deserialization we'll build regular varlena values
+ * with full headers, and we need to align them properly.
+ */
+ info[dim].nbytes_aligned += MAXALIGN(VARHDRSZ + len);
+ }
+ }
+ else if (info[dim].typlen == -2) /* cstring */
+ {
+ info[dim].nbytes = 0;
+ info[dim].nbytes_aligned = 0;
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ Size len;
+
+ /*
+ * cstring is handled similar to varlena - first we store the
+ * length as uint32 and then the data. We don't care about
+ * alignment, which means that during deserialization we need
+ * to copy the fields and only access the copies.
+ */
+
+ /* c-strings include terminator, so +1 byte */
+ len = strlen(DatumGetCString(values[dim][i])) + 1;
+ info[dim].nbytes += sizeof(uint32); /* length */
+ info[dim].nbytes += len; /* value */
+
+ /* space needed for properly aligned deserialized copies */
+ info[dim].nbytes_aligned += MAXALIGN(len);
+ }
+ }
+
+ /* we know (count>0) so there must be some data */
+ Assert(info[dim].nbytes > 0);
+ }
+
+ /*
+ * Now we can finally compute how much space we'll actually need for the
+ * whole serialized MCV list (varlena header, MCV header, dimension info
+ * for each attribute, deduplicated values and items).
+ */
+ total_length = (3 * sizeof(uint32)) /* magic + type + nitems */
+ + sizeof(AttrNumber) /* ndimensions */
+ + (ndims * sizeof(Oid)); /* attribute types */
+
+ /* dimension info */
+ total_length += ndims * sizeof(DimensionInfo);
+
+ /* add space for the arrays of deduplicated values */
+ for (i = 0; i < ndims; i++)
+ total_length += info[i].nbytes;
+
+ /*
+ * And finally account for the items (those are fixed-length, thanks to
+ * replacing values with uint16 indexes into the deduplicated arrays).
+ */
+ total_length += mcvlist->nitems * ITEM_SIZE(dim);
+
+ /*
+ * Allocate space for the whole serialized MCV list (we'll skip bytes, so
+ * we set them to zero to make the result more compressible).
+ */
+ raw = (bytea *) palloc0(VARHDRSZ + total_length);
+ SET_VARSIZE(raw, VARHDRSZ + total_length);
+
+ ptr = VARDATA(raw);
+ endptr = ptr + total_length;
+
+ /* copy the MCV list header fields, one by one */
+ memcpy(ptr, &mcvlist->magic, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ memcpy(ptr, &mcvlist->type, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ memcpy(ptr, &mcvlist->nitems, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ memcpy(ptr, &mcvlist->ndimensions, sizeof(AttrNumber));
+ ptr += sizeof(AttrNumber);
+
+ memcpy(ptr, mcvlist->types, sizeof(Oid) * ndims);
+ ptr += (sizeof(Oid) * ndims);
+
+ /* store information about the attributes (data amounts, ...) */
+ memcpy(ptr, info, sizeof(DimensionInfo) * ndims);
+ ptr += sizeof(DimensionInfo) * ndims;
+
+ /* Copy the deduplicated values for all attributes to the output. */
+ for (dim = 0; dim < ndims; dim++)
+ {
+ /* remember the starting point for Asserts later */
+ char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
+
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ Datum value = values[dim][i];
+
+ if (info[dim].typbyval) /* passed by value */
+ {
+ Datum tmp;
+
+ /*
+ * For byval types, we need to copy just the significant bytes
+ * - we can't use memcpy directly, as that assumes
+ * little-endian behavior. store_att_byval does almost what
+ * we need, but it requires a properly aligned buffer - the
+ * output buffer does not guarantee that. So we simply use a
+ * local Datum variable (which guarantees proper alignment),
+ * and then copy the value from it.
+ */
+ store_att_byval(&tmp, value, info[dim].typlen);
+
+ memcpy(ptr, &tmp, info[dim].typlen);
+ ptr += info[dim].typlen;
+ }
+ else if (info[dim].typlen > 0) /* passed by reference */
+ {
+ /* no special alignment needed, treated as char array */
+ memcpy(ptr, DatumGetPointer(value), info[dim].typlen);
+ ptr += info[dim].typlen;
+ }
+ else if (info[dim].typlen == -1) /* varlena */
+ {
+ uint32 len = VARSIZE_ANY_EXHDR(DatumGetPointer(value));
+
+ /* copy the length */
+ memcpy(ptr, &len, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ /* data from the varlena value (without the header) */
+ memcpy(ptr, VARDATA_ANY(DatumGetPointer(value)), len);
+ ptr += len;
+ }
+ else if (info[dim].typlen == -2) /* cstring */
+ {
+ uint32 len = (uint32) strlen(DatumGetCString(value)) + 1;
+
+ /* copy the length */
+ memcpy(ptr, &len, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ /* value */
+ memcpy(ptr, DatumGetCString(value), len);
+ ptr += len;
+ }
+
+ /* no underflows or overflows */
+ Assert((ptr > start) && ((ptr - start) <= info[dim].nbytes));
+ }
+
+ /* we should get exactly nbytes of data for this dimension */
+ Assert((ptr - start) == info[dim].nbytes);
+ }
+
+ /* Serialize the items, with uint16 indexes instead of the values. */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ MCVItem *mcvitem = &mcvlist->items[i];
+
+ /* don't write beyond the allocated space */
+ Assert(ptr <= (endptr - ITEM_SIZE(dim)));
+
+ /* copy NULL and frequency flags into the serialized MCV */
+ memcpy(ptr, mcvitem->isnull, sizeof(bool) * ndims);
+ ptr += sizeof(bool) * ndims;
+
+ memcpy(ptr, &mcvitem->frequency, sizeof(double));
+ ptr += sizeof(double);
+
+ memcpy(ptr, &mcvitem->base_frequency, sizeof(double));
+ ptr += sizeof(double);
+
+ /* store the indexes last */
+ for (dim = 0; dim < ndims; dim++)
+ {
+ uint16 index = 0;
+ Datum *value;
+
+ /* do the lookup only for non-NULL values */
+ if (!mcvitem->isnull[dim])
+ {
+ value = (Datum *) bsearch_arg(&mcvitem->values[dim], values[dim],
+ info[dim].nvalues, sizeof(Datum),
+ compare_scalars_simple, &ssup[dim]);
+
+ Assert(value != NULL); /* serialization or deduplication
+ * error */
+
+ /* compute index within the deduplicated array */
+ index = (uint16) (value - values[dim]);
+
+ /* check the index is within expected bounds */
+ Assert(index < info[dim].nvalues);
+ }
+
+ /* copy the index into the serialized MCV */
+ memcpy(ptr, &index, sizeof(uint16));
+ ptr += sizeof(uint16);
+ }
+
+ /* make sure we don't overflow the allocated value */
+ Assert(ptr <= endptr);
+ }
+
+ /* at this point we expect to match the total_length exactly */
+ Assert(ptr == endptr);
+
+ pfree(values);
+ pfree(counts);
+
+ return raw;
+}
+
+/*
+ * statext_mcv_deserialize
+ * Reads serialized MCV list into MCVList structure.
