diff options
Diffstat (limited to '')
-rw-r--r-- | src/backend/optimizer/plan/createplan.c | 7160 |
1 files changed, 7160 insertions, 0 deletions
diff --git a/src/backend/optimizer/plan/createplan.c b/src/backend/optimizer/plan/createplan.c new file mode 100644 index 0000000..0ed858f --- /dev/null +++ b/src/backend/optimizer/plan/createplan.c @@ -0,0 +1,7160 @@ +/*------------------------------------------------------------------------- + * + * createplan.c + * Routines to create the desired plan for processing a query. + * Planning is complete, we just need to convert the selected + * Path into a Plan. + * + * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * + * IDENTIFICATION + * src/backend/optimizer/plan/createplan.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include <limits.h> +#include <math.h> + +#include "access/sysattr.h" +#include "catalog/pg_class.h" +#include "foreign/fdwapi.h" +#include "miscadmin.h" +#include "nodes/extensible.h" +#include "nodes/makefuncs.h" +#include "nodes/nodeFuncs.h" +#include "optimizer/clauses.h" +#include "optimizer/cost.h" +#include "optimizer/optimizer.h" +#include "optimizer/paramassign.h" +#include "optimizer/paths.h" +#include "optimizer/placeholder.h" +#include "optimizer/plancat.h" +#include "optimizer/planmain.h" +#include "optimizer/prep.h" +#include "optimizer/restrictinfo.h" +#include "optimizer/subselect.h" +#include "optimizer/tlist.h" +#include "parser/parse_clause.h" +#include "parser/parsetree.h" +#include "partitioning/partprune.h" +#include "utils/lsyscache.h" + + +/* + * Flag bits that can appear in the flags argument of create_plan_recurse(). + * These can be OR-ed together. + * + * CP_EXACT_TLIST specifies that the generated plan node must return exactly + * the tlist specified by the path's pathtarget (this overrides both + * CP_SMALL_TLIST and CP_LABEL_TLIST, if those are set). Otherwise, the + * plan node is allowed to return just the Vars and PlaceHolderVars needed + * to evaluate the pathtarget. + * + * CP_SMALL_TLIST specifies that a narrower tlist is preferred. This is + * passed down by parent nodes such as Sort and Hash, which will have to + * store the returned tuples. + * + * CP_LABEL_TLIST specifies that the plan node must return columns matching + * any sortgrouprefs specified in its pathtarget, with appropriate + * ressortgroupref labels. This is passed down by parent nodes such as Sort + * and Group, which need these values to be available in their inputs. + * + * CP_IGNORE_TLIST specifies that the caller plans to replace the targetlist, + * and therefore it doesn't matter a bit what target list gets generated. + */ +#define CP_EXACT_TLIST 0x0001 /* Plan must return specified tlist */ +#define CP_SMALL_TLIST 0x0002 /* Prefer narrower tlists */ +#define CP_LABEL_TLIST 0x0004 /* tlist must contain sortgrouprefs */ +#define CP_IGNORE_TLIST 0x0008 /* caller will replace tlist */ + + +static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path, + int flags); +static Plan *create_scan_plan(PlannerInfo *root, Path *best_path, + int flags); +static List *build_path_tlist(PlannerInfo *root, Path *path); +static bool use_physical_tlist(PlannerInfo *root, Path *path, int flags); +static List *get_gating_quals(PlannerInfo *root, List *quals); +static Plan *create_gating_plan(PlannerInfo *root, Path *path, Plan *plan, + List *gating_quals); +static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path); +static bool is_async_capable_plan(Plan *plan, Path *path); +static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path, + int flags); +static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path, + int flags); +static Result *create_group_result_plan(PlannerInfo *root, + GroupResultPath *best_path); +static ProjectSet *create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path); +static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path, + int flags); +static Memoize *create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, + int flags); +static Plan *create_unique_plan(PlannerInfo *root, UniquePath *best_path, + int flags); +static Gather *create_gather_plan(PlannerInfo *root, GatherPath *best_path); +static Plan *create_projection_plan(PlannerInfo *root, + ProjectionPath *best_path, + int flags); +static Plan *inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe); +static Sort *create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags); +static IncrementalSort *create_incrementalsort_plan(PlannerInfo *root, + IncrementalSortPath *best_path, int flags); +static Group *create_group_plan(PlannerInfo *root, GroupPath *best_path); +static Unique *create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path, + int flags); +static Agg *create_agg_plan(PlannerInfo *root, AggPath *best_path); +static Plan *create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path); +static Result *create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path); +static WindowAgg *create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path); +static SetOp *create_setop_plan(PlannerInfo *root, SetOpPath *best_path, + int flags); +static RecursiveUnion *create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path); +static LockRows *create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path, + int flags); +static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path); +static Limit *create_limit_plan(PlannerInfo *root, LimitPath *best_path, + int flags); +static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses); +static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses); +static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path, + List *tlist, List *scan_clauses, bool indexonly); +static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root, + BitmapHeapPath *best_path, + List *tlist, List *scan_clauses); +static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual, + List **qual, List **indexqual, List **indexECs); +static void bitmap_subplan_mark_shared(Plan *plan); +static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path, + List *tlist, List *scan_clauses); +static TidRangeScan *create_tidrangescan_plan(PlannerInfo *root, + TidRangePath *best_path, + List *tlist, + List *scan_clauses); +static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root, + SubqueryScanPath *best_path, + List *tlist, List *scan_clauses); +static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses); +static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses); +static TableFuncScan *create_tablefuncscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses); +static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses); +static NamedTuplestoreScan *create_namedtuplestorescan_plan(PlannerInfo *root, + Path *best_path, List *tlist, List *scan_clauses); +static Result *create_resultscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses); +static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses); +static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path, + List *tlist, List *scan_clauses); +static CustomScan *create_customscan_plan(PlannerInfo *root, + CustomPath *best_path, + List *tlist, List *scan_clauses); +static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path); +static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path); +static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path); +static Node *replace_nestloop_params(PlannerInfo *root, Node *expr); +static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root); +static void fix_indexqual_references(PlannerInfo *root, IndexPath *index_path, + List **stripped_indexquals_p, + List **fixed_indexquals_p); +static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path); +static Node *fix_indexqual_clause(PlannerInfo *root, + IndexOptInfo *index, int indexcol, + Node *clause, List *indexcolnos); +static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol); +static List *get_switched_clauses(List *clauses, Relids outerrelids); +static List *order_qual_clauses(PlannerInfo *root, List *clauses); +static void copy_generic_path_info(Plan *dest, Path *src); +static void copy_plan_costsize(Plan *dest, Plan *src); +static void label_sort_with_costsize(PlannerInfo *root, Sort *plan, + double limit_tuples); +static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid); +static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid, + TableSampleClause *tsc); +static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid, + Oid indexid, List *indexqual, List *indexqualorig, + List *indexorderby, List *indexorderbyorig, + List *indexorderbyops, + ScanDirection indexscandir); +static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual, + Index scanrelid, Oid indexid, + List *indexqual, List *recheckqual, + List *indexorderby, + List *indextlist, + ScanDirection indexscandir); +static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid, + List *indexqual, + List *indexqualorig); +static BitmapHeapScan *make_bitmap_heapscan(List *qptlist, + List *qpqual, + Plan *lefttree, + List *bitmapqualorig, + Index scanrelid); +static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid, + List *tidquals); +static TidRangeScan *make_tidrangescan(List *qptlist, List *qpqual, + Index scanrelid, List *tidrangequals); +static SubqueryScan *make_subqueryscan(List *qptlist, + List *qpqual, + Index scanrelid, + Plan *subplan); +static FunctionScan *make_functionscan(List *qptlist, List *qpqual, + Index scanrelid, List *functions, bool funcordinality); +static ValuesScan *make_valuesscan(List *qptlist, List *qpqual, + Index scanrelid, List *values_lists); +static TableFuncScan *make_tablefuncscan(List *qptlist, List *qpqual, + Index scanrelid, TableFunc *tablefunc); +static CteScan *make_ctescan(List *qptlist, List *qpqual, + Index scanrelid, int ctePlanId, int cteParam); +static NamedTuplestoreScan *make_namedtuplestorescan(List *qptlist, List *qpqual, + Index scanrelid, char *enrname); +static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual, + Index scanrelid, int wtParam); +static RecursiveUnion *make_recursive_union(List *tlist, + Plan *lefttree, + Plan *righttree, + int wtParam, + List *distinctList, + long numGroups); +static BitmapAnd *make_bitmap_and(List *bitmapplans); +static BitmapOr *make_bitmap_or(List *bitmapplans); +static NestLoop *make_nestloop(List *tlist, + List *joinclauses, List *otherclauses, List *nestParams, + Plan *lefttree, Plan *righttree, + JoinType jointype, bool inner_unique); +static HashJoin *make_hashjoin(List *tlist, + List *joinclauses, List *otherclauses, + List *hashclauses, + List *hashoperators, List *hashcollations, + List *hashkeys, + Plan *lefttree, Plan *righttree, + JoinType jointype, bool inner_unique); +static Hash *make_hash(Plan *lefttree, + List *hashkeys, + Oid skewTable, + AttrNumber skewColumn, + bool skewInherit); +static MergeJoin *make_mergejoin(List *tlist, + List *joinclauses, List *otherclauses, + List *mergeclauses, + Oid *mergefamilies, + Oid *mergecollations, + int *mergestrategies, + bool *mergenullsfirst, + Plan *lefttree, Plan *righttree, + JoinType jointype, bool inner_unique, + bool skip_mark_restore); +static Sort *make_sort(Plan *lefttree, int numCols, + AttrNumber *sortColIdx, Oid *sortOperators, + Oid *collations, bool *nullsFirst); +static IncrementalSort *make_incrementalsort(Plan *lefttree, + int numCols, int nPresortedCols, + AttrNumber *sortColIdx, Oid *sortOperators, + Oid *collations, bool *nullsFirst); +static Plan *prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys, + Relids relids, + const AttrNumber *reqColIdx, + bool adjust_tlist_in_place, + int *p_numsortkeys, + AttrNumber **p_sortColIdx, + Oid **p_sortOperators, + Oid **p_collations, + bool **p_nullsFirst); +static Sort *make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, + Relids relids); +static IncrementalSort *make_incrementalsort_from_pathkeys(Plan *lefttree, + List *pathkeys, Relids relids, int nPresortedCols); +static Sort *make_sort_from_groupcols(List *groupcls, + AttrNumber *grpColIdx, + Plan *lefttree); +static Material *make_material(Plan *lefttree); +static Memoize *make_memoize(Plan *lefttree, Oid *hashoperators, + Oid *collations, List *param_exprs, + bool singlerow, bool binary_mode, + uint32 est_entries, Bitmapset *keyparamids); +static WindowAgg *make_windowagg(List *tlist, Index winref, + int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations, + int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations, + int frameOptions, Node *startOffset, Node *endOffset, + Oid startInRangeFunc, Oid endInRangeFunc, + Oid inRangeColl, bool inRangeAsc, bool inRangeNullsFirst, + Plan *lefttree); +static Group *make_group(List *tlist, List *qual, int numGroupCols, + AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations, + Plan *lefttree); +static Unique *make_unique_from_sortclauses(Plan *lefttree, List *distinctList); +static Unique *make_unique_from_pathkeys(Plan *lefttree, + List *pathkeys, int numCols); +static Gather *make_gather(List *qptlist, List *qpqual, + int nworkers, int rescan_param, bool single_copy, Plan *subplan); +static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree, + List *distinctList, AttrNumber flagColIdx, int firstFlag, + long numGroups); +static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam); +static Result *make_result(List *tlist, Node *resconstantqual, Plan *subplan); +static ProjectSet *make_project_set(List *tlist, Plan *subplan); +static ModifyTable *make_modifytable(PlannerInfo *root, Plan *subplan, + CmdType operation, bool canSetTag, + Index nominalRelation, Index rootRelation, + bool partColsUpdated, + List *resultRelations, + List *updateColnosLists, + List *withCheckOptionLists, List *returningLists, + List *rowMarks, OnConflictExpr *onconflict, int epqParam); +static GatherMerge *create_gather_merge_plan(PlannerInfo *root, + GatherMergePath *best_path); + + +/* + * create_plan + * Creates the access plan for a query by recursively processing the + * desired tree of pathnodes, starting at the node 'best_path'. For + * every pathnode found, we create a corresponding plan node containing + * appropriate id, target list, and qualification information. + * + * The tlists and quals in the plan tree are still in planner format, + * ie, Vars still correspond to the parser's numbering. This will be + * fixed later by setrefs.c. + * + * best_path is the best access path + * + * Returns a Plan tree. + */ +Plan * +create_plan(PlannerInfo *root, Path *best_path) +{ + Plan *plan; + + /* plan_params should not be in use in current query level */ + Assert(root->plan_params == NIL); + + /* Initialize this module's workspace in PlannerInfo */ + root->curOuterRels = NULL; + root->curOuterParams = NIL; + + /* Recursively process the path tree, demanding the correct tlist result */ + plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST); + + /* + * Make sure the topmost plan node's targetlist exposes the original + * column names and other decorative info. Targetlists generated within + * the planner don't bother with that stuff, but we must have it on the + * top-level tlist seen at execution time. However, ModifyTable plan + * nodes don't have a tlist matching the querytree targetlist. + */ + if (!IsA(plan, ModifyTable)) + apply_tlist_labeling(plan->targetlist, root->processed_tlist); + + /* + * Attach any initPlans created in this query level to the topmost plan + * node. (In principle the initplans could go in any plan node at or + * above where they're referenced, but there seems no reason to put them + * any lower than the topmost node for the query level. Also, see + * comments for SS_finalize_plan before you try to change this.) + */ + SS_attach_initplans(root, plan); + + /* Check we successfully assigned all NestLoopParams to plan nodes */ + if (root->curOuterParams != NIL) + elog(ERROR, "failed to assign all NestLoopParams to plan nodes"); + + /* + * Reset plan_params to ensure param IDs used for nestloop params are not + * re-used later + */ + root->plan_params = NIL; + + return plan; +} + +/* + * create_plan_recurse + * Recursive guts of create_plan(). + */ +static Plan * +create_plan_recurse(PlannerInfo *root, Path *best_path, int flags) +{ + Plan *plan; + + /* Guard against stack overflow due to overly complex plans */ + check_stack_depth(); + + switch (best_path->pathtype) + { + case T_SeqScan: + case T_SampleScan: + case T_IndexScan: + case T_IndexOnlyScan: + case T_BitmapHeapScan: + case T_TidScan: + case T_TidRangeScan: + case T_SubqueryScan: + case T_FunctionScan: + case T_TableFuncScan: + case T_ValuesScan: + case T_CteScan: + case T_WorkTableScan: + case T_NamedTuplestoreScan: + case T_ForeignScan: + case T_CustomScan: + plan = create_scan_plan(root, best_path, flags); + break; + case T_HashJoin: + case T_MergeJoin: + case T_NestLoop: + plan = create_join_plan(root, + (JoinPath *) best_path); + break; + case T_Append: + plan = create_append_plan(root, + (AppendPath *) best_path, + flags); + break; + case T_MergeAppend: + plan = create_merge_append_plan(root, + (MergeAppendPath *) best_path, + flags); + break; + case T_Result: + if (IsA(best_path, ProjectionPath)) + { + plan = create_projection_plan(root, + (ProjectionPath *) best_path, + flags); + } + else if (IsA(best_path, MinMaxAggPath)) + { + plan = (Plan *) create_minmaxagg_plan(root, + (MinMaxAggPath *) best_path); + } + else if (IsA(best_path, GroupResultPath)) + { + plan = (Plan *) create_group_result_plan(root, + (GroupResultPath *) best_path); + } + else + { + /* Simple RTE_RESULT base relation */ + Assert(IsA(best_path, Path)); + plan = create_scan_plan(root, best_path, flags); + } + break; + case T_ProjectSet: + plan = (Plan *) create_project_set_plan(root, + (ProjectSetPath *) best_path); + break; + case T_Material: + plan = (Plan *) create_material_plan(root, + (MaterialPath *) best_path, + flags); + break; + case T_Memoize: + plan = (Plan *) create_memoize_plan(root, + (MemoizePath *) best_path, + flags); + break; + case T_Unique: + if (IsA(best_path, UpperUniquePath)) + { + plan = (Plan *) create_upper_unique_plan(root, + (UpperUniquePath *) best_path, + flags); + } + else + { + Assert(IsA(best_path, UniquePath)); + plan = create_unique_plan(root, + (UniquePath *) best_path, + flags); + } + break; + case T_Gather: + plan = (Plan *) create_gather_plan(root, + (GatherPath *) best_path); + break; + case T_Sort: + plan = (Plan *) create_sort_plan(root, + (SortPath *) best_path, + flags); + break; + case T_IncrementalSort: + plan = (Plan *) create_incrementalsort_plan(root, + (IncrementalSortPath *) best_path, + flags); + break; + case T_Group: + plan = (Plan *) create_group_plan(root, + (GroupPath *) best_path); + break; + case T_Agg: + if (IsA(best_path, GroupingSetsPath)) + plan = create_groupingsets_plan(root, + (GroupingSetsPath *) best_path); + else + { + Assert(IsA(best_path, AggPath)); + plan = (Plan *) create_agg_plan(root, + (AggPath *) best_path); + } + break; + case T_WindowAgg: + plan = (Plan *) create_windowagg_plan(root, + (WindowAggPath *) best_path); + break; + case T_SetOp: + plan = (Plan *) create_setop_plan(root, + (SetOpPath *) best_path, + flags); + break; + case T_RecursiveUnion: + plan = (Plan *) create_recursiveunion_plan(root, + (RecursiveUnionPath *) best_path); + break; + case T_LockRows: + plan = (Plan *) create_lockrows_plan(root, + (LockRowsPath *) best_path, + flags); + break; + case T_ModifyTable: + plan = (Plan *) create_modifytable_plan(root, + (ModifyTablePath *) best_path); + break; + case T_Limit: + plan = (Plan *) create_limit_plan(root, + (LimitPath *) best_path, + flags); + break; + case T_GatherMerge: + plan = (Plan *) create_gather_merge_plan(root, + (GatherMergePath *) best_path); + break; + default: + elog(ERROR, "unrecognized node type: %d", + (int) best_path->pathtype); + plan = NULL; /* keep compiler quiet */ + break; + } + + return plan; +} + +/* + * create_scan_plan + * Create a scan plan for the parent relation of 'best_path'. + */ +static Plan * +create_scan_plan(PlannerInfo *root, Path *best_path, int flags) +{ + RelOptInfo *rel = best_path->parent; + List *scan_clauses; + List *gating_clauses; + List *tlist; + Plan *plan; + + /* + * Extract the relevant restriction clauses from the parent relation. The + * executor must apply all these restrictions during the scan, except for + * pseudoconstants which we'll take care of below. + * + * If this is a plain indexscan