diff options
Diffstat (limited to 'src/backend/lib/integerset.c')
-rw-r--r-- | src/backend/lib/integerset.c | 1045 |
1 files changed, 1045 insertions, 0 deletions
diff --git a/src/backend/lib/integerset.c b/src/backend/lib/integerset.c new file mode 100644 index 0000000..278a91b --- /dev/null +++ b/src/backend/lib/integerset.c @@ -0,0 +1,1045 @@ +/*------------------------------------------------------------------------- + * + * integerset.c + * Data structure to hold a large set of 64-bit integers efficiently + * + * IntegerSet provides an in-memory data structure to hold a set of + * arbitrary 64-bit integers. Internally, the values are stored in a + * B-tree, with a special packed representation at the leaf level using + * the Simple-8b algorithm, which can pack clusters of nearby values + * very tightly. + * + * Memory consumption depends on the number of values stored, but also + * on how far the values are from each other. In the best case, with + * long runs of consecutive integers, memory consumption can be as low as + * 0.1 bytes per integer. In the worst case, if integers are more than + * 2^32 apart, it uses about 8 bytes per integer. In typical use, the + * consumption per integer is somewhere between those extremes, depending + * on the range of integers stored, and how "clustered" they are. + * + * + * Interface + * --------- + * + * intset_create - Create a new, empty set + * intset_add_member - Add an integer to the set + * intset_is_member - Test if an integer is in the set + * intset_begin_iterate - Begin iterating through all integers in set + * intset_iterate_next - Return next set member, if any + * + * intset_create() creates the set in the current memory context. Subsequent + * operations that add to the data structure will continue to allocate from + * that same context, even if it's not current anymore. + * + * Note that there is no function to free an integer set. If you need to do + * that, create a dedicated memory context to hold it, and destroy the memory + * context instead. + * + * + * Limitations + * ----------- + * + * - Values must be added in order. (Random insertions would require + * splitting nodes, which hasn't been implemented.) + * + * - Values cannot be added while iteration is in progress. + * + * - No support for removing values. + * + * None of these limitations are fundamental to the data structure, so they + * could be lifted if needed, by writing some new code. But the current + * users of this facility don't need them. + * + * + * References + * ---------- + * + * Simple-8b encoding is based on: + * + * Vo Ngoc Anh, Alistair Moffat, Index compression using 64-bit words, + * Software - Practice & Experience, v.40 n.2, p.131-147, February 2010 + * (https://doi.org/10.1002/spe.948) + * + * + * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * IDENTIFICATION + * src/backend/lib/integerset.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include "access/htup_details.h" +#include "lib/integerset.h" +#include "port/pg_bitutils.h" +#include "utils/memutils.h" + + +/* + * Maximum number of integers that can be encoded in a single Simple-8b + * codeword. (Defined here before anything else, so that we can size arrays + * using this.) + */ +#define SIMPLE8B_MAX_VALUES_PER_CODEWORD 240 + +/* + * Parameters for shape of the in-memory B-tree. + * + * These set the size of each internal and leaf node. They don't necessarily + * need to be the same, because the tree is just an in-memory structure. + * With the default 64, each node is about 1 kb. + * + * If you change these, you must recalculate MAX_TREE_LEVELS, too! + */ +#define MAX_INTERNAL_ITEMS 64 +#define MAX_LEAF_ITEMS 64 + +/* + * Maximum height of the tree. + * + * MAX_TREE_ITEMS is calculated from the "fan-out" of the B-tree. The + * theoretical maximum number of items that we can store in a set is 2^64, + * so MAX_TREE_LEVELS should be set so that: + * + * MAX_LEAF_ITEMS * MAX_INTERNAL_ITEMS ^ (MAX_TREE_LEVELS - 1) >= 2^64. + * + * In practice, we'll need far fewer levels, because you will run out of + * memory long before reaching that number, but let's be conservative. + */ +#define MAX_TREE_LEVELS 11 + +/* + * Node structures, for the in-memory B-tree. + * + * An internal node holds a number of downlink pointers to leaf nodes, or + * to