diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
commit | 46651ce6fe013220ed397add242004d764fc0153 (patch) | |
tree | 6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/utils/mmgr/freepage.c | |
parent | Initial commit. (diff) | |
download | postgresql-14-46651ce6fe013220ed397add242004d764fc0153.tar.xz postgresql-14-46651ce6fe013220ed397add242004d764fc0153.zip |
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/utils/mmgr/freepage.c')
-rw-r--r-- | src/backend/utils/mmgr/freepage.c | 1886 |
1 files changed, 1886 insertions, 0 deletions
diff --git a/src/backend/utils/mmgr/freepage.c b/src/backend/utils/mmgr/freepage.c new file mode 100644 index 0000000..4208317 --- /dev/null +++ b/src/backend/utils/mmgr/freepage.c @@ -0,0 +1,1886 @@ +/*------------------------------------------------------------------------- + * + * freepage.c + * Management of free memory pages. + * + * The intention of this code is to provide infrastructure for memory + * allocators written specifically for PostgreSQL. At least in the case + * of dynamic shared memory, we can't simply use malloc() or even + * relatively thin wrappers like palloc() which sit on top of it, because + * no allocator built into the operating system will deal with relative + * pointers. In the future, we may find other cases in which greater + * control over our own memory management seems desirable. + * + * A FreePageManager keeps track of which 4kB pages of memory are currently + * unused from the point of view of some higher-level memory allocator. + * Unlike a user-facing allocator such as palloc(), a FreePageManager can + * only allocate and free in units of whole pages, and freeing an + * allocation can only be done given knowledge of its length in pages. + * + * Since a free page manager has only a fixed amount of dedicated memory, + * and since there is no underlying allocator, it uses the free pages + * it is given to manage to store its bookkeeping data. It keeps multiple + * freelists of runs of pages, sorted by the size of the run; the head of + * each freelist is stored in the FreePageManager itself, and the first + * page of each run contains a relative pointer to the next run. See + * FreePageManagerGetInternal for more details on how the freelists are + * managed. + * + * To avoid memory fragmentation, it's important to consolidate adjacent + * spans of pages whenever possible; otherwise, large allocation requests + * might not be satisfied even when sufficient contiguous space is + * available. Therefore, in addition to the freelists, we maintain an + * in-memory btree of free page ranges ordered by page number. If a + * range being freed precedes or follows a range that is already free, + * the existing range is extended; if it exactly bridges the gap between + * free ranges, then the two existing ranges are consolidated with the + * newly-freed range to form one great big range of free pages. + * + * When there is only one range of free pages, the btree is trivial and + * is stored within the FreePageManager proper; otherwise, pages are + * allocated from the area under management as needed. Even in cases + * where memory fragmentation is very severe, only a tiny fraction of + * the pages under management are consumed by this btree. + * + * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * IDENTIFICATION + * src/backend/utils/mmgr/freepage.c + * + *------------------------------------------------------------------------- + */ + +#include "postgres.h" +#include "lib/stringinfo.h" +#include "miscadmin.h" + +#include "utils/freepage.h" +#include "utils/relptr.h" + + +/* Magic numbers to identify various page types */ +#define FREE_PAGE_SPAN_LEADER_MAGIC 0xea4020f0 +#define FREE_PAGE_LEAF_MAGIC 0x98eae728 +#define FREE_PAGE_INTERNAL_MAGIC 0x19aa32c9 + +/* Doubly linked list of spans of free pages; stored in first page of span. */ +struct FreePageSpanLeader +{ + int magic; /* always FREE_PAGE_SPAN_LEADER_MAGIC */ + Size npages; /* number of pages in span */ + RelptrFreePageSpanLeader prev; + RelptrFreePageSpanLeader next; +}; + +/* Common header for btree leaf and internal pages. */ +typedef struct FreePageBtreeHeader +{ + int magic; /* FREE_PAGE_LEAF_MAGIC or + * FREE_PAGE_INTERNAL_MAGIC */ + Size nused; /* number of items used */ + RelptrFreePageBtree parent; /* uplink */ +} FreePageBtreeHeader; + +/* Internal key; points to next level of btree. */ +typedef struct FreePageBtreeInternalKey +{ + Size first_page; /* low bound for keys on child page */ + RelptrFreePageBtree child; /* downlink */ +} FreePageBtreeInternalKey; + +/* Leaf key; no payload data. */ +typedef struct FreePageBtreeLeafKey +{ + Size first_page; /* first page in span */ + Size npages; /* number of pages in span */ +} FreePageBtreeLeafKey; + +/* Work out how many keys will fit on a page. */ +#define FPM_ITEMS_PER_INTERNAL_PAGE \ + ((FPM_PAGE_SIZE - sizeof(FreePageBtreeHeader)) / \ + sizeof(FreePageBtreeInternalKey)) +#define FPM_ITEMS_PER_LEAF_PAGE \ + ((FPM_PAGE_SIZE - sizeof(FreePageBtreeHeader)) / \ + sizeof(FreePageBtreeLeafKey)) + +/* A btree page of either sort */ +struct FreePageBtree +{ + FreePageBtreeHeader hdr; + union + { + FreePageBtreeInternalKey internal_key[FPM_ITEMS_PER_INTERNAL_PAGE]; + FreePageBtreeLeafKey leaf_key[FPM_ITEMS_PER_LEAF_PAGE]; + } u; +}; + +/* Results of a btree search */ +typedef struct FreePageBtreeSearchResult +{ + FreePageBtree *page; + Size index; + bool found; + unsigned split_pages; +} FreePageBtreeSearchResult; + +/* Helper functions */ +static void FreePageBtreeAdjustAncestorKeys(FreePageManager *fpm, + FreePageBtree *btp); +static Size FreePageBtreeCleanup(FreePageManager *fpm); +static FreePageBtree *FreePageBtreeFindLeftSibling(char *base, + FreePageBtree *btp); +static FreePageBtree *FreePageBtreeFindRightSibling(char *base, + FreePageBtree *btp); +static Size FreePageBtreeFirstKey(FreePageBtree *btp); +static FreePageBtree *FreePageBtreeGetRecycled(FreePageManager *fpm); +static void FreePageBtreeInsertInternal(char *base, FreePageBtree *btp, + Size index, Size first_page, FreePageBtree *child); +static void FreePageBtreeInsertLeaf(FreePageBtree *btp, Size index, + Size first_page, Size npages); +static void FreePageBtreeRecycle(FreePageManager *fpm, Size pageno); +static void FreePageBtreeRemove(FreePageManager *fpm, FreePageBtree *btp, + Size index); +static void FreePageBtreeRemovePage(FreePageManager *fpm, FreePageBtree *btp); +static void FreePageBtreeSearch(FreePageManager *fpm, Size first_page, + FreePageBtreeSearchResult *result); +static Size FreePageBtreeSearchInternal(FreePageBtree *btp, Size first_page); +static Size FreePageBtreeSearchLeaf(FreePageBtree *btp, Size first_page); +static FreePageBtree *FreePageBtreeSplitPage(FreePageManager *fpm, + FreePageBtree *btp); +static void FreePageBtreeUpdateParentPointers(char *base, FreePageBtree *btp); +static void FreePageManagerDumpBtree(FreePageManager *fpm, FreePageBtree *btp, + FreePageBtree *parent, int level, StringInfo buf); +static void FreePageManagerDumpSpans(FreePageManager *fpm, + FreePageSpanLeader *span, Size expected_pages, + StringInfo buf); +static bool FreePageManagerGetInternal(FreePageManager *fpm, Size npages, + Size *first_page); +static Size FreePageManagerPutInternal(FreePageManager *fpm, Size first_page, + Size npages, bool soft); +static void FreePagePopSpanLeader(FreePageManager *fpm, Size pageno); +static void FreePagePushSpanLeader(FreePageManager *fpm, Size first_page, + Size npages); +static Size FreePageManagerLargestContiguous(FreePageManager *fpm); +static void FreePageManagerUpdateLargest(FreePageManager *fpm); + +#ifdef FPM_EXTRA_ASSERTS +static Size sum_free_pages(FreePageManager *fpm); +#endif + +/* + * Initialize a new, empty free page manager. + * + * 'fpm' should reference caller-provided memory large enough to contain a + * FreePageManager. We'll initialize it here. + * + * 'base' is the address to which all pointers are relative. When managing + * a dynamic shared memory segment, it should normally be the base of the + * segment. When managing backend-private memory, it can be either NULL or, + * if managing a single contiguous extent of memory, the start of that extent. + */ +void +FreePageManagerInitialize(FreePageManager *fpm, char *base) +{ + Size f; + + relptr_store(base, fpm->self, fpm); + relptr_store(base, fpm->btree_root, (FreePageBtree *) NULL); + relptr_store(base, fpm->btree_recycle, (FreePageSpanLeader *) NULL); + fpm->btree_depth = 0; + fpm->btree_recycle_count = 0; + fpm->singleton_first_page = 0; + fpm->singleton_npages = 0; + fpm->contiguous_pages = 0; + fpm->contiguous_pages_dirty = true; +#ifdef FPM_EXTRA_ASSERTS + fpm->free_pages = 0; +#endif + + for (f = 0; f < FPM_NUM_FREELISTS; f++) + relptr_store(base, fpm->freelist[f], (FreePageSpanLeader *) NULL); +} + +/* + * Allocate a run of pages of the given length from the free page manager. + * The return value indicates whether we were able to satisfy the request; + * if true, the first page of the allocation is stored in *first_page. + */ +bool +FreePageManagerGet(FreePageManager *fpm, Size npages, Size *first_page) +{ + bool result; + Size contiguous_pages; + + result = FreePageManagerGetInternal(fpm, npages, first_page); + + /* + * It's a bit counterintuitive, but allocating pages can actually create + * opportunities for cleanup that create larger ranges. We might pull a + * key out of the btree that enables the item at the head of the btree + * recycle list to be inserted; and then if there are more items behind it + * one of those might cause two currently-separated ranges to merge, + * creating a single range of contiguous pages larger than any that + * existed previously. It might be worth trying to improve the cleanup + * algorithm to avoid such corner cases, but for now we just notice the + * condition and do the appropriate reporting. + */ + contiguous_pages = FreePageBtreeCleanup(fpm); + if (fpm->contiguous_pages < contiguous_pages) + fpm->contiguous_pages = contiguous_pages; + + /* + * FreePageManagerGetInternal may have set contiguous_pages_dirty. + * Recompute contiguous_pages if so. + */ + FreePageManagerUpdateLargest(fpm); + +#ifdef FPM_EXTRA_ASSERTS + if (result) + { + Assert(fpm->free_pages >= npages); + fpm->free_pages -= npages; + } + Assert(fpm->free_pages == sum_free_pages(fpm)); + Assert(fpm->contiguous_pages == FreePageManagerLargestContiguous(fpm)); +#endif + return result; +} + +#ifdef FPM_EXTRA_ASSERTS +static void +sum_free_pages_recurse(FreePageManager *fpm, FreePageBtree *btp, Size *sum) +{ + char *base = fpm_segment_base(fpm); + + Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC || + btp->hdr.magic == FREE_PAGE_LEAF_MAGIC); + ++*sum; + if (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC) + { + Size index; + + + for (index = 0; index < btp->hdr.nused; ++index) + { + FreePageBtree *child; + + child = relptr_access(base, btp->u.internal_key[index].child); + sum_free_pages_recurse(fpm, child, sum); + } + } +} +static Size +sum_free_pages(FreePageManager *fpm) +{ + FreePageSpanLeader *recycle; + char *base = fpm_segment_base(fpm); + Size sum = 0; + int list; + + /* Count the spans by scanning the freelists. */ + for (list = 0; list < FPM_NUM_FREELISTS; ++list) + { + + if (!relptr_is_null(fpm->freelist[list])) + { + FreePageSpanLeader *candidate = + relptr_access(base, fpm->freelist[list]); + + do + { + sum += candidate->npages; + candidate = relptr_access(base, candidate->next); + } while (candidate != NULL); + } + } + + /* Count btree internal pages. */ + if (fpm->btree_depth > 0) + { + FreePageBtree *root = relptr_access(base, fpm->btree_root); + + sum_free_pages_recurse(fpm, root, &sum); + } + + /* Count the recycle list. */ + for (recycle = relptr_access(base, fpm->btree_recycle); + recycle != NULL; + recycle = relptr_access(base, recycle->next)) + { + Assert(recycle->npages == 1); + ++sum; + } + + return sum; +} +#endif + +/* + * Compute the size of the largest run of pages that the user could + * successfully get. + */ +static Size +FreePageManagerLargestContiguous(FreePageManager *fpm) +{ + char *base; + Size largest; + + base = fpm_segment_base(fpm); + largest = 0; + if (!relptr_is_null(fpm->freelist[FPM_NUM_FREELISTS - 1])) + { + FreePageSpanLeader *candidate; + + candidate = relptr_access(base, fpm->freelist[FPM_NUM_FREELISTS - 1]); + do + { + if (candidate->npages > largest) + largest = candidate->npages; + candidate = relptr_access(base, candidate->next); + } while (candidate != NULL); + } + else + { + Size f = FPM_NUM_FREELISTS - 1; + + do + { + --f; + if (!relptr_is_null(fpm->freelist[f])) + { + largest = f + 1; + break; + } + } while (f > 0); + } + + return largest; +} + +/* + * Recompute the size of the largest run of pages that the user could + * successfully get, if it has been marked dirty. + */ +static void +FreePageManagerUpdateLargest(FreePageManager *fpm) +{ + if (!fpm->contiguous_pages_dirty) + return; + + fpm->contiguous_pages = FreePageManagerLargestContiguous(fpm); + fpm->contiguous_pages_dirty = false; +} + +/* + * Transfer a run of pages to the free page manager. + */ +void +FreePageManagerPut(FreePageManager *fpm, Size first_page, Size npages) +{ + Size contiguous_pages; + + Assert(npages > 0); + + /* Record the new pages. */ + contiguous_pages = + FreePageManagerPutInternal(fpm, first_page, npages, false); + + /* + * If the new range we inserted into the page manager was contiguous with + * an existing range, it may have opened up cleanup opportunities. + */ + if (contiguous_pages > npages) + { + Size cleanup_contiguous_pages; + + cleanup_contiguous_pages = FreePageBtreeCleanup(fpm); + if (cleanup_contiguous_pages > contiguous_pages) + contiguous_pages = cleanup_contiguous_pages; + } + + /* See if we now have a new largest chunk. */ + if (fpm->contiguous_pages < contiguous_pages) + fpm->contiguous_pages = contiguous_pages; + + /* + * The earlier call to FreePageManagerPutInternal may have set + * contiguous_pages_dirty if it needed to allocate internal pages, so + * recompute contiguous_pages if necessary. + */ + FreePageManagerUpdateLargest(fpm); + +#ifdef FPM_EXTRA_ASSERTS + fpm->free_pages += npages; + Assert(fpm->free_pages == sum_free_pages(fpm)); + Assert(fpm->contiguous_pages == FreePageManagerLargestContiguous(fpm)); +#endif +} + +/* + * Produce a debugging dump of the state of a free page manager. + */ +char * +FreePageManagerDump(FreePageManager *fpm) +{ + char *base = fpm_segment_base(fpm); + StringInfoData buf; + FreePageSpanLeader *recycle; + bool dumped_any_freelist = false; + Size f; + + /* Initialize output buffer. */ + initStringInfo(&buf); + + /* Dump general stuff. */ + appendStringInfo(&buf, "metadata: self %zu max contiguous pages = %zu\n", + relptr_offset(fpm->self), fpm->contiguous_pages); + + /* Dump btree. */ + if (fpm->btree_depth > 0) + { + FreePageBtree *root; + + appendStringInfo(&buf, "btree depth %u:\n", fpm->btree_depth); + root = relptr_access(base, fpm->btree_root); + FreePageManagerDumpBtree(fpm, root, NULL, 0, &buf); + } + else if (fpm->singleton_npages > 0) + { + appendStringInfo(&buf, "singleton: %zu(%zu)\n", + fpm->singleton_first_page, fpm->singleton_npages); + } + + /* Dump btree recycle list. */ + recycle = relptr_access(base, fpm->btree_recycle); + if (recycle != NULL) + { + appendStringInfoString(&buf, "btree recycle:"); + FreePageManagerDumpSpans(fpm, recycle, 1, &buf); + } + + /* Dump free lists. */ + for (f = 0; f < FPM_NUM_FREELISTS; ++f) + { + FreePageSpanLeader *span; + + if (relptr_is_null(fpm->freelist[f])) + continue; + if (!dumped_any_freelist) + { + appendStringInfoString(&buf, "freelists:\n"); + dumped_any_freelist = true; + } + appendStringInfo(&buf, " %zu:", f + 1); + span = relptr_access(base, fpm->freelist[f]); + FreePageManagerDumpSpans(fpm, span, f + 1, &buf); + } + + /* And return result to caller. */ + return buf.data; +} + + +/* + * The first_page value stored at index zero in any non-root page must match + * the first_page value stored in its parent at the index which points to that + * page. So when the value stored at index zero in a btree page changes, we've + * got to walk up the tree adjusting ancestor keys until we reach an ancestor + * where that key isn't index zero. This function should be called after + * updating the first key on the target page; it will propagate the change + * upward as far as needed. + * + * We assume here that the first key on the page has not changed enough to + * require changes in the ordering of keys on its ancestor pages. Thus, + * if we search the parent page for the first key greater than or equal to + * the first key on the current page, the downlink to this page will be either + * the exact index returned by the search (if the first key decreased) + * or one less (if the first key increased). + */ +static void +FreePageBtreeAdjustAncestorKeys(FreePageManager *fpm, FreePageBtree *btp) +{ + char *base = fpm_segment_base(fpm); + Size first_page; + FreePageBtree *parent; + FreePageBtree *child; + + /* This might be either a leaf or an internal page. */ + Assert(btp->hdr.nused > 0); + if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) + { + Assert(btp->hdr.nused <= FPM_ITEMS_PER_LEAF_PAGE); + first_page = btp->u.leaf_key[0].first_page; + } + else + { + Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + Assert(btp->hdr.nused <= FPM_ITEMS_PER_INTERNAL_PAGE); + first_page = btp->u.internal_key[0].first_page; + } + child = btp; + + /* Loop until we find an ancestor that does not require adjustment. */ + for (;;) + { + Size s; + + parent = relptr_access(base, child->hdr.parent); + if (parent == NULL) + break; + s = FreePageBtreeSearchInternal(parent, first_page); + + /* Key is either at index s or index s-1; figure out which. */ + if (s >= parent->hdr.nused) + { + Assert(s == parent->hdr.nused); + --s; + } + else + { + FreePageBtree *check; + + check = relptr_access(base, parent->u.internal_key[s].child); + if (check != child) + { + Assert(s > 0); + --s; + } + } + +#ifdef USE_ASSERT_CHECKING + /* Debugging double-check. */ + { + FreePageBtree *check; + + check = relptr_access(base, parent->u.internal_key[s].child); + Assert(s < parent->hdr.nused); + Assert(child == check); + } +#endif + + /* Update the parent key. */ + parent->u.internal_key[s].first_page = first_page; + + /* + * If this is the first key in the parent, go up another level; else + * done. + */ + if (s > 0) + break; + child = parent; + } +} + +/* + * Attempt to reclaim space from the free-page btree. The return value is + * the largest range of contiguous pages created by the cleanup operation. + */ +static Size +FreePageBtreeCleanup(FreePageManager *fpm) +{ + char *base = fpm_segment_base(fpm); + Size max_contiguous_pages = 0; + + /* Attempt to shrink the depth of the btree. */ + while (!relptr_is_null(fpm->btree_root)) + { + FreePageBtree *root = relptr_access(base, fpm->btree_root); + + /* If the root contains only one key, reduce depth by one. */ + if (root->hdr.nused == 1) + { + /* Shrink depth of tree by one. */ + Assert(fpm->btree_depth > 0); + --fpm->btree_depth; + if (root->hdr.magic == FREE_PAGE_LEAF_MAGIC) + { + /* If root is a leaf, convert only entry to singleton range. */ + relptr_store(base, fpm->btree_root, (FreePageBtree *) NULL); + fpm->singleton_first_page = root->u.leaf_key[0].first_page; + fpm->singleton_npages = root->u.leaf_key[0].npages; + } + else + { + FreePageBtree *newroot; + + /* If root is an internal page, make only child the root. */ + Assert(root->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + relptr_copy(fpm->btree_root, root->u.internal_key[0].child); + newroot = relptr_access(base, fpm->btree_root); + relptr_store(base, newroot->hdr.parent, (FreePageBtree *) NULL); + } + FreePageBtreeRecycle(fpm, fpm_pointer_to_page(base, root)); + } + else if (root->hdr.nused == 2 && + root->hdr.magic == FREE_PAGE_LEAF_MAGIC) + { + Size end_of_first; + Size start_of_second; + + end_of_first = root->u.leaf_key[0].first_page + + root->u.leaf_key[0].npages; + start_of_second = root->u.leaf_key[1].first_page; + + if (end_of_first + 1 == start_of_second) + { + Size root_page = fpm_pointer_to_page(base, root); + + if (end_of_first == root_page) + { + FreePagePopSpanLeader(fpm, root->u.leaf_key[0].first_page); + FreePagePopSpanLeader(fpm, root->u.leaf_key[1].first_page); + fpm->singleton_first_page = root->u.leaf_key[0].first_page; + fpm->singleton_npages = root->u.leaf_key[0].npages + + root->u.leaf_key[1].npages + 1; + fpm->btree_depth = 0; + relptr_store(base, fpm->btree_root, + (FreePageBtree *) NULL); + FreePagePushSpanLeader(fpm, fpm->singleton_first_page, + fpm->singleton_npages); + Assert(max_contiguous_pages == 0); + max_contiguous_pages = fpm->singleton_npages; + } + } + + /* Whether it worked or not, it's time to stop. */ + break; + } + else + { + /* Nothing more to do. Stop. */ + break; + } + } + + /* + * Attempt to free recycled btree pages. We skip this if releasing the + * recycled page would require a btree page split, because the page we're + * trying to recycle would be consumed by the split, which would be + * counterproductive. + * + * We also currently only ever attempt to recycle the first page on the + * list; that could be made more aggressive, but it's not clear that the + * complexity would be worthwhile. + */ + while (fpm->btree_recycle_count > 0) + { + FreePageBtree *btp; + Size first_page; + Size contiguous_pages; + + btp = FreePageBtreeGetRecycled(fpm); + first_page = fpm_pointer_to_page(base, btp); + contiguous_pages = FreePageManagerPutInternal(fpm, first_page, 1, true); + if (contiguous_pages == 0) + { + FreePageBtreeRecycle(fpm, first_page); + break; + } + else + { + if (contiguous_pages > max_contiguous_pages) + max_contiguous_pages = contiguous_pages; + } + } + + return max_contiguous_pages; +} + +/* + * Consider consolidating the given page with its left or right sibling, + * if it's fairly empty. + */ +static void +FreePageBtreeConsolidate(FreePageManager *fpm, FreePageBtree *btp) +{ + char *base = fpm_segment_base(fpm); + FreePageBtree *np; + Size max; + + /* + * We only try to consolidate pages that are less than a third full. We + * could be more aggressive about this, but that might risk performing + * consolidation only to end up splitting again shortly thereafter. Since + * the btree should be very small compared to the space under management, + * our goal isn't so much to ensure that it always occupies the absolutely + * smallest possible number of pages as to reclaim pages before things get + * too egregiously out of hand. + */ + if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) + max = FPM_ITEMS_PER_LEAF_PAGE; + else + { + Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + max = FPM_ITEMS_PER_INTERNAL_PAGE; + } + if (btp->hdr.nused >= max / 3) + return; + + /* + * If we can fit our right sibling's keys onto this page, consolidate. + */ + np = FreePageBtreeFindRightSibling(base, btp); + if (np != NULL && btp->hdr.nused + np->hdr.nused <= max) + { + if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) + { + memcpy(&btp->u.leaf_key[btp->hdr.nused], &np->u.leaf_key[0], + sizeof(FreePageBtreeLeafKey) * np->hdr.nused); + btp->hdr.nused += np->hdr.nused; + } + else + { + memcpy(&btp->u.internal_key[btp->hdr.nused], &np->u.internal_key[0], + sizeof(FreePageBtreeInternalKey) * np->hdr.nused); + btp->hdr.nused += np->hdr.nused; + FreePageBtreeUpdateParentPointers(base, btp); + } + FreePageBtreeRemovePage(fpm, np); + return; + } + + /* + * If we can fit our keys onto our left sibling's page, consolidate. In + * this case, we move our keys onto the other page rather than vice versa, + * to avoid having to adjust ancestor keys. + */ + np = FreePageBtreeFindLeftSibling(base, btp); + if (np != NULL && btp->hdr.nused + np->hdr.nused <= max) + { + if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) + { + memcpy(&np->u.leaf_key[np->hdr.nused], &btp->u.leaf_key[0], + sizeof(FreePageBtreeLeafKey) * btp->hdr.nused); + np->hdr.nused += btp->hdr.nused; + } + else + { + memcpy(&np->u.internal_key[np->hdr.nused], &btp->u.internal_key[0], + sizeof(FreePageBtreeInternalKey) * btp->hdr.nused); + np->hdr.nused += btp->hdr.nused; + FreePageBtreeUpdateParentPointers(base, np); + } + FreePageBtreeRemovePage(fpm, btp); + return; + } +} + +/* + * Find the passed page's left sibling; that is, the page at the same level + * of the tree whose keyspace immediately precedes ours. + */ +static FreePageBtree * +FreePageBtreeFindLeftSibling(char *base, FreePageBtree *btp) +{ + FreePageBtree *p = btp; + int levels = 0; + + /* Move up until we can move left. */ + for (;;) + { + Size first_page; + Size index; + + first_page = FreePageBtreeFirstKey(p); + p = relptr_access(base, p->hdr.parent); + + if (p == NULL) + return NULL; /* we were passed the rightmost page */ + + index = FreePageBtreeSearchInternal(p, first_page); + if (index > 0) + { + Assert(p->u.internal_key[index].first_page == first_page); + p = relptr_access(base, p->u.internal_key[index - 1].child); + break; + } + Assert(index == 0); + ++levels; + } + + /* Descend left. */ + while (levels > 0) + { + Assert(p->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + p = relptr_access(base, p->u.internal_key[p->hdr.nused - 1].child); + --levels; + } + Assert(p->hdr.magic == btp->hdr.magic); + + return p; +} + +/* + * Find the passed page's right sibling; that is, the page at the same level + * of the tree whose keyspace immediately follows ours. + */ +static FreePageBtree * +FreePageBtreeFindRightSibling(char *base, FreePageBtree *btp) +{ + FreePageBtree *p = btp; + int levels = 0; + + /* Move up until we can move right. */ + for (;;) + { + Size first_page; + Size index; + + first_page = FreePageBtreeFirstKey(p); + p = relptr_access(base, p->hdr.parent); + + if (p == NULL) + return NULL; /* we were passed the rightmost page */ + + index = FreePageBtreeSearchInternal(p, first_page); + if (index < p->hdr.nused - 1) + { + Assert(p->u.internal_key[index].first_page == first_page); + p = relptr_access(base, p->u.internal_key[index + 1].child); + break; + } + Assert(index == p->hdr.nused - 1); + ++levels; + } + + /* Descend left. */ + while (levels > 0) + { + Assert(p->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + p = relptr_access(base, p->u.internal_key[0].child); + --levels; + } + Assert(p->hdr.magic == btp->hdr.magic); + + return p; +} + +/* + * Get the first key on a btree page. + */ +static Size +FreePageBtreeFirstKey(FreePageBtree *btp) +{ + Assert(btp->hdr.nused > 0); + + if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) + return btp->u.leaf_key[0].first_page; + else + { + Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + return btp->u.internal_key[0].first_page; + } +} + +/* + * Get a page from the btree recycle list for use as a btree page. + */ +static FreePageBtree * +FreePageBtreeGetRecycled(FreePageManager *fpm) +{ + char *base = fpm_segment_base(fpm); + FreePageSpanLeader *victim = relptr_access(base, fpm->btree_recycle); + FreePageSpanLeader *newhead; + + Assert(victim != NULL); + newhead = relptr_access(base, victim->next); + if (newhead != NULL) + relptr_copy(newhead->prev, victim->prev); + relptr_store(base, fpm->btree_recycle, newhead); + Assert(fpm_pointer_is_page_aligned(base, victim)); + fpm->btree_recycle_count--; + return (FreePageBtree *) victim; +} + +/* + * Insert an item into an internal page. + */ +static void +FreePageBtreeInsertInternal(char *base, FreePageBtree *btp, Size index, + Size first_page, FreePageBtree *child) +{ + Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + Assert(btp->hdr.nused <= FPM_ITEMS_PER_INTERNAL_PAGE); + Assert(index <= btp->hdr.nused); + memmove(&btp->u.internal_key[index + 1], &btp->u.internal_key[index], + sizeof(FreePageBtreeInternalKey) * (btp->hdr.nused - index)); + btp->u.internal_key[index].first_page = first_page; + relptr_store(base, btp->u.internal_key[index].child, child); + ++btp->hdr.nused; +} + +/* + * Insert an item into a leaf page. + */ +static void +FreePageBtreeInsertLeaf(FreePageBtree *btp, Size index, Size first_page, + Size npages) +{ + Assert(btp->hdr.magic == FREE_PAGE_LEAF_MAGIC); + Assert(btp->hdr.nused <= FPM_ITEMS_PER_LEAF_PAGE); + Assert(index <= btp->hdr.nused); + memmove(&btp->u.leaf_key[index + 1], &btp->u.leaf_key[index], + sizeof(FreePageBtreeLeafKey) * (btp->hdr.nused - index)); + btp->u.leaf_key[index].first_page = first_page; + btp->u.leaf_key[index].npages = npages; + ++btp->hdr.nused; +} + +/* + * Put a page on the btree recycle list. + */ +static void +FreePageBtreeRecycle(FreePageManager *fpm, Size pageno) +{ + char *base = fpm_segment_base(fpm); + FreePageSpanLeader *head = relptr_access(base, fpm->btree_recycle); + FreePageSpanLeader *span; + + span = (FreePageSpanLeader *) fpm_page_to_pointer(base, pageno); + span->magic = FREE_PAGE_SPAN_LEADER_MAGIC; + span->npages = 1; + relptr_store(base, span->next, head); + relptr_store(base, span->prev, (FreePageSpanLeader *) NULL); + if (head != NULL) + relptr_store(base, head->prev, span); + relptr_store(base, fpm->btree_recycle, span); + fpm->btree_recycle_count++; +} + +/* + * Remove an item from the btree at the given position on the given page. + */ +static void +FreePageBtreeRemove(FreePageManager *fpm, FreePageBtree *btp, Size index) +{ + Assert(btp->hdr.magic == FREE_PAGE_LEAF_MAGIC); + Assert(index < btp->hdr.nused); + + /* When last item is removed, extirpate entire page from btree. */ + if (btp->hdr.nused == 1) + { + FreePageBtreeRemovePage(fpm, btp); + return; + } + + /* Physically remove the key from the page. */ + --btp->hdr.nused; + if (index < btp->hdr.nused) + memmove(&btp->u.leaf_key[index], &btp->u.leaf_key[index + 1], + sizeof(FreePageBtreeLeafKey) * (btp->hdr.nused - index)); + + /* If we just removed the first key, adjust ancestor keys. */ + if (index == 0) + FreePageBtreeAdjustAncestorKeys(fpm, btp); + + /* Consider whether to consolidate this page with a sibling. */ + FreePageBtreeConsolidate(fpm, btp); +} + +/* + * Remove a page from the btree. Caller is responsible for having relocated + * any keys from this page that are still wanted. The page is placed on the + * recycled list. + */ +static void +FreePageBtreeRemovePage(FreePageManager *fpm, FreePageBtree *btp) +{ + char *base = fpm_segment_base(fpm); + FreePageBtree *parent; + Size index; + Size first_page; + + for (;;) + { + /* Find parent page. */ + parent = relptr_access(base, btp->hdr.parent); + if (parent == NULL) + { + /* We are removing the root page. */ + relptr_store(base, fpm->btree_root, (FreePageBtree *) NULL); + fpm->btree_depth = 0; + Assert(fpm->singleton_first_page == 0); + Assert(fpm->singleton_npages == 0); + return; + } + + /* + * If the parent contains only one item, we need to remove it as well. + */ + if (parent->hdr.nused > 1) + break; + FreePageBtreeRecycle(fpm, fpm_pointer_to_page(base, btp)); + btp = parent; + } + + /* Find and remove the downlink. */ + first_page = FreePageBtreeFirstKey(btp); + if (parent->hdr.magic == FREE_PAGE_LEAF_MAGIC) + { + index = FreePageBtreeSearchLeaf(parent, first_page); + Assert(index < parent->hdr.nused); + if (index < parent->hdr.nused - 1) + memmove(&parent->u.leaf_key[index], + &parent->u.leaf_key[index + 1], + sizeof(FreePageBtreeLeafKey) + * (parent->hdr.nused - index - 1)); + } + else + { + index = FreePageBtreeSearchInternal(parent, first_page); + Assert(index < parent->hdr.nused); + if (index < parent->hdr.nused - 1) + memmove(&parent->u.internal_key[index], + &parent->u.internal_key[index + 1], + sizeof(FreePageBtreeInternalKey) + * (parent->hdr.nused - index - 1)); + } + parent->hdr.nused--; + Assert(parent->hdr.nused > 0); + + /* Recycle the page. */ + FreePageBtreeRecycle(fpm, fpm_pointer_to_page(base, btp)); + + /* Adjust ancestor keys if needed. */ + if (index == 0) + FreePageBtreeAdjustAncestorKeys(fpm, parent); + + /* Consider whether to consolidate the parent with a sibling. */ + FreePageBtreeConsolidate(fpm, parent); +} + +/* + * Search the btree for an entry for the given first page and initialize + * *result with the results of the search. result->page and result->index + * indicate either the position of an exact match or the position at which + * the new key should be inserted. result->found is true for an exact match, + * otherwise false. result->split_pages will contain the number of additional + * btree pages that will be needed when performing a split to insert a key. + * Except as described above, the contents of fields in the result object are + * undefined on return. + */ +static void +FreePageBtreeSearch(FreePageManager *fpm, Size first_page, + FreePageBtreeSearchResult *result) +{ + char *base = fpm_segment_base(fpm); + FreePageBtree *btp = relptr_access(base, fpm->btree_root); + Size index; + + result->split_pages = 1; + + /* If the btree is empty, there's nothing to find. */ + if (btp == NULL) + { + result->page = NULL; + result->found = false; + return; + } + + /* Descend until we hit a leaf. */ + while (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC) + { + FreePageBtree *child; + bool found_exact; + + index = FreePageBtreeSearchInternal(btp, first_page); + found_exact = index < btp->hdr.nused && + btp->u.internal_key[index].first_page == first_page; + + /* + * If we found an exact match we descend directly. Otherwise, we + * descend into the child to the left if possible so that we can find + * the insertion point at that child's high end. + */ + if (!found_exact && index > 0) + --index; + + /* Track required split depth for leaf insert. */ + if (btp->hdr.nused >= FPM_ITEMS_PER_INTERNAL_PAGE) + { + Assert(btp->hdr.nused == FPM_ITEMS_PER_INTERNAL_PAGE); + result->split_pages++; + } + else + result->split_pages = 0; + + /* Descend to appropriate child page. */ + Assert(index < btp->hdr.nused); + child = relptr_access(base, btp->u.internal_key[index].child); + Assert(relptr_access(base, child->hdr.parent) == btp); + btp = child; + } + + /* Track required split depth for leaf insert. */ + if (btp->hdr.nused >= FPM_ITEMS_PER_LEAF_PAGE) + { + Assert(btp->hdr.nused == FPM_ITEMS_PER_INTERNAL_PAGE); + result->split_pages++; + } + else + result->split_pages = 0; + + /* Search leaf page. */ + index = FreePageBtreeSearchLeaf(btp, first_page); + + /* Assemble results. */ + result->page = btp; + result->index = index; + result->found = index < btp->hdr.nused && + first_page == btp->u.leaf_key[index].first_page; +} + +/* + * Search an internal page for the first key greater than or equal to a given + * page number. Returns the index of that key, or one greater than the number + * of keys on the page if none. + */ +static Size +FreePageBtreeSearchInternal(FreePageBtree *btp, Size first_page) +{ + Size low = 0; + Size high = btp->hdr.nused; + + Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + Assert(high > 0 && high <= FPM_ITEMS_PER_INTERNAL_PAGE); + + while (low < high) + { + Size mid = (low + high) / 2; + Size val = btp->u.internal_key[mid].first_page; + + if (first_page == val) + return mid; + else if (first_page < val) + high = mid; + else + low = mid + 1; + } + + return low; +} + +/* + * Search a leaf page for the first key greater than or equal to a given + * page number. Returns the index of that key, or one greater than the number + * of keys on the page if none. + */ +static Size +FreePageBtreeSearchLeaf(FreePageBtree *btp, Size first_page) +{ + Size low = 0; + Size high = btp->hdr.nused; + + Assert(btp->hdr.magic == FREE_PAGE_LEAF_MAGIC); + Assert(high > 0 && high <= FPM_ITEMS_PER_LEAF_PAGE); + + while (low < high) + { + Size mid = (low + high) / 2; + Size val = btp->u.leaf_key[mid].first_page; + + if (first_page == val) + return mid; + else if (first_page < val) + high = mid; + else + low = mid + 1; + } + + return low; +} + +/* + * Allocate a new btree page and move half the keys from the provided page + * to the new page. Caller is responsible for making sure that there's a + * page available from fpm->btree_recycle. Returns a pointer to the new page, + * to