or index-only scan, we need not consider + * restriction clauses that are implied by the index's predicate, so use + * indrestrictinfo not baserestrictinfo. Note that we can't do that for + * bitmap indexscans, since there's not necessarily a single index + * involved; but it doesn't matter since create_bitmap_scan_plan() will be + * able to get rid of such clauses anyway via predicate proof. + */ + switch (best_path->pathtype) + { + case T_IndexScan: + case T_IndexOnlyScan: + scan_clauses = castNode(IndexPath, best_path)->indexinfo->indrestrictinfo; + break; + default: + scan_clauses = rel->baserestrictinfo; + break; + } + + /* + * If this is a parameterized scan, we also need to enforce all the join + * clauses available from the outer relation(s). + * + * For paranoia's sake, don't modify the stored baserestrictinfo list. + */ + if (best_path->param_info) + scan_clauses = list_concat_copy(scan_clauses, + best_path->param_info->ppi_clauses); + + /* + * Detect whether we have any pseudoconstant quals to deal with. Then, if + * we'll need a gating Result node, it will be able to project, so there + * are no requirements on the child's tlist. + */ + gating_clauses = get_gating_quals(root, scan_clauses); + if (gating_clauses) + flags = 0; + + /* + * For table scans, rather than using the relation targetlist (which is + * only those Vars actually needed by the query), we prefer to generate a + * tlist containing all Vars in order. This will allow the executor to + * optimize away projection of the table tuples, if possible. + * + * But if the caller is going to ignore our tlist anyway, then don't + * bother generating one at all. We use an exact equality test here, so + * that this only applies when CP_IGNORE_TLIST is the only flag set. + */ + if (flags == CP_IGNORE_TLIST) + { + tlist = NULL; + } + else if (use_physical_tlist(root, best_path, flags)) + { + if (best_path->pathtype == T_IndexOnlyScan) + { + /* For index-only scan, the preferred tlist is the index's */ + tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist); + + /* + * Transfer sortgroupref data to the replacement tlist, if + * requested (use_physical_tlist checked that this will work). + */ + if (flags & CP_LABEL_TLIST) + apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget); + } + else + { + tlist = build_physical_tlist(root, rel); + if (tlist == NIL) + { + /* Failed because of dropped cols, so use regular method */ + tlist = build_path_tlist(root, best_path); + } + else + { + /* As above, transfer sortgroupref data to replacement tlist */ + if (flags & CP_LABEL_TLIST) + apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget); + } + } + } + else + { + tlist = build_path_tlist(root, best_path); + } + + switch (best_path->pathtype) + { + case T_SeqScan: + plan = (Plan *) create_seqscan_plan(root, + best_path, + tlist, + scan_clauses); + break; + + case T_SampleScan: + plan = (Plan *) create_samplescan_plan(root, + best_path, + tlist, + scan_clauses); + break; + + case T_IndexScan: + plan = (Plan *) create_indexscan_plan(root, + (IndexPath *) best_path, + tlist, + scan_clauses, + false); + break; + + case T_IndexOnlyScan: + plan = (Plan *) create_indexscan_plan(root, + (IndexPath *) best_path, + tlist, + scan_clauses, + true); + break; + + case T_BitmapHeapScan: + plan = (Plan *) create_bitmap_scan_plan(root, + (BitmapHeapPath *) best_path, + tlist, + scan_clauses); + break; + + case T_TidScan: + plan = (Plan *) create_tidscan_plan(root, + (TidPath *) best_path, + tlist, + scan_clauses); + break; + + case T_TidRangeScan: + plan = (Plan *) create_tidrangescan_plan(root, + (TidRangePath *) best_path, + tlist, + scan_clauses); + break; + + case T_SubqueryScan: + plan = (Plan *) create_subqueryscan_plan(root, + (SubqueryScanPath *) best_path, + tlist, + scan_clauses); + break; + + case T_FunctionScan: + plan = (Plan *) create_functionscan_plan(root, + best_path, + tlist, + scan_clauses); + break; + + case T_TableFuncScan: + plan = (Plan *) create_tablefuncscan_plan(root, + best_path, + tlist, + scan_clauses); + break; + + case T_ValuesScan: + plan = (Plan *) create_valuesscan_plan(root, + best_path, + tlist, + scan_clauses); + break; + + case T_CteScan: + plan = (Plan *) create_ctescan_plan(root, + best_path, + tlist, + scan_clauses); + break; + + case T_NamedTuplestoreScan: + plan = (Plan *) create_namedtuplestorescan_plan(root, + best_path, + tlist, + scan_clauses); + break; + + case T_Result: + plan = (Plan *) create_resultscan_plan(root, + best_path, + tlist, + scan_clauses); + break; + + case T_WorkTableScan: + plan = (Plan *) create_worktablescan_plan(root, + best_path, + tlist, + scan_clauses); + break; + + case T_ForeignScan: + plan = (Plan *) create_foreignscan_plan(root, + (ForeignPath *) best_path, + tlist, + scan_clauses); + break; + + case T_CustomScan: + plan = (Plan *) create_customscan_plan(root, + (CustomPath *) best_path, + tlist, + scan_clauses); + break; + + default: + elog(ERROR, "unrecognized node type: %d", + (int) best_path->pathtype); + plan = NULL; /* keep compiler quiet */ + break; + } + + /* + * If there are any pseudoconstant clauses attached to this node, insert a + * gating Result node that evaluates the pseudoconstants as one-time + * quals. + */ + if (gating_clauses) + plan = create_gating_plan(root, best_path, plan, gating_clauses); + + return plan; +} + +/* + * Build a target list (ie, a list of TargetEntry) for the Path's output. + * + * This is almost just make_tlist_from_pathtarget(), but we also have to + * deal with replacing nestloop params. + */ +static List * +build_path_tlist(PlannerInfo *root, Path *path) +{ + List *tlist = NIL; + Index *sortgrouprefs = path->pathtarget->sortgrouprefs; + int resno = 1; + ListCell *v; + + foreach(v, path->pathtarget->exprs) + { + Node *node = (Node *) lfirst(v); + TargetEntry *tle; + + /* + * If it's a parameterized path, there might be lateral references in + * the tlist, which need to be replaced with Params. There's no need + * to remake the TargetEntry nodes, so apply this to each list item + * separately. + */ + if (path->param_info) + node = replace_nestloop_params(root, node); + + tle = makeTargetEntry((Expr *) node, + resno, + NULL, + false); + if (sortgrouprefs) + tle->ressortgroupref = sortgrouprefs[resno - 1]; + + tlist = lappend(tlist, tle); + resno++; + } + return tlist; +} + +/* + * use_physical_tlist + * Decide whether to use a tlist matching relation structure, + * rather than only those Vars actually referenced. + */ +static bool +use_physical_tlist(PlannerInfo *root, Path *path, int flags) +{ + RelOptInfo *rel = path->parent; + int i; + ListCell *lc; + + /* + * Forget it if either exact tlist or small tlist is demanded. + */ + if (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)) + return false; + + /* + * We can do this for real relation scans, subquery scans, function scans, + * tablefunc scans, values scans, and CTE scans (but not for, eg, joins). + */ + if (rel->rtekind != RTE_RELATION && + rel->rtekind != RTE_SUBQUERY && + rel->rtekind != RTE_FUNCTION && + rel->rtekind != RTE_TABLEFUNC && + rel->rtekind != RTE_VALUES && + rel->rtekind != RTE_CTE) + return false; + + /* + * Can't do it with inheritance cases either (mainly because Append + * doesn't project; this test may be unnecessary now that + * create_append_plan instructs its children to return an exact tlist). + */ + if (rel->reloptkind != RELOPT_BASEREL) + return false; + + /* + * Also, don't do it to a CustomPath; the premise that we're extracting + * columns from a simple physical tuple is unlikely to hold for those. + * (When it does make sense, the custom path creator can set up the path's + * pathtarget that way.) + */ + if (IsA(path, CustomPath)) + return false; + + /* + * If a bitmap scan's tlist is empty, keep it as-is. This may allow the + * executor to skip heap page fetches, and in any case, the benefit of + * using a physical tlist instead would be minimal. + */ + if (IsA(path, BitmapHeapPath) && + path->pathtarget->exprs == NIL) + return false; + + /* + * Can't do it if any system columns or whole-row Vars are requested. + * (This could possibly be fixed but would take some fragile assumptions + * in setrefs.c, I think.) + */ + for (i = rel->min_attr; i <= 0; i++) + { + if (!bms_is_empty(rel->attr_needed[i - rel->min_attr])) + return false; + } + + /* + * Can't do it if the rel is required to emit any placeholder expressions, + * either. + */ + foreach(lc, root->placeholder_list) + { + PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc); + + if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) && + bms_is_subset(phinfo->ph_eval_at, rel->relids)) + return false; + } + + /* + * For an index-only scan, the "physical tlist" is the index's indextlist. + * We can only return that without a projection if all the index's columns + * are returnable. + */ + if (path->pathtype == T_IndexOnlyScan) + { + IndexOptInfo *indexinfo = ((IndexPath *) path)->indexinfo; + + for (i = 0; i < indexinfo->ncolumns; i++) + { + if (!indexinfo->canreturn[i]) + return false; + } + } + + /* + * Also, can't do it if CP_LABEL_TLIST is specified and path is requested + * to emit any sort/group columns that are not simple Vars. (If they are + * simple Vars, they should appear in the physical tlist, and + * apply_pathtarget_labeling_to_tlist will take care of getting them + * labeled again.) We also have to check that no two sort/group columns + * are the same Var, else that element of the physical tlist would need + * conflicting ressortgroupref labels. + */ + if ((flags & CP_LABEL_TLIST) && path->pathtarget->sortgrouprefs) + { + Bitmapset *sortgroupatts = NULL; + + i = 0; + foreach(lc, path->pathtarget->exprs) + { + Expr *expr = (Expr *) lfirst(lc); + + if (path->pathtarget->sortgrouprefs[i]) + { + if (expr && IsA(expr, Var)) + { + int attno = ((Var *) expr)->varattno; + + attno -= FirstLowInvalidHeapAttributeNumber; + if (bms_is_member(attno, sortgroupatts)) + return false; + sortgroupatts = bms_add_member(sortgroupatts, attno); + } + else + return false; + } + i++; + } + } + + return true; +} + +/* + * get_gating_quals + * See if there are pseudoconstant quals in a node's quals list + * + * If the node's quals list includes any pseudoconstant