diff options
Diffstat (limited to 'src/backend/lib/knapsack.c')
-rw-r--r-- | src/backend/lib/knapsack.c | 111 |
1 files changed, 111 insertions, 0 deletions
diff --git a/src/backend/lib/knapsack.c b/src/backend/lib/knapsack.c new file mode 100644 index 0000000..50c84b4 --- /dev/null +++ b/src/backend/lib/knapsack.c @@ -0,0 +1,111 @@ +/*------------------------------------------------------------------------- + * + * knapsack.c + * Knapsack problem solver + * + * Given input vectors of integral item weights (must be >= 0) and values + * (double >= 0), compute the set of items which produces the greatest total + * value without exceeding a specified total weight; each item is included at + * most once (this is the 0/1 knapsack problem). Weight 0 items will always be + * included. + * + * The performance of this algorithm is pseudo-polynomial, O(nW) where W is the + * weight limit. To use with non-integral weights or approximate solutions, + * the caller should pre-scale the input weights to a suitable range. This + * allows approximate solutions in polynomial time (the general case of the + * exact problem is NP-hard). + * + * Copyright (c) 2017-2021, PostgreSQL Global Development Group + * + * IDENTIFICATION + * src/backend/lib/knapsack.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include <math.h> +#include <limits.h> + +#include "lib/knapsack.h" +#include "miscadmin.h" +#include "nodes/bitmapset.h" +#include "utils/builtins.h" +#include "utils/memutils.h" + +/* + * DiscreteKnapsack + * + * The item_values input is optional; if omitted, all the items are assumed to + * have value 1. + * + * Returns a Bitmapset of the 0..(n-1) indexes of the items chosen for + * inclusion in the solution. + * + * This uses the usual dynamic-programming algorithm, adapted to reuse the + * memory on each pass (by working from larger weights to smaller). At the + * start of pass number i, the values[w] array contains the largest value + * computed with total weight <= w, using only items with indices < i; and + * sets[w] contains the bitmap of items actually used for that value. (The + * bitmapsets are all pre-initialized with an unused high bit so that memory + * allocation is done only once.) + */ +Bitmapset * +DiscreteKnapsack(int max_weight, int num_items, + int *item_weights, double *item_values) +{ + MemoryContext local_ctx = AllocSetContextCreate(CurrentMemoryContext, + "Knapsack", + ALLOCSET_SMALL_SIZES); + MemoryContext oldctx = MemoryContextSwitchTo(local_ctx); + double *values; + Bitmapset **sets; + Bitmapset *result; + int i, + j; + + Assert(max_weight >= 0); + Assert(num_items > 0 && item_weights); + + values = palloc((1 + max_weight) * sizeof(double)); + sets = palloc((1 + max_weight) * sizeof(Bitmapset *)); + + for (i = 0; i <= max_weight; ++i) + { + values[i] = 0; + sets[i] = bms_make_singleton(num_items); + } + + for (i = 0; i < num_items; ++i) + { + int iw = item_weights[i]; + double iv = item_values ? item_values[i] : 1; + + for (j = max_weight; j >= iw; --j) + { + int ow = j - iw; + + if (values[j] <= values[ow] + iv) + { + /* copy sets[ow] to sets[j] without realloc */ + if (j != ow) + { + sets[j] = bms_del_members(sets[j], sets[j]); + sets[j] = bms_add_members(sets[j], sets[ow]); + } + + sets[j] = bms_add_member(sets[j], i); + + values[j] = values[ow] + iv; + } + } + } + + MemoryContextSwitchTo(oldctx); + + result = bms_del_member(bms_copy(sets[max_weight]), num_items); + + MemoryContextDelete(local_ctx); + + return result; +} |