summaryrefslogtreecommitdiffstats
path: root/src/backend/commands/analyze.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/backend/commands/analyze.c3075
1 files changed, 3075 insertions, 0 deletions
diff --git a/src/backend/commands/analyze.c b/src/backend/commands/analyze.c
new file mode 100644
index 0000000..7b1a0f9
--- /dev/null
+++ b/src/backend/commands/analyze.c
@@ -0,0 +1,3075 @@
+/*-------------------------------------------------------------------------
+ *
+ * analyze.c
+ * the Postgres statistics generator
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/commands/analyze.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include <math.h>
+
+#include "access/detoast.h"
+#include "access/genam.h"
+#include "access/multixact.h"
+#include "access/relation.h"
+#include "access/sysattr.h"
+#include "access/table.h"
+#include "access/tableam.h"
+#include "access/transam.h"
+#include "access/tupconvert.h"
+#include "access/visibilitymap.h"
+#include "access/xact.h"
+#include "catalog/catalog.h"
+#include "catalog/index.h"
+#include "catalog/indexing.h"
+#include "catalog/pg_collation.h"
+#include "catalog/pg_inherits.h"
+#include "catalog/pg_namespace.h"
+#include "catalog/pg_statistic_ext.h"
+#include "commands/dbcommands.h"
+#include "commands/progress.h"
+#include "commands/tablecmds.h"
+#include "commands/vacuum.h"
+#include "executor/executor.h"
+#include "foreign/fdwapi.h"
+#include "miscadmin.h"
+#include "nodes/nodeFuncs.h"
+#include "parser/parse_oper.h"
+#include "parser/parse_relation.h"
+#include "pgstat.h"
+#include "postmaster/autovacuum.h"
+#include "statistics/extended_stats_internal.h"
+#include "statistics/statistics.h"
+#include "storage/bufmgr.h"
+#include "storage/lmgr.h"
+#include "storage/proc.h"
+#include "storage/procarray.h"
+#include "utils/acl.h"
+#include "utils/attoptcache.h"
+#include "utils/builtins.h"
+#include "utils/datum.h"
+#include "utils/fmgroids.h"
+#include "utils/guc.h"
+#include "utils/lsyscache.h"
+#include "utils/memutils.h"
+#include "utils/pg_rusage.h"
+#include "utils/sampling.h"
+#include "utils/sortsupport.h"
+#include "utils/spccache.h"
+#include "utils/syscache.h"
+#include "utils/timestamp.h"
+
+
+/* Per-index data for ANALYZE */
+typedef struct AnlIndexData
+{
+ IndexInfo *indexInfo; /* BuildIndexInfo result */
+ double tupleFract; /* fraction of rows for partial index */
+ VacAttrStats **vacattrstats; /* index attrs to analyze */
+ int attr_cnt;
+} AnlIndexData;
+
+
+/* Default statistics target (GUC parameter) */
+int default_statistics_target = 100;
+
+/* A few variables that don't seem worth passing around as parameters */
+static MemoryContext anl_context = NULL;
+static BufferAccessStrategy vac_strategy;
+
+
+static void do_analyze_rel(Relation onerel,
+ VacuumParams *params, List *va_cols,
+ AcquireSampleRowsFunc acquirefunc, BlockNumber relpages,
+ bool inh, bool in_outer_xact, int elevel);
+static void compute_index_stats(Relation onerel, double totalrows,
+ AnlIndexData *indexdata, int nindexes,
+ HeapTuple *rows, int numrows,
+ MemoryContext col_context);
+static VacAttrStats *examine_attribute(Relation onerel, int attnum,
+ Node *index_expr);
+static int acquire_sample_rows(Relation onerel, int elevel,
+ HeapTuple *rows, int targrows,
+ double *totalrows, double *totaldeadrows);
+static int compare_rows(const void *a, const void *b, void *arg);
+static int acquire_inherited_sample_rows(Relation onerel, int elevel,
+ HeapTuple *rows, int targrows,
+ double *totalrows, double *totaldeadrows);
+static void update_attstats(Oid relid, bool inh,
+ int natts, VacAttrStats **vacattrstats);
+static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
+static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
+
+
+/*
+ * analyze_rel() -- analyze one relation
+ *
+ * relid identifies the relation to analyze. If relation is supplied, use
+ * the name therein for reporting any failure to open/lock the rel; do not
+ * use it once we've successfully opened the rel, since it might be stale.
+ */
+void
+analyze_rel(Oid relid, RangeVar *relation,
+ VacuumParams *params, List *va_cols, bool in_outer_xact,
+ BufferAccessStrategy bstrategy)
+{
+ Relation onerel;
+ int elevel;
+ AcquireSampleRowsFunc acquirefunc = NULL;
+ BlockNumber relpages = 0;
+
+ /* Select logging level */
+ if (params->options & VACOPT_VERBOSE)
+ elevel = INFO;
+ else
+ elevel = DEBUG2;
+
+ /* Set up static variables */
+ vac_strategy = bstrategy;
+
+ /*
+ * Check for user-requested abort.
+ */
+ CHECK_FOR_INTERRUPTS();
+
+ /*
+ * Open the relation, getting ShareUpdateExclusiveLock to ensure that two
+ * ANALYZEs don't run on it concurrently. (This also locks out a
+ * concurrent VACUUM, which doesn't matter much at the moment but might
+ * matter if we ever try to accumulate stats on dead tuples.) If the rel
+ * has been dropped since we last saw it, we don't need to process it.
+ *
+ * Make sure to generate only logs for ANALYZE in this case.
+ */
+ onerel = vacuum_open_relation(relid, relation, params->options & ~(VACOPT_VACUUM),
+ params->log_min_duration >= 0,
+ ShareUpdateExclusiveLock);
+
+ /* leave if relation could not be opened or locked */
+ if (!onerel)
+ return;
+
+ /*
+ * Check if relation needs to be skipped based on ownership. This check
+ * happens also when building the relation list to analyze for a manual
+ * operation, and needs to be done additionally here as ANALYZE could
+ * happen across multiple transactions where relation ownership could have
+ * changed in-between. Make sure to generate only logs for ANALYZE in
+ * this case.
+ */
+ if (!vacuum_is_relation_owner(RelationGetRelid(onerel),
+ onerel->rd_rel,
+ params->options & VACOPT_ANALYZE))
+ {
+ relation_close(onerel, ShareUpdateExclusiveLock);
+ return;
+ }
+
+ /*
+ * Silently ignore tables that are temp tables of other backends ---
+ * trying to analyze these is rather pointless, since their contents are
+ * probably not up-to-date on disk. (We don't throw a warning here; it
+ * would just lead to chatter during a database-wide ANALYZE.)
+ */
+ if (RELATION_IS_OTHER_TEMP(onerel))
+ {
+ relation_close(onerel, ShareUpdateExclusiveLock);
+ return;
+ }
+
+ /*
+ * We can ANALYZE any table except pg_statistic. See update_attstats
+ */
+ if (RelationGetRelid(onerel) == StatisticRelationId)
+ {
+ relation_close(onerel, ShareUpdateExclusiveLock);
+ return;
+ }
+
+ /*
+ * Check that it's of an analyzable relkind, and set up appropriately.
+ */
+ if (onerel->rd_rel->relkind == RELKIND_RELATION ||
+ onerel->rd_rel->relkind == RELKIND_MATVIEW)
+ {
+ /* Regular table, so we'll use the regular row acquisition function */
+ acquirefunc = acquire_sample_rows;
+ /* Also get regular table's size */
+ relpages = RelationGetNumberOfBlocks(onerel);
+ }
+ else if (onerel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
+ {
+ /*
+ * For a foreign table, call the FDW's hook function to see whether it
+ * supports analysis.
+ */
+ FdwRoutine *fdwroutine;
+ bool ok = false;
+
+ fdwroutine = GetFdwRoutineForRelation(onerel, false);
+
+ if (fdwroutine->AnalyzeForeignTable != NULL)
+ ok = fdwroutine->AnalyzeForeignTable(onerel,
+ &acquirefunc,
+ &relpages);
+
+ if (!ok)
+ {
+ ereport(WARNING,
+ (errmsg("skipping \"%s\" --- cannot analyze this foreign table",
+ RelationGetRelationName(onerel))));
+ relation_close(onerel, ShareUpdateExclusiveLock);
+ return;
+ }
+ }
+ else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
+ {
+ /*
+ * For partitioned tables, we want to do the recursive ANALYZE below.
+ */
+ }
+ else
+ {
+ /* No need for a WARNING if we already complained during VACUUM */
+ if (!(params->options & VACOPT_VACUUM))
+ ereport(WARNING,
+ (errmsg("skipping \"%s\" --- cannot analyze non-tables or special system tables",
+ RelationGetRelationName(onerel))));
+ relation_close(onerel, ShareUpdateExclusiveLock);
+ return;
+ }
+
+ /*
+ * OK, let's do it. First, initialize progress reporting.
+ */
+ pgstat_progress_start_command(PROGRESS_COMMAND_ANALYZE,
+ RelationGetRelid(onerel));
+
+ /*
+ * Do the normal non-recursive ANALYZE. We can skip this for partitioned
+ * tables, which don't contain any rows.
+ */
+ if (onerel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
+ do_analyze_rel(onerel, params, va_cols, acquirefunc,
+ relpages, false, in_outer_xact, elevel);
+
+ /*
+ * If there are child tables, do recursive ANALYZE.
+ */
+ if (onerel->rd_rel->relhassubclass)
+ do_analyze_rel(onerel, params, va_cols, acquirefunc, relpages,
+ true, in_outer_xact, elevel);
+
+ /*
+ * Close source relation now, but keep lock so that no one deletes it
+ * before we commit. (If someone did, they'd fail to clean up the entries
+ * we made in pg_statistic. Also, releasing the lock before commit would
+ * expose us to concurrent-update failures in update_attstats.)
+ */
+ relation_close(onerel, NoLock);
+
+ pgstat_progress_end_command();
+}
+
+/*
+ * do_analyze_rel() -- analyze one relation, recursively or not
+ *
+ * Note that "acquirefunc" is only relevant for the non-inherited case.
+ * For the inherited case, acquire_inherited_sample_rows() determines the
+ * appropriate acquirefunc for each child table.
+ */
+static void
+do_analyze_rel(Relation onerel, VacuumParams *params,
+ List *va_cols, AcquireSampleRowsFunc acquirefunc,
+ BlockNumber relpages, bool inh, bool in_outer_xact,
+ int elevel)
+{
+ int attr_cnt,
+ tcnt,
+ i,
+ ind;
+ Relation *Irel;
+ int nindexes;
+ bool hasindex;
+ VacAttrStats **vacattrstats;
+ AnlIndexData *indexdata;
+ int targrows,
+ numrows,
+ minrows;
+ double totalrows,
+ totaldeadrows;
+ HeapTuple *rows;
+ PGRUsage ru0;
+ TimestampTz starttime = 0;
+ MemoryContext caller_context;
+ Oid save_userid;
+ int save_sec_context;
+ int save_nestlevel;
+ int64 AnalyzePageHit = VacuumPageHit;
+ int64 AnalyzePageMiss = VacuumPageMiss;
+ int64 AnalyzePageDirty = VacuumPageDirty;
+ PgStat_Counter startreadtime = 0;
+ PgStat_Counter startwritetime = 0;
+
+ if (inh)
+ ereport(elevel,
+ (errmsg("analyzing \"%s.%s\" inheritance tree",
+ get_namespace_name(RelationGetNamespace(onerel)),
+ RelationGetRelationName(onerel))));
+ else
+ ereport(elevel,
+ (errmsg("analyzing \"%s.%s\"",
+ get_namespace_name(RelationGetNamespace(onerel)),
+ RelationGetRelationName(onerel))));
+
+ /*
+ * Set up a working context so that we can easily free whatever junk gets
+ * created.
+ */
+ anl_context = AllocSetContextCreate(CurrentMemoryContext,
+ "Analyze",
+ ALLOCSET_DEFAULT_SIZES);
+ caller_context = MemoryContextSwitchTo(anl_context);
+
+ /*
+ * Switch to the table owner's userid, so that any index functions are run
+ * as that user. Also lock down security-restricted operations and
+ * arrange to make GUC variable changes local to this command.
+ */
+ GetUserIdAndSecContext(&save_userid, &save_sec_context);
+ SetUserIdAndSecContext(onerel->rd_rel->relowner,
+ save_sec_context | SECURITY_RESTRICTED_OPERATION);
+ save_nestlevel = NewGUCNestLevel();
+
+ /* measure elapsed time iff autovacuum logging requires it */
+ if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0)
+ {
+ if (track_io_timing)
+ {
+ startreadtime = pgStatBlockReadTime;
+ startwritetime = pgStatBlockWriteTime;
+ }
+
+ pg_rusage_init(&ru0);
+ if (params->log_min_duration >= 0)
+ starttime = GetCurrentTimestamp();
+ }
+
+ /*
+ * Determine which columns to analyze
+ *
+ * Note that system attributes are never analyzed, so we just reject them
+ * at the lookup stage. We also reject duplicate column mentions. (We
+ * could alternatively ignore duplicates, but analyzing a column twice
+ * won't work; we'd end up making a conflicting update in pg_statistic.)