internal nodes on a lower level. For each downlink, the key value + * corresponding to the lower level node is stored in a sorted array. The + * stored key values are low keys. In other words, if the downlink has value + * X, then all items stored on that child are >= X. + * + * Each leaf node holds a number of "items", with a varying number of + * integers packed into each item. Each item consists of two 64-bit words: + * The first word holds the first integer stored in the item, in plain format. + * The second word contains between 0 and 240 more integers, packed using + * Simple-8b encoding. By storing the first integer in plain, unpacked, + * format, we can use binary search to quickly find an item that holds (or + * would hold) a particular integer. And by storing the rest in packed form, + * we still get pretty good memory density, if there are clusters of integers + * with similar values. + * + * Each leaf node also has a pointer to the next leaf node, so that the leaf + * nodes can be easily walked from beginning to end when iterating. + */ +typedef struct intset_node intset_node; +typedef struct intset_leaf_node intset_leaf_node; +typedef struct intset_internal_node intset_internal_node; + +/* Common structure of both leaf and internal nodes. */ +struct intset_node +{ + uint16 level; /* tree level of this node */ + uint16 num_items; /* number of items in this node */ +}; + +/* Internal node */ +struct intset_internal_node +{ + /* common header, must match intset_node */ + uint16 level; /* >= 1 on internal nodes */ + uint16 num_items; + + /* + * 'values' is an array of key values, and 'downlinks' are pointers to + * lower-level nodes, corresponding to the key values. + */ + uint64 values[MAX_INTERNAL_ITEMS]; + intset_node *downlinks[MAX_INTERNAL_ITEMS]; +}; + +/* Leaf node */ +typedef struct +{ + uint64 first; /* first integer in this item */ + uint64 codeword; /* simple8b encoded differences from 'first' */ +} leaf_item; + +#define MAX_VALUES_PER_LEAF_ITEM (1 + SIMPLE8B_MAX_VALUES_PER_CODEWORD) + +struct intset_leaf_node +{ + /* common header, must match intset_node */ + uint16 level; /* 0 on leafs */ + uint16 num_items; + + intset_leaf_node *next; /* right sibling, if any */ + + leaf_item items[MAX_LEAF_ITEMS]; +}; + +/* + * We buffer insertions in a simple array, before packing and inserting them + * into the B-tree. MAX_BUFFERED_VALUES sets the size of the buffer. The + * encoder assumes that it is large enough that we can always fill a leaf + * item with buffered new items. In other words, MAX_BUFFERED_VALUES must be + * larger than MAX_VALUES_PER_LEAF_ITEM. For efficiency, make it much larger. + */ +#define MAX_BUFFERED_VALUES (MAX_VALUES_PER_LEAF_ITEM * 2) + +/* + * IntegerSet is the top-level object representing the set. + * + * The integers are stored in an in-memory B-tree structure, plus an array + * for newly-added integers. IntegerSet also tracks information about memory + * usage, as well as the current position when iterating the set with + * intset_begin_iterate / intset_iterate_next. + */ +struct IntegerSet +{ + /* + * 'context' is the memory context holding this integer set and all its + * tree nodes. + * + * 'mem_used' tracks the amount of memory used. We don't do anything with + * it in integerset.c itself, but the callers can ask for it with + * intset_memory_usage(). + */ + MemoryContext context; + uint64 mem_used; + + uint64 num_entries; /* total # of values in the set */ + uint64 highest_value; /* highest value stored in this set */ + + /* + * B-tree to hold the packed values. + * + * 'rightmost_nodes' hold pointers to the rightmost node on each level. + * rightmost_parent[0] is rightmost leaf, rightmost_parent[1] is its + * parent, and so forth, all the way up to the root. These are needed when + * adding new values. (Currently, we require that new values are added at + * the end.) + */ + int num_levels; /* height of the tree */ + intset_node *root; /* root node */ + intset_node *rightmost_nodes[MAX_TREE_LEVELS]; + intset_leaf_node *leftmost_leaf; /* leftmost leaf node */ + + /* + * Holding area for new items that haven't been inserted to the tree yet. + */ + uint64 buffered_values[MAX_BUFFERED_VALUES]; + int num_buffered_values; + + /* + * Iterator support. + * + * 'iter_values' is an array of integers ready to be returned to the + * caller; 'iter_num_values' is the length of that array, and + * 'iter_valueno' is the next index. 