which caller must add a downlink. + */ +static FreePageBtree * +FreePageBtreeSplitPage(FreePageManager *fpm, FreePageBtree *btp) +{ + FreePageBtree *newsibling; + + newsibling = FreePageBtreeGetRecycled(fpm); + newsibling->hdr.magic = btp->hdr.magic; + newsibling->hdr.nused = btp->hdr.nused / 2; + relptr_copy(newsibling->hdr.parent, btp->hdr.parent); + btp->hdr.nused -= newsibling->hdr.nused; + + if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC) + memcpy(&newsibling->u.leaf_key, + &btp->u.leaf_key[btp->hdr.nused], + sizeof(FreePageBtreeLeafKey) * newsibling->hdr.nused); + else + { + Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + memcpy(&newsibling->u.internal_key, + &btp->u.internal_key[btp->hdr.nused], + sizeof(FreePageBtreeInternalKey) * newsibling->hdr.nused); + FreePageBtreeUpdateParentPointers(fpm_segment_base(fpm), newsibling); + } + + return newsibling; +} + +/* + * When internal pages are split or merged, the parent pointers of their + * children must be updated. + */ +static void +FreePageBtreeUpdateParentPointers(char *base, FreePageBtree *btp) +{ + Size i; + + Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC); + for (i = 0; i < btp->hdr.nused; ++i) + { + FreePageBtree *child; + + child = relptr_access(base, btp->u.internal_key[i].child); + relptr_store(base, child->hdr.parent, btp); + } +} + +/* + * Debugging dump of btree data. + */ +static void +FreePageManagerDumpBtree(FreePageManager *fpm, FreePageBtree *btp, + FreePageBtree *parent, int level, StringInfo buf) +{ + char *base = fpm_segment_base(fpm); + Size pageno = fpm_pointer_to_page(base, btp); + Size index; + FreePageBtree *check_parent; + + check_stack_depth(); + check_parent = relptr_access(base, btp->hdr.parent); + appendStringInfo(buf, " %zu@%d %c", pageno, level, + btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC ? 'i' : 'l'); + if (parent != check_parent) + appendStringInfo(buf, " [actual parent %zu, expected %zu]", + fpm_pointer_to_page(base, check_parent), + fpm_pointer_to_page(base, parent)); + appendStringInfoChar(buf, ':'); + for (index = 0; index < btp->hdr.nused; ++index) + { + if (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC) + appendStringInfo(buf, " %zu->%zu", + btp->u.internal_key[index].first_page, + relptr_offset(btp->u.internal_key[index].child) / FPM_PAGE_SIZE); + else + appendStringInfo(buf, " %zu(%zu)", + btp->u.leaf_key[index].first_page, + btp->u.leaf_key[index].npages); + } + appendStringInfoChar(buf, '\n'); + + if (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC) + { + for (index = 0; index < btp->hdr.nused; ++index) + { + FreePageBtree *child; + + child = relptr_access(base, btp->u.internal_key[index].child); + FreePageManagerDumpBtree(fpm, child, btp, level + 1, buf); + } + } +} + +/* + * Debugging dump of free-span data. + */ +static void +FreePageManagerDumpSpans(FreePageManager *fpm, FreePageSpanLeader *span, + Size expected_pages, StringInfo buf) +{ + char *base = fpm_segment_base(fpm); + + while (span != NULL) + { + if (span->npages != expected_pages) + appendStringInfo(buf, " %zu(%zu)", fpm_pointer_to_page(base, span), + span->npages); + else + appendStringInfo(buf, " %zu", fpm_pointer_to_page(base, span)); + span = relptr_access(base, span->next); + } + + appendStringInfoChar(buf, '\n'); +} + +/* + * This function allocates a run of pages of the given length from the free + * page manager. + */ +static bool +FreePageManagerGetInternal(FreePageManager *fpm, Size npages, Size *first_page) +{ + char *base = fpm_segment_base(fpm); + FreePageSpanLeader *victim = NULL; + FreePageSpanLeader *prev; + FreePageSpanLeader *next; + FreePageBtreeSearchResult result; + Size victim_page = 0; /* placate compiler */ + Size f; + + /* + * Search for a free span. + * + * Right now, we use a simple best-fit policy here, but it's possible for + * this to result in memory fragmentation if we're repeatedly asked to + * allocate chunks just a little smaller than what we have available. + * Hopefully, this is unlikely, because we expect most requests to be + * single pages or superblock-sized chunks -- but no policy can be optimal + * under all circumstances unless it has knowledge of future allocation + * patterns. + */ + for (f = Min(npages, FPM_NUM_FREELISTS) - 1; f < FPM_NUM_FREELISTS; ++f) + { + /* Skip empty freelists. */ + if (relptr_is_null(fpm->freelist[f])) + continue; + + /* + * All of the freelists except the last one contain only items of a + * single size, so we just take the first one. But the final free + * list contains everything too big for any of the other lists, so we + * need to search the list. + */ + if (f < FPM_NUM_FREELISTS - 1) + victim = relptr_access(base, fpm->freelist[f]); + else + { + FreePageSpanLeader *candidate; + + candidate = relptr_access(base, fpm->freelist[f]); + do + { + if (candidate->npages >= npages && (victim == NULL || + victim->npages > candidate->npages)) + { + victim = candidate; + if (victim->npages == npages) + break; + } + candidate = relptr_access(base, candidate->next); + } while (candidate != NULL); + } + break; + } + + /* If we didn't find an allocatable span, return failure. */ + if (victim == NULL) + return false; + + /* Remove span from free list. */ + Assert(victim->magic == FREE_PAGE_SPAN_LEADER_MAGIC); + prev = relptr_access(base, victim->prev); + next = relptr_access(base, victim->next); + if (prev != NULL) + relptr_copy(prev->next, victim->next); + else + relptr_copy(fpm->freelist[f], victim->next); + if (next != NULL) + relptr_copy(next->prev, victim->prev); + victim_page = fpm_pointer_to_page(base, victim); + + /* Decide whether we might be invalidating contiguous_pages. */ + if (f == FPM_NUM_FREELISTS - 1 && + victim->npages == fpm->contiguous_pages) + { + /* + * The victim span came from the oversized freelist, and had the same + * size as the longest span. There may or may not be another one of + * the same size, so contiguous_pages must be recomputed just to be + * safe. + */ + fpm->contiguous_pages_dirty = true; + } + else if (f + 1 == fpm->contiguous_pages && + relptr_is_null(fpm->freelist[f])) + { + /* + * The victim span came from a fixed sized freelist, and it was the + * list for spans of the same size as the current longest span, and + * the list is now empty after removing the victim. So + * contiguous_pages must be recomputed without a doubt. + */ + fpm->contiguous_pages_dirty = true; + } + + /* + * If we haven't initialized the btree yet, the victim must be the single + * span stored within the FreePageManager itself. Otherwise, we need to + * update the btree. + */ + if (relptr_is_null(fpm->btree_root)) + { + Assert(victim_page == fpm->singleton_first_page); + Assert(victim->npages == fpm->singleton_npages); + Assert(victim->npages >= npages); + fpm->singleton_first_page += npages; + fpm->singleton_npages -= npages; + if (fpm->singleton_npages > 0) + FreePagePushSpanLeader(fpm, fpm->singleton_first_page, + fpm->singleton_npages); + } + else + { + /* + * If the span we found is exactly the right size, remove it from the + * btree completely. Otherwise, adjust the btree entry to reflect the + * still-unallocated portion of the span, and put that portion on the + * appropriate free