quals, + * return just those quals. + */ +static List * +get_gating_quals(PlannerInfo *root, List *quals) +{ + /* No need to look if we know there are no pseudoconstants */ + if (!root->hasPseudoConstantQuals) + return NIL; + + /* Sort into desirable execution order while still in RestrictInfo form */ + quals = order_qual_clauses(root, quals); + + /* Pull out any pseudoconstant quals from the RestrictInfo list */ + return extract_actual_clauses(quals, true); +} + +/* + * create_gating_plan + * Deal with pseudoconstant qual clauses + * + * Add a gating Result node atop the already-built plan. + */ +static Plan * +create_gating_plan(PlannerInfo *root, Path *path, Plan *plan, + List *gating_quals) +{ + Plan *gplan; + Plan *splan; + + Assert(gating_quals); + + /* + * We might have a trivial Result plan already. Stacking one Result atop + * another is silly, so if that applies, just discard the input plan. + * (We're assuming its targetlist is uninteresting; it should be either + * the same as the result of build_path_tlist, or a simplified version.) + */ + splan = plan; + if (IsA(plan, Result)) + { + Result *rplan = (Result *) plan; + + if (rplan->plan.lefttree == NULL && + rplan->resconstantqual == NULL) + splan = NULL; + } + + /* + * Since we need a Result node anyway, always return the path's requested + * tlist; that's never a wrong choice, even if the parent node didn't ask + * for CP_EXACT_TLIST. + */ + gplan = (Plan *) make_result(build_path_tlist(root, path), + (Node *) gating_quals, + splan); + + /* + * Notice that we don't change cost or size estimates when doing gating. + * The costs of qual eval were already included in the subplan's cost. + * Leaving the size alone amounts to assuming that the gating qual will + * succeed, which is the conservative estimate for planning upper queries. + * We certainly don't want to assume the output size is zero (unless the + * gating qual is actually constant FALSE, and that case is dealt with in + * clausesel.c). Interpolating between the two cases is silly, because it + * doesn't reflect what will really happen at runtime, and besides which + * in most cases we have only a very bad idea of the probability of the + * gating qual being true. + */ + copy_plan_costsize(gplan, plan); + + /* Gating quals could be unsafe, so better use the Path's safety flag */ + gplan->parallel_safe = path->parallel_safe; + + return gplan; +} + +/* + * create_join_plan + * Create a join plan for 'best_path' and (recursively) plans for its + * inner and outer paths. + */ +static Plan * +create_join_plan(PlannerInfo *root, JoinPath *best_path) +{ + Plan *plan; + List *gating_clauses; + + switch (best_path->path.pathtype) + { + case T_MergeJoin: + plan = (Plan *) create_mergejoin_plan(root, + (MergePath *) best_path); + break; + case T_HashJoin: + plan = (Plan *) create_hashjoin_plan(root, + (HashPath *) best_path); + break; + case T_NestLoop: + plan = (Plan *) create_nestloop_plan(root, + (NestPath *) best_path); + break; + default: + elog(ERROR, "unrecognized node type: %d", + (int) best_path->path.pathtype); + plan = NULL; /* keep compiler quiet */ + break; + } + + /* + * If there are any pseudoconstant clauses attached to this node, insert a + * gating Result node that evaluates the pseudoconstants as one-time + * quals. + */ + gating_clauses = get_gating_quals(root, best_path->joinrestrictinfo); + if (gating_clauses) + plan = create_gating_plan(root, (Path *) best_path, plan, + gating_clauses); + +#ifdef NOT_USED + + /* + * * Expensive function pullups may have pulled local predicates * into + * this path node. Put them in the qpqual of the plan node. * JMH, + * 6/15/92 + */ + if (get_loc_restrictinfo(best_path) != NIL) + set_qpqual((Plan) plan, + list_concat(get_qpqual((Plan) plan), + get_actual_clauses(get_loc_restrictinfo(best_path)))); +#endif + + return plan; +} + +/* + * is_async_capable_plan + * Check whether the Plan node created from a Path node is async-capable. + */ +static bool +is_async_capable_plan(Plan *plan, Path *path) +{ + switch (nodeTag(path)) + { + case T_ForeignPath: + { + FdwRoutine *fdwroutine = path->parent->fdwroutine; + + /* + * If the generated plan node includes a gating Result node, + * we can't execute it asynchronously. + */ + if (IsA(plan, Result)) + return false; + + Assert(fdwroutine != NULL); + if (fdwroutine->IsForeignPathAsyncCapable != NULL && + fdwroutine->IsForeignPathAsyncCapable((ForeignPath *) path)) + return true; + } + break; + default: + break; + } + return false; +} + +/* + * create_append_plan + * Create an Append plan for 'best_path' and (recursively) plans + * for its subpaths. + * + * Returns a Plan node. + */ +static Plan * +create_append_plan(PlannerInfo *root, AppendPath *best_path, int flags) +{ + Append *plan; + List *tlist = build_path_tlist(root, &best_path->path); + int orig_tlist_length = list_length(tlist); + bool tlist_was_changed = false; + List *pathkeys = best_path->path.pathkeys; + List *subplans = NIL; + ListCell *subpaths; + int nasyncplans = 0; + RelOptInfo *rel = best_path->path.parent; + PartitionPruneInfo *partpruneinfo = NULL; + int nodenumsortkeys = 0; + AttrNumber *nodeSortColIdx = NULL; + Oid *nodeSortOperators = NULL; + Oid *nodeCollations = NULL; + bool *nodeNullsFirst = NULL; + bool consider_async = false; + + /* + * The subpaths list could be empty, if every child was proven empty by + * constraint exclusion. In that case generate a dummy plan that returns + * no rows. + * + * Note that an AppendPath with no members is also generated in certain + * cases where there was no appending construct at all, but we know the + * relation is empty (see set_dummy_rel_pathlist and mark_dummy_rel). + */ + if (best_path->subpaths == NIL) + { + /* Generate a Result plan with constant-FALSE gating qual */ + Plan *plan; + + plan = (Plan *) make_result(tlist, + (Node *) list_make1(makeBoolConst(false, + false)), + NULL); + + copy_generic_path_info(plan, (Path *) best_path); + + return plan; + } + + /* + * Otherwise build an Append plan. Note that if there's just one child, + * the Append is pretty useless; but we wait till setrefs.c to get rid of + * it. Doing so here doesn't work because the varno of the child scan + * plan won't match the parent-rel Vars it'll be asked to emit. + * + * We don't have the actual creation of the Append node split out into a + * separate make_xxx function. This is because we want to run + * prepare_sort_from_pathkeys on it before we do so on the individual + * child plans, to make cross-checking the sort info easier. + */ + plan = makeNode(Append); + plan->plan.targetlist = tlist; + plan->plan.qual = NIL; + plan->plan.lefttree = NULL; + plan->plan.righttree = NULL; + plan->apprelids = rel->relids; + + if (pathkeys != NIL) + { + /* + * Compute sort column info, and adjust the Append's tlist as needed. + * Because we pass adjust_tlist_in_place = true, we may ignore the + * function result; it must be the same plan node. However, we then + * need to detect whether any tlist entries were added. + */ + (void) prepare_sort_from_pathkeys((Plan *) plan, pathkeys, + best_path->path.parent->relids, + NULL, + true, + &nodenumsortkeys, + &nodeSortColIdx, + &nodeSortOperators, + &nodeCollations, + &nodeNullsFirst); + tlist_was_changed = (orig_tlist_length != list_length(plan->plan.targetlist)); + } + + /* If appropriate, consider async append */ + consider_async = (enable_async_append && pathkeys == NIL && + !best_path->path.parallel_safe && + list_length(best_path->subpaths) > 1); + + /* Build the plan for each child */ + foreach(subpaths, best_path->subpaths) + { + Path *subpath = (Path *) lfirst(subpaths); + Plan *subplan; + + /* Must insist that all children return the same tlist */ + subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST); + + /* + * For ordered Appends, we must insert a Sort node if subplan isn't + * sufficiently ordered. + */ + if (pathkeys != NIL) + { + int numsortkeys; + AttrNumber *sortColIdx; + Oid *sortOperators; + Oid *collations; + bool *nullsFirst; + + /* + * Compute sort column info, and adjust subplan's tlist as needed. + * We must apply prepare_sort_from_pathkeys even to subplans that + * don't need an explicit sort, to make sure they are returning + * the same sort key columns the Append expects. + */ + subplan = prepare_sort_from_pathkeys(subplan, pathkeys, + subpath->parent->relids, + nodeSortColIdx, + false, + &numsortkeys, + &sortColIdx, + &sortOperators, + &collations, + &nullsFirst); + + /* + * Check that we got the same sort key information. We just + * Assert that the sortops match, since those depend only on the + * pathkeys; but it seems like a good idea to check the sort + * column numbers explicitly, to ensure the tlists match up. + */ + Assert(numsortkeys == nodenumsortkeys); + if (memcmp(sortColIdx, nodeSortColIdx, + numsortkeys * sizeof(AttrNumber)) != 0) + elog(ERROR, "Append child's targetlist doesn't match Append"); + Assert(memcmp(sortOperators, nodeSortOperators, + numsortkeys * sizeof(Oid)) == 0); + Assert(memcmp(collations, nodeCollations, + numsortkeys * sizeof(Oid)) == 0); + Assert(memcmp(nullsFirst, nodeNullsFirst, + numsortkeys * sizeof(bool)) == 0); + + /* Now, insert a Sort node if subplan isn't sufficiently ordered */ + if (!pathkeys_contained_in(pathkeys, subpath->pathkeys)) + { + Sort *sort = make_sort(subplan, numsortkeys, + sortColIdx, sortOperators, + collations, nullsFirst); + + label_sort_with_costsize(root, sort, best_path->limit_tuples); + subplan = (Plan *) sort; + } + } + + subplans = lappend(subplans, subplan); + + /* If needed, check to see if subplan can be executed asynchronously */ + if (consider_async && is_async_capable_plan(subplan, subpath)) + { + subplan->async_capable = true; + ++nasyncplans; + } + } + + /* + * If any quals exist, they may be useful to perform further partition + * pruning during execution. Gather information needed by the executor to + * do partition pruning. + */ + if (enable_partition_pruning) + { + List *prunequal; + + prunequal = extract_actual_clauses(rel->baserestrictinfo, false); + + if (best_path->path.param_info) + { + List *prmquals = best_path->path.param_info->ppi_clauses; + + prmquals = extract_actual_clauses(prmquals, false); + prmquals = (List *) replace_nestloop_params(root, + (Node *) prmquals); + + prunequal = list_concat(prunequal, prmquals); + } + + if (prunequal != NIL) + partpruneinfo = + make_partition_pruneinfo(root, rel, + best_path->subpaths, + prunequal); + } + + plan->appendplans = subplans; + plan->nasyncplans = nasyncplans; + plan->first_partial_plan = best_path->first_partial_path; + plan->part_prune_info = partpruneinfo; + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + /* + * If prepare_sort_from_pathkeys added sort columns, but we were told to + * produce either the exact tlist or a narrow tlist, we should get rid of + * the sort columns again. We must inject a projection node to do so. + */ + if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))) + { + tlist = list_truncate(list_copy(plan->plan.targetlist), + orig_tlist_length); + return inject_projection_plan((Plan *) plan, tlist, + plan->plan.parallel_safe); + } + else + return (Plan *) plan; +} + +/* + * create_merge_append_plan + * Create a MergeAppend plan for 'best_path' and (recursively) plans + * for its subpaths. + * + * Returns a Plan node. + */ +static Plan * +create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path, + int flags) +{ + MergeAppend *node = makeNode(MergeAppend); + Plan *plan = &node->plan; + List *tlist = build_path_tlist(root, &best_path->path); + int orig_tlist_length = list_length(tlist); + bool tlist_was_changed; + List *pathkeys = best_path->path.pathkeys; + List *subplans = NIL; + ListCell *subpaths; + RelOptInfo *rel = best_path->path.parent; + PartitionPruneInfo *partpruneinfo = NULL; + + /* + * We don't have the actual creation of the MergeAppend node split out + * into a separate make_xxx function. This is because we want to run + * prepare_sort_from_pathkeys on it before we do so on the individual + * child plans, to make cross-checking the sort info easier. + */ + copy_generic_path_info(plan, (Path *) best_path); + plan->targetlist = tlist; + plan->qual = NIL; + plan->lefttree = NULL; + plan->righttree = NULL; + node->apprelids = rel->relids; + + /* + * Compute sort column info, and adjust MergeAppend's tlist as needed. + * Because we pass adjust_tlist_in_place = true, we may ignore the + * function result; it must be the same plan node. However, we then need + * to detect whether any tlist entries were added. + */ + (void) prepare_sort_from_pathkeys(plan, pathkeys, + best_path->path.parent->relids, + NULL, + true, + &node->numCols, + &node->sortColIdx, + &node->sortOperators, + &node->collations, + &node->nullsFirst); + tlist_was_changed = (orig_tlist_length != list_length(plan->targetlist)); + + /* + * Now prepare the child plans. We must apply prepare_sort_from_pathkeys + * even to subplans that don't need an explicit sort, to make sure they + * are returning the same sort key columns the MergeAppend expects. + */ + foreach(subpaths, best_path->subpaths) + { + Path *subpath = (Path *) lfirst(subpaths); + Plan *subplan; + int numsortkeys; + AttrNumber *sortColIdx; + Oid *sortOperators; + Oid *collations; + bool *nullsFirst; + + /* Build the child plan */ + /* Must insist that all children return the same tlist */ + subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST); + + /* Compute sort column info, and adjust subplan's tlist as needed */ + subplan = prepare_sort_from_pathkeys(subplan, pathkeys, + subpath->parent->relids, + node->sortColIdx, + false, + &numsortkeys, + &sortColIdx, + &sortOperators, + &collations, + &nullsFirst); + + /* + * Check that we got the same sort key information. We just Assert + * that the sortops match, since those depend only on the pathkeys; + * but it seems like a good idea to check the sort column numbers + * explicitly, to ensure the tlists really do match up. + */ + Assert(numsortkeys == node->numCols); + if (memcmp(sortColIdx, node->sortColIdx, + numsortkeys * sizeof(AttrNumber)) != 0) + elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend"); + Assert(memcmp(sortOperators, node->sortOperators, + numsortkeys * sizeof(Oid)) == 0); + Assert(memcmp(collations, node->collations, + numsortkeys * sizeof(Oid)) == 0); + Assert(memcmp(nullsFirst, node->nullsFirst, + numsortkeys * sizeof(bool)) == 0); + + /* Now, insert a Sort node if subplan isn't sufficiently ordered */ + if (!pathkeys_contained_in(pathkeys, subpath->pathkeys)) + { + Sort *sort = make_sort(subplan, numsortkeys, + sortColIdx, sortOperators, + collations, nullsFirst); + + label_sort_with_costsize(root, sort, best_path->limit_tuples); + subplan = (Plan *) sort; + } + + subplans = lappend(subplans, subplan); + } + + /* + * If any quals exist, they may be useful to perform further partition + * pruning during execution. Gather information needed by the executor to + * do partition pruning. + */ + if (enable_partition_pruning) + { + List *prunequal; + + prunequal = extract_actual_clauses(rel->baserestrictinfo, false); + + if (best_path->path.param_info) + { + List *prmquals = best_path->path.param_info->ppi_clauses; + + prmquals = extract_actual_clauses(prmquals, false); + prmquals = (List *) replace_nestloop_params(root, + (Node *) prmquals); + + prunequal = list_concat(prunequal, prmquals); + } + + if (prunequal != NIL) + partpruneinfo = make_partition_pruneinfo(root, rel, + best_path->subpaths, + prunequal); + } + + node->mergeplans = subplans; + node->part_prune_info = partpruneinfo; + + /* + * If prepare_sort_from_pathkeys added sort columns, but we were told to + * produce either the exact tlist or a narrow tlist, we should get rid of + * the sort columns again. We must inject a projection node to do so. + */ + if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))) + { + tlist = list_truncate(list_copy(plan->targetlist), orig_tlist_length); + return inject_projection_plan(plan, tlist, plan->parallel_safe); + } + else + return plan; +} + +/* + * create_group_result_plan + * Create a Result plan for 'best_path'. + * This is only used for degenerate grouping cases. + * + * Returns a Plan node. + */ +static Result * +create_group_result_plan(PlannerInfo *root, GroupResultPath *best_path) +{ + Result *plan; + List *tlist; + List *quals; + + tlist = build_path_tlist(root, &best_path->path); + + /* best_path->quals is just bare clauses */ + quals = order_qual_clauses(root, best_path->quals); + + plan = make_result(tlist, (Node *) quals, NULL); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_project_set_plan + * Create a ProjectSet plan for 'best_path'. + * + * Returns a Plan node. + */ +static ProjectSet * +create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path) +{ + ProjectSet *plan; + Plan *subplan; + List *tlist; + + /* Since we intend to project, we don't need to constrain child tlist */ + subplan = create_plan_recurse(root, best_path->subpath, 0); + + tlist = build_path_tlist(root, &best_path->path); + + plan = make_project_set(tlist, subplan); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_material_plan + * Create a Material plan for 'best_path' and (recursively) plans + * for its subpaths. + * + * Returns a Plan node. + */ +static Material * +create_material_plan(PlannerInfo *root, MaterialPath *best_path, int flags) +{ + Material *plan; + Plan *subplan; + + /* + * We don't want any excess columns in the materialized tuples, so request + * a smaller tlist. Otherwise, since Material doesn't project, tlist + * requirements pass through. + */ + subplan = create_plan_recurse(root, best_path->subpath, + flags | CP_SMALL_TLIST); + + plan = make_material(subplan); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_memoize_plan + * Create a Memoize plan for 'best_path' and (recursively) plans for its + * subpaths. + * + * Returns a Plan node. + */ +static Memoize * +create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, int flags) +{ + Memoize *plan; + Bitmapset *keyparamids; + Plan *subplan; + Oid *operators; + Oid *collations; + List *param_exprs = NIL; + ListCell *lc; + ListCell *lc2; + int nkeys; + int i; + + subplan = create_plan_recurse(root, best_path->subpath, + flags | CP_SMALL_TLIST); + + param_exprs = (List *) replace_nestloop_params(root, (Node *) + best_path->param_exprs); + + nkeys = list_length(param_exprs); + Assert(nkeys > 0); + operators = palloc(nkeys * sizeof(Oid)); + collations = palloc(nkeys * sizeof(Oid)); + + i = 0; + forboth(lc, param_exprs, lc2, best_path->hash_operators) + { + Expr *param_expr = (Expr *) lfirst(lc); + Oid opno = lfirst_oid(lc2); + + operators[i] = opno; + collations[i] = exprCollation((Node *) param_expr); + i++; + } + + keyparamids = pull_paramids((Expr *) param_exprs); + + plan = make_memoize(subplan, operators, collations, param_exprs, + best_path->singlerow, best_path->binary_mode, + best_path->est_entries, keyparamids); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_unique_plan + * Create a Unique plan for 'best_path' and (recursively) plans + * for its subpaths. + * + * Returns a Plan node. + */ +static Plan * +create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags) +{ + Plan *plan; + Plan *subplan; + List *in_operators; + List *uniq_exprs; + List *newtlist; + int nextresno; + bool newitems; + int numGroupCols; + AttrNumber *groupColIdx; + Oid *groupCollations; + int groupColPos; + ListCell *l; + + /* Unique doesn't project, so tlist requirements pass through */ + subplan = create_plan_recurse(root, best_path->subpath, flags); + + /* Done if we don't need to do any actual unique-ifying */ + if (best_path->umethod == UNIQUE_PATH_NOOP) + return subplan; + + /* + * As constructed, the subplan has a "flat" tlist containing just the Vars + * needed here and at upper levels. The values we are supposed to + * unique-ify may be expressions in these variables. We have to add any + * such expressions to the subplan's tlist. + * + * The subplan may have a "physical" tlist if it is a simple scan plan. If + * we're going to sort, this should be reduced to the regular tlist, so + * that we don't sort more data than we need to. For hashing, the tlist + * should be left as-is if we don't need to add any expressions; but if we + * do have to add expressions, then a projection step will be needed at + * runtime anyway, so we may as well remove unneeded items. Therefore + * newtlist