+ *
+ * All the memory needed by the MCV list is allocated as a single chunk, so
+ * it's possible to simply pfree() it at once.
+ */
+MCVList *
+statext_mcv_deserialize(bytea *data)
+{
+ int dim,
+ i;
+ Size expected_size;
+ MCVList *mcvlist;
+ char *raw;
+ char *ptr;
+ char *endptr PG_USED_FOR_ASSERTS_ONLY;
+
+ int ndims,
+ nitems;
+ DimensionInfo *info = NULL;
+
+ /* local allocation buffer (used only for deserialization) */
+ Datum **map = NULL;
+
+ /* MCV list */
+ Size mcvlen;
+
+ /* buffer used for the result */
+ Size datalen;
+ char *dataptr;
+ char *valuesptr;
+ char *isnullptr;
+
+ if (data == NULL)
+ return NULL;
+
+ /*
+ * We can't possibly deserialize a MCV list if there's not even a complete
+ * header. We need an explicit formula here, because we serialize the
+ * header fields one by one, so we need to ignore struct alignment.
+ */
+ if (VARSIZE_ANY(data) < MinSizeOfMCVList)
+ elog(ERROR, "invalid MCV size %zd (expected at least %zu)",
+ VARSIZE_ANY(data), MinSizeOfMCVList);
+
+ /* read the MCV list header */
+ mcvlist = (MCVList *) palloc0(offsetof(MCVList, items));
+
+ /* pointer to the data part (skip the varlena header) */
+ raw = (char *) data;
+ ptr = VARDATA_ANY(raw);
+ endptr = (char *) raw + VARSIZE_ANY(data);
+
+ /* get the header and perform further sanity checks */
+ memcpy(&mcvlist->magic, ptr, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ memcpy(&mcvlist->type, ptr, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ memcpy(&mcvlist->nitems, ptr, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ memcpy(&mcvlist->ndimensions, ptr, sizeof(AttrNumber));
+ ptr += sizeof(AttrNumber);
+
+ if (mcvlist->magic != STATS_MCV_MAGIC)
+ elog(ERROR, "invalid MCV magic %u (expected %u)",
+ mcvlist->magic, STATS_MCV_MAGIC);
+
+ if (mcvlist->type != STATS_MCV_TYPE_BASIC)
+ elog(ERROR, "invalid MCV type %u (expected %u)",
+ mcvlist->type, STATS_MCV_TYPE_BASIC);
+
+ if (mcvlist->ndimensions == 0)
+ elog(ERROR, "invalid zero-length dimension array in MCVList");
+ else if ((mcvlist->ndimensions > STATS_MAX_DIMENSIONS) ||
+ (mcvlist->ndimensions < 0))
+ elog(ERROR, "invalid length (%d) dimension array in MCVList",
+ mcvlist->ndimensions);
+
+ if (mcvlist->nitems == 0)
+ elog(ERROR, "invalid zero-length item array in MCVList");
+ else if (mcvlist->nitems > STATS_MCVLIST_MAX_ITEMS)
+ elog(ERROR, "invalid length (%u) item array in MCVList",
+ mcvlist->nitems);
+
+ nitems = mcvlist->nitems;
+ ndims = mcvlist->ndimensions;
+
+ /*
+ * Check amount of data including DimensionInfo for all dimensions and
+ * also the serialized items (including uint16 indexes). Also, walk
+ * through the dimension information and add it to the sum.
+ */
+ expected_size = SizeOfMCVList(ndims, nitems);
+
+ /*
+ * Check that we have at least the dimension and info records, along with
+ * the items. We don't know the size of the serialized values yet. We need
+ * to do this check first, before accessing the dimension info.
+ */
+ if (VARSIZE_ANY(data) < expected_size)
+ elog(ERROR, "invalid MCV size %zd (expected %zu)",
+ VARSIZE_ANY(data), expected_size);
+
+ /* Now copy the array of type Oids. */
+ memcpy(mcvlist->types, ptr, sizeof(Oid) * ndims);
+ ptr += (sizeof(Oid) * ndims);
+
+ /* Now it's safe to access the dimension info. */
+ info = palloc(ndims * sizeof(DimensionInfo));
+
+ memcpy(info, ptr, ndims * sizeof(DimensionInfo));
+ ptr += (ndims * sizeof(DimensionInfo));
+
+ /* account for the value arrays */
+ for (dim = 0; dim < ndims; dim++)
+ {
+ /*
+ * XXX I wonder if we can/should rely on asserts here. Maybe those
+ * checks should be done every time?