+ */
+ if (va_cols != NIL)
+ {
+ Bitmapset *unique_cols = NULL;
+ ListCell *le;
+
+ vacattrstats = (VacAttrStats **) palloc(list_length(va_cols) *
+ sizeof(VacAttrStats *));
+ tcnt = 0;
+ foreach(le, va_cols)
+ {
+ char *col = strVal(lfirst(le));
+
+ i = attnameAttNum(onerel, col, false);
+ if (i == InvalidAttrNumber)
+ ereport(ERROR,
+ (errcode(ERRCODE_UNDEFINED_COLUMN),
+ errmsg("column \"%s\" of relation \"%s\" does not exist",
+ col, RelationGetRelationName(onerel))));
+ if (bms_is_member(i, unique_cols))
+ ereport(ERROR,
+ (errcode(ERRCODE_DUPLICATE_COLUMN),
+ errmsg("column \"%s\" of relation \"%s\" appears more than once",
+ col, RelationGetRelationName(onerel))));
+ unique_cols = bms_add_member(unique_cols, i);
+
+ vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
+ if (vacattrstats[tcnt] != NULL)
+ tcnt++;
+ }
+ attr_cnt = tcnt;
+ }
+ else
+ {
+ attr_cnt = onerel->rd_att->natts;
+ vacattrstats = (VacAttrStats **)
+ palloc(attr_cnt * sizeof(VacAttrStats *));
+ tcnt = 0;
+ for (i = 1; i <= attr_cnt; i++)
+ {
+ vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
+ if (vacattrstats[tcnt] != NULL)
+ tcnt++;
+ }
+ attr_cnt = tcnt;
+ }
+
+ /*
+ * Open all indexes of the relation, and see if there are any analyzable
+ * columns in the indexes. We do not analyze index columns if there was
+ * an explicit column list in the ANALYZE command, however.
+ *
+ * If we are doing a recursive scan, we don't want to touch the parent's
+ * indexes at all. If we're processing a partitioned table, we need to
+ * know if there are any indexes, but we don't want to process them.
+ */
+ if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
+ {
+ List *idxs = RelationGetIndexList(onerel);
+
+ Irel = NULL;
+ nindexes = 0;
+ hasindex = idxs != NIL;
+ list_free(idxs);
+ }
+ else if (!inh)
+ {
+ vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
+ hasindex = nindexes > 0;
+ }
+ else
+ {
+ Irel = NULL;
+ nindexes = 0;
+ hasindex = false;
+ }
+ indexdata = NULL;
+ if (nindexes > 0)
+ {
+ indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
+ for (ind = 0; ind < nindexes; ind++)
+ {
+ AnlIndexData *thisdata = &indexdata[ind];
+ IndexInfo *indexInfo;
+
+ thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
+ thisdata->tupleFract = 1.0; /* fix later if partial */
+ if (indexInfo->ii_Expressions != NIL && va_cols == NIL)
+ {
+ ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
+
+ thisdata->vacattrstats = (VacAttrStats **)
+ palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
+ tcnt = 0;
+ for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
+ {
+ int keycol = indexInfo->ii_IndexAttrNumbers[i];
+
+ if (keycol == 0)
+ {
+ /* Found an index expression */
+ Node *indexkey;
+
+ if (indexpr_item == NULL) /* shouldn't happen */
+ elog(ERROR, "too few entries in indexprs list");
+ indexkey = (Node *) lfirst(indexpr_item);
+ indexpr_item = lnext(indexInfo->ii_Expressions,
+ indexpr_item);
+ thisdata->vacattrstats[tcnt] =
+ examine_attribute(Irel[ind], i + 1, indexkey);
+ if (thisdata->vacattrstats[tcnt] != NULL)
+ tcnt++;
+ }
+ }
+ thisdata->attr_cnt = tcnt;
+ }
+ }
+ }
+
+ /*
+ * Determine how many rows we need to sample, using the worst case from
+ * all analyzable columns. We use a lower bound of 100 rows to avoid
+ * possible overflow in Vitter's algorithm. (Note: that will also be the
+ * target in the corner case where there are no analyzable columns.)
+ */
+ targrows = 100;
+ for (i = 0; i < attr_cnt; i++)
+ {
+ if (targrows < vacattrstats[i]->minrows)
+ targrows = vacattrstats[i]->minrows;
+ }
+ for (ind = 0; ind < nindexes; ind++)
+ {
+ AnlIndexData *thisdata = &indexdata[ind];
+
+ for (i = 0; i < thisdata->attr_cnt; i++)
+ {
+ if (targrows < thisdata->vacattrstats[i]->minrows)
+ targrows = thisdata->vacattrstats[i]->minrows;
+ }
+ }
+
+ /*
+ * Look at extended statistics objects too, as those may define custom
+ * statistics target. So we may need to sample more rows and then build
+ * the statistics with enough detail.
+ */
+ minrows = ComputeExtStatisticsRows(onerel, attr_cnt, vacattrstats);
+
+ if (targrows < minrows)
+ targrows = minrows;
+
+ /*
+ * Acquire the sample rows
+ */
+ rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
+ pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
+ inh ? PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS_INH :
+ PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS);
+ if (inh)
+ numrows = acquire_inherited_sample_rows(onerel, elevel,
+ rows, targrows,
+ &totalrows, &totaldeadrows);
+ else
+ numrows = (*acquirefunc) (onerel, elevel,
+ rows, targrows,
+ &totalrows, &totaldeadrows);
+
+ /*
+ * Compute the statistics. Temporary results during the calculations for
+ * each column are stored in a child context. The calc routines are
+ * responsible to make sure that whatever they store into the VacAttrStats
+ * structure is allocated in anl_context.
+ */
+ if (numrows > 0)
+ {
+ MemoryContext col_context,
+ old_context;
+ bool build_ext_stats;
+
+ pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
+ PROGRESS_ANALYZE_PHASE_COMPUTE_STATS);
+
+ col_context = AllocSetContextCreate(anl_context,
+ "Analyze Column",
+ ALLOCSET_DEFAULT_SIZES);
+ old_context = MemoryContextSwitchTo(col_context);
+
+ for (i = 0; i < attr_cnt; i++)
+ {
+ VacAttrStats *stats = vacattrstats[i];
+ AttributeOpts *aopt;
+
+ stats->rows = rows;
+ stats->tupDesc = onerel->rd_att;
+ stats->compute_stats(stats,
+ std_fetch_func,
+ numrows,
+ totalrows);
+
+ /*
+ * If the appropriate flavor of the n_distinct option is
+ * specified, override with the corresponding value.
+ */
+ aopt = get_attribute_options(onerel->rd_id, stats->attr->attnum);
+ if (aopt != NULL)
+ {
+ float8 n_distinct;
+
+ n_distinct = inh ? aopt->n_distinct_inherited : aopt->n_distinct;
+ if (n_distinct != 0.0)
+ stats->stadistinct = n_distinct;
+ }
+
+ MemoryContextResetAndDeleteChildren(col_context);
+ }
+
+ if (nindexes > 0)
+ compute_index_stats(onerel, totalrows,
+ indexdata, nindexes,
+ rows, numrows,
+ col_context);
+
+ MemoryContextSwitchTo(old_context);
+ MemoryContextDelete(col_context);
+
+ /*
+ * Emit the completed stats rows into pg_statistic, replacing any
+ * previous statistics for the target columns. (If there are stats in
+ * pg_statistic for columns we didn't process, we leave them alone.)
+ */
+ update_attstats(RelationGetRelid(onerel), inh,
+ attr_cnt, vacattrstats);
+
+ for (ind = 0; ind < nindexes; ind++)
+ {
+ AnlIndexData *thisdata = &indexdata[ind];
+
+ update_attstats(RelationGetRelid(Irel[ind]), false,
+ thisdata->attr_cnt, thisdata->vacattrstats);
+ }
+
+ /*
+ * Should we build extended statistics for this relation?
+ *
+ * The extended statistics catalog does not include an inheritance
+ * flag, so we can't store statistics built both with and without
+ * data from child relations. We can store just one set of statistics
+ * per relation. For plain relations that's fine, but for inheritance
+ * trees we have to pick whether to store statistics for just the
+ * one relation or the whole tree. For plain inheritance we store
+ * the (!inh) version, mostly for backwards compatibility reasons.
+ * For partitioned tables that's pointless (the non-leaf tables are
+ * always empty), so we store stats representing the whole tree.
+ */
+ build_ext_stats = (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE) ? inh : (!inh);
+
+ /*
+ * Build extended statistics (if there are any).
+ *
+ * For now we only build extended statistics on individual relations,
+ * not for relations representing inheritance trees.
+ */
+ if (build_ext_stats)
+ BuildRelationExtStatistics(onerel, totalrows, numrows, rows,
+ attr_cnt, vacattrstats);
+ }
+
+ pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
+ PROGRESS_ANALYZE_PHASE_FINALIZE_ANALYZE);
+
+ /*
+ * Update pages/tuples stats in pg_class ... but not if we're doing
+ * inherited stats.
+ *
+ * We assume that VACUUM hasn't set pg_class.reltuples already, even
+ * during a VACUUM ANALYZE. Although VACUUM often updates pg_class,
+ * exceptions exist. A "VACUUM (ANALYZE, INDEX_CLEANUP OFF)" command will
+ * never update pg_class entries for index relations. It's also possible
+ * that an individual index's pg_class entry won't be updated during
+ * VACUUM if the index AM returns NULL from its amvacuumcleanup() routine.
+ */
+ if (!inh)
+ {
+ BlockNumber relallvisible;
+
+ visibilitymap_count(onerel, &relallvisible, NULL);
+
+ /* Update pg_class for table relation */
+ vac_update_relstats(onerel,
+ relpages,
+ totalrows,
+ relallvisible,
+ hasindex,
+ InvalidTransactionId,
+ InvalidMultiXactId,
+ in_outer_xact);
+
+ /* Same for indexes */
+ for (ind = 0; ind < nindexes; ind++)
+ {
+ AnlIndexData *thisdata = &indexdata[ind];
+ double totalindexrows;
+
+ totalindexrows = ceil(thisdata->tupleFract * totalrows);
+ vac_update_relstats(Irel[ind],
+ RelationGetNumberOfBlocks(Irel[ind]),
+ totalindexrows,
+ 0,
+ false,
+ InvalidTransactionId,
+ InvalidMultiXactId,
+ in_outer_xact);
+ }
+ }
+ else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
+ {
+ /*
+ * Partitioned tables don't have storage, so we don't set any fields
+ * in their pg_class entries except for reltuples and relhasindex.
+ */
+ vac_update_relstats(onerel, -1, totalrows,
+ 0, hasindex, InvalidTransactionId,
+ InvalidMultiXactId,
+ in_outer_xact);
+ }
+
+ /*
+ * Now report ANALYZE to the stats collector. For regular tables, we do
+ * it only if not doing inherited stats. For partitioned tables, we only
+ * do it for inherited stats. (We're never called for not-inherited stats
+ * on partitioned tables anyway.)
+ *
+ * Reset the changes_since_analyze counter only if we analyzed all
+ * columns; otherwise, there is still work for auto-analyze to do.
+ */
+ if (!inh)
+ pgstat_report_analyze(onerel, totalrows, totaldeadrows,
+ (va_cols == NIL));
+ else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
+ pgstat_report_analyze(onerel, 0, 0, (va_cols == NIL));
+
+ /*
+ * If this isn't part of VACUUM ANALYZE, let index AMs do cleanup.
+ *
+ * Note that most index AMs perform a no-op as a matter of policy for
+ * amvacuumcleanup() when called in ANALYZE-only mode. The only exception
+ * among core index AMs is GIN/ginvacuumcleanup().
+ */
+ if (!(params->options & VACOPT_VACUUM))
+ {
+ for (ind = 0; ind < nindexes; ind++)
+ {
+ IndexBulkDeleteResult *stats;
+ IndexVacuumInfo ivinfo;
+
+ ivinfo.index = Irel[ind];
+ ivinfo.analyze_only = true;
+ ivinfo.estimated_count = true;
+ ivinfo.message_level = elevel;
+ ivinfo.num_heap_tuples = onerel->rd_rel->reltuples;
+ ivinfo.strategy = vac_strategy;
+
+ stats = index_vacuum_cleanup(&ivinfo, NULL);
+
+ if (stats)
+ pfree(stats);
+ }
+ }
+
+ /* Done with indexes */
+ vac_close_indexes(nindexes, Irel, NoLock);
+
+ /* Log the action if appropriate */
+ if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0)
+ {
+ TimestampTz endtime = GetCurrentTimestamp();
+
+ if (params->log_min_duration == 0 ||
+ TimestampDifferenceExceeds(starttime, endtime,
+ params->log_min_duration))
+ {
+ long delay_in_ms;
+ double read_rate = 0;
+ double write_rate = 0;
+ StringInfoData buf;
+
+ /*
+ * Calculate the difference in the Page Hit/Miss/Dirty that
+ * happened as part of the analyze by subtracting out the
+ * pre-analyze values which we saved above.