'iter_node' and 'iter_itemno' point + * to the leaf node, and item within the leaf node, to get the next batch + * of values from. + * + * Normally, 'iter_values' points to 'iter_values_buf', which holds items + * decoded from a leaf item. But after we have scanned the whole B-tree, + * we iterate through all the unbuffered values, too, by pointing + * iter_values to 'buffered_values'. + */ + bool iter_active; /* is iteration in progress? */ + + const uint64 *iter_values; + int iter_num_values; /* number of elements in 'iter_values' */ + int iter_valueno; /* next index into 'iter_values' */ + + intset_leaf_node *iter_node; /* current leaf node */ + int iter_itemno; /* next item in 'iter_node' to decode */ + + uint64 iter_values_buf[MAX_VALUES_PER_LEAF_ITEM]; +}; + +/* + * Prototypes for internal functions. + */ +static void intset_update_upper(IntegerSet *intset, int level, + intset_node *child, uint64 child_key); +static void intset_flush_buffered_values(IntegerSet *intset); + +static int intset_binsrch_uint64(uint64 value, uint64 *arr, int arr_elems, + bool nextkey); +static int intset_binsrch_leaf(uint64 value, leaf_item *arr, int arr_elems, + bool nextkey); + +static uint64 simple8b_encode(const uint64 *ints, int *num_encoded, uint64 base); +static int simple8b_decode(uint64 codeword, uint64 *decoded, uint64 base); +static bool simple8b_contains(uint64 codeword, uint64 key, uint64 base); + + +/* + * Create a new, initially empty, integer set. + * + * The integer set is created in the current memory context. + * We will do all subsequent allocations in the same context, too, regardless + * of which memory context is current when new integers are added to the set. + */ +IntegerSet * +intset_create(void) +{ + IntegerSet *intset; + + intset = (IntegerSet *) palloc(sizeof(IntegerSet)); + intset->context = CurrentMemoryContext; + intset->mem_used = GetMemoryChunkSpace(intset); + + intset->num_entries = 0; + intset->highest_value = 0; + + intset->num_levels = 0; + intset->root = NULL; + memset(intset->rightmost_nodes, 0, sizeof(intset->rightmost_nodes)); + intset->leftmost_leaf = NULL; + + intset->num_buffered_values = 0; + + intset->iter_active = false; + intset->iter_node = NULL; + intset->iter_itemno = 0; + intset->iter_valueno = 0; + intset->iter_num_values = 0; + intset->iter_values = NULL; + + return intset; +} + +/* + * Allocate a new node. + */ +static intset_internal_node * +intset_new_internal_node(IntegerSet *intset) +{ + intset_internal_node *n; + + n = (intset_internal_node *) MemoryContextAlloc(intset->context, + sizeof(intset_internal_node)); + intset->mem_used += GetMemoryChunkSpace(n); + + n->level = 0; /* caller must set */ + n->num_items = 0; + + return n; +} + +static intset_leaf_node * +intset_new_leaf_node(IntegerSet *intset) +{ + intset_leaf_node *n; + + n = (intset_leaf_node *) MemoryContextAlloc(intset->context, + sizeof(intset_leaf_node)); + intset->mem_used += GetMemoryChunkSpace(n); + + n->level = 0; + n->num_items = 0; + n->next = NULL; + + return n; +} + +/* + * Return the number of entries in the integer set. + */ +uint64 +intset_num_entries(IntegerSet *intset) +{ + return intset->num_entries; +} + +/* + * Return the amount of memory used by the integer set. + */ +uint64 +intset_memory_usage(IntegerSet *intset) +{ + return intset->mem_used; +} + +/* + * Add a value to the set. + * + * Values must be added in order. + */ +void +intset_add_member(IntegerSet *intset, uint64 x) +{ + if (intset->iter_active) + elog(ERROR, "cannot add new values to integer set while iteration is in progress"); + + if (x <= intset->highest_value && intset->num_entries > 0) + elog(ERROR, "cannot add value to integer set out of order"); + + if (intset->num_buffered_values >= MAX_BUFFERED_VALUES) + { + /* Time to flush our buffer */ + intset_flush_buffered_values(intset); + Assert(intset->num_buffered_values < MAX_BUFFERED_VALUES); + } + + /* Add it to the buffer of newly-added values */ + intset->buffered_values[intset->num_buffered_values] = x; + intset->num_buffered_values++; + intset->num_entries++; + intset->highest_value = x; +} + +/* + * Take a batch of buffered values, and pack them into the B-tree. + */ +static void +intset_flush_buffered_values(IntegerSet *intset) +{ + uint64 *values = intset->buffered_values; + uint64 num_values = intset->num_buffered_values; + int num_packed = 0; + intset_leaf_node *leaf; + + leaf = (intset_leaf_node *) intset->rightmost_nodes[0]; + + /* + * If the tree is completely empty, create the first leaf page, which is + * also the root. + */ + if (leaf == NULL) + { + /* + * This is the very first item in the set. + * + * Allocate root node. It's also a leaf. + */ + leaf = intset_new_leaf_node(intset); + + intset->root = (intset_node *) leaf; + intset->leftmost_leaf = leaf; + intset->rightmost_nodes[0] = (intset_node *) leaf; + intset->num_levels = 1; + } + + /* + * If there are less than MAX_VALUES_PER_LEAF_ITEM values in the buffer, + * stop. In most cases, we cannot encode that many values in a single + * value, but this way, the encoder doesn't have to worry about running + * out of input. + */ + while (num_values - num_packed >= MAX_VALUES_PER_LEAF_ITEM) + { + leaf_item item; + int num_encoded; + + /* + * Construct the next leaf item, packing as many buffered values as + * possible. + */ + item.first = values[num_packed]; + item.codeword = simple8b_encode(&values[num_packed + 1], + &num_encoded, + item.first); + + /* + * Add the item to the node, allocating a new node if the old one is + * full. + */ + if (leaf->num_items >= MAX_LEAF_ITEMS) + { + /* Allocate new leaf and link it to the tree */ + intset_leaf_node *old_leaf = leaf; + + leaf = intset_new_leaf_node(intset); + old_leaf->next = leaf; + intset->rightmost_nodes[0] = (intset_node *) leaf; + intset_update_upper(intset, 1, (intset_node *) leaf, item.first); + } + leaf->items[leaf->num_items++] = item; + + num_packed += 1 + num_encoded; + } + + /* + * Move any remaining buffered values to the beginning of the array. + */ + if (num_packed < intset->num_buffered_values) + { + memmove(&intset->buffered_values[0], + &intset->buffered_values[num_packed], + (intset->num_buffered_values - num_packed) * sizeof(uint64)); + } + intset->num_buffered_values -= num_packed; +} + +/* + * Insert a downlink into parent node, after creating a new node. + * + * Recurses if the parent node is full, too. + */ +static void +intset_update_upper(IntegerSet *intset, int level, intset_node *child, + uint64 child_key) +{ + intset_internal_node *parent; + + Assert(level > 0); + + /* + * Create a new root node, if necessary. + */ + if (level >= intset->num_levels) + { + intset_node *oldroot = intset->root; + uint64 downlink_key; + + /* MAX_TREE_LEVELS should be more than enough, this shouldn't happen */ + if (intset->num_levels == MAX_TREE_LEVELS) + elog(ERROR, "could not expand integer set, maximum number of levels reached"); + intset->num_levels++; + + /* + * Get the first value on the old root page, to be used as the + * downlink. + */ + if (intset->root->level == 0) + downlink_key = ((intset_leaf_node *) oldroot)->items[0].first; + else + downlink_key = ((intset_internal_node *) oldroot)->values[0]; + + parent = intset_new_internal_node(intset); + parent->level = level; + parent->values[0] = downlink_key; + parent->downlinks[0] = oldroot; + parent->num_items = 1; + + intset->root = (intset_node *) parent; + intset->rightmost_nodes[level] = (intset_node *) parent; + } + + /* + * Place the downlink on the parent page. + */ + parent = (intset_internal_node *) intset->rightmost_nodes[level]; + + if (parent->num_items < MAX_INTERNAL_ITEMS) + { + parent->values[parent->num_items] = child_key; + parent->downlinks[parent->num_items] = child; + parent->num_items++; + } + else + { + /* + * Doesn't fit. Allocate new parent, with the downlink as the first + * item on it, and recursively insert the downlink to the new parent + * to the grandparent. + */ + parent = intset_new_internal_node(intset); + parent->level = level; + parent->values[0] = child_key; + parent->downlinks[0] = child; + parent->num_items = 1; + + intset->rightmost_nodes[level] = (intset_node *) parent; + + intset_update_upper(intset, level + 1, (intset_node *) parent, child_key); + } +} + +/* + * Does the set contain the given value? + */ +bool +intset_is_member(IntegerSet *intset, uint64 x) +{ + intset_node *node; + intset_leaf_node *leaf; + int level; + int itemno; + leaf_item *item; + + /* + * The value might be in the buffer of newly-added