+ */
+ Assert(info[dim].nvalues >= 0);
+ Assert(info[dim].nbytes >= 0);
+
+ expected_size += info[dim].nbytes;
+ }
+
+ /*
+ * Now we know the total expected MCV size, including all the pieces
+ * (header, dimension info. items and deduplicated data). So do the final
+ * check on size.
+ */
+ if (VARSIZE_ANY(data) != expected_size)
+ elog(ERROR, "invalid MCV size %zd (expected %zu)",
+ VARSIZE_ANY(data), expected_size);
+
+ /*
+ * We need an array of Datum values for each dimension, so that we can
+ * easily translate the uint16 indexes later. We also need a top-level
+ * array of pointers to those per-dimension arrays.
+ *
+ * While allocating the arrays for dimensions, compute how much space we
+ * need for a copy of the by-ref data, as we can't simply point to the
+ * original values (it might go away).
+ */
+ datalen = 0; /* space for by-ref data */
+ map = (Datum **) palloc(ndims * sizeof(Datum *));
+
+ for (dim = 0; dim < ndims; dim++)
+ {
+ map[dim] = (Datum *) palloc(sizeof(Datum) * info[dim].nvalues);
+
+ /* space needed for a copy of data for by-ref types */
+ datalen += info[dim].nbytes_aligned;
+ }
+
+ /*
+ * Now resize the MCV list so that the allocation includes all the data.
+ *
+ * Allocate space for a copy of the data, as we can't simply reference the
+ * serialized data - it's not aligned properly, and it may disappear while
+ * we're still using the MCV list, e.g. due to catcache release.
+ *
+ * We do care about alignment here, because we will allocate all the
+ * pieces at once, but then use pointers to different parts.
+ */
+ mcvlen = MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
+
+ /* arrays of values and isnull flags for all MCV items */
+ mcvlen += nitems * MAXALIGN(sizeof(Datum) * ndims);
+ mcvlen += nitems * MAXALIGN(sizeof(bool) * ndims);
+
+ /* we don't quite need to align this, but it makes some asserts easier */
+ mcvlen += MAXALIGN(datalen);
+
+ /* now resize the deserialized MCV list, and compute pointers to parts */
+ mcvlist = repalloc(mcvlist, mcvlen);
+
+ /* pointer to the beginning of values/isnull arrays */
+ valuesptr = (char *) mcvlist
+ + MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
+
+ isnullptr = valuesptr + (nitems * MAXALIGN(sizeof(Datum) * ndims));
+
+ dataptr = isnullptr + (nitems * MAXALIGN(sizeof(bool) * ndims));
+
+ /*
+ * Build mapping (index => value) for translating the serialized data into
+ * the in-memory representation.
+ */
+ for (dim = 0; dim < ndims; dim++)
+ {
+ /* remember start position in the input array */
+ char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
+
+ if (info[dim].typbyval)
+ {
+ /* for by-val types we simply copy data into the mapping */
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ Datum v = 0;
+
+ memcpy(&v, ptr, info[dim].typlen);
+ ptr += info[dim].typlen;
+
+ map[dim][i] = fetch_att(&v, true, info[dim].typlen);
+
+ /* no under/overflow of input array */
+ Assert(ptr <= (start + info[dim].nbytes));
+ }
+ }
+ else
+ {
+ /* for by-ref types we need to also make a copy of the data */
+
+ /* passed by reference, but fixed length (name, tid, ...) */
+ if (info[dim].typlen > 0)
+ {
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ memcpy(dataptr, ptr, info[dim].typlen);
+ ptr += info[dim].typlen;
+
+ /* just point into the array */
+ map[dim][i] = PointerGetDatum(dataptr);
+ dataptr += MAXALIGN(info[dim].typlen);
+ }
+ }
+ else if (info[dim].typlen == -1)
+ {
+ /* varlena */
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ uint32 len;
+
+ /* read the uint32 length */
+ memcpy(&len, ptr, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ /* the length is data-only */
+ SET_VARSIZE(dataptr, len + VARHDRSZ);
+ memcpy(VARDATA(dataptr), ptr, len);
+ ptr += len;
+
+ /* just point into the array */
+ map[dim][i] = PointerGetDatum(dataptr);
+
+ /* skip to place of the next deserialized value */
+ dataptr += MAXALIGN(len + VARHDRSZ);
+ }
+ }
+ else if (info[dim].typlen == -2)
+ {
+ /* cstring */
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ uint32 len;
+
+ memcpy(&len, ptr, sizeof(uint32));
+ ptr += sizeof(uint32);
+
+ memcpy(dataptr, ptr, len);
+ ptr += len;
+
+ /* just point into the array */
+ map[dim][i] = PointerGetDatum(dataptr);
+ dataptr += MAXALIGN(len);
+ }
+ }
+
+ /* no under/overflow of input array */
+ Assert(ptr <= (start + info[dim].nbytes));
+
+ /* no overflow of the output mcv value */
+ Assert(dataptr <= ((char *) mcvlist + mcvlen));
+ }
+
+ /* check we consumed input data for this dimension exactly */
+ Assert(ptr == (start + info[dim].nbytes));
+ }
+
+ /* we should have also filled the MCV list exactly */
+ Assert(dataptr == ((char *) mcvlist + mcvlen));
+
+ /* deserialize the MCV items and translate the indexes to Datums */
+ for (i = 0; i < nitems; i++)
+ {
+ MCVItem *item = &mcvlist->items[i];
+
+ item->values = (Datum *) valuesptr;
+ valuesptr += MAXALIGN(sizeof(Datum) * ndims);
+
+ item->isnull = (bool *) isnullptr;
+ isnullptr += MAXALIGN(sizeof(bool) * ndims);
+
+ memcpy(item->isnull, ptr, sizeof(bool) * ndims);
+ ptr += sizeof(bool) * ndims;
+
+ memcpy(&item->frequency, ptr, sizeof(double));
+ ptr += sizeof(double);
+
+ memcpy(&item->base_frequency, ptr, sizeof(double));
+ ptr += sizeof(double);
+
+ /* finally translate the indexes (for non-NULL only) */
+ for (dim = 0; dim < ndims; dim++)
+ {
+ uint16 index;
+
+ memcpy(&index, ptr, sizeof(uint16));
+ ptr += sizeof(uint16);
+
+ if (item->isnull[dim])
+ continue;
+
+ item->values[dim] = map[dim][index];
+ }
+
+ /* check we're not overflowing the input */
+ Assert(ptr <= endptr);
+ }
+
+ /* check that we processed all the data */
+ Assert(ptr == endptr);
+
+ /* release the buffers used for mapping */
+ for (dim = 0; dim < ndims; dim++)
+ pfree(map[dim]);
+
+ pfree(map);
+
+ return mcvlist;
+}
+
+/*
+ * SRF with details about buckets of a histogram:
+ *
+ * - item ID (0...nitems)
+ * - values (string array)
+ * - nulls only (boolean array)
+ * - frequency (double precision)
+ * - base_frequency (double precision)
+ *
+ * The input is the OID of the statistics, and there are no rows returned if
+ * the statistics contains no histogram.