+ */
+ AnalyzePageHit = VacuumPageHit - AnalyzePageHit;
+ AnalyzePageMiss = VacuumPageMiss - AnalyzePageMiss;
+ AnalyzePageDirty = VacuumPageDirty - AnalyzePageDirty;
+
+ /*
+ * We do not expect an analyze to take > 25 days and it simplifies
+ * things a bit to use TimestampDifferenceMilliseconds.
+ */
+ delay_in_ms = TimestampDifferenceMilliseconds(starttime, endtime);
+
+ /*
+ * Note that we are reporting these read/write rates in the same
+ * manner as VACUUM does, which means that while the 'average read
+ * rate' here actually corresponds to page misses and resulting
+ * reads which are also picked up by track_io_timing, if enabled,
+ * the 'average write rate' is actually talking about the rate of
+ * pages being dirtied, not being written out, so it's typical to
+ * have a non-zero 'avg write rate' while I/O timings only reports
+ * reads.
+ *
+ * It's not clear that an ANALYZE will ever result in
+ * FlushBuffer() being called, but we track and support reporting
+ * on I/O write time in case that changes as it's practically free
+ * to do so anyway.
+ */
+
+ if (delay_in_ms > 0)
+ {
+ read_rate = (double) BLCKSZ * AnalyzePageMiss / (1024 * 1024) /
+ (delay_in_ms / 1000.0);
+ write_rate = (double) BLCKSZ * AnalyzePageDirty / (1024 * 1024) /
+ (delay_in_ms / 1000.0);
+ }
+
+ /*
+ * We split this up so we don't emit empty I/O timing values when
+ * track_io_timing isn't enabled.
+ */
+
+ initStringInfo(&buf);
+ appendStringInfo(&buf, _("automatic analyze of table \"%s.%s.%s\"\n"),
+ get_database_name(MyDatabaseId),
+ get_namespace_name(RelationGetNamespace(onerel)),
+ RelationGetRelationName(onerel));
+ if (track_io_timing)
+ {
+ double read_ms = (double) (pgStatBlockReadTime - startreadtime) / 1000;
+ double write_ms = (double) (pgStatBlockWriteTime - startwritetime) / 1000;
+
+ appendStringInfo(&buf, _("I/O timings: read: %.3f ms, write: %.3f ms\n"),
+ read_ms, write_ms);
+ }
+ appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n"),
+ read_rate, write_rate);
+ appendStringInfo(&buf, _("buffer usage: %lld hits, %lld misses, %lld dirtied\n"),
+ (long long) AnalyzePageHit,
+ (long long) AnalyzePageMiss,
+ (long long) AnalyzePageDirty);
+ appendStringInfo(&buf, _("system usage: %s"), pg_rusage_show(&ru0));
+
+ ereport(LOG,
+ (errmsg_internal("%s", buf.data)));
+
+ pfree(buf.data);
+ }
+ }
+
+ /* Roll back any GUC changes executed by index functions */
+ AtEOXact_GUC(false, save_nestlevel);
+
+ /* Restore userid and security context */
+ SetUserIdAndSecContext(save_userid, save_sec_context);
+
+ /* Restore current context and release memory */
+ MemoryContextSwitchTo(caller_context);
+ MemoryContextDelete(anl_context);
+ anl_context = NULL;
+}
+
+/*
+ * Compute statistics about indexes of a relation
+ */
+static void
+compute_index_stats(Relation onerel, double totalrows,
+ AnlIndexData *indexdata, int nindexes,
+ HeapTuple *rows, int numrows,
+ MemoryContext col_context)
+{
+ MemoryContext ind_context,
+ old_context;
+ Datum values[INDEX_MAX_KEYS];
+ bool isnull[INDEX_MAX_KEYS];
+ int ind,
+ i;
+
+ ind_context = AllocSetContextCreate(anl_context,
+ "Analyze Index",
+ ALLOCSET_DEFAULT_SIZES);
+ old_context = MemoryContextSwitchTo(ind_context);
+
+ for (ind = 0; ind < nindexes; ind++)
+ {
+ AnlIndexData *thisdata = &indexdata[ind];
+ IndexInfo *indexInfo = thisdata->indexInfo;
+ int attr_cnt = thisdata->attr_cnt;
+ TupleTableSlot *slot;
+ EState *estate;
+ ExprContext *econtext;
+ ExprState *predicate;
+ Datum *exprvals;
+ bool *exprnulls;
+ int numindexrows,
+ tcnt,
+ rowno;
+ double totalindexrows;
+
+ /* Ignore index if no columns to analyze and not partial */
+ if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
+ continue;
+
+ /*
+ * Need an EState for evaluation of index expressions and
+ * partial-index predicates. Create it in the per-index context to be
+ * sure it gets cleaned up at the bottom of the loop.
+ */
+ estate = CreateExecutorState();
+ econtext = GetPerTupleExprContext(estate);
+ /* Need a slot to hold the current heap tuple, too */
+ slot = MakeSingleTupleTableSlot(RelationGetDescr(onerel),
+ &TTSOpsHeapTuple);
+
+ /* Arrange for econtext's scan tuple to be the tuple under test */
+ econtext->ecxt_scantuple = slot;
+
+ /* Set up execution state for predicate. */
+ predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
+
+ /* Compute and save index expression values */
+ exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
+ exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
+ numindexrows = 0;
+ tcnt = 0;
+ for (rowno = 0; rowno < numrows; rowno++)
+ {
+ HeapTuple heapTuple = rows[rowno];
+
+ vacuum_delay_point();
+
+ /*
+ * Reset the per-tuple context each time, to reclaim any cruft
+ * left behind by evaluating the predicate or index expressions.
+ */
+ ResetExprContext(econtext);
+
+ /* Set up for predicate or expression evaluation */
+ ExecStoreHeapTuple(heapTuple, slot, false);
+
+ /* If index is partial, check predicate */
+ if (predicate != NULL)
+ {
+ if (!ExecQual(predicate, econtext))
+ continue;
+ }
+ numindexrows++;
+
+ if (attr_cnt > 0)
+ {
+ /*
+ * Evaluate the index row to compute expression values. We
+ * could do this by hand, but FormIndexDatum is convenient.
+ */
+ FormIndexDatum(indexInfo,
+ slot,
+ estate,
+ values,
+ isnull);
+
+ /*
+ * Save just the columns we care about. We copy the values
+ * into ind_context from the estate's per-tuple context.
+ */
+ for (i = 0; i < attr_cnt; i++)
+ {
+ VacAttrStats *stats = thisdata->vacattrstats[i];
+ int attnum = stats->attr->attnum;
+
+ if (isnull[attnum - 1])
+ {
+ exprvals[tcnt] = (Datum) 0;
+ exprnulls[tcnt] = true;
+ }
+ else
+ {
+ exprvals[tcnt] = datumCopy(values[attnum - 1],
+ stats->attrtype->typbyval,
+ stats->attrtype->typlen);
+ exprnulls[tcnt] = false;
+ }
+ tcnt++;
+ }
+ }
+ }
+
+ /*
+ * Having counted the number of rows that pass the predicate in the
+ * sample, we can estimate the total number of rows in the index.
+ */
+ thisdata->tupleFract = (double) numindexrows / (double) numrows;
+ totalindexrows = ceil(thisdata->tupleFract * totalrows);
+
+ /*
+ * Now we can compute the statistics for the expression columns.
+ */
+ if (numindexrows > 0)
+ {
+ MemoryContextSwitchTo(col_context);
+ for (i = 0; i < attr_cnt; i++)
+ {
+ VacAttrStats *stats = thisdata->vacattrstats[i];
+
+ stats->exprvals = exprvals + i;
+ stats->exprnulls = exprnulls + i;
+ stats->rowstride = attr_cnt;
+ stats->compute_stats(stats,
+ ind_fetch_func,
+ numindexrows,
+ totalindexrows);
+
+ MemoryContextResetAndDeleteChildren(col_context);
+ }
+ }
+
+ /* And clean up */
+ MemoryContextSwitchTo(ind_context);
+
+ ExecDropSingleTupleTableSlot(slot);
+ FreeExecutorState(estate);
+ MemoryContextResetAndDeleteChildren(ind_context);
+ }
+
+ MemoryContextSwitchTo(old_context);
+ MemoryContextDelete(ind_context);
+}
+
+/*
+ * examine_attribute -- pre-analysis of a single column
+ *
+ * Determine whether the column is analyzable; if so, create and initialize
+ * a VacAttrStats struct for it. If not, return NULL.
+ *
+ * If index_expr isn't NULL, then we're trying to analyze an expression index,
+ * and index_expr is the expression tree representing the column's data.
+ */
+static VacAttrStats *
+examine_attribute(Relation onerel, int attnum, Node *index_expr)
+{
+ Form_pg_attribute attr = TupleDescAttr(onerel->rd_att, attnum - 1);
+ HeapTuple typtuple;
+ VacAttrStats *stats;
+ int i;
+ bool ok;
+
+ /* Never analyze dropped columns */
+ if (attr->attisdropped)
+ return NULL;
+
+ /* Don't analyze column if user has specified not to */
+ if (attr->attstattarget == 0)
+ return NULL;
+
+ /*
+ * Create the VacAttrStats struct. Note that we only have a copy of the
+ * fixed fields of the pg_attribute tuple.
+ */
+ stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
+ stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_FIXED_PART_SIZE);
+ memcpy(stats->attr, attr, ATTRIBUTE_FIXED_PART_SIZE);
+
+ /*
+ * When analyzing an expression index, believe the expression tree's type
+ * not the column datatype --- the latter might be the opckeytype storage
+ * type of the opclass, which is not interesting for our purposes. (Note:
+ * if we did anything with non-expression index columns, we'd need to
+ * figure out where to get the correct type info from, but for now that's
+ * not a problem.) It's not clear whether anyone will care about the
+ * typmod, but we store that too just in case.
+ */
+ if (index_expr)
+ {
+ stats->attrtypid = exprType(index_expr);
+ stats->attrtypmod = exprTypmod(index_expr);
+
+ /*
+ * If a collation has been specified for the index column, use that in
+ * preference to anything else; but if not, fall back to whatever we
+ * can get from the expression.
+ */
+ if (OidIsValid(onerel->rd_indcollation[attnum - 1]))
+ stats->attrcollid = onerel->rd_indcollation[attnum - 1];
+ else
+ stats->attrcollid = exprCollation(index_expr);
+ }
+ else
+ {
+ stats->attrtypid = attr->atttypid;
+ stats->attrtypmod = attr->atttypmod;
+ stats->attrcollid = attr->attcollation;
+ }
+
+ typtuple = SearchSysCacheCopy1(TYPEOID,
+ ObjectIdGetDatum(stats->attrtypid));
+ if (!HeapTupleIsValid(typtuple))
+ elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
+ stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
+ stats->anl_context = anl_context;
+ stats->tupattnum = attnum;
+
+ /*
+ * The fields describing the stats->stavalues[n] element types default to
+ * the type of the data being analyzed, but the type-specific typanalyze
+ * function can change them if it wants to store something else.
+ */
+ for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
+ {
+ stats->statypid[i] = stats->attrtypid;
+ stats->statyplen[i] = stats->attrtype->typlen;
+ stats->statypbyval[i] = stats->attrtype->typbyval;
+ stats->statypalign[i] = stats->attrtype->typalign;
+ }
+
+ /*
+ * Call the type-specific typanalyze function. If none is specified, use
+ * std_typanalyze().
+ */
+ if (OidIsValid(stats->attrtype->typanalyze))
+ ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
+ PointerGetDatum(stats)));
+ else
+ ok = std_typanalyze(stats);
+
+ if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
+ {
+ heap_freetuple(typtuple);
+ pfree(stats->attr);
+ pfree(stats);
+ return NULL;
+ }
+
+ return stats;
+}
+
+/*
+ * acquire_sample_rows -- acquire a random sample of rows from the table
+ *
+ * Selected rows are returned in the caller-allocated array rows[], which
+ * must have at least targrows entries.
+ * The actual number of rows selected is returned as the function result.
+ * We also estimate the total numbers of live and dead rows in the table,
+ * and return them into *totalrows and *totaldeadrows, respectively.