values. + */ + if (intset->num_buffered_values > 0 && x >= intset->buffered_values[0]) + { + int itemno; + + itemno = intset_binsrch_uint64(x, + intset->buffered_values, + intset->num_buffered_values, + false); + if (itemno >= intset->num_buffered_values) + return false; + else + return (intset->buffered_values[itemno] == x); + } + + /* + * Start from the root, and walk down the B-tree to find the right leaf + * node. + */ + if (!intset->root) + return false; + node = intset->root; + for (level = intset->num_levels - 1; level > 0; level--) + { + intset_internal_node *n = (intset_internal_node *) node; + + Assert(node->level == level); + + itemno = intset_binsrch_uint64(x, n->values, n->num_items, true); + if (itemno == 0) + return false; + node = n->downlinks[itemno - 1]; + } + Assert(node->level == 0); + leaf = (intset_leaf_node *) node; + + /* + * Binary search to find the right item on the leaf page + */ + itemno = intset_binsrch_leaf(x, leaf->items, leaf->num_items, true); + if (itemno == 0) + return false; + item = &leaf->items[itemno - 1]; + + /* Is this a match to the first value on the item? */ + if (item->first == x) + return true; + Assert(x > item->first); + + /* Is it in the packed codeword? */ + if (simple8b_contains(item->codeword, x, item->first)) + return true; + + return false; +} + +/* + * Begin in-order scan through all the values. + * + * While the iteration is in-progress, you cannot add new values to the set. + */ +void +intset_begin_iterate(IntegerSet *intset) +{ + /* Note that we allow an iteration to be abandoned midway */ + intset->iter_active = true; + intset->iter_node = intset->leftmost_leaf; + intset->iter_itemno = 0; + intset->iter_valueno = 0; + intset->iter_num_values = 0; + intset->iter_values = intset->iter_values_buf; +} + +/* + * Returns the next integer, when iterating. + * + * intset_begin_iterate() must be called first. intset_iterate_next() returns + * the next value in the set. Returns true, if there was another value, and + * stores the value in *next. Otherwise, returns false. + */ +bool +intset_iterate_next(IntegerSet *intset, uint64 *next) +{ + Assert(intset->iter_active); + for (;;) + { + /* Return next iter_values[] entry if any */ + if (intset->iter_valueno < intset->iter_num_values) + { + *next = intset->iter_values[intset->iter_valueno++]; + return true; + } + + /* Decode next item in current leaf node, if any */ + if (intset->iter_node && + intset->iter_itemno < intset->iter_node->num_items) + { + leaf_item *item; + int num_decoded; + + item = &intset->iter_node->items[intset->iter_itemno++]; + + intset->iter_values_buf[0] = item->first; + num_decoded = simple8b_decode(item->codeword, + &intset->iter_values_buf[1], + item->first); + intset->iter_num_values = num_decoded + 1; + intset->iter_valueno = 0; + continue; + } + + /* No more items on this leaf, step to next node */ + if (intset->iter_node) + { + intset->iter_node = intset->iter_node->next; + intset->iter_itemno = 0; + continue; + } + + /* + * We have reached the end of the B-tree. But we might still have + * some integers in the buffer of newly-added values. + */ + if (intset->iter_values == (const uint64 *) intset->iter_values_buf) + { + intset->iter_values = intset->buffered_values; + intset->iter_num_values = intset->num_buffered_values; + intset->iter_valueno = 0; + continue; + } + + break; + } + + /* No more results. */ + intset->iter_active = false; + *next = 0; /* prevent uninitialized-variable warnings */ + return false; +} + +/* + * intset_binsrch_uint64() -- search a sorted array of uint64s + * + * Returns the first position with key equal or less than the given key. + * The returned position would be the "insert" location for the given key, + * that is, the position where the new key should be inserted to. + * + * 'nextkey' affects the behavior on equal keys. If true, and there is an + * equal key in the array, this returns the position immediately after the + * equal key. If false, this returns the position of the equal key itself. + */ +static int +intset_binsrch_uint64(uint64 item, uint64 *arr, int arr_elems, bool nextkey) +{ + int low, + high, + mid; + + low = 0; + high = arr_elems; + while (high > low) + { + mid = low + (high - low) / 2; + + if (nextkey) + { + if (item >= arr[mid]) + low = mid + 1; + else + high = mid; + } + else + { + if (item > arr[mid]) + low = mid + 1; + else + high = mid; + } + } + + return low; +} + +/* same, but for an array of leaf items */ +static int +intset_binsrch_leaf(uint64 item, leaf_item *arr, int arr_elems, bool nextkey) +{ + int low, + high, + mid; + + low = 0; + high = arr_elems; + while (high > low) + { + mid = low + (high - low) / 2; + + if (nextkey) + { + if (item >= arr[mid].first) + low = mid + 1; + else + high = mid; + } + else + { + if (item > arr[mid].first) + low = mid + 1; + else + high = mid; + } + } + + return low; +} + +/* + * Simple-8b encoding. + * + * The simple-8b algorithm packs between 1 and 240 integers into 64-bit words, + * called "codewords". The number of integers packed into a single codeword + * depends on the integers being packed; small integers are encoded using + * fewer bits than large integers. A single codeword can store a single + * 60-bit integer, or two 30-bit integers, for example. + * + * Since we're storing a unique, sorted, set of integers, we actually encode + * the *differences* between consecutive integers. That way, clusters of + * integers that are close to each other are packed efficiently, regardless + * of their absolute values. + * + * In Simple-8b, each codeword consists of a 4-bit selector, which indicates + * how many integers are encoded in the codeword, and the encoded integers are + * packed into the remaining 60 bits. The selector allows for 16 different + * ways of using the remaining 60 bits, called "modes". The number of integers + * packed into a single codeword in each mode is listed in the simple8b_modes + * table below. For example, consider the following codeword: + * + * 20-bit integer 20-bit integer 20-bit integer + * 1101 00000000000000010010 01111010000100100000 00000000000000010100 + * ^ + * selector + * + * The selector 1101 is 13 in decimal. From the modes table below, we see + * that it means that the codeword encodes three 20-bit integers. In decimal, + * those integers are 18, 500000 and 20. Because we encode deltas rather than + * absolute values, the actual values that they represent are 18, 500018 and + * 500038. + * + * Modes 0 and 1 are a bit special; they encode a run of 240 or 120 zeroes + * (which means 240 or 120 consecutive integers, since we're encoding the + * deltas between integers), without using the rest of the codeword bits + * for anything. + * + * Simple-8b cannot encode integers larger than 60 bits. Values larger than + * that are always stored in the 'first' field of a leaf item, never in the + * packed codeword. If there is a sequence of integers that are more than + * 2^60 apart, the codeword will go unused on those items. To represent that, + * we use a magic EMPTY_CODEWORD codeword value. + */ +static const struct simple8b_mode +{ + uint8 bits_per_int; + uint8 num_ints; +} simple8b_modes[17] = + +{ + {0, 240}, /* mode 0: 240 zeroes */ + {0, 120}, /* mode 1: 120 zeroes */ + {1, 60}, /* mode 2: sixty 1-bit integers */ + {2, 30}, /* mode 3: thirty 2-bit integers */ + {3, 20}, /* mode 4: twenty 3-bit integers */ + {4, 15}, /* mode 5: fifteen 4-bit integers */ + {5, 12}, /* mode 6: twelve 5-bit integers */ + {6, 10}, /* mode 7: ten 6-bit integers */ + {7, 8}, /* mode 8: eight 7-bit integers (four bits + * are wasted) */ + {8, 7}, /* mode 9: seven 8-bit integers (four bits + * are wasted) */ + {10, 6}, /* mode 10: six 10-bit integers */ + {12, 5}, /* mode 11: five 12-bit integers */ + {15, 4}, /* mode 12: four 15-bit integers */ + {20, 3}, /* mode 13: three 20-bit integers */ + {30, 2}, /* mode 14: two 30-bit integers */ + {60, 1}, /* mode 15: one 60-bit integer */ + + {0, 0} /* sentinel value */ +}; + +/* + * EMPTY_CODEWORD is a special value, used to indicate "no values". + * It is used if the next value is too large to be encoded with Simple-8b. + * + * This value looks like a mode-0 codeword, but we can distinguish it + * because a regular mode-0 codeword would have zeroes in the unused bits. + */ +#define EMPTY_CODEWORD UINT64CONST(0x0FFFFFFFFFFFFFFF) + +/* + * Encode a number of integers into a Simple-8b codeword. + * + * (What we actually encode are deltas between successive integers. + * "base" is the value before ints[0].) + * + * The input array must contain at least SIMPLE8B_MAX_VALUES_PER_CODEWORD + * elements, ensuring