+ */
+Datum
+pg_stats_ext_mcvlist_items(PG_FUNCTION_ARGS)
+{
+ FuncCallContext *funcctx;
+
+ /* stuff done only on the first call of the function */
+ if (SRF_IS_FIRSTCALL())
+ {
+ MemoryContext oldcontext;
+ MCVList *mcvlist;
+ TupleDesc tupdesc;
+
+ /* create a function context for cross-call persistence */
+ funcctx = SRF_FIRSTCALL_INIT();
+
+ /* switch to memory context appropriate for multiple function calls */
+ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
+
+ mcvlist = statext_mcv_deserialize(PG_GETARG_BYTEA_P(0));
+
+ funcctx->user_fctx = mcvlist;
+
+ /* total number of tuples to be returned */
+ funcctx->max_calls = 0;
+ if (funcctx->user_fctx != NULL)
+ funcctx->max_calls = mcvlist->nitems;
+
+ /* Build a tuple descriptor for our result type */
+ if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("function returning record called in context "
+ "that cannot accept type record")));
+ tupdesc = BlessTupleDesc(tupdesc);
+
+ /*
+ * generate attribute metadata needed later to produce tuples from raw
+ * C strings
+ */
+ funcctx->attinmeta = TupleDescGetAttInMetadata(tupdesc);
+
+ MemoryContextSwitchTo(oldcontext);
+ }
+
+ /* stuff done on every call of the function */
+ funcctx = SRF_PERCALL_SETUP();
+
+ if (funcctx->call_cntr < funcctx->max_calls) /* do when there is more
+ * left to send */
+ {
+ Datum values[5];
+ bool nulls[5];
+ HeapTuple tuple;
+ Datum result;
+ ArrayBuildState *astate_values = NULL;
+ ArrayBuildState *astate_nulls = NULL;
+
+ int i;
+ MCVList *mcvlist;
+ MCVItem *item;
+
+ mcvlist = (MCVList *) funcctx->user_fctx;
+
+ Assert(funcctx->call_cntr < mcvlist->nitems);
+
+ item = &mcvlist->items[funcctx->call_cntr];
+
+ for (i = 0; i < mcvlist->ndimensions; i++)
+ {
+
+ astate_nulls = accumArrayResult(astate_nulls,
+ BoolGetDatum(item->isnull[i]),
+ false,
+ BOOLOID,
+ CurrentMemoryContext);
+
+ if (!item->isnull[i])
+ {
+ bool isvarlena;
+ Oid outfunc;
+ FmgrInfo fmgrinfo;
+ Datum val;
+ text *txt;
+
+ /* lookup output func for the type */
+ getTypeOutputInfo(mcvlist->types[i], &outfunc, &isvarlena);
+ fmgr_info(outfunc, &fmgrinfo);
+
+ val = FunctionCall1(&fmgrinfo, item->values[i]);
+ txt = cstring_to_text(DatumGetPointer(val));
+
+ astate_values = accumArrayResult(astate_values,
+ PointerGetDatum(txt),
+ false,
+ TEXTOID,
+ CurrentMemoryContext);
+ }
+ else
+ astate_values = accumArrayResult(astate_values,
+ (Datum) 0,
+ true,
+ TEXTOID,
+ CurrentMemoryContext);
+ }
+
+ values[0] = Int32GetDatum(funcctx->call_cntr);
+ values[1] = PointerGetDatum(makeArrayResult(astate_values, CurrentMemoryContext));
+ values[2] = PointerGetDatum(makeArrayResult(astate_nulls, CurrentMemoryContext));
+ values[3] = Float8GetDatum(item->frequency);
+ values[4] = Float8GetDatum(item->base_frequency);
+
+ /* no NULLs in the tuple */
+ memset(nulls, 0, sizeof(nulls));
+
+ /* build a tuple */
+ tuple = heap_form_tuple(funcctx->attinmeta->tupdesc, values, nulls);
+
+ /* make the tuple into a datum */
+ result = HeapTupleGetDatum(tuple);
+
+ SRF_RETURN_NEXT(funcctx, result);
+ }
+ else /* do when there is no more left */
+ {
+ SRF_RETURN_DONE(funcctx);
+ }
+}
+
+/*
+ * pg_mcv_list_in - input routine for type pg_mcv_list.
+ *
+ * pg_mcv_list is real enough to be a table column, but it has no operations
+ * of its own, and disallows input too
+ */
+Datum
+pg_mcv_list_in(PG_FUNCTION_ARGS)
+{
+ /*
+ * pg_mcv_list stores the data in binary form and parsing text input is
+ * not needed, so disallow this.