+ *
+ * The returned list of tuples is in order by physical position in the table.
+ * (We will rely on this later to derive correlation estimates.)
+ *
+ * As of May 2004 we use a new two-stage method: Stage one selects up
+ * to targrows random blocks (or all blocks, if there aren't so many).
+ * Stage two scans these blocks and uses the Vitter algorithm to create
+ * a random sample of targrows rows (or less, if there are less in the
+ * sample of blocks). The two stages are executed simultaneously: each
+ * block is processed as soon as stage one returns its number and while
+ * the rows are read stage two controls which ones are to be inserted
+ * into the sample.
+ *
+ * Although every row has an equal chance of ending up in the final
+ * sample, this sampling method is not perfect: not every possible
+ * sample has an equal chance of being selected. For large relations
+ * the number of different blocks represented by the sample tends to be
+ * too small. We can live with that for now. Improvements are welcome.
+ *
+ * An important property of this sampling method is that because we do
+ * look at a statistically unbiased set of blocks, we should get
+ * unbiased estimates of the average numbers of live and dead rows per
+ * block. The previous sampling method put too much credence in the row
+ * density near the start of the table.
+ */
+static int
+acquire_sample_rows(Relation onerel, int elevel,
+ HeapTuple *rows, int targrows,
+ double *totalrows, double *totaldeadrows)
+{
+ int numrows = 0; /* # rows now in reservoir */
+ double samplerows = 0; /* total # rows collected */
+ double liverows = 0; /* # live rows seen */
+ double deadrows = 0; /* # dead rows seen */
+ double rowstoskip = -1; /* -1 means not set yet */
+ long randseed; /* Seed for block sampler(s) */
+ BlockNumber totalblocks;
+ TransactionId OldestXmin;
+ BlockSamplerData bs;
+ ReservoirStateData rstate;
+ TupleTableSlot *slot;
+ TableScanDesc scan;
+ BlockNumber nblocks;
+ BlockNumber blksdone = 0;
+#ifdef USE_PREFETCH
+ int prefetch_maximum = 0; /* blocks to prefetch if enabled */
+ BlockSamplerData prefetch_bs;
+#endif
+
+ Assert(targrows > 0);
+
+ totalblocks = RelationGetNumberOfBlocks(onerel);
+
+ /* Need a cutoff xmin for HeapTupleSatisfiesVacuum */
+ OldestXmin = GetOldestNonRemovableTransactionId(onerel);
+
+ /* Prepare for sampling block numbers */
+ randseed = random();
+ nblocks = BlockSampler_Init(&bs, totalblocks, targrows, randseed);
+
+#ifdef USE_PREFETCH
+ prefetch_maximum = get_tablespace_maintenance_io_concurrency(onerel->rd_rel->reltablespace);
+ /* Create another BlockSampler, using the same seed, for prefetching */
+ if (prefetch_maximum)
+ (void) BlockSampler_Init(&prefetch_bs, totalblocks, targrows, randseed);
+#endif
+
+ /* Report sampling block numbers */
+ pgstat_progress_update_param(PROGRESS_ANALYZE_BLOCKS_TOTAL,
+ nblocks);
+
+ /* Prepare for sampling rows */
+ reservoir_init_selection_state(&rstate, targrows);
+
+ scan = table_beginscan_analyze(onerel);
+ slot = table_slot_create(onerel, NULL);
+
+#ifdef USE_PREFETCH
+
+ /*
+ * If we are doing prefetching, then go ahead and tell the kernel about
+ * the first set of pages we are going to want. This also moves our
+ * iterator out ahead of the main one being used, where we will keep it so
+ * that we're always pre-fetching out prefetch_maximum number of blocks
+ * ahead.
+ */
+ if (prefetch_maximum)
+ {
+ for (int i = 0; i < prefetch_maximum; i++)
+ {
+ BlockNumber prefetch_block;
+
+ if (!BlockSampler_HasMore(&prefetch_bs))
+ break;
+
+ prefetch_block = BlockSampler_Next(&prefetch_bs);
+ PrefetchBuffer(scan->rs_rd, MAIN_FORKNUM, prefetch_block);
+ }
+ }
+#endif
+
+ /* Outer loop over blocks to sample */
+ while (BlockSampler_HasMore(&bs))
+ {
+ bool block_accepted;
+ BlockNumber targblock = BlockSampler_Next(&bs);
+#ifdef USE_PREFETCH
+ BlockNumber prefetch_targblock = InvalidBlockNumber;
+
+ /*
+ * Make sure that every time the main BlockSampler is moved forward
+ * that our prefetch BlockSampler also gets moved forward, so that we
+ * always stay out ahead.
+ */
+ if (prefetch_maximum && BlockSampler_HasMore(&prefetch_bs))
+ prefetch_targblock = BlockSampler_Next(&prefetch_bs);
+#endif
+
+ vacuum_delay_point();
+
+ block_accepted = table_scan_analyze_next_block(scan, targblock, vac_strategy);
+
+#ifdef USE_PREFETCH
+
+ /*
+ * When pre-fetching, after we get a block, tell the kernel about the
+ * next one we will want, if there's any left.
+ *
+ * We want to do this even if the table_scan_analyze_next_block() call
+ * above decides against analyzing the block it picked.
+ */
+ if (prefetch_maximum && prefetch_targblock != InvalidBlockNumber)
+ PrefetchBuffer(scan->rs_rd, MAIN_FORKNUM, prefetch_targblock);
+#endif
+
+ /*
+ * Don't analyze if table_scan_analyze_next_block() indicated this
+ * block is unsuitable for analyzing.
+ */
+ if (!block_accepted)
+ continue;
+
+ while (table_scan_analyze_next_tuple(scan, OldestXmin, &liverows, &deadrows, slot))
+ {
+ /*
+ * The first targrows sample rows are simply copied into the
+ * reservoir. Then we start replacing tuples in the sample until
+ * we reach the end of the relation. This algorithm is from Jeff
+ * Vitter's paper (see full citation in utils/misc/sampling.c). It
+ * works by repeatedly computing the number of tuples to skip
+ * before selecting a tuple, which replaces a randomly chosen
+ * element of the reservoir (current set of tuples). At all times
+ * the reservoir is a true random sample of the tuples we've
+ * passed over so far, so when we fall off the end of the relation
+ * we're done.
+ */
+ if (numrows < targrows)
+ rows[numrows++] = ExecCopySlotHeapTuple(slot);
+ else
+ {
+ /*
+ * t in Vitter's paper is the number of records already
+ * processed. If we need to compute a new S value, we must
+ * use the not-yet-incremented value of samplerows as t.
+ */
+ if (rowstoskip < 0)
+ rowstoskip = reservoir_get_next_S(&rstate, samplerows, targrows);
+
+ if (rowstoskip <= 0)
+ {
+ /*
+ * Found a suitable tuple, so save it, replacing one old
+ * tuple at random
+ */
+ int k = (int) (targrows * sampler_random_fract(rstate.randstate));
+
+ Assert(k >= 0 && k < targrows);
+ heap_freetuple(rows[k]);
+ rows[k] = ExecCopySlotHeapTuple(slot);
+ }
+
+ rowstoskip -= 1;
+ }
+
+ samplerows += 1;
+ }
+
+ pgstat_progress_update_param(PROGRESS_ANALYZE_BLOCKS_DONE,
+ ++blksdone);
+ }
+
+ ExecDropSingleTupleTableSlot(slot);
+ table_endscan(scan);
+
+ /*
+ * If we didn't find as many tuples as we wanted then we're done. No sort
+ * is needed, since they're already in order.
+ *
+ * Otherwise we need to sort the collected tuples by position
+ * (itempointer). It's not worth worrying about corner cases where the
+ * tuples are already sorted.
+ */
+ if (numrows == targrows)
+ qsort_interruptible((void *) rows, numrows, sizeof(HeapTuple),
+ compare_rows, NULL);
+
+ /*
+ * Estimate total numbers of live and dead rows in relation, extrapolating
+ * on the assumption that the average tuple density in pages we didn't
+ * scan is the same as in the pages we did scan. Since what we scanned is
+ * a random sample of the pages in the relation, this should be a good
+ * assumption.
+ */
+ if (bs.m > 0)
+ {
+ *totalrows = floor((liverows / bs.m) * totalblocks + 0.5);
+ *totaldeadrows = floor((deadrows / bs.m) * totalblocks + 0.5);
+ }
+ else
+ {
+ *totalrows = 0.0;
+ *totaldeadrows = 0.0;
+ }
+
+ /*
+ * Emit some interesting relation info
+ */
+ ereport(elevel,
+ (errmsg("\"%s\": scanned %d of %u pages, "
+ "containing %.0f live rows and %.0f dead rows; "
+ "%d rows in sample, %.0f estimated total rows",
+ RelationGetRelationName(onerel),
+ bs.m, totalblocks,
+ liverows, deadrows,
+ numrows, *totalrows)));
+
+ return numrows;
+}
+
+/*
+ * Comparator for sorting rows[] array
+ */
+static int
+compare_rows(const void *a, const void *b, void *arg)
+{
+ HeapTuple ha = *(const HeapTuple *) a;
+ HeapTuple hb = *(const HeapTuple *) b;
+ BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
+ OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
+ BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
+ OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);
+
+ if (ba < bb)
+ return -1;
+ if (ba > bb)
+ return 1;
+ if (oa < ob)
+ return -1;
+ if (oa > ob)
+ return 1;
+ return 0;
+}
+
+
+/*
+ * acquire_inherited_sample_rows -- acquire sample rows from inheritance tree
+ *
+ * This has the same API as acquire_sample_rows, except that rows are
+ * collected from all inheritance children as well as the specified table.
+ * We fail and return zero if there are no inheritance children, or if all
+ * children are foreign tables that don't support ANALYZE.
+ */
+static int
+acquire_inherited_sample_rows(Relation onerel, int elevel,
+ HeapTuple *rows, int targrows,
+ double *totalrows, double *totaldeadrows)
+{
+ List *tableOIDs;
+ Relation *rels;
+ AcquireSampleRowsFunc *acquirefuncs;
+ double *relblocks;
+ double totalblocks;
+ int numrows,
+ nrels,
+ i;
+ ListCell *lc;
+ bool has_child;
+
+ /*
+ * Find all members of inheritance set. We only need AccessShareLock on
+ * the children.
+ */
+ tableOIDs =
+ find_all_inheritors(RelationGetRelid(onerel), AccessShareLock, NULL);
+
+ /*
+ * Check that there's at least one descendant, else fail. This could
+ * happen despite analyze_rel's relhassubclass check, if table once had a
+ * child but no longer does. In that case, we can clear the
+ * relhassubclass field so as not to make the same mistake again later.
+ * (This is safe because we hold ShareUpdateExclusiveLock.)
+ */
+ if (list_length(tableOIDs) < 2)
+ {
+ /* CCI because we already updated the pg_class row in this command */
+ CommandCounterIncrement();
+ SetRelationHasSubclass(RelationGetRelid(onerel), false);
+ ereport(elevel,
+ (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no child tables",
+ get_namespace_name(RelationGetNamespace(onerel)),
+ RelationGetRelationName(onerel))));
+ return 0;
+ }
+
+ /*
+ * Identify acquirefuncs to use, and count blocks in all the relations.
+ * The result could overflow BlockNumber, so we use double arithmetic.
+ */
+ rels = (Relation *) palloc(list_length(tableOIDs) * sizeof(Relation));
+ acquirefuncs = (AcquireSampleRowsFunc *)
+ palloc(list_length(tableOIDs) * sizeof(AcquireSampleRowsFunc));
+ relblocks = (double *) palloc(list_length(tableOIDs) * sizeof(double));
+ totalblocks = 0;
+ nrels = 0;
+ has_child = false;
+ foreach(lc, tableOIDs)
+ {
+ Oid childOID = lfirst_oid(lc);
+ Relation childrel;
+ AcquireSampleRowsFunc acquirefunc = NULL;
+ BlockNumber relpages = 0;
+
+ /* We already got the needed lock */
+ childrel = table_open(childOID, NoLock);
+
+ /* Ignore if temp table of another backend */
+ if (RELATION_IS_OTHER_TEMP(childrel))
+ {
+ /* ... but release the lock on it */
+ Assert(childrel != onerel);
+ table_close(childrel, AccessShareLock);
+ continue;
+ }
+
+ /* Check table type (MATVIEW can't happen, but might as well allow) */
+ if (childrel->rd_rel->relkind == RELKIND_RELATION ||
+ childrel->rd_rel->relkind == RELKIND_MATVIEW)
+ {
+ /* Regular table, so use the regular row acquisition function */
+ acquirefunc = acquire_sample_rows;
+ relpages = RelationGetNumberOfBlocks(childrel);
+ }
+ else if (childrel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
+ {
+ /*
+ * For a foreign table, call the FDW's hook function to see
+ * whether it supports analysis.