starts from build_path_tlist() not just a copy of the + * subplan's tlist; and we don't install it into the subplan unless we are + * sorting or stuff has to be added. + */ + in_operators = best_path->in_operators; + uniq_exprs = best_path->uniq_exprs; + + /* initialize modified subplan tlist as just the "required" vars */ + newtlist = build_path_tlist(root, &best_path->path); + nextresno = list_length(newtlist) + 1; + newitems = false; + + foreach(l, uniq_exprs) + { + Expr *uniqexpr = lfirst(l); + TargetEntry *tle; + + tle = tlist_member(uniqexpr, newtlist); + if (!tle) + { + tle = makeTargetEntry((Expr *) uniqexpr, + nextresno, + NULL, + false); + newtlist = lappend(newtlist, tle); + nextresno++; + newitems = true; + } + } + + /* Use change_plan_targetlist in case we need to insert a Result node */ + if (newitems || best_path->umethod == UNIQUE_PATH_SORT) + subplan = change_plan_targetlist(subplan, newtlist, + best_path->path.parallel_safe); + + /* + * Build control information showing which subplan output columns are to + * be examined by the grouping step. Unfortunately we can't merge this + * with the previous loop, since we didn't then know which version of the + * subplan tlist we'd end up using. + */ + newtlist = subplan->targetlist; + numGroupCols = list_length(uniq_exprs); + groupColIdx = (AttrNumber *) palloc(numGroupCols * sizeof(AttrNumber)); + groupCollations = (Oid *) palloc(numGroupCols * sizeof(Oid)); + + groupColPos = 0; + foreach(l, uniq_exprs) + { + Expr *uniqexpr = lfirst(l); + TargetEntry *tle; + + tle = tlist_member(uniqexpr, newtlist); + if (!tle) /* shouldn't happen */ + elog(ERROR, "failed to find unique expression in subplan tlist"); + groupColIdx[groupColPos] = tle->resno; + groupCollations[groupColPos] = exprCollation((Node *) tle->expr); + groupColPos++; + } + + if (best_path->umethod == UNIQUE_PATH_HASH) + { + Oid *groupOperators; + + /* + * Get the hashable equality operators for the Agg node to use. + * Normally these are the same as the IN clause operators, but if + * those are cross-type operators then the equality operators are the + * ones for the IN clause operators' RHS datatype. + */ + groupOperators = (Oid *) palloc(numGroupCols * sizeof(Oid)); + groupColPos = 0; + foreach(l, in_operators) + { + Oid in_oper = lfirst_oid(l); + Oid eq_oper; + + if (!get_compatible_hash_operators(in_oper, NULL, &eq_oper)) + elog(ERROR, "could not find compatible hash operator for operator %u", + in_oper); + groupOperators[groupColPos++] = eq_oper; + } + + /* + * Since the Agg node is going to project anyway, we can give it the + * minimum output tlist, without any stuff we might have added to the + * subplan tlist. + */ + plan = (Plan *) make_agg(build_path_tlist(root, &best_path->path), + NIL, + AGG_HASHED, + AGGSPLIT_SIMPLE, + numGroupCols, + groupColIdx, + groupOperators, + groupCollations, + NIL, + NIL, + best_path->path.rows, + 0, + subplan); + } + else + { + List *sortList = NIL; + Sort *sort; + + /* Create an ORDER BY list to sort the input compatibly */ + groupColPos = 0; + foreach(l, in_operators) + { + Oid in_oper = lfirst_oid(l); + Oid sortop; + Oid eqop; + TargetEntry *tle; + SortGroupClause *sortcl; + + sortop = get_ordering_op_for_equality_op(in_oper, false); + if (!OidIsValid(sortop)) /* shouldn't happen */ + elog(ERROR, "could not find ordering operator for equality operator %u", + in_oper); + + /* + * The Unique node will need equality operators. Normally these + * are the same as the IN clause operators, but if those are + * cross-type operators then the equality operators are the ones + * for the IN clause operators' RHS datatype. + */ + eqop = get_equality_op_for_ordering_op(sortop, NULL); + if (!OidIsValid(eqop)) /* shouldn't happen */ + elog(ERROR, "could not find equality operator for ordering operator %u", + sortop); + + tle = get_tle_by_resno(subplan->targetlist, + groupColIdx[groupColPos]); + Assert(tle != NULL); + + sortcl = makeNode(SortGroupClause); + sortcl->tleSortGroupRef = assignSortGroupRef(tle, + subplan->targetlist); + sortcl->eqop = eqop; + sortcl->sortop = sortop; + sortcl->nulls_first = false; + sortcl->hashable = false; /* no need to make this accurate */ + sortList = lappend(sortList, sortcl); + groupColPos++; + } + sort = make_sort_from_sortclauses(sortList, subplan); + label_sort_with_costsize(root, sort, -1.0); + plan = (Plan *) make_unique_from_sortclauses((Plan *) sort, sortList); + } + + /* Copy cost data from Path to Plan */ + copy_generic_path_info(plan, &best_path->path); + + return plan; +} + +/* + * create_gather_plan + * + * Create a Gather plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static Gather * +create_gather_plan(PlannerInfo *root, GatherPath *best_path) +{ + Gather *gather_plan; + Plan *subplan; + List *tlist; + + /* + * Push projection down to the child node. That way, the projection work + * is parallelized, and there can be no system columns in the result (they + * can't travel through a tuple queue because it uses MinimalTuple + * representation). + */ + subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST); + + tlist = build_path_tlist(root, &best_path->path); + + gather_plan = make_gather(tlist, + NIL, + best_path->num_workers, + assign_special_exec_param(root), + best_path->single_copy, + subplan); + + copy_generic_path_info(&gather_plan->plan, &best_path->path); + + /* use parallel mode for parallel plans. */ + root->glob->parallelModeNeeded = true; + + return gather_plan; +} + +/* + * create_gather_merge_plan + * + * Create a Gather Merge plan for 'best_path' and (recursively) + * plans for its subpaths. + */ +static GatherMerge * +create_gather_merge_plan(PlannerInfo *root, GatherMergePath *best_path) +{ + GatherMerge *gm_plan; + Plan *subplan; + List *pathkeys = best_path->path.pathkeys; + List *tlist = build_path_tlist(root, &best_path->path); + + /* As with Gather, project away columns in the workers. */ + subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST); + + /* Create a shell for a GatherMerge plan. */ + gm_plan = makeNode(GatherMerge); + gm_plan->plan.targetlist = tlist; + gm_plan->num_workers = best_path->num_workers; + copy_generic_path_info(&gm_plan->plan, &best_path->path); + + /* Assign the rescan Param. */ + gm_plan->rescan_param = assign_special_exec_param(root); + + /* Gather Merge is pointless with no pathkeys; use Gather instead. */ + Assert(pathkeys != NIL); + + /* Compute sort column info, and adjust subplan's tlist as needed */ + subplan = prepare_sort_from_pathkeys(subplan, pathkeys, + best_path->subpath->parent->relids, + gm_plan->sortColIdx, + false, + &gm_plan->numCols, + &gm_plan->sortColIdx, + &gm_plan->sortOperators, + &gm_plan->collations, + &gm_plan->nullsFirst); + + + /* + * All gather merge paths should have already guaranteed the necessary + * sort order either by adding an explicit sort node or by using presorted + * input. We can't simply add a sort here on additional pathkeys, because + * we can't guarantee the sort would be safe. For example, expressions may + * be volatile or otherwise parallel unsafe. + */ + if (!pathkeys_contained_in(pathkeys, best_path->subpath->pathkeys)) + elog(ERROR, "gather merge input not sufficiently sorted"); + + /* Now insert the subplan under GatherMerge. */ + gm_plan->plan.lefttree = subplan; + + /* use parallel mode for parallel plans. */ + root->glob->parallelModeNeeded = true; + + return gm_plan; +} + +/* + * create_projection_plan + * + * Create a plan tree to do a projection step and (recursively) plans + * for its subpaths. We may need a Result node for the projection, + * but sometimes we can just let the subplan do the work. + */ +static Plan * +create_projection_plan(PlannerInfo *root, ProjectionPath *best_path, int flags) +{ + Plan *plan; + Plan *subplan; + List *tlist; + bool needs_result_node = false; + + /* + * Convert our subpath to a Plan and determine whether we need a Result + * node. + * + * In most cases where we don't need to project, creation_projection_path + * will have set dummypp, but not always. First, some createplan.c + * routines change the tlists of their nodes. (An example is that + * create_merge_append_plan might add resjunk sort columns to a + * MergeAppend.) Second, create_projection_path has no way of knowing + * what path node will be placed on top of the projection path and + * therefore can't predict whether it will require an exact tlist. For + * both of these reasons, we have to recheck here. + */ + if (use_physical_tlist(root, &best_path->path, flags)) + { + /* + * Our caller doesn't really care what tlist we return, so we don't + * actually need to project. However, we may still need to ensure + * proper sortgroupref labels, if the caller cares about those. + */ + subplan = create_plan_recurse(root, best_path->subpath, 0); + tlist = subplan->targetlist; + if (flags & CP_LABEL_TLIST) + apply_pathtarget_labeling_to_tlist(tlist, + best_path->path.pathtarget); + } + else if (is_projection_capable_path(best_path->subpath)) + { + /* + * Our caller requires that we return the exact tlist, but no separate + * result node is needed because the subpath is projection-capable. + * Tell create_plan_recurse that we're going to ignore the tlist it + * produces. + */ + subplan = create_plan_recurse(root, best_path->subpath, + CP_IGNORE_TLIST); + Assert(is_projection_capable_plan(subplan)); + tlist = build_path_tlist(root, &best_path->path); + } + else + { + /* + * It looks like we need a result node, unless by good fortune the + * requested tlist is exactly the one the child wants to produce. + */ + subplan = create_plan_recurse(root, best_path->subpath, 0); + tlist = build_path_tlist(root, &best_path->path); + needs_result_node = !tlist_same_exprs(tlist, subplan->targetlist); + } + + /* + * If we make a different decision about whether to include a Result node + * than create_projection_path did, we'll have made slightly wrong cost + * estimates; but label the plan with the cost estimates we actually used, + * not "corrected" ones. (XXX this could be cleaned up if we moved more + * of the sortcolumn setup logic into Path creation, but that would add + * expense to creating Paths we might end up not using.) + */ + if (!needs_result_node) + { + /* Don't