+ */
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("cannot accept a value of type %s", "pg_mcv_list")));
+
+ PG_RETURN_VOID(); /* keep compiler quiet */
+}
+
+
+/*
+ * pg_mcv_list_out - output routine for type pg_mcv_list.
+ *
+ * MCV lists are serialized into a bytea value, so we simply call byteaout()
+ * to serialize the value into text. But it'd be nice to serialize that into
+ * a meaningful representation (e.g. for inspection by people).
+ *
+ * XXX This should probably return something meaningful, similar to what
+ * pg_dependencies_out does. Not sure how to deal with the deduplicated
+ * values, though - do we want to expand that or not?
+ */
+Datum
+pg_mcv_list_out(PG_FUNCTION_ARGS)
+{
+ return byteaout(fcinfo);
+}
+
+/*
+ * pg_mcv_list_recv - binary input routine for type pg_mcv_list.
+ */
+Datum
+pg_mcv_list_recv(PG_FUNCTION_ARGS)
+{
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("cannot accept a value of type %s", "pg_mcv_list")));
+
+ PG_RETURN_VOID(); /* keep compiler quiet */
+}
+
+/*
+ * pg_mcv_list_send - binary output routine for type pg_mcv_list.
+ *
+ * MCV lists are serialized in a bytea value (although the type is named
+ * differently), so let's just send that.
+ */
+Datum
+pg_mcv_list_send(PG_FUNCTION_ARGS)
+{
+ return byteasend(fcinfo);
+}
+
+/*
+ * match the attribute/expression to a dimension of the statistic
+ *
+ * Returns the zero-based index of the matching statistics dimension.
+ * Optionally determines the collation.
+ */
+static int
+mcv_match_expression(Node *expr, Bitmapset *keys, List *exprs, Oid *collid)
+{
+ int idx;
+
+ if (IsA(expr, Var))
+ {
+ /* simple Var, so just lookup using varattno */
+ Var *var = (Var *) expr;
+
+ if (collid)
+ *collid = var->varcollid;
+
+ idx = bms_member_index(keys, var->varattno);
+
+ if (idx < 0)
+ elog(ERROR, "variable not found in statistics object");
+ }
+ else
+ {
+ /* expression - lookup in stats expressions */
+ ListCell *lc;
+
+ if (collid)
+ *collid = exprCollation(expr);
+
+ /* expressions are stored after the simple columns */
+ idx = bms_num_members(keys);
+ foreach(lc, exprs)
+ {
+ Node *stat_expr = (Node *) lfirst(lc);
+
+ if (equal(expr, stat_expr))
+ break;
+
+ idx++;
+ }
+
+ if (lc == NULL)
+ elog(ERROR, "expression not found in statistics object");
+ }
+
+ return idx;
+}
+
+/*
+ * mcv_get_match_bitmap
+ * Evaluate clauses using the MCV list, and update the match bitmap.
+ *
+ * A match bitmap keeps match/mismatch status for each MCV item, and we
+ * update it based on additional clauses. We also use it to skip items
+ * that can't possibly match (e.g. item marked as "mismatch" can't change
+ * to "match" when evaluating AND clause list).
+ *
+ * The function also returns a flag indicating whether there was an
+ * equality condition for all attributes, the minimum frequency in the MCV
+ * list, and a total MCV frequency (sum of frequencies for all items).
+ *
+ * XXX Currently the match bitmap uses a bool for each MCV item, which is
+ * somewhat wasteful as we could do with just a single bit, thus reducing
+ * the size to ~1/8. It would also allow us to combine bitmaps simply using
+ * & and |, which should be faster than min/max. The bitmaps are fairly
+ * small, though (thanks to the cap on the MCV list size).
+ */
+static bool *
+mcv_get_match_bitmap(PlannerInfo *root, List *clauses,
+ Bitmapset *keys, List *exprs,
+ MCVList *mcvlist, bool is_or)
+{
+ int i;
+ ListCell *l;
+ bool *matches;
+
+ /* The bitmap may be partially built. */
+ Assert(clauses != NIL);
+ Assert(list_length(clauses) >= 1);
+ Assert(mcvlist != NULL);
+ Assert(mcvlist->nitems > 0);
+ Assert(mcvlist->nitems <= STATS_MCVLIST_MAX_ITEMS);
+
+ matches = palloc(sizeof(bool) * mcvlist->nitems);
+ memset(matches, (is_or) ? false : true,
+ sizeof(bool) * mcvlist->nitems);
+
+ /*
+ * Loop through the list of clauses, and for each of them evaluate all the
+ * MCV items not yet eliminated by the preceding clauses.
+ */
+ foreach(l, clauses)
+ {
+ Node *clause = (Node *) lfirst(l);
+
+ /* if it's a RestrictInfo, then extract the clause */
+ if (IsA(clause, RestrictInfo))
+ clause = (Node *) ((RestrictInfo *) clause)->clause;
+
+ /*
+ * Handle the various types of clauses - OpClause, NullTest and
+ * AND/OR/NOT
+ */
+ if (is_opclause(clause))
+ {
+ OpExpr *expr = (OpExpr *) clause;
+ FmgrInfo opproc;
+
+ /* valid only after examine_opclause_args returns true */
+ Node *clause_expr;
+ Const *cst;
+ bool expronleft;
+ int idx;
+ Oid collid;
+
+ fmgr_info(get_opcode(expr->opno), &opproc);
+
+ /* extract the var/expr and const from the expression */
+ if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
+ elog(ERROR, "incompatible clause");
+
+ /* match the attribute/expression to a dimension of the statistic */
+ idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
+
+ /*
+ * Walk through the MCV items and evaluate the current clause. We
+ * can skip items that were already ruled out, and terminate if
+ * there are no remaining MCV items that might possibly match.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ bool match = true;
+ MCVItem *item = &mcvlist->items[i];
+
+ Assert(idx >= 0);
+
+ /*
+ * When the MCV item or the Const value is NULL we can treat
+ * this as a mismatch. We must not call the operator because
+ * of strictness.