+ */
+ FdwRoutine *fdwroutine;
+ bool ok = false;
+
+ fdwroutine = GetFdwRoutineForRelation(childrel, false);
+
+ if (fdwroutine->AnalyzeForeignTable != NULL)
+ ok = fdwroutine->AnalyzeForeignTable(childrel,
+ &acquirefunc,
+ &relpages);
+
+ if (!ok)
+ {
+ /* ignore, but release the lock on it */
+ Assert(childrel != onerel);
+ table_close(childrel, AccessShareLock);
+ continue;
+ }
+ }
+ else
+ {
+ /*
+ * ignore, but release the lock on it. don't try to unlock the
+ * passed-in relation
+ */
+ Assert(childrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
+ if (childrel != onerel)
+ table_close(childrel, AccessShareLock);
+ else
+ table_close(childrel, NoLock);
+ continue;
+ }
+
+ /* OK, we'll process this child */
+ has_child = true;
+ rels[nrels] = childrel;
+ acquirefuncs[nrels] = acquirefunc;
+ relblocks[nrels] = (double) relpages;
+ totalblocks += (double) relpages;
+ nrels++;
+ }
+
+ /*
+ * If we don't have at least one child table to consider, fail. If the
+ * relation is a partitioned table, it's not counted as a child table.
+ */
+ if (!has_child)
+ {
+ ereport(elevel,
+ (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no analyzable child tables",
+ get_namespace_name(RelationGetNamespace(onerel)),
+ RelationGetRelationName(onerel))));
+ return 0;
+ }
+
+ /*
+ * Now sample rows from each relation, proportionally to its fraction of
+ * the total block count. (This might be less than desirable if the child
+ * rels have radically different free-space percentages, but it's not
+ * clear that it's worth working harder.)
+ */
+ pgstat_progress_update_param(PROGRESS_ANALYZE_CHILD_TABLES_TOTAL,
+ nrels);
+ numrows = 0;
+ *totalrows = 0;
+ *totaldeadrows = 0;
+ for (i = 0; i < nrels; i++)
+ {
+ Relation childrel = rels[i];
+ AcquireSampleRowsFunc acquirefunc = acquirefuncs[i];
+ double childblocks = relblocks[i];
+
+ pgstat_progress_update_param(PROGRESS_ANALYZE_CURRENT_CHILD_TABLE_RELID,
+ RelationGetRelid(childrel));
+
+ if (childblocks > 0)
+ {
+ int childtargrows;
+
+ childtargrows = (int) rint(targrows * childblocks / totalblocks);
+ /* Make sure we don't overrun due to roundoff error */
+ childtargrows = Min(childtargrows, targrows - numrows);
+ if (childtargrows > 0)
+ {
+ int childrows;
+ double trows,
+ tdrows;
+
+ /* Fetch a random sample of the child's rows */
+ childrows = (*acquirefunc) (childrel, elevel,
+ rows + numrows, childtargrows,
+ &trows, &tdrows);
+
+ /* We may need to convert from child's rowtype to parent's */
+ if (childrows > 0 &&
+ !equalTupleDescs(RelationGetDescr(childrel),
+ RelationGetDescr(onerel)))
+ {
+ TupleConversionMap *map;
+
+ map = convert_tuples_by_name(RelationGetDescr(childrel),
+ RelationGetDescr(onerel));
+ if (map != NULL)
+ {
+ int j;
+
+ for (j = 0; j < childrows; j++)
+ {
+ HeapTuple newtup;
+
+ newtup = execute_attr_map_tuple(rows[numrows + j], map);
+ heap_freetuple(rows[numrows + j]);
+ rows[numrows + j] = newtup;
+ }
+ free_conversion_map(map);
+ }
+ }
+
+ /* And add to counts */
+ numrows += childrows;
+ *totalrows += trows;
+ *totaldeadrows += tdrows;
+ }
+ }
+
+ /*
+ * Note: we cannot release the child-table locks, since we may have
+ * pointers to their TOAST tables in the sampled rows.
+ */
+ table_close(childrel, NoLock);
+ pgstat_progress_update_param(PROGRESS_ANALYZE_CHILD_TABLES_DONE,
+ i + 1);
+ }
+
+ return numrows;
+}
+
+
+/*
+ * update_attstats() -- update attribute statistics for one relation
+ *
+ * Statistics are stored in several places: the pg_class row for the
+ * relation has stats about the whole relation, and there is a
+ * pg_statistic row for each (non-system) attribute that has ever
+ * been analyzed. The pg_class values are updated by VACUUM, not here.
+ *
+ * pg_statistic rows are just added or updated normally. This means
+ * that pg_statistic will probably contain some deleted rows at the
+ * completion of a vacuum cycle, unless it happens to get vacuumed last.
+ *
+ * To keep things simple, we punt for pg_statistic, and don't try
+ * to compute or store rows for pg_statistic itself in pg_statistic.
+ * This could possibly be made to work, but it's not worth the trouble.
+ * Note analyze_rel() has seen to it that we won't come here when
+ * vacuuming pg_statistic itself.
+ *
+ * Note: there would be a race condition here if two backends could
+ * ANALYZE the same table concurrently. Presently, we lock that out
+ * by taking a self-exclusive lock on the relation in analyze_rel().
+ */
+static void
+update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
+{
+ Relation sd;
+ int attno;
+
+ if (natts <= 0)
+ return; /* nothing to do */
+
+ sd = table_open(StatisticRelationId, RowExclusiveLock);
+
+ for (attno = 0; attno < natts; attno++)
+ {
+ VacAttrStats *stats = vacattrstats[attno];
+ HeapTuple stup,
+ oldtup;
+ int i,
+ k,
+ n;
+ Datum values[Natts_pg_statistic];
+ bool nulls[Natts_pg_statistic];
+ bool replaces[Natts_pg_statistic];
+
+ /* Ignore attr if we weren't able to collect stats */
+ if (!stats->stats_valid)
+ continue;
+
+ /*
+ * Construct a new pg_statistic tuple
+ */
+ for (i = 0; i < Natts_pg_statistic; ++i)
+ {
+ nulls[i] = false;
+ replaces[i] = true;
+ }
+
+ values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(relid);
+ values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(stats->attr->attnum);
+ values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(inh);
+ values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
+ values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
+ values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
+ i = Anum_pg_statistic_stakind1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
+ }
+ i = Anum_pg_statistic_staop1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
+ }
+ i = Anum_pg_statistic_stacoll1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ values[i++] = ObjectIdGetDatum(stats->stacoll[k]); /* stacollN */
+ }
+ i = Anum_pg_statistic_stanumbers1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ int nnum = stats->numnumbers[k];
+
+ if (nnum > 0)
+ {
+ Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
+ ArrayType *arry;
+
+ for (n = 0; n < nnum; n++)
+ numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
+ /* XXX knows more than it should about type float4: */
+ arry = construct_array(numdatums, nnum,
+ FLOAT4OID,
+ sizeof(float4), true, TYPALIGN_INT);
+ values[i++] = PointerGetDatum(arry); /* stanumbersN */
+ }
+ else
+ {
+ nulls[i] = true;
+ values[i++] = (Datum) 0;
+ }
+ }
+ i = Anum_pg_statistic_stavalues1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ if (stats->numvalues[k] > 0)
+ {
+ ArrayType *arry;
+
+ arry = construct_array(stats->stavalues[k],
+ stats->numvalues[k],
+ stats->statypid[k],
+ stats->statyplen[k],
+ stats->statypbyval[k],
+ stats->statypalign[k]);
+ values[i++] = PointerGetDatum(arry); /* stavaluesN */
+ }
+ else
+ {
+ nulls[i] = true;
+ values[i++] = (Datum) 0;
+ }
+ }
+
+ /* Is there already a pg_statistic tuple for this attribute? */
+ oldtup = SearchSysCache3(STATRELATTINH,
+ ObjectIdGetDatum(relid),
+ Int16GetDatum(stats->attr->attnum),
+ BoolGetDatum(inh));
+
+ if (HeapTupleIsValid(oldtup))
+ {
+ /* Yes, replace it */
+ stup = heap_modify_tuple(oldtup,
+ RelationGetDescr(sd),
+ values,
+ nulls,
+ replaces);
+ ReleaseSysCache(oldtup);
+ CatalogTupleUpdate(sd, &stup->t_self, stup);
+ }
+ else
+ {
+ /* No, insert new tuple */
+ stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
+ CatalogTupleInsert(sd, stup);
+ }
+
+ heap_freetuple(stup);
+ }
+
+ table_close(sd, RowExclusiveLock);
+}
+
+/*
+ * Standard fetch function for use by compute_stats subroutines.
+ *
+ * This exists to provide some insulation between compute_stats routines
+ * and the actual storage of the sample data.
+ */
+static Datum
+std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
+{
+ int attnum = stats->tupattnum;
+ HeapTuple tuple = stats->rows[rownum];
+ TupleDesc tupDesc = stats->tupDesc;
+
+ return heap_getattr(tuple, attnum, tupDesc, isNull);
+}
+
+/*
+ * Fetch function for analyzing index expressions.
+ *
+ * We have not bothered to construct index tuples, instead the data is
+ * just in Datum arrays.
+ */
+static Datum
+ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
+{
+ int i;
+
+ /* exprvals and exprnulls are already offset for proper column */
+ i = rownum * stats->rowstride;
+ *isNull = stats->exprnulls[i];
+ return stats->exprvals[i];
+}
+
+
+/*==========================================================================
+ *
+ * Code below this point represents the "standard" type-specific statistics
+ * analysis algorithms. This code can be replaced on a per-data-type basis
+ * by setting a nonzero value in pg_type.typanalyze.
+ *
+ *==========================================================================
+ */
+
+
+/*
+ * To avoid consuming too much memory during analysis and/or too much space
+ * in the resulting pg_statistic rows, we ignore varlena datums that are wider
+ * than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV
+ * and distinct-value calculations since a wide value is unlikely to be
+ * duplicated at all, much less be a most-common value. For the same reason,
+ * ignoring wide values will not affect our estimates of histogram bin
+ * boundaries very much.
+ */
+#define WIDTH_THRESHOLD 1024
+
+#define swapInt(a,b) do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
+#define swapDatum(a,b) do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
+
+/*
+ * Extra information used by the default analysis routines
+ */
+typedef struct
+{
+ int count; /* # of duplicates */
+ int first; /* values[] index of first occurrence */
+} ScalarMCVItem;
+
+typedef struct
+{
+ SortSupport ssup;
+ int *tupnoLink;
+} CompareScalarsContext;
+
+
+static void compute_trivial_stats(VacAttrStatsP stats,
+ AnalyzeAttrFetchFunc fetchfunc,
+ int samplerows,
+ double totalrows);
+static void compute_distinct_stats(VacAttrStatsP stats,
+ AnalyzeAttrFetchFunc fetchfunc,
+ int samplerows,
+ double totalrows);
+static void compute_scalar_stats(VacAttrStatsP stats,
+ AnalyzeAttrFetchFunc fetchfunc,
+ int samplerows,
+ double totalrows);
+static int compare_scalars(const void *a, const void *b, void *arg);
+static int compare_mcvs(const void *a, const void *b, void *arg);
+static int analyze_mcv_list(int *mcv_counts,
+ int num_mcv,
+ double stadistinct,
+ double stanullfrac,
+ int samplerows,
+ double totalrows);
+
+
+/*
+ * std_typanalyze -- the default type-specific typanalyze function
+ */
+bool
+std_typanalyze(VacAttrStats *stats)
+{
+ Form_pg_attribute attr = stats->attr;
+ Oid ltopr;
+ Oid eqopr;
+ StdAnalyzeData *mystats;
+
+ /* If the attstattarget column is negative, use the default value */
+ /* NB: it is okay to scribble on stats->attr since it's a copy */
+ if (attr->attstattarget < 0)
+ attr->attstattarget = default_statistics_target;
+
+ /* Look for default "<" and "=" operators for column's type */
+ get_sort_group_operators(stats->attrtypid,
+ false, false, false,
+ &ltopr, &eqopr, NULL,
+ NULL);
+
+ /* Save the operator info for compute_stats routines */
+ mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
+ mystats->eqopr = eqopr;
+ mystats->eqfunc = OidIsValid(eqopr) ? get_opcode(eqopr) : InvalidOid;
+ mystats->ltopr = ltopr;
+ stats->extra_data = mystats;
+
+ /*
+ * Determine which standard statistics algorithm to use
+ */
+ if (OidIsValid(eqopr) && OidIsValid(ltopr))
+ {
+ /* Seems to be a scalar datatype */
+ stats->compute_stats = compute_scalar_stats;
+ /*--------------------
+ * The following choice of minrows is based on the paper
+ * "Random sampling for histogram construction: how much is enough?"
+ * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
+ * Proceedings of ACM SIGMOD International Conference on Management
+ * of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5
+ * says that for table size n, histogram size k, maximum relative
+ * error in bin size f, and error probability gamma, the minimum
+ * random sample size is
+ * r = 4 * k * ln(2*n/gamma) / f^2
+ * Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain
+ * r = 305.82 * k
+ * Note that because of the log function, the dependence on n is
+ * quite weak; even at n = 10^12, a 300*k sample gives <= 0.66
+ * bin size error with probability 0.99. So there's no real need to
+ * scale for n, which is a good thing because we don't necessarily
+ * know it at this point.
+ *--------------------
+ */
+ stats->minrows = 300 * attr->attstattarget;
+ }
+ else if (OidIsValid(eqopr))
+ {
+ /* We can still recognize distinct values */
+ stats->compute_stats = compute_distinct_stats;
+ /* Might as well use the same minrows as above */
+ stats->minrows = 300 * attr->attstattarget;
+ }
+ else
+ {
+ /* Can't do much but the trivial stuff */
+ stats->compute_stats = compute_trivial_stats;
+ /* Might as well use the same minrows as above */
+ stats->minrows = 300 * attr->attstattarget;
+ }
+
+ return true;
+}
+
+
+/*
+ * compute_trivial_stats() -- compute very basic column statistics
+ *
+ * We use this when we cannot find a hash "=" operator for the datatype.
+ *
+ * We determine the fraction of non-null rows and the average datum width.
+ */
+static void
+compute_trivial_stats(VacAttrStatsP stats,
+ AnalyzeAttrFetchFunc fetchfunc,
+ int samplerows,
+ double totalrows)
+{
+ int i;
+ int null_cnt = 0;
+ int nonnull_cnt = 0;
+ double total_width = 0;
+ bool is_varlena = (!stats->attrtype->typbyval &&
+ stats->attrtype->typlen == -1);
+ bool is_varwidth = (!stats->attrtype->typbyval &&
+ stats->attrtype->typlen < 0);
+
+ for (i = 0; i < samplerows; i++)
+ {
+ Datum value;
+ bool isnull;
+
+ vacuum_delay_point();
+
+ value = fetchfunc(stats, i, &isnull);
+
+ /* Check for null/nonnull */
+ if (isnull)
+ {
+ null_cnt++;
+ continue;
+ }
+ nonnull_cnt++;
+
+ /*
+ * If it's a variable-width field, add up widths for average width
+ * calculation. Note that if the value is toasted, we use the toasted
+ * width. We don't bother with this calculation if it's a fixed-width
+ * type.
+ */
+ if (is_varlena)
+ {
+ total_width += VARSIZE_ANY(DatumGetPointer(value));
+ }
+ else if (is_varwidth)
+ {
+ /* must be cstring */
+ total_width += strlen(DatumGetCString(value)) + 1;
+ }
+ }
+
+ /* We can only compute average width if we found some non-null values. */
+ if (nonnull_cnt > 0)
+ {
+ stats->stats_valid = true;
+ /* Do the simple null-frac and width stats */
+ stats->stanullfrac = (double) null_cnt / (double) samplerows;
+ if (is_varwidth)
+ stats->stawidth = total_width / (double) nonnull_cnt;
+ else
+ stats->stawidth = stats->attrtype->typlen;
+ stats->stadistinct = 0.0; /* "unknown" */
+ }
+ else if (null_cnt > 0)
+ {
+ /* We found only nulls; assume the column is entirely null */
+ stats->stats_valid = true;
+ stats->stanullfrac = 1.0;
+ if (is_varwidth)
+ stats->stawidth = 0; /* "unknown" */
+ else
+ stats->stawidth = stats->attrtype->typlen;
+ stats->stadistinct = 0.0; /* "unknown" */
+ }
+}
+
+
+/*
+ * compute_distinct_stats() -- compute column statistics including ndistinct
+ *
+ * We use this when we can find only an "=" operator for the datatype.
+ *
+ * We determine the fraction of non-null rows, the average width, the
+ * most common values, and the (estimated) number of distinct values.
+ *
+ * The most common values are determined by brute force: we keep a list
+ * of previously seen values, ordered by number of times seen, as we scan
+ * the samples. A newly seen value is inserted just after the last
+ * multiply-seen value, causing the bottommost (oldest) singly-seen value
+ * to drop off the list. The accuracy of this method, and also its cost,
+ * depend mainly on the length of the list we are willing to keep.
+ */
+static void
+compute_distinct_stats(VacAttrStatsP stats,
+ AnalyzeAttrFetchFunc fetchfunc,
+ int samplerows,
+ double totalrows)
+{
+ int i;
+ int null_cnt = 0;
+ int nonnull_cnt = 0;
+ int toowide_cnt = 0;
+ double total_width = 0;
+ bool is_varlena = (!stats->attrtype->typbyval &&
+ stats->attrtype->typlen == -1);
+ bool is_varwidth = (!stats->attrtype->typbyval &&
+ stats->attrtype->typlen < 0);
+ FmgrInfo f_cmpeq;
+ typedef struct
+ {
+ Datum value;
+ int count;
+ } TrackItem;
+ TrackItem *track;
+ int track_cnt,
+ track_max;
+ int num_mcv = stats->attr->attstattarget;
+ StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
+
+ /*
+ * We track up to 2*n values for an n-element MCV list; but at least 10
+ */
+ track_max = 2 * num_mcv;
+ if (track_max < 10)
+ track_max = 10;
+ track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
+ track_cnt = 0;
+
+ fmgr_info(mystats->eqfunc, &f_cmpeq);
+
+ for (i = 0; i < samplerows; i++)
+ {
+ Datum value;
+ bool isnull;
+ bool match;
+ int firstcount1,
+ j;
+
+ vacuum_delay_point();
+
+ value = fetchfunc(stats, i, &isnull);
+
+ /* Check for null/nonnull */
+ if (isnull)
+ {
+ null_cnt++;
+ continue;
+ }
+ nonnull_cnt++;
+
+ /*
+ * If it's a variable-width field, add up widths for average width
+ * calculation. Note that if the value is toasted, we use the toasted
+ * width. We don't bother with this calculation if it's a fixed-width
+ * type.
+ */
+ if (is_varlena)
+ {
+ total_width += VARSIZE_ANY(DatumGetPointer(value));
+
+ /*
+ * If the value is toasted, we want to detoast it just once to
+ * avoid repeated detoastings and resultant excess memory usage
+ * during the comparisons. Also, check to see if the value is
+ * excessively wide, and if so don't detoast at all --- just
+ * ignore the value.
+ */
+ if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
+ {
+ toowide_cnt++;
+ continue;
+ }
+ value = PointerGetDatum(PG_DETOAST_DATUM(value));
+ }
+ else if (is_varwidth)
+ {
+ /* must be cstring */
+ total_width += strlen(DatumGetCString(value)) + 1;
+ }
+
+ /*
+ * See if the value matches anything we're already tracking.
+ */
+ match = false;
+ firstcount1 = track_cnt;
+ for (j = 0; j < track_cnt; j++)
+ {
+ if (DatumGetBool(FunctionCall2Coll(&f_cmpeq,
+ stats->attrcollid,
+ value, track[j].value)))
+ {
+ match = true;
+ break;
+ }
+ if (j < firstcount1 && track[j].count == 1)
+ firstcount1 = j;
+ }
+
+ if (match)
+ {
+ /* Found a match */
+ track[j].count++;
+ /* This value may now need to "bubble up" in the track list */
+ while (j > 0 && track[j].count > track[j - 1].count)
+ {
+ swapDatum(track[j].value, track[j - 1].value);
+ swapInt(track[j].count, track[j - 1].count);
+ j--;
+ }
+ }
+ else
+ {
+ /* No match. Insert at head of count-1 list */
+ if (track_cnt < track_max)
+ track_cnt++;
+ for (j = track_cnt - 1; j > firstcount1; j--)
+ {
+ track[j].value = track[j - 1].value;
+ track[j].count = track[j - 1].count;
+ }
+ if (firstcount1 < track_cnt)
+ {
+ track[firstcount1].value = value;
+ track[firstcount1].count = 1;
+ }
+ }
+ }
+
+ /* We can only compute real stats if we found some non-null values. */
+ if (nonnull_cnt > 0)
+ {
+ int nmultiple,
+ summultiple;
+
+ stats->stats_valid = true;
+ /* Do the simple null-frac and width stats */
+ stats->stanullfrac = (double) null_cnt / (double) samplerows;
+ if (is_varwidth)
+ stats->stawidth = total_width / (double) nonnull_cnt;
+ else
+ stats->stawidth = stats->attrtype->typlen;
+
+ /* Count the number of values we found multiple times */
+ summultiple = 0;
+ for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
+ {
+ if (track[nmultiple].count == 1)
+ break;
+ summultiple += track[nmultiple].count;
+ }
+
+ if (nmultiple == 0)
+ {
+ /*
+ * If we found no repeated non-null values, assume it's a unique
+ * column; but be sure to discount for any nulls we found.
+ */
+ stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
+ }
+ else if (track_cnt < track_max && toowide_cnt == 0 &&
+ nmultiple == track_cnt)
+ {
+ /*
+ * Our track list includes every value in the sample, and every
+ * value appeared more than once. Assume the column has just
+ * these values. (This case is meant to address columns with
+ * small, fixed sets of possible values, such as boolean or enum
+ * columns. If there are any values that appear just once in the
+ * sample, including too-wide values, we should assume that that's
+ * not what we're dealing with.)
+ */
+ stats->stadistinct = track_cnt;
+ }
+ else
+ {
+ /*----------
+ * Estimate the number of distinct values using the estimator
+ * proposed by Haas and Stokes in IBM Research Report RJ 10025:
+ * n*d / (n - f1 + f1*n/N)
+ * where f1 is the number of distinct values that occurred
+ * exactly once in our sample of n rows (from a total of N),
+ * and d is the total number of distinct values in the sample.
+ * This is their Duj1 estimator; the other estimators they
+ * recommend are considerably more complex, and are numerically
+ * very unstable when n is much smaller than N.
+ *
+ * In this calculation, we consider only non-nulls. We used to
+ * include rows with null values in the n and N counts, but that
+ * leads to inaccurate answers in columns with many nulls, and
+ * it's intuitively bogus anyway considering the desired result is
+ * the number of distinct non-null values.
+ *
+ * We assume (not very reliably!) that all the multiply-occurring
+ * values are reflected in the final track[] list, and the other
+ * nonnull values all appeared but once. (XXX this usually
+ * results in a drastic overestimate of ndistinct. Can we do
+ * any better?)
+ *----------
+ */
+ int f1 = nonnull_cnt - summultiple;
+ int d = f1 + nmultiple;
+ double n = samplerows - null_cnt;
+ double N = totalrows * (1.0 - stats->stanullfrac);
+ double stadistinct;
+
+ /* N == 0 shouldn't happen, but just in case ... */
+ if (N > 0)
+ stadistinct = (n * d) / ((n - f1) + f1 * n / N);
+ else
+ stadistinct = 0;
+
+ /* Clamp to sane range in case of roundoff error */
+ if (stadistinct < d)
+ stadistinct = d;
+ if (stadistinct > N)
+ stadistinct = N;
+ /* And round to integer */
+ stats->stadistinct = floor(stadistinct + 0.5);
+ }
+
+ /*
+ * If we estimated the number of distinct values at more than 10% of
+ * the total row count (a very arbitrary limit), then assume that
+ * stadistinct should scale with the row count rather than be a fixed
+ * value.
+ */
+ if (stats->stadistinct > 0.1 * totalrows)
+ stats->stadistinct = -(stats->stadistinct / totalrows);
+
+ /*
+ * Decide how many values are worth storing as most-common values. If
+ * we are able to generate a complete MCV list (all the values in the
+ * sample will fit, and we think these are all the ones in the table),
+ * then do so. Otherwise, store only those values that are
+ * significantly more common than the values not in the list.
+ *
+ * Note: the first of these cases is meant to address columns with
+ * small, fixed sets of possible values, such as boolean or enum
+ * columns. If we can *completely* represent the column population by
+ * an MCV list that will fit into the stats target, then we should do
+ * so and thus provide the planner with complete information. But if
+ * the MCV list is not complete, it's generally worth being more
+ * selective, and not just filling it all the way up to the stats
+ * target.