need a separate Result, just assign tlist to subplan */ + plan = subplan; + plan->targetlist = tlist; + + /* Label plan with the estimated costs we actually used */ + plan->startup_cost = best_path->path.startup_cost; + plan->total_cost = best_path->path.total_cost; + plan->plan_rows = best_path->path.rows; + plan->plan_width = best_path->path.pathtarget->width; + plan->parallel_safe = best_path->path.parallel_safe; + /* ... but don't change subplan's parallel_aware flag */ + } + else + { + /* We need a Result node */ + plan = (Plan *) make_result(tlist, NULL, subplan); + + copy_generic_path_info(plan, (Path *) best_path); + } + + return plan; +} + +/* + * inject_projection_plan + * Insert a Result node to do a projection step. + * + * This is used in a few places where we decide on-the-fly that we need a + * projection step as part of the tree generated for some Path node. + * We should try to get rid of this in favor of doing it more honestly. + * + * One reason it's ugly is we have to be told the right parallel_safe marking + * to apply (since the tlist might be unsafe even if the child plan is safe). + */ +static Plan * +inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe) +{ + Plan *plan; + + plan = (Plan *) make_result(tlist, NULL, subplan); + + /* + * In principle, we should charge tlist eval cost plus cpu_per_tuple per + * row for the Result node. But the former has probably been factored in + * already and the latter was not accounted for during Path construction, + * so being formally correct might just make the EXPLAIN output look less + * consistent not more so. Hence, just copy the subplan's cost. + */ + copy_plan_costsize(plan, subplan); + plan->parallel_safe = parallel_safe; + + return plan; +} + +/* + * change_plan_targetlist + * Externally available wrapper for inject_projection_plan. + * + * This is meant for use by FDW plan-generation functions, which might + * want to adjust the tlist computed by some subplan tree. In general, + * a Result node is needed to compute the new tlist, but we can optimize + * some cases. + * + * In most cases, tlist_parallel_safe can just be passed as the parallel_safe + * flag of the FDW's own Path node. + */ +Plan * +change_plan_targetlist(Plan *subplan, List *tlist, bool tlist_parallel_safe) +{ + /* + * If the top plan node can't do projections and its existing target list + * isn't already what we need, we need to add a Result node to help it + * along. + */ + if (!is_projection_capable_plan(subplan) && + !tlist_same_exprs(tlist, subplan->targetlist)) + subplan = inject_projection_plan(subplan, tlist, + subplan->parallel_safe && + tlist_parallel_safe); + else + { + /* Else we can just replace the plan node's tlist */ + subplan->targetlist = tlist; + subplan->parallel_safe &= tlist_parallel_safe; + } + return subplan; +} + +/* + * create_sort_plan + * + * Create a Sort plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static Sort * +create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags) +{ + Sort *plan; + Plan *subplan; + + /* + * We don't want any excess columns in the sorted tuples, so request a + * smaller tlist. Otherwise, since Sort doesn't project, tlist + * requirements pass through. + */ + subplan = create_plan_recurse(root, best_path->subpath, + flags | CP_SMALL_TLIST); + + /* + * make_sort_from_pathkeys indirectly calls find_ec_member_matching_expr, + * which will ignore any child EC members that don't belong to the given + * relids. Thus, if this sort path is based on a child relation, we must + * pass its relids. + */ + plan = make_sort_from_pathkeys(subplan, best_path->path.pathkeys, + IS_OTHER_REL(best_path->subpath->parent) ? + best_path->path.parent->relids : NULL); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_incrementalsort_plan + * + * Do the same as create_sort_plan, but create IncrementalSort plan. + */ +static IncrementalSort * +create_incrementalsort_plan(PlannerInfo *root, IncrementalSortPath *best_path, + int flags) +{ + IncrementalSort *plan; + Plan *subplan; + + /* See comments in create_sort_plan() above */ + subplan = create_plan_recurse(root, best_path->spath.subpath, + flags | CP_SMALL_TLIST); + plan = make_incrementalsort_from_pathkeys(subplan, + best_path->spath.path.pathkeys, + IS_OTHER_REL(best_path->spath.subpath->parent) ? + best_path->spath.path.parent->relids : NULL, + best_path->nPresortedCols); + + copy_generic_path_info(&plan->sort.plan, (Path *) best_path); + + return plan; +} + +/* + * create_group_plan + * + * Create a Group plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static Group * +create_group_plan(PlannerInfo *root, GroupPath *best_path) +{ + Group *plan; + Plan *subplan; + List *tlist; + List *quals; + + /* + * Group can project, so no need to be terribly picky about child tlist, + * but we do need grouping columns to be available + */ + subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST); + + tlist = build_path_tlist(root, &best_path->path); + + quals = order_qual_clauses(root, best_path->qual); + + plan = make_group(tlist, + quals, + list_length(best_path->groupClause), + extract_grouping_cols(best_path->groupClause, + subplan->targetlist), + extract_grouping_ops(best_path->groupClause), + extract_grouping_collations(best_path->groupClause, + subplan->targetlist), + subplan); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_upper_unique_plan + * + * Create a Unique plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static Unique * +create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path, int flags) +{ + Unique *plan; + Plan *subplan; + + /* + * Unique doesn't project, so tlist requirements pass through; moreover we + * need grouping columns to be labeled. + */ + subplan = create_plan_recurse(root, best_path->subpath, + flags | CP_LABEL_TLIST); + + plan = make_unique_from_pathkeys(subplan, + best_path->path.pathkeys, + best_path->numkeys); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_agg_plan + * + * Create an Agg plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static Agg * +create_agg_plan(PlannerInfo *root, AggPath *best_path) +{ + Agg *plan; + Plan *subplan; + List *tlist; + List *quals; + + /* + * Agg can project, so no need to be terribly picky about child tlist, but + * we do need grouping columns to be available + */ + subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST); + + tlist = build_path_tlist(root, &best_path->path); + + quals = order_qual_clauses(root, best_path->qual); + + plan = make_agg(tlist, quals, + best_path->aggstrategy, + best_path->aggsplit, + list_length(best_path->groupClause), + extract_grouping_cols(best_path->groupClause, + subplan->targetlist), + extract_grouping_ops(best_path->groupClause), + extract_grouping_collations(best_path->groupClause, + subplan->targetlist), + NIL, + NIL, + best_path->numGroups, + best_path->transitionSpace, + subplan); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * Given a groupclause for a collection of grouping sets, produce the + * corresponding groupColIdx. + * + * root->grouping_map maps the tleSortGroupRef to the actual column position in + * the input tuple. So we get the ref from the entries in the groupclause and + * look them up there. + */ +static AttrNumber * +remap_groupColIdx(PlannerInfo *root, List *groupClause) +{ + AttrNumber *grouping_map = root->grouping_map; + AttrNumber *new_grpColIdx; + ListCell *lc; + int i; + + Assert(grouping_map); + + new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause)); + + i = 0; + foreach(lc, groupClause) + { + SortGroupClause *clause = lfirst(lc); + + new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef]; + } + + return new_grpColIdx; +} + +/* + * create_groupingsets_plan + * Create a plan for 'best_path' and (recursively) plans + * for its subpaths. + * + * What we emit is an Agg plan with some vestigial Agg and Sort nodes + * hanging off the side. The top Agg implements the last grouping set + * specified in the GroupingSetsPath, and any additional grouping sets + * each give rise to a subsidiary Agg and Sort node in the top Agg's + * "chain" list. These nodes don't participate in the plan directly, + * but they are a convenient way to represent the required data for + * the extra steps. + * + * Returns a Plan node. + */ +static Plan * +create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path) +{ + Agg *plan; + Plan *subplan; + List *rollups = best_path->rollups; + AttrNumber *grouping_map; + int maxref; + List *chain; + ListCell *lc; + + /* Shouldn't get here without grouping sets */ + Assert(root->parse->groupingSets); + Assert(rollups != NIL); + + /* + * Agg can project, so no need to be terribly picky about child tlist, but + * we do need grouping columns to be available + */ + subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST); + + /* + * Compute the mapping from tleSortGroupRef to column index in the child's + * tlist. First, identify max SortGroupRef in groupClause, for array + * sizing. + */ + maxref = 0; + foreach(lc, root->parse->groupClause) + { + SortGroupClause *gc = (SortGroupClause *) lfirst(lc); + + if (gc->tleSortGroupRef > maxref) + maxref = gc->tleSortGroupRef; + } + + grouping_map = (AttrNumber *) palloc0((maxref + 1) * sizeof(AttrNumber)); + + /* Now look up the column numbers in the child's tlist */ + foreach(lc, root->parse->groupClause) + { + SortGroupClause *gc = (SortGroupClause *) lfirst(lc); + TargetEntry *tle = get_sortgroupclause_tle(gc, subplan->targetlist); + + grouping_map[gc->tleSortGroupRef] = tle->resno; + } + + /* + * During setrefs.c, we'll need the grouping_map to fix up the cols lists + * in GroupingFunc nodes. Save it for setrefs.c to use. + */ + Assert(root->grouping_map == NULL); + root->grouping_map = grouping_map; + + /* + * Generate the side nodes that describe the other sort and group + * operations besides the top one. Note that we don't worry about putting + * accurate cost estimates in the side nodes; only the topmost Agg node's + * costs will be shown by EXPLAIN. + */ + chain = NIL; + if (list_length(rollups) > 1) + { + bool is_first_sort = ((RollupData *) linitial(rollups))->is_hashed; + + for_each_from(lc, rollups, 1) + { + RollupData *rollup = lfirst(lc); + AttrNumber *new_grpColIdx; + Plan *sort_plan = NULL; + Plan *agg_plan; + AggStrategy strat; + + new_grpColIdx = remap_groupColIdx(root, rollup->groupClause); + + if (!rollup->is_hashed && !is_first_sort) + { + sort_plan = (Plan *) + make_sort_from_groupcols(rollup->groupClause, + new_grpColIdx, + subplan); + } + + if (!rollup->is_hashed) + is_first_sort = false; + + if (rollup->is_hashed) + strat = AGG_HASHED; + else if (list_length(linitial(rollup->gsets)) == 0) + strat = AGG_PLAIN; + else + strat = AGG_SORTED; + + agg_plan = (Plan *) make_agg(NIL, + NIL, + strat, + AGGSPLIT_SIMPLE, + list_length((List *) linitial(rollup->gsets)), + new_grpColIdx, + extract_grouping_ops(rollup->groupClause), + extract_grouping_collations(rollup->groupClause, subplan->targetlist), + rollup->gsets, + NIL, + rollup->numGroups, + best_path->transitionSpace, + sort_plan); + + /* + * Remove stuff we don't need to avoid bloating debug output. + */ + if (sort_plan) + { + sort_plan->targetlist = NIL; + sort_plan->lefttree = NULL; + } + + chain = lappend(chain, agg_plan); + } + } + + /* + * Now make the real Agg node + */ + { + RollupData *rollup = linitial(rollups); + AttrNumber *top_grpColIdx; + int numGroupCols; + + top_grpColIdx = remap_groupColIdx(root, rollup->groupClause); + + numGroupCols = list_length((List *) linitial(rollup->gsets)); + + plan = make_agg(build_path_tlist(root, &best_path->path), + best_path->qual, + best_path->aggstrategy, + AGGSPLIT_SIMPLE, + numGroupCols, + top_grpColIdx, + extract_grouping_ops(rollup->groupClause), + extract_grouping_collations(rollup->groupClause, subplan->targetlist), + rollup->gsets, + chain, + rollup->numGroups, + best_path->transitionSpace, + subplan); + + /* Copy cost data from Path to Plan */ + copy_generic_path_info(&plan->plan, &best_path->path); + } + + return (Plan *) plan; +} + +/* + * create_minmaxagg_plan + * + * Create a Result plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static Result * +create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path) +{ + Result *plan; + List *tlist; + ListCell *lc; + + /* Prepare an InitPlan for each aggregate's subquery. */ + foreach(lc, best_path->mmaggregates) + { + MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc); + PlannerInfo *subroot = mminfo->subroot; + Query *subparse = subroot->parse; + Plan *plan; + + /* + * Generate the plan for the subquery. We already have a Path, but we + * have to convert it to a Plan and attach a LIMIT node above it. + * Since we are entering a different planner context (subroot), + * recurse to create_plan not create_plan_recurse. + */ + plan = create_plan(subroot, mminfo->path); + + plan = (Plan *) make_limit(plan, + subparse->limitOffset, + subparse->limitCount, + subparse->limitOption, + 0, NULL, NULL, NULL); + + /* Must apply correct cost/width data to Limit node */ + plan->startup_cost = mminfo->path->startup_cost; + plan->total_cost = mminfo->pathcost; + plan->plan_rows = 1; + plan->plan_width = mminfo->path->pathtarget->width; + plan->parallel_aware = false; + plan->parallel_safe = mminfo->path->parallel_safe; + + /* Convert the plan into an InitPlan in the outer query. */ + SS_make_initplan_from_plan(root, subroot, plan, mminfo->param); + } + + /* Generate the output plan --- basically just a Result */ + tlist = build_path_tlist(root, &best_path->path); + + plan = make_result(tlist, (Node *) best_path->quals, NULL); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + /* + * During setrefs.c, we'll need to replace references to the Agg nodes + * with InitPlan output params. (We can't just do that locally in the + * MinMaxAgg node, because path nodes above here may have Agg references + * as well.) Save the mmaggregates list to tell setrefs.c to do that. + */ + Assert(root->minmax_aggs == NIL); + root->minmax_aggs = best_path->mmaggregates; + + return plan; +} + +/* + * create_windowagg_plan + * + * Create a WindowAgg plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static WindowAgg * +create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path) +{ + WindowAgg *plan; + WindowClause *wc = best_path->winclause; + int numPart = list_length(wc->partitionClause); + int numOrder = list_length(wc->orderClause); + Plan *subplan; + List *tlist; + int partNumCols; + AttrNumber *partColIdx; + Oid *partOperators; + Oid *partCollations; + int ordNumCols; + AttrNumber *ordColIdx; + Oid *ordOperators; + Oid *ordCollations; + ListCell *lc; + + /* + * Choice of tlist here is motivated by the fact that WindowAgg will be + * storing the input rows of window frames in a tuplestore; it therefore + * behooves us to request a small tlist to avoid wasting space. We do of + * course need grouping columns to be available. + */ + subplan = create_plan_recurse(root, best_path->subpath, + CP_LABEL_TLIST | CP_SMALL_TLIST); + + tlist = build_path_tlist(root, &best_path->path); + + /* + * Convert SortGroupClause lists into arrays of attr indexes and equality + * operators, as wanted by executor. (Note: in principle, it's possible + * to drop some of the sort columns, if they were proved redundant by + * pathkey logic. However, it doesn't seem worth going out of our way to + * optimize such cases. In any case, we must *not* remove the ordering + * column for RANGE OFFSET cases, as the executor needs that for in_range + * tests even if it's known to be equal to some partitioning column.) + */ + partColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numPart); + partOperators = (Oid *) palloc(sizeof(Oid) * numPart); + partCollations = (Oid *) palloc(sizeof(Oid) * numPart); + + partNumCols = 0; + foreach(lc, wc->partitionClause) + { + SortGroupClause *sgc = (SortGroupClause *) lfirst(lc); + TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist); + + Assert(OidIsValid(sgc->eqop)); + partColIdx[partNumCols] = tle->resno; + partOperators[partNumCols] = sgc->eqop; + partCollations[partNumCols] = exprCollation((Node *) tle->expr); + partNumCols++; + } + + ordColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numOrder); + ordOperators = (Oid *) palloc(sizeof(Oid) * numOrder); + ordCollations = (Oid *) palloc(sizeof(Oid) * numOrder); + + ordNumCols = 0; + foreach(lc, wc->orderClause) + { + SortGroupClause *sgc = (SortGroupClause *) lfirst(lc); + TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist); + + Assert(OidIsValid(sgc->eqop)); + ordColIdx[ordNumCols] = tle->resno; + ordOperators[ordNumCols] = sgc->eqop; + ordCollations[ordNumCols] = exprCollation((Node *) tle->expr); + ordNumCols++; + } + + /* And finally we can make the WindowAgg node */ + plan = make_windowagg(tlist, + wc->winref, + partNumCols, + partColIdx, + partOperators, + partCollations, + ordNumCols, + ordColIdx, + ordOperators, + ordCollations, + wc->frameOptions, + wc->startOffset, + wc->endOffset, + wc->startInRangeFunc, + wc->endInRangeFunc, + wc->inRangeColl, + wc->inRangeAsc, + wc->inRangeNullsFirst, + subplan); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_setop_plan + * + * Create a SetOp plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static SetOp * +create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags) +{ + SetOp *plan; + Plan *subplan; + long numGroups; + + /* + * SetOp doesn't project, so tlist requirements pass through; moreover we + * need grouping columns to be labeled. + */ + subplan = create_plan_recurse(root, best_path->subpath, + flags | CP_LABEL_TLIST); + + /* Convert numGroups to long int --- but 'ware overflow! */ + numGroups = (long) Min(best_path->numGroups, (double) LONG_MAX); + + plan = make_setop(best_path->cmd, + best_path->strategy, + subplan, + best_path->distinctList, + best_path->flagColIdx, + best_path->firstFlag, + numGroups); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_recursiveunion_plan + * + * Create a RecursiveUnion plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static RecursiveUnion * +create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path) +{ + RecursiveUnion *plan; + Plan *leftplan; + Plan *rightplan; + List *tlist; + long numGroups; + + /* Need both children to produce same tlist, so force it */ + leftplan = create_plan_recurse(root, best_path->leftpath, CP_EXACT_TLIST); + rightplan = create_plan_recurse(root, best_path->rightpath, CP_EXACT_TLIST); + + tlist = build_path_tlist(root, &best_path->path); + + /* Convert numGroups to long int --- but 'ware overflow! */ + numGroups = (long) Min(best_path->numGroups, (double) LONG_MAX); + + plan = make_recursive_union(tlist, + leftplan, + rightplan, + best_path->wtParam, + best_path->distinctList, + numGroups); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_lockrows_plan + * + * Create a LockRows plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static LockRows * +create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path, + int flags) +{ + LockRows *plan; + Plan *subplan; + + /* LockRows doesn't project, so tlist requirements pass through */ + subplan = create_plan_recurse(root, best_path->subpath, flags); + + plan = make_lockrows(subplan, best_path->rowMarks, best_path->epqParam); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + +/* + * create_modifytable_plan + * Create a ModifyTable plan for 'best_path'. + * + * Returns a Plan node. + */ +static ModifyTable * +create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path) +{ + ModifyTable *plan; + Path *subpath = best_path->subpath; + Plan *subplan; + + /* Subplan must produce exactly the specified tlist */ + subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST); + + /* Transfer resname/resjunk labeling, too, to keep executor happy */ + apply_tlist_labeling(subplan->targetlist, root->processed_tlist); + + plan = make_modifytable(root, + subplan, + best_path->operation, + best_path->canSetTag, + best_path->nominalRelation, + best_path->rootRelation, + best_path->partColsUpdated, + best_path->resultRelations, + best_path->updateColnosLists, + best_path->withCheckOptionLists, + best_path->returningLists, + best_path->rowMarks, + best_path->onconflict, + best_path->epqParam); + + copy_generic_path_info(&plan->plan, &best_path->path); + + return plan; +} + +/* + * create_limit_plan + * + * Create a Limit plan for 'best_path' and (recursively) plans + * for its subpaths. + */ +static Limit