+ */
+ if (item->isnull[idx] || cst->constisnull)
+ {
+ matches[i] = RESULT_MERGE(matches[i], is_or, false);
+ continue;
+ }
+
+ /*
+ * Skip MCV items that can't change result in the bitmap. Once
+ * the value gets false for AND-lists, or true for OR-lists,
+ * we don't need to look at more clauses.
+ */
+ if (RESULT_IS_FINAL(matches[i], is_or))
+ continue;
+
+ /*
+ * First check whether the constant is below the lower
+ * boundary (in that case we can skip the bucket, because
+ * there's no overlap).
+ *
+ * We don't store collations used to build the statistics, but
+ * we can use the collation for the attribute itself, as
+ * stored in varcollid. We do reset the statistics after a
+ * type change (including collation change), so this is OK.
+ * For expressions, we use the collation extracted from the
+ * expression itself.
+ */
+ if (expronleft)
+ match = DatumGetBool(FunctionCall2Coll(&opproc,
+ collid,
+ item->values[idx],
+ cst->constvalue));
+ else
+ match = DatumGetBool(FunctionCall2Coll(&opproc,
+ collid,
+ cst->constvalue,
+ item->values[idx]));
+
+ /* update the match bitmap with the result */
+ matches[i] = RESULT_MERGE(matches[i], is_or, match);
+ }
+ }
+ else if (IsA(clause, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
+ FmgrInfo opproc;
+
+ /* valid only after examine_opclause_args returns true */
+ Node *clause_expr;
+ Const *cst;
+ bool expronleft;
+ Oid collid;
+ int idx;
+
+ /* array evaluation */
+ ArrayType *arrayval;
+ int16 elmlen;
+ bool elmbyval;
+ char elmalign;
+ int num_elems;
+ Datum *elem_values;
+ bool *elem_nulls;
+
+ fmgr_info(get_opcode(expr->opno), &opproc);
+
+ /* extract the var/expr and const from the expression */
+ if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
+ elog(ERROR, "incompatible clause");
+
+ /* We expect Var on left */
+ if (!expronleft)
+ elog(ERROR, "incompatible clause");
+
+ /*
+ * Deconstruct the array constant, unless it's NULL (we'll cover
+ * that case below)
+ */
+ if (!cst->constisnull)
+ {
+ arrayval = DatumGetArrayTypeP(cst->constvalue);
+ get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
+ &elmlen, &elmbyval, &elmalign);
+ deconstruct_array(arrayval,
+ ARR_ELEMTYPE(arrayval),
+ elmlen, elmbyval, elmalign,
+ &elem_values, &elem_nulls, &num_elems);
+ }
+
+ /* match the attribute/expression to a dimension of the statistic */
+ idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
+
+ /*
+ * Walk through the MCV items and evaluate the current clause. We
+ * can skip items that were already ruled out, and terminate if
+ * there are no remaining MCV items that might possibly match.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ int j;
+ bool match = (expr->useOr ? false : true);
+ MCVItem *item = &mcvlist->items[i];
+
+ /*
+ * When the MCV item or the Const value is NULL we can treat
+ * this as a mismatch. We must not call the operator because
+ * of strictness.
+ */
+ if (item->isnull[idx] || cst->constisnull)
+ {
+ matches[i] = RESULT_MERGE(matches[i], is_or, false);
+ continue;
+ }
+
+ /*
+ * Skip MCV items that can't change result in the bitmap. Once
+ * the value gets false for AND-lists, or true for OR-lists,
+ * we don't need to look at more clauses.
+ */
+ if (RESULT_IS_FINAL(matches[i], is_or))
+ continue;
+
+ for (j = 0; j < num_elems; j++)
+ {
+ Datum elem_value = elem_values[j];
+ bool elem_isnull = elem_nulls[j];
+ bool elem_match;
+
+ /* NULL values always evaluate as not matching. */
+ if (elem_isnull)
+ {
+ match = RESULT_MERGE(match, expr->useOr, false);
+ continue;
+ }
+
+ /*
+ * Stop evaluating the array elements once we reach a
+ * matching value that can't change - ALL() is the same as
+ * AND-list, ANY() is the same as OR-list.