+ */
+ if (track_cnt < track_max && toowide_cnt == 0 &&
+ stats->stadistinct > 0 &&
+ track_cnt <= num_mcv)
+ {
+ /* Track list includes all values seen, and all will fit */
+ num_mcv = track_cnt;
+ }
+ else
+ {
+ int *mcv_counts;
+
+ /* Incomplete list; decide how many values are worth keeping */
+ if (num_mcv > track_cnt)
+ num_mcv = track_cnt;
+
+ if (num_mcv > 0)
+ {
+ mcv_counts = (int *) palloc(num_mcv * sizeof(int));
+ for (i = 0; i < num_mcv; i++)
+ mcv_counts[i] = track[i].count;
+
+ num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
+ stats->stadistinct,
+ stats->stanullfrac,
+ samplerows, totalrows);
+ }
+ }
+
+ /* Generate MCV slot entry */
+ if (num_mcv > 0)
+ {
+ MemoryContext old_context;
+ Datum *mcv_values;
+ float4 *mcv_freqs;
+
+ /* Must copy the target values into anl_context */
+ old_context = MemoryContextSwitchTo(stats->anl_context);
+ mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
+ mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
+ for (i = 0; i < num_mcv; i++)
+ {
+ mcv_values[i] = datumCopy(track[i].value,
+ stats->attrtype->typbyval,
+ stats->attrtype->typlen);
+ mcv_freqs[i] = (double) track[i].count / (double) samplerows;
+ }
+ MemoryContextSwitchTo(old_context);
+
+ stats->stakind[0] = STATISTIC_KIND_MCV;
+ stats->staop[0] = mystats->eqopr;
+ stats->stacoll[0] = stats->attrcollid;
+ stats->stanumbers[0] = mcv_freqs;
+ stats->numnumbers[0] = num_mcv;
+ stats->stavalues[0] = mcv_values;
+ stats->numvalues[0] = num_mcv;
+
+ /*
+ * Accept the defaults for stats->statypid and others. They have
+ * been set before we were called (see vacuum.h)
+ */
+ }
+ }
+ else if (null_cnt > 0)
+ {
+ /* We found only nulls; assume the column is entirely null */
+ stats->stats_valid = true;
+ stats->stanullfrac = 1.0;
+ if (is_varwidth)
+ stats->stawidth = 0; /* "unknown" */
+ else
+ stats->stawidth = stats->attrtype->typlen;
+ stats->stadistinct = 0.0; /* "unknown" */
+ }
+
+ /* We don't need to bother cleaning up any of our temporary palloc's */
+}
+
+
+/*
+ * compute_scalar_stats() -- compute column statistics
+ *
+ * We use this when we can find "=" and "<" operators for the datatype.
+ *
+ * We determine the fraction of non-null rows, the average width, the
+ * most common values, the (estimated) number of distinct values, the
+ * distribution histogram, and the correlation of physical to logical order.
+ *
+ * The desired stats can be determined fairly easily after sorting the
+ * data values into order.
+ */
+static void
+compute_scalar_stats(VacAttrStatsP stats,
+ AnalyzeAttrFetchFunc fetchfunc,
+ int samplerows,
+ double totalrows)
+{
+ int i;
+ int null_cnt = 0;
+ int nonnull_cnt = 0;
+ int toowide_cnt = 0;
+ double total_width = 0;
+ bool is_varlena = (!stats->attrtype->typbyval &&
+ stats->attrtype->typlen == -1);
+ bool is_varwidth = (!stats->attrtype->typbyval &&
+ stats->attrtype->typlen < 0);
+ double corr_xysum;
+ SortSupportData ssup;
+ ScalarItem *values;
+ int values_cnt = 0;
+ int *tupnoLink;
+ ScalarMCVItem *track;
+ int track_cnt = 0;
+ int num_mcv = stats->attr->attstattarget;
+ int num_bins = stats->attr->attstattarget;
+ StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
+
+ values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
+ tupnoLink = (int *) palloc(samplerows * sizeof(int));
+ track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
+
+ memset(&ssup, 0, sizeof(ssup));
+ ssup.ssup_cxt = CurrentMemoryContext;
+ ssup.ssup_collation = stats->attrcollid;
+ ssup.ssup_nulls_first = false;
+
+ /*
+ * For now, don't perform abbreviated key conversion, because full values
+ * are required for MCV slot generation. Supporting that optimization
+ * would necessitate teaching compare_scalars() to call a tie-breaker.
+ */
+ ssup.abbreviate = false;
+
+ PrepareSortSupportFromOrderingOp(mystats->ltopr, &ssup);
+
+ /* Initial scan to find sortable values */
+ for (i = 0; i < samplerows; i++)
+ {
+ Datum value;
+ bool isnull;
+
+ vacuum_delay_point();
+
+ value = fetchfunc(stats, i, &isnull);
+
+ /* Check for null/nonnull */
+ if (isnull)
+ {
+ null_cnt++;
+ continue;
+ }
+ nonnull_cnt++;
+
+ /*
+ * If it's a variable-width field, add up widths for average width
+ * calculation. Note that if the value is toasted, we use the toasted
+ * width. We don't bother with this calculation if it's a fixed-width
+ * type.
+ */
+ if (is_varlena)
+ {
+ total_width += VARSIZE_ANY(DatumGetPointer(value));
+
+ /*
+ * If the value is toasted, we want to detoast it just once to
+ * avoid repeated detoastings and resultant excess memory usage
+ * during the comparisons. Also, check to see if the value is
+ * excessively wide, and if so don't detoast at all --- just
+ * ignore the value.
+ */
+ if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
+ {
+ toowide_cnt++;
+ continue;
+ }
+ value = PointerGetDatum(PG_DETOAST_DATUM(value));
+ }
+ else if (is_varwidth)
+ {
+ /* must be cstring */
+ total_width += strlen(DatumGetCString(value)) + 1;
+ }
+
+ /* Add it to the list to be sorted */
+ values[values_cnt].value = value;
+ values[values_cnt].tupno = values_cnt;
+ tupnoLink[values_cnt] = values_cnt;
+ values_cnt++;
+ }
+
+ /* We can only compute real stats if we found some sortable values. */
+ if (values_cnt > 0)
+ {
+ int ndistinct, /* # distinct values in sample */
+ nmultiple, /* # that appear multiple times */
+ num_hist,
+ dups_cnt;
+ int slot_idx = 0;
+ CompareScalarsContext cxt;
+
+ /* Sort the collected values */
+ cxt.ssup = &ssup;
+ cxt.tupnoLink = tupnoLink;
+ qsort_interruptible((void *) values, values_cnt, sizeof(ScalarItem),
+ compare_scalars, (void *) &cxt);
+
+ /*
+ * Now scan the values in order, find the most common ones, and also
+ * accumulate ordering-correlation statistics.
+ *
+ * To determine which are most common, we first have to count the
+ * number of duplicates of each value. The duplicates are adjacent in
+ * the sorted list, so a brute-force approach is to compare successive
+ * datum values until we find two that are not equal. However, that
+ * requires N-1 invocations of the datum comparison routine, which are
+ * completely redundant with work that was done during the sort. (The
+ * sort algorithm must at some point have compared each pair of items
+ * that are adjacent in the sorted order; otherwise it could not know
+ * that it's ordered the pair correctly.) We exploit this by having
+ * compare_scalars remember the highest tupno index that each
+ * ScalarItem has been found equal to. At the end of the sort, a
+ * ScalarItem's tupnoLink will still point to itself if and only if it
+ * is the last item of its group of duplicates (since the group will
+ * be ordered by tupno).
+ */
+ corr_xysum = 0;
+ ndistinct = 0;
+ nmultiple = 0;
+ dups_cnt = 0;
+ for (i = 0; i < values_cnt; i++)
+ {
+ int tupno = values[i].tupno;
+
+ corr_xysum += ((double) i) * ((double) tupno);
+ dups_cnt++;
+ if (tupnoLink[tupno] == tupno)
+ {
+ /* Reached end of duplicates of this value */
+ ndistinct++;
+ if (dups_cnt > 1)
+ {
+ nmultiple++;
+ if (track_cnt < num_mcv ||
+ dups_cnt > track[track_cnt - 1].count)
+ {
+ /*
+ * Found a new item for the mcv list; find its
+ * position, bubbling down old items if needed. Loop
+ * invariant is that j points at an empty/ replaceable
+ * slot.
+ */
+ int j;
+
+ if (track_cnt < num_mcv)
+ track_cnt++;
+ for (j = track_cnt - 1; j > 0; j--)
+ {
+ if (dups_cnt <= track[j - 1].count)
+ break;
+ track[j].count = track[j - 1].count;
+ track[j].first = track[j - 1].first;
+ }
+ track[j].count = dups_cnt;
+ track[j].first = i + 1 - dups_cnt;
+ }
+ }
+ dups_cnt = 0;
+ }
+ }
+
+ stats->stats_valid = true;
+ /* Do the simple null-frac and width stats */
+ stats->stanullfrac = (double) null_cnt / (double) samplerows;
+ if (is_varwidth)
+ stats->stawidth = total_width / (double) nonnull_cnt;
+ else
+ stats->stawidth = stats->attrtype->typlen;
+
+ if (nmultiple == 0)
+ {
+ /*
+ * If we found no repeated non-null values, assume it's a unique
+ * column; but be sure to discount for any nulls we found.
+ */
+ stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
+ }
+ else if (toowide_cnt == 0 && nmultiple == ndistinct)
+ {
+ /*
+ * Every value in the sample appeared more than once. Assume the
+ * column has just these values. (This case is meant to address
+ * columns with small, fixed sets of possible values, such as
+ * boolean or enum columns. If there are any values that appear
+ * just once in the sample, including too-wide values, we should
+ * assume that that's not what we're dealing with.)
+ */
+ stats->stadistinct = ndistinct;
+ }
+ else
+ {
+ /*----------
+ * Estimate the number of distinct values using the estimator
+ * proposed by Haas and Stokes in IBM Research Report RJ 10025:
+ * n*d / (n - f1 + f1*n/N)
+ * where f1 is the number of distinct values that occurred
+ * exactly once in our sample of n rows (from a total of N),
+ * and d is the total number of distinct values in the sample.
+ * This is their Duj1 estimator; the other estimators they
+ * recommend are considerably more complex, and are numerically
+ * very unstable when n is much smaller than N.
+ *
+ * In this calculation, we consider only non-nulls. We used to
+ * include rows with null values in the n and N counts, but that
+ * leads to inaccurate answers in columns with many nulls, and
+ * it's intuitively bogus anyway considering the desired result is
+ * the number of distinct non-null values.
+ *
+ * Overwidth values are assumed to have been distinct.
+ *----------
+ */
+ int f1 = ndistinct - nmultiple + toowide_cnt;
+ int d = f1 + nmultiple;
+ double n = samplerows - null_cnt;
+ double N = totalrows * (1.0 - stats->stanullfrac);
+ double stadistinct;
+
+ /* N == 0 shouldn't happen, but just in case ... */
+ if (N > 0)
+ stadistinct = (n * d) / ((n - f1) + f1 * n / N);
+ else
+ stadistinct = 0;
+
+ /* Clamp to sane range in case of roundoff error */
+ if (stadistinct < d)
+ stadistinct = d;
+ if (stadistinct > N)
+ stadistinct = N;
+ /* And round to integer */
+ stats->stadistinct = floor(stadistinct + 0.5);
+ }
+
+ /*
+ * If we estimated the number of distinct values at more than 10% of
+ * the total row count (a very arbitrary limit), then assume that
+ * stadistinct should scale with the row count rather than be a fixed
+ * value.
+ */
+ if (stats->stadistinct > 0.1 * totalrows)
+ stats->stadistinct = -(stats->stadistinct / totalrows);
+
+ /*
+ * Decide how many values are worth storing as most-common values. If
+ * we are able to generate a complete MCV list (all the values in the
+ * sample will fit, and we think these are all the ones in the table),
+ * then do so. Otherwise, store only those values that are
+ * significantly more common than the values not in the list.
+ *
+ * Note: the first of these cases is meant to address columns with
+ * small, fixed sets of possible values, such as boolean or enum
+ * columns. If we can *completely* represent the column population by
+ * an MCV list that will fit into the stats target, then we should do
+ * so and thus provide the planner with complete information. But if
+ * the MCV list is not complete, it's generally worth being more
+ * selective, and not just filling it all the way up to the stats
+ * target.