list. + */ + FreePageBtreeSearch(fpm, victim_page, &result); + Assert(result.found); + if (victim->npages == npages) + FreePageBtreeRemove(fpm, result.page, result.index); + else + { + FreePageBtreeLeafKey *key; + + /* Adjust btree to reflect remaining pages. */ + Assert(victim->npages > npages); + key = &result.page->u.leaf_key[result.index]; + Assert(key->npages == victim->npages); + key->first_page += npages; + key->npages -= npages; + if (result.index == 0) + FreePageBtreeAdjustAncestorKeys(fpm, result.page); + + /* Put the unallocated pages back on the appropriate free list. */ + FreePagePushSpanLeader(fpm, victim_page + npages, + victim->npages - npages); + } + } + + /* Return results to caller. */ + *first_page = fpm_pointer_to_page(base, victim); + return true; +} + +/* + * Put a range of pages into the btree and freelists, consolidating it with + * existing free spans just before and/or after it. If 'soft' is true, + * only perform the insertion if it can be done without allocating new btree + * pages; if false, do it always. Returns 0 if the soft flag caused the + * insertion to be skipped, or otherwise the size of the contiguous span + * created by the insertion. This may be larger than npages if we're able + * to consolidate with an adjacent range. + */ +static Size +FreePageManagerPutInternal(FreePageManager *fpm, Size first_page, Size npages, + bool soft) +{ + char *base = fpm_segment_base(fpm); + FreePageBtreeSearchResult result; + FreePageBtreeLeafKey *prevkey = NULL; + FreePageBtreeLeafKey *nextkey = NULL; + FreePageBtree *np; + Size nindex; + + Assert(npages > 0); + + /* We can store a single free span without initializing the btree. */ + if (fpm->btree_depth == 0) + { + if (fpm->singleton_npages == 0) + { + /* Don't have a span yet; store this one. */ + fpm->singleton_first_page = first_page; + fpm->singleton_npages = npages; + FreePagePushSpanLeader(fpm, first_page, npages); + return fpm->singleton_npages; + } + else if (fpm->singleton_first_page + fpm->singleton_npages == + first_page) + { + /* New span immediately follows sole existing span. */ + fpm->singleton_npages += npages; + FreePagePopSpanLeader(fpm, fpm->singleton_first_page); + FreePagePushSpanLeader(fpm, fpm->singleton_first_page, + fpm->singleton_npages); + return fpm->singleton_npages; + } + else if (first_page + npages == fpm->singleton_first_page) + { + /* New span immediately precedes sole existing span. */ + FreePagePopSpanLeader(fpm, fpm->singleton_first_page); + fpm->singleton_first_page = first_page; + fpm->singleton_npages += npages; + FreePagePushSpanLeader(fpm, fpm->singleton_first_page, + fpm->singleton_npages); + return fpm->singleton_npages; + } + else + { + /* Not contiguous; we need to initialize the btree. */ + Size root_page; + FreePageBtree *root; + + if (!relptr_is_null(fpm->btree_recycle)) + root = FreePageBtreeGetRecycled(fpm); + else if (soft) + return 0; /* Should not allocate if soft. */ + else if (FreePageManagerGetInternal(fpm, 1, &root_page)) + root = (FreePageBtree *) fpm_page_to_pointer(base, root_page); + else + { + /* We'd better be able to get a page from the existing range. */ + elog(FATAL, "free page manager btree is corrupt"); + } + + /* Create the btree and move the preexisting range into it. */ + root->hdr.magic = FREE_PAGE_LEAF_MAGIC; + root->hdr.nused = 1; + relptr_store(base, root->hdr.parent, (FreePageBtree *) NULL); + root->u.leaf_key[0].first_page = fpm->singleton_first_page; + root->u.leaf_key[0].npages = fpm->singleton_npages; + relptr_store(base, fpm->btree_root, root); + fpm->singleton_first_page = 0; + fpm->singleton_npages = 0; + fpm->btree_depth = 1; + + /* + * Corner case: it may be that the btree root took the very last + * free page. In that case, the sole btree entry covers a zero + * page run, which is invalid. Overwrite it with the entry we're + * trying to insert and get out. + */ + if (root->u.leaf_key[0].npages == 0) + { + root->u.leaf_key[0].first_page = first_page; + root->u.leaf_key[0].npages = npages; + FreePagePushSpanLeader(fpm, first_page, npages); + return npages; + } + + /* Fall through to insert the new key. */ + } + } + + /* Search the btree. */ + FreePageBtreeSearch(fpm, first_page, &result); + Assert(!result.found); + if (result.index > 0) + prevkey = &result.page->u.leaf_key[result.index - 1]; + if (result.index < result.page->hdr.nused) + { + np = result.page; + nindex = result.index; + nextkey = &result.page->u.leaf_key[result.index]; + } + else + { + np = FreePageBtreeFindRightSibling(base, result.page); + nindex = 0; + if (np != NULL) + nextkey = &np->u.leaf_key[0]; + } + + /* Consolidate with the previous entry if possible. */ + if (prevkey != NULL && prevkey->first_page + prevkey->npages >= first_page) + { + bool remove_next = false; + Size result; + + Assert(prevkey->first_page + prevkey->npages == first_page); + prevkey->npages = (first_page - prevkey->first_page) + npages; + + /* Check whether we can *also* consolidate with the following entry. */ + if (nextkey != NULL && + prevkey->first_page + prevkey->npages >= nextkey->first_page) + { + Assert(prevkey->first_page + prevkey->npages == + nextkey->first_page); + prevkey->npages = (nextkey->first_page - prevkey->first_page) + + nextkey->npages; + FreePagePopSpanLeader(fpm, nextkey->first_page); + remove_next = true; + } + + /* Put the span on the correct freelist and save size. */ + FreePagePopSpanLeader(fpm, prevkey->first_page); + FreePagePushSpanLeader(fpm, prevkey->first_page, prevkey->npages); + result = prevkey->npages; + + /* + * If we consolidated with both the preceding and following entries, + * we must remove the following entry. We do this last, because + * removing an element from the btree may invalidate pointers we hold + * into the current data structure. + * + * NB: The btree is technically in an invalid state a this point + * because we've already updated prevkey to cover the same key space + * as nextkey. FreePageBtreeRemove() shouldn't notice that, though. + */ + if (remove_next) + FreePageBtreeRemove(fpm, np, nindex); + + return result; + } + + /* Consolidate with the next entry if possible. */ + if (nextkey != NULL && first_page + npages >= nextkey->first_page) + { + Size newpages; + + /* Compute new size for span. */ + Assert(first_page + npages == nextkey->first_page); + newpages = (nextkey->first_page - first_page) + nextkey->npages; + + /* Put span on correct free list. */ + FreePagePopSpanLeader(fpm, nextkey->first_page); + FreePagePushSpanLeader(fpm, first_page, newpages); + + /* Update key in place. */ + nextkey->first_page = first_page; + nextkey->npages = newpages; + + /* If reducing first key on page, ancestors might need adjustment. */ + if (nindex == 0) + FreePageBtreeAdjustAncestorKeys(fpm, np); + + return nextkey->npages; + } + + /* Split leaf page and as many of its ancestors as necessary. */ + if (result.split_pages > 0) + { + /* + * NB: We could consider various coping strategies here to avoid a + * split; most obviously, if np != result.page, we could target that + * page instead. More complicated shuffling strategies could be + * possible as well; basically, unless every single leaf page is 100% + * full, we can jam this key