+ */
+ if (RESULT_IS_FINAL(match, expr->useOr))
+ break;
+
+ elem_match = DatumGetBool(FunctionCall2Coll(&opproc,
+ collid,
+ item->values[idx],
+ elem_value));
+
+ match = RESULT_MERGE(match, expr->useOr, elem_match);
+ }
+
+ /* update the match bitmap with the result */
+ matches[i] = RESULT_MERGE(matches[i], is_or, match);
+ }
+ }
+ else if (IsA(clause, NullTest))
+ {
+ NullTest *expr = (NullTest *) clause;
+ Node *clause_expr = (Node *) (expr->arg);
+
+ /* match the attribute/expression to a dimension of the statistic */
+ int idx = mcv_match_expression(clause_expr, keys, exprs, NULL);
+
+ /*
+ * Walk through the MCV items and evaluate the current clause. We
+ * can skip items that were already ruled out, and terminate if
+ * there are no remaining MCV items that might possibly match.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ bool match = false; /* assume mismatch */
+ MCVItem *item = &mcvlist->items[i];
+
+ /* if the clause mismatches the MCV item, update the bitmap */
+ switch (expr->nulltesttype)
+ {
+ case IS_NULL:
+ match = (item->isnull[idx]) ? true : match;
+ break;
+
+ case IS_NOT_NULL:
+ match = (!item->isnull[idx]) ? true : match;
+ break;
+ }
+
+ /* now, update the match bitmap, depending on OR/AND type */
+ matches[i] = RESULT_MERGE(matches[i], is_or, match);
+ }
+ }
+ else if (is_orclause(clause) || is_andclause(clause))
+ {
+ /* AND/OR clause, with all subclauses being compatible */
+
+ int i;
+ BoolExpr *bool_clause = ((BoolExpr *) clause);
+ List *bool_clauses = bool_clause->args;
+
+ /* match/mismatch bitmap for each MCV item */
+ bool *bool_matches = NULL;
+
+ Assert(bool_clauses != NIL);
+ Assert(list_length(bool_clauses) >= 2);
+
+ /* build the match bitmap for the OR-clauses */
+ bool_matches = mcv_get_match_bitmap(root, bool_clauses, keys, exprs,
+ mcvlist, is_orclause(clause));
+
+ /*
+ * Merge the bitmap produced by mcv_get_match_bitmap into the
+ * current one. We need to consider if we're evaluating AND or OR
+ * condition when merging the results.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ matches[i] = RESULT_MERGE(matches[i], is_or, bool_matches[i]);
+
+ pfree(bool_matches);
+ }
+ else if (is_notclause(clause))
+ {
+ /* NOT clause, with all subclauses compatible */
+
+ int i;
+ BoolExpr *not_clause = ((BoolExpr *) clause);
+ List *not_args = not_clause->args;
+
+ /* match/mismatch bitmap for each MCV item */
+ bool *not_matches = NULL;
+
+ Assert(not_args != NIL);
+ Assert(list_length(not_args) == 1);
+
+ /* build the match bitmap for the NOT-clause */
+ not_matches = mcv_get_match_bitmap(root, not_args, keys, exprs,
+ mcvlist, false);
+
+ /*
+ * Merge the bitmap produced by mcv_get_match_bitmap into the
+ * current one. We're handling a NOT clause, so invert the result
+ * before merging it into the global bitmap.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ matches[i] = RESULT_MERGE(matches[i], is_or, !not_matches[i]);
+
+ pfree(not_matches);
+ }
+ else if (IsA(clause, Var))
+ {
+ /* Var (has to be a boolean Var, possibly from below NOT) */
+
+ Var *var = (Var *) (clause);
+
+ /* match the attribute to a dimension of the statistic */
+ int idx = bms_member_index(keys, var->varattno);
+
+ Assert(var->vartype == BOOLOID);
+
+ /*
+ * Walk through the MCV items and evaluate the current clause. We
+ * can skip items that were already ruled out, and terminate if
+ * there are no remaining MCV items that might possibly match.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ MCVItem *item = &mcvlist->items[i];
+ bool match = false;
+
+ /* if the item is NULL, it's a mismatch */
+ if (!item->isnull[idx] && DatumGetBool(item->values[idx]))
+ match = true;
+
+ /* update the result bitmap */
+ matches[i] = RESULT_MERGE(matches[i], is_or, match);
+ }
+ }
+ else
+ {
+ /* Otherwise, it must be a bare boolean-returning expression */
+ int idx;
+
+ /* match the expression to a dimension of the statistic */
+ idx = mcv_match_expression(clause, keys, exprs, NULL);
+
+ /*
+ * Walk through the MCV items and evaluate the current clause. We
+ * can skip items that were already ruled out, and terminate if
+ * there are no remaining MCV items that might possibly match.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ bool match;
+ MCVItem *item = &mcvlist->items[i];
+
+ /* "match" just means it's bool TRUE */
+ match = !item->isnull[idx] && DatumGetBool(item->values[idx]);
+
+ /* now, update the match bitmap, depending on OR/AND type */
+ matches[i] = RESULT_MERGE(matches[i], is_or, match);
+ }
+ }
+ }
+
+ return matches;
+}
+
+
+/*
+ * mcv_combine_selectivities
+ * Combine per-column and multi-column MCV selectivity estimates.
+ *
+ * simple_sel is a "simple" selectivity estimate (produced without using any
+ * extended statistics, essentially assuming independence of columns/clauses).
+ *
+ * mcv_sel and mcv_basesel are sums of the frequencies and base frequencies of
+ * all matching MCV items. The difference (mcv_sel - mcv_basesel) is then
+ * essentially interpreted as a correction to be added to simple_sel, as
+ * described below.
+ *
+ * mcv_totalsel is the sum of the frequencies of all MCV items (not just the
+ * matching ones). This is used as an upper bound on the portion of the
+ * selectivity estimates not covered by the MCV statistics.
+ *
+ * Note: While simple and base selectivities are defined in a quite similar
+ * way, the values are computed differently and are not therefore equal. The
+ * simple selectivity is computed as a product of per-clause estimates, while
+ * the base selectivity is computed by adding up base frequencies of matching
+ * items of the multi-column MCV list. So the values may differ for two main
+ * reasons - (a) the MCV list may not cover 100% of the data and (b) some of
+ * the MCV items did not match the estimated clauses.
+ *
+ * As both (a) and (b) reduce the base selectivity value, it generally holds
+ * that (simple_sel >= mcv_basesel). If the MCV list covers all the data, the
+ * values may be equal.
+ *
+ * So, other_sel = (simple_sel - mcv_basesel) is an estimate for the part not
+ * covered by the MCV list, and (mcv_sel - mcv_basesel) may be seen as a
+ * correction for the part covered by the MCV list. Those two statements are
+ * actually equivalent.
+ */
+Selectivity
+mcv_combine_selectivities(Selectivity simple_sel,
+ Selectivity mcv_sel,
+ Selectivity mcv_basesel,
+ Selectivity mcv_totalsel)
+{
+ Selectivity other_sel;
+ Selectivity sel;
+
+ /* estimated selectivity of values not covered by MCV matches */
+ other_sel = simple_sel - mcv_basesel;
+ CLAMP_PROBABILITY(other_sel);
+
+ /* this non-MCV selectivity cannot exceed 1 - mcv_totalsel */
+ if (other_sel > 1.0 - mcv_totalsel)
+ other_sel = 1.0 - mcv_totalsel;
+
+ /* overall selectivity is the sum of the MCV and non-MCV parts */
+ sel = mcv_sel + other_sel;
+ CLAMP_PROBABILITY(sel);
+
+ return sel;
+}
+
+
+/*
+ * mcv_clauselist_selectivity
+ * Use MCV statistics to estimate the selectivity of an implicitly-ANDed
+ * list of clauses.