+ */
+ if (track_cnt == ndistinct && toowide_cnt == 0 &&
+ stats->stadistinct > 0 &&
+ track_cnt <= num_mcv)
+ {
+ /* Track list includes all values seen, and all will fit */
+ num_mcv = track_cnt;
+ }
+ else
+ {
+ int *mcv_counts;
+
+ /* Incomplete list; decide how many values are worth keeping */
+ if (num_mcv > track_cnt)
+ num_mcv = track_cnt;
+
+ if (num_mcv > 0)
+ {
+ mcv_counts = (int *) palloc(num_mcv * sizeof(int));
+ for (i = 0; i < num_mcv; i++)
+ mcv_counts[i] = track[i].count;
+
+ num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
+ stats->stadistinct,
+ stats->stanullfrac,
+ samplerows, totalrows);
+ }
+ }
+
+ /* Generate MCV slot entry */
+ if (num_mcv > 0)
+ {
+ MemoryContext old_context;
+ Datum *mcv_values;
+ float4 *mcv_freqs;
+
+ /* Must copy the target values into anl_context */
+ old_context = MemoryContextSwitchTo(stats->anl_context);
+ mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
+ mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
+ for (i = 0; i < num_mcv; i++)
+ {
+ mcv_values[i] = datumCopy(values[track[i].first].value,
+ stats->attrtype->typbyval,
+ stats->attrtype->typlen);
+ mcv_freqs[i] = (double) track[i].count / (double) samplerows;
+ }
+ MemoryContextSwitchTo(old_context);
+
+ stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
+ stats->staop[slot_idx] = mystats->eqopr;
+ stats->stacoll[slot_idx] = stats->attrcollid;
+ stats->stanumbers[slot_idx] = mcv_freqs;
+ stats->numnumbers[slot_idx] = num_mcv;
+ stats->stavalues[slot_idx] = mcv_values;
+ stats->numvalues[slot_idx] = num_mcv;
+
+ /*
+ * Accept the defaults for stats->statypid and others. They have
+ * been set before we were called (see vacuum.h)
+ */
+ slot_idx++;
+ }
+
+ /*
+ * Generate a histogram slot entry if there are at least two distinct
+ * values not accounted for in the MCV list. (This ensures the
+ * histogram won't collapse to empty or a singleton.)
+ */
+ num_hist = ndistinct - num_mcv;
+ if (num_hist > num_bins)
+ num_hist = num_bins + 1;
+ if (num_hist >= 2)
+ {
+ MemoryContext old_context;
+ Datum *hist_values;
+ int nvals;
+ int pos,
+ posfrac,
+ delta,
+ deltafrac;
+
+ /* Sort the MCV items into position order to speed next loop */
+ qsort_interruptible((void *) track, num_mcv, sizeof(ScalarMCVItem),
+ compare_mcvs, NULL);
+
+ /*
+ * Collapse out the MCV items from the values[] array.
+ *
+ * Note we destroy the values[] array here... but we don't need it
+ * for anything more. We do, however, still need values_cnt.
+ * nvals will be the number of remaining entries in values[].
+ */
+ if (num_mcv > 0)
+ {
+ int src,
+ dest;
+ int j;
+
+ src = dest = 0;
+ j = 0; /* index of next interesting MCV item */
+ while (src < values_cnt)
+ {
+ int ncopy;
+
+ if (j < num_mcv)
+ {
+ int first = track[j].first;
+
+ if (src >= first)
+ {
+ /* advance past this MCV item */
+ src = first + track[j].count;
+ j++;
+ continue;
+ }
+ ncopy = first - src;
+ }
+ else
+ ncopy = values_cnt - src;
+ memmove(&values[dest], &values[src],
+ ncopy * sizeof(ScalarItem));
+ src += ncopy;
+ dest += ncopy;
+ }
+ nvals = dest;
+ }
+ else
+ nvals = values_cnt;
+ Assert(nvals >= num_hist);
+
+ /* Must copy the target values into anl_context */
+ old_context = MemoryContextSwitchTo(stats->anl_context);
+ hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
+
+ /*
+ * The object of this loop is to copy the first and last values[]
+ * entries along with evenly-spaced values in between. So the
+ * i'th value is values[(i * (nvals - 1)) / (num_hist - 1)]. But
+ * computing that subscript directly risks integer overflow when
+ * the stats target is more than a couple thousand. Instead we
+ * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking
+ * the integral and fractional parts of the sum separately.
+ */
+ delta = (nvals - 1) / (num_hist - 1);
+ deltafrac = (nvals - 1) % (num_hist - 1);
+ pos = posfrac = 0;
+
+ for (i = 0; i < num_hist; i++)
+ {
+ hist_values[i] = datumCopy(values[pos].value,
+ stats->attrtype->typbyval,
+ stats->attrtype->typlen);
+ pos += delta;
+ posfrac += deltafrac;
+ if (posfrac >= (num_hist - 1))
+ {
+ /* fractional part exceeds 1, carry to integer part */
+ pos++;
+ posfrac -= (num_hist - 1);
+ }
+ }
+
+ MemoryContextSwitchTo(old_context);
+
+ stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
+ stats->staop[slot_idx] = mystats->ltopr;
+ stats->stacoll[slot_idx] = stats->attrcollid;
+ stats->stavalues[slot_idx] = hist_values;
+ stats->numvalues[slot_idx] = num_hist;
+
+ /*
+ * Accept the defaults for stats->statypid and others. They have
+ * been set before we were called (see vacuum.h)
+ */
+ slot_idx++;
+ }
+
+ /* Generate a correlation entry if there are multiple values */
+ if (values_cnt > 1)
+ {
+ MemoryContext old_context;
+ float4 *corrs;
+ double corr_xsum,
+ corr_x2sum;
+
+ /* Must copy the target values into anl_context */
+ old_context = MemoryContextSwitchTo(stats->anl_context);
+ corrs = (float4 *) palloc(sizeof(float4));
+ MemoryContextSwitchTo(old_context);
+
+ /*----------
+ * Since we know the x and y value sets are both
+ * 0, 1, ..., values_cnt-1
+ * we have sum(x) = sum(y) =
+ * (values_cnt-1)*values_cnt / 2
+ * and sum(x^2) = sum(y^2) =
+ * (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
+ *----------
+ */
+ corr_xsum = ((double) (values_cnt - 1)) *
+ ((double) values_cnt) / 2.0;
+ corr_x2sum = ((double) (values_cnt - 1)) *
+ ((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
+
+ /* And the correlation coefficient reduces to */
+ corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
+ (values_cnt * corr_x2sum - corr_xsum * corr_xsum);
+
+ stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
+ stats->staop[slot_idx] = mystats->ltopr;
+ stats->stacoll[slot_idx] = stats->attrcollid;
+ stats->stanumbers[slot_idx] = corrs;
+ stats->numnumbers[slot_idx] = 1;
+ slot_idx++;
+ }
+ }
+ else if (nonnull_cnt > 0)
+ {
+ /* We found some non-null values, but they were all too wide */
+ Assert(nonnull_cnt == toowide_cnt);
+ stats->stats_valid = true;
+ /* Do the simple null-frac and width stats */
+ stats->stanullfrac = (double) null_cnt / (double) samplerows;
+ if (is_varwidth)
+ stats->stawidth = total_width / (double) nonnull_cnt;
+ else
+ stats->stawidth = stats->attrtype->typlen;
+ /* Assume all too-wide values are distinct, so it's a unique column */
+ stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
+ }
+ else if (null_cnt > 0)
+ {
+ /* We found only nulls; assume the column is entirely null */
+ stats->stats_valid = true;
+ stats->stanullfrac = 1.0;
+ if (is_varwidth)
+ stats->stawidth = 0; /* "unknown" */
+ else
+ stats->stawidth = stats->attrtype->typlen;
+ stats->stadistinct = 0.0; /* "unknown" */
+ }
+
+ /* We don't need to bother cleaning up any of our temporary palloc's */
+}
+
+/*
+ * Comparator for sorting ScalarItems
+ *
+ * Aside from sorting the items, we update the tupnoLink[] array
+ * whenever two ScalarItems are found to contain equal datums. The array
+ * is indexed by tupno; for each ScalarItem, it contains the highest
+ * tupno that that item's datum has been found to be equal to. This allows
+ * us to avoid additional comparisons in compute_scalar_stats().
+ */
+static int
+compare_scalars(const void *a, const void *b, void *arg)
+{
+ Datum da = ((const ScalarItem *) a)->value;
+ int ta = ((const ScalarItem *) a)->tupno;
+ Datum db = ((const ScalarItem *) b)->value;
+ int tb = ((const ScalarItem *) b)->tupno;
+ CompareScalarsContext *cxt = (CompareScalarsContext *) arg;
+ int compare;
+
+ compare = ApplySortComparator(da, false, db, false, cxt->ssup);
+ if (compare != 0)
+ return compare;
+
+ /*
+ * The two datums are equal, so update cxt->tupnoLink[].
+ */
+ if (cxt->tupnoLink[ta] < tb)
+ cxt->tupnoLink[ta] = tb;
+ if (cxt->tupnoLink[tb] < ta)
+ cxt->tupnoLink[tb] = ta;
+
+ /*
+ * For equal datums, sort by tupno
+ */
+ return ta - tb;
+}
+
+/*
+ * Comparator for sorting ScalarMCVItems by position
+ */
+static int
+compare_mcvs(const void *a, const void *b, void *arg)
+{
+ int da = ((const ScalarMCVItem *) a)->first;
+ int db = ((const ScalarMCVItem *) b)->first;
+
+ return da - db;
+}
+
+/*
+ * Analyze the list of common values in the sample and decide how many are
+ * worth storing in the table's MCV list.
+ *
+ * mcv_counts is assumed to be a list of the counts of the most common values
+ * seen in the sample, starting with the most common. The return value is the
+ * number that are significantly more common than the values not in the list,
+ * and which are therefore deemed worth storing in the table's MCV list.
+ */
+static int
+analyze_mcv_list(int *mcv_counts,
+ int num_mcv,
+ double stadistinct,
+ double stanullfrac,
+ int samplerows,
+ double totalrows)
+{
+ double ndistinct_table;
+ double sumcount;
+ int i;
+
+ /*
+ * If the entire table was sampled, keep the whole list. This also
+ * protects us against division by zero in the code below.
+ */
+ if (samplerows == totalrows || totalrows <= 1.0)
+ return num_mcv;
+
+ /* Re-extract the estimated number of distinct nonnull values in table */
+ ndistinct_table = stadistinct;
+ if (ndistinct_table < 0)
+ ndistinct_table = -ndistinct_table * totalrows;
+
+ /*
+ * Exclude the least common values from the MCV list, if they are not
+ * significantly more common than the estimated selectivity they would
+ * have if they weren't in the list. All non-MCV values are assumed to be
+ * equally common, after taking into account the frequencies of all the
+ * values in the MCV list and the number of nulls (c.f. eqsel()).
+ *
+ * Here sumcount tracks the total count of all but the last (least common)
+ * value in the MCV list, allowing us to determine the effect of excluding
+ * that value from the list.
+ *
+ * Note that we deliberately do this by removing values from the full
+ * list, rather than starting with an empty list and adding values,
+ * because the latter approach can fail to add any values if all the most
+ * common values have around the same frequency and make up the majority
+ * of the table, so that the overall average frequency of all values is
+ * roughly the same as that of the common values. This would lead to any
+ * uncommon values being significantly overestimated.
+ */
+ sumcount = 0.0;
+ for (i = 0; i < num_mcv - 1; i++)
+ sumcount += mcv_counts[i];
+
+ while (num_mcv > 0)
+ {
+ double selec,
+ otherdistinct,
+ N,
+ n,
+ K,
+ variance,
+ stddev;
+
+ /*
+ * Estimated selectivity the least common value would have if it
+ * wasn't in the MCV list (c.f. eqsel()).
+ */
+ selec = 1.0 - sumcount / samplerows - stanullfrac;
+ if (selec < 0.0)
+ selec = 0.0;
+ if (selec > 1.0)
+ selec = 1.0;
+ otherdistinct = ndistinct_table - (num_mcv - 1);
+ if (otherdistinct > 1)
+ selec /= otherdistinct;
+
+ /*
+ * If the value is kept in the MCV list, its population frequency is
+ * assumed to equal its sample frequency. We use the lower end of a
+ * textbook continuity-corrected Wald-type confidence interval to
+ * determine if that is significantly more common than the non-MCV
+ * frequency --- specifically we assume the population frequency is
+ * highly likely to be within around 2 standard errors of the sample
+ * frequency, which equates to an interval of 2 standard deviations
+ * either side of the sample count, plus an additional 0.5 for the
+ * continuity correction. Since we are sampling without replacement,
+ * this is a hypergeometric distribution.
+ *
+ * XXX: Empirically, this approach seems to work quite well, but it
+ * may be worth considering more advanced techniques for estimating
+ * the confidence interval of the hypergeometric distribution.
+ */
+ N = totalrows;
+ n = samplerows;
+ K = N * mcv_counts[num_mcv - 1] / n;
+ variance = n * K * (N - K) * (N - n) / (N * N * (N - 1));
+ stddev = sqrt(variance);
+
+ if (mcv_counts[num_mcv - 1] > selec * samplerows + 2 * stddev + 0.5)
+ {
+ /*
+ * The value is significantly more common than the non-MCV
+ * selectivity would suggest. Keep it, and all the other more
+ * common values in the list.
+ */
+ break;
+ }
+ else
+ {
+ /* Discard this value and consider the next least common value */
+ num_mcv--;
+ if (num_mcv == 0)
+ break;
+ sumcount -= mcv_counts[num_mcv - 1];
+ }
+ }
+ return num_mcv;
+}