that we can produce a full codeword. + * + * Returns the encoded codeword, and sets *num_encoded to the number of + * input integers that were encoded. That can be zero, if the first delta + * is too large to be encoded. + */ +static uint64 +simple8b_encode(const uint64 *ints, int *num_encoded, uint64 base) +{ + int selector; + int nints; + int bits; + uint64 diff; + uint64 last_val; + uint64 codeword; + int i; + + Assert(ints[0] > base); + + /* + * Select the "mode" to use for this codeword. + * + * In each iteration, check if the next value can be represented in the + * current mode we're considering. If it's too large, then step up the + * mode to a wider one, and repeat. If it fits, move on to the next + * integer. Repeat until the codeword is full, given the current mode. + * + * Note that we don't have any way to represent unused slots in the + * codeword, so we require each codeword to be "full". It is always + * possible to produce a full codeword unless the very first delta is too + * large to be encoded. For example, if the first delta is small but the + * second is too large to be encoded, we'll end up using the last "mode", + * which has nints == 1. + */ + selector = 0; + nints = simple8b_modes[0].num_ints; + bits = simple8b_modes[0].bits_per_int; + diff = ints[0] - base - 1; + last_val = ints[0]; + i = 0; /* number of deltas we have accepted */ + for (;;) + { + if (diff >= (UINT64CONST(1) << bits)) + { + /* too large, step up to next mode */ + selector++; + nints = simple8b_modes[selector].num_ints; + bits = simple8b_modes[selector].bits_per_int; + /* we might already have accepted enough deltas for this mode */ + if (i >= nints) + break; + } + else + { + /* accept this delta; then done if codeword is full */ + i++; + if (i >= nints) + break; + /* examine next delta */ + Assert(ints[i] > last_val); + diff = ints[i] - last_val - 1; + last_val = ints[i]; + } + } + + if (nints == 0) + { + /* + * The first delta is too large to be encoded with Simple-8b. + * + * If there is at least one not-too-large integer in the input, we + * will encode it using mode 15 (or a more compact mode). Hence, we + * can only get here if the *first* delta is >= 2^60. + */ + Assert(i == 0); + *num_encoded = 0; + return EMPTY_CODEWORD; + } + + /* + * Encode the integers using the selected mode. Note that we shift them + * into the codeword in reverse order, so that they will come out in the + * correct order in the decoder. + */ + codeword = 0; + if (bits > 0) + { + for (i = nints - 1; i > 0; i--) + { + diff = ints[i] - ints[i - 1] - 1; + codeword |= diff; + codeword <<= bits; + } + diff = ints[0] - base - 1; + codeword |= diff; + } + + /* add selector to the codeword, and return */ + codeword |= (uint64) selector << 60; + + *num_encoded = nints; + return codeword; +} + +/* + * Decode a codeword into an array of integers. + * Returns the number of integers decoded. + */ +static int +simple8b_decode(uint64 codeword, uint64 *decoded, uint64 base) +{ + int selector = (codeword >> 60); + int nints = simple8b_modes[selector].num_ints; + int bits = simple8b_modes[selector].bits_per_int; + uint64 mask = (UINT64CONST(1) << bits) - 1; + uint64 curr_value; + + if (codeword == EMPTY_CODEWORD) + return 0; + + curr_value = base; + for (int i = 0; i < nints; i++) + { + uint64 diff = codeword & mask; + + curr_value += 1 + diff; + decoded[i] = curr_value; + codeword >>= bits; + } + return nints; +} + +/* + * This is very similar to simple8b_decode(), but instead of decoding all + * the values to an array, it just checks if the given "key" is part of + * the codeword. + */ +static bool +simple8b_contains(uint64 codeword, uint64 key, uint64 base) +{ + int selector = (codeword >> 60); + int nints = simple8b_modes[selector].num_ints; + int bits = simple8b_modes[selector].bits_per_int; + + if (codeword == EMPTY_CODEWORD) + return false; + + if (bits == 0) + { + /* Special handling for 0-bit cases. */ + return (key - base) <= nints; + } + else + { + uint64 mask = (UINT64CONST(1) << bits) - 1; + uint64 curr_value; + + curr_value = base; + for (int i = 0; i < nints; i++) + { + uint64 diff = codeword & mask; + + curr_value += 1 + diff; + + if (curr_value >= key) + { + if (curr_value == key) + return true; + else + return false; + } + + codeword >>= bits; + } + } + return false; +} |