in there if we try hard enough. It's + * unlikely that trying that hard is worthwhile, but it's possible we + * might need to make more than no effort. For now, we just do the + * easy thing, which is nothing. + */ + + /* If this is a soft insert, it's time to give up. */ + if (soft) + return 0; + + /* Check whether we need to allocate more btree pages to split. */ + if (result.split_pages > fpm->btree_recycle_count) + { + Size pages_needed; + Size recycle_page; + Size i; + + /* + * Allocate the required number of pages and split each one in + * turn. This should never fail, because if we've got enough + * spans of free pages kicking around that we need additional + * storage space just to remember them all, then we should + * certainly have enough to expand the btree, which should only + * ever use a tiny number of pages compared to the number under + * management. If it does, something's badly screwed up. + */ + pages_needed = result.split_pages - fpm->btree_recycle_count; + for (i = 0; i < pages_needed; ++i) + { + if (!FreePageManagerGetInternal(fpm, 1, &recycle_page)) + elog(FATAL, "free page manager btree is corrupt"); + FreePageBtreeRecycle(fpm, recycle_page); + } + + /* + * The act of allocating pages to recycle may have invalidated the + * results of our previous btree research, so repeat it. (We could + * recheck whether any of our split-avoidance strategies that were + * not viable before now are, but it hardly seems worthwhile, so + * we don't bother. Consolidation can't be possible now if it + * wasn't previously.) + */ + FreePageBtreeSearch(fpm, first_page, &result); + + /* + * The act of allocating pages for use in constructing our btree + * should never cause any page to become more full, so the new + * split depth should be no greater than the old one, and perhaps + * less if we fortuitously allocated a chunk that freed up a slot + * on the page we need to update. + */ + Assert(result.split_pages <= fpm->btree_recycle_count); + } + + /* If we still need to perform a split, do it. */ + if (result.split_pages > 0) + { + FreePageBtree *split_target = result.page; + FreePageBtree *child = NULL; + Size key = first_page; + + for (;;) + { + FreePageBtree *newsibling; + FreePageBtree *parent; + + /* Identify parent page, which must receive downlink. */ + parent = relptr_access(base, split_target->hdr.parent); + + /* Split the page - downlink not added yet. */ + newsibling = FreePageBtreeSplitPage(fpm, split_target); + + /* + * At this point in the loop, we're always carrying a pending + * insertion. On the first pass, it's the actual key we're + * trying to insert; on subsequent passes, it's the downlink + * that needs to be added as a result of the split performed + * during the previous loop iteration. Since we've just split + * the page, there's definitely room on one of the two + * resulting pages. + */ + if (child == NULL) + { + Size index; + FreePageBtree *insert_into; + + insert_into = key < newsibling->u.leaf_key[0].first_page ? + split_target : newsibling; + index = FreePageBtreeSearchLeaf(insert_into, key); + FreePageBtreeInsertLeaf(insert_into, index, key, npages); + if (index == 0 && insert_into == split_target) + FreePageBtreeAdjustAncestorKeys(fpm, split_target); + } + else + { + Size index; + FreePageBtree *insert_into; + + insert_into = + key < newsibling->u.internal_key[0].first_page ? + split_target : newsibling; + index = FreePageBtreeSearchInternal(insert_into, key); + FreePageBtreeInsertInternal(base, insert_into, index, + key, child); + relptr_store(base, child->hdr.parent, insert_into); + if (index == 0 && insert_into == split_target) + FreePageBtreeAdjustAncestorKeys(fpm, split_target); + } + + /* If the page we just split has no parent, split the root. */ + if (parent == NULL) + { + FreePageBtree *newroot; + + newroot = FreePageBtreeGetRecycled(fpm); + newroot->hdr.magic = FREE_PAGE_INTERNAL_MAGIC; + newroot->hdr.nused = 2; + relptr_store(base, newroot->hdr.parent, + (FreePageBtree *) NULL); + newroot->u.internal_key[0].first_page = + FreePageBtreeFirstKey(split_target); + relptr_store(base, newroot->u.internal_key[0].child, + split_target); + relptr_store(base, split_target->hdr.parent, newroot); + newroot->u.internal_key[1].first_page = + FreePageBtreeFirstKey(newsibling); + relptr_store(base, newroot->u.internal_key[1].child, + newsibling); + relptr_store(base, newsibling->hdr.parent, newroot); + relptr_store(base, fpm->btree_root, newroot); + fpm->btree_depth++; + + break; + } + + /* If the parent page isn't full, insert the downlink. */ + key = newsibling->u.internal_key[0].first_page; + if (parent->hdr.nused < FPM_ITEMS_PER_INTERNAL_PAGE) + { + Size index; + + index = FreePageBtreeSearchInternal(parent, key); + FreePageBtreeInsertInternal(base, parent, index, + key, newsibling); + relptr_store(base, newsibling->hdr.parent, parent); + if (index == 0) + FreePageBtreeAdjustAncestorKeys(fpm, parent); + break; + } + + /* The parent also needs to be split, so loop around. */ + child = newsibling; + split_target = parent; + } + + /* + * The loop above did the insert, so just need to update the free + * list, and we're done. + */ + FreePagePushSpanLeader(fpm, first_page, npages); + + return npages; + } + } + + /* Physically add the key to the page. */ + Assert(result.page->hdr.nused < FPM_ITEMS_PER_LEAF_PAGE); + FreePageBtreeInsertLeaf(result.page, result.index, first_page, npages); + + /* If new first key on page, ancestors might need adjustment. */ + if (result.index == 0) + FreePageBtreeAdjustAncestorKeys(fpm, result.page); + + /* Put it on the free list. */ + FreePagePushSpanLeader(fpm, first_page, npages); + + return npages; +} + +/* + * Remove a FreePageSpanLeader from the linked-list that contains it, either + * because we're changing the size of the span, or because we're allocating it. + */ +static void +FreePagePopSpanLeader(FreePageManager *fpm, Size pageno) +{ + char *base = fpm_segment_base(fpm); + FreePageSpanLeader *span; + FreePageSpanLeader *next; + FreePageSpanLeader *prev; + + span = (FreePageSpanLeader *) fpm_page_to_pointer(base, pageno); + + next = relptr_access(base, span->next); + prev = relptr_access(base, span->prev); + if (next != NULL) + relptr_copy(next->prev, span->prev); + if (prev != NULL) + relptr_copy(prev->next, span->next); + else + { + Size f = Min(span->npages, FPM_NUM_FREELISTS) - 1; + + Assert(relptr_offset(fpm->freelist[f]) == pageno * FPM_PAGE_SIZE); + relptr_copy(fpm->freelist[f], span->next); + } +} + +/* + * Initialize a new FreePageSpanLeader and put it on the appropriate free list. + */ +static void +FreePagePushSpanLeader(FreePageManager *fpm, Size first_page, Size npages) +{ + char *base = fpm_segment_base(fpm); + Size f = Min(npages, FPM_NUM_FREELISTS) - 1; + FreePageSpanLeader *head = relptr_access(base, fpm->freelist[f]); + FreePageSpanLeader *span; + + span = (FreePageSpanLeader *) fpm_page_to_pointer(base, first_page); + span->magic = FREE_PAGE_SPAN_LEADER_MAGIC; + span->npages = npages; + relptr_store(base, span->next, head); + relptr_store(base, span->prev, (FreePageSpanLeader *) NULL); + if (head != NULL) + relptr_store(base, head->prev, span); + relptr_store(base, fpm->freelist[f], span); +} |