+ *
+ * This determines which MCV items match every clause in the list and returns
+ * the sum of the frequencies of those items.
+ *
+ * In addition, it returns the sum of the base frequencies of each of those
+ * items (that is the sum of the selectivities that each item would have if
+ * the columns were independent of one another), and the total selectivity of
+ * all the MCV items (not just the matching ones). These are expected to be
+ * used together with a "simple" selectivity estimate (one based only on
+ * per-column statistics) to produce an overall selectivity estimate that
+ * makes use of both per-column and multi-column statistics --- see
+ * mcv_combine_selectivities().
+ */
+Selectivity
+mcv_clauselist_selectivity(PlannerInfo *root, StatisticExtInfo *stat,
+ List *clauses, int varRelid,
+ JoinType jointype, SpecialJoinInfo *sjinfo,
+ RelOptInfo *rel,
+ Selectivity *basesel, Selectivity *totalsel)
+{
+ int i;
+ MCVList *mcv;
+ Selectivity s = 0.0;
+
+ /* match/mismatch bitmap for each MCV item */
+ bool *matches = NULL;
+
+ /* load the MCV list stored in the statistics object */
+ mcv = statext_mcv_load(stat->statOid);
+
+ /* build a match bitmap for the clauses */
+ matches = mcv_get_match_bitmap(root, clauses, stat->keys, stat->exprs,
+ mcv, false);
+
+ /* sum frequencies for all the matching MCV items */
+ *basesel = 0.0;
+ *totalsel = 0.0;
+ for (i = 0; i < mcv->nitems; i++)
+ {
+ *totalsel += mcv->items[i].frequency;
+
+ if (matches[i] != false)
+ {
+ *basesel += mcv->items[i].base_frequency;
+ s += mcv->items[i].frequency;
+ }
+ }
+
+ return s;
+}
+
+
+/*
+ * mcv_clause_selectivity_or
+ * Use MCV statistics to estimate the selectivity of a clause that
+ * appears in an ORed list of clauses.
+ *
+ * As with mcv_clauselist_selectivity() this determines which MCV items match
+ * the clause and returns both the sum of the frequencies and the sum of the
+ * base frequencies of those items, as well as the sum of the frequencies of
+ * all MCV items (not just the matching ones) so that this information can be
+ * used by mcv_combine_selectivities() to produce a selectivity estimate that
+ * makes use of both per-column and multi-column statistics.
+ *
+ * Additionally, we return information to help compute the overall selectivity
+ * of the ORed list of clauses assumed to contain this clause. This function
+ * is intended to be called for each clause in the ORed list of clauses,
+ * allowing the overall selectivity to be computed using the following
+ * algorithm:
+ *
+ * Suppose P[n] = P(C[1] OR C[2] OR ... OR C[n]) is the combined selectivity
+ * of the first n clauses in the list. Then the combined selectivity taking
+ * into account the next clause C[n+1] can be written as
+ *
+ * P[n+1] = P[n] + P(C[n+1]) - P((C[1] OR ... OR C[n]) AND C[n+1])
+ *
+ * The final term above represents the overlap between the clauses examined so
+ * far and the (n+1)'th clause. To estimate its selectivity, we track the
+ * match bitmap for the ORed list of clauses examined so far and examine its
+ * intersection with the match bitmap for the (n+1)'th clause.
+ *
+ * We then also return the sums of the MCV item frequencies and base
+ * frequencies for the match bitmap intersection corresponding to the overlap
+ * term above, so that they can be combined with a simple selectivity estimate
+ * for that term.
+ *
+ * The parameter "or_matches" is an in/out parameter tracking the match bitmap
+ * for the clauses examined so far. The caller is expected to set it to NULL
+ * the first time it calls this function.
+ */
+Selectivity
+mcv_clause_selectivity_or(PlannerInfo *root, StatisticExtInfo *stat,
+ MCVList *mcv, Node *clause, bool **or_matches,
+ Selectivity *basesel, Selectivity *overlap_mcvsel,
+ Selectivity *overlap_basesel, Selectivity *totalsel)
+{
+ Selectivity s = 0.0;
+ bool *new_matches;
+ int i;
+
+ /* build the OR-matches bitmap, if not built already */
+ if (*or_matches == NULL)
+ *or_matches = palloc0(sizeof(bool) * mcv->nitems);
+
+ /* build the match bitmap for the new clause */
+ new_matches = mcv_get_match_bitmap(root, list_make1(clause), stat->keys,
+ stat->exprs, mcv, false);
+
+ /*
+ * Sum the frequencies for all the MCV items matching this clause and also
+ * those matching the overlap between this clause and any of the preceding
+ * clauses as described above.
+ */
+ *basesel = 0.0;
+ *overlap_mcvsel = 0.0;
+ *overlap_basesel = 0.0;
+ *totalsel = 0.0;
+ for (i = 0; i < mcv->nitems; i++)
+ {
+ *totalsel += mcv->items[i].frequency;
+
+ if (new_matches[i])
+ {
+ s += mcv->items[i].frequency;
+ *basesel += mcv->items[i].base_frequency;
+
+ if ((*or_matches)[i])
+ {
+ *overlap_mcvsel += mcv->items[i].frequency;
+ *overlap_basesel += mcv->items[i].base_frequency;
+ }
+ }
+
+ /* update the OR-matches bitmap for the next clause */
+ (*or_matches)[i] = (*or_matches)[i] || new_matches[i];
+ }
+
+ pfree(new_matches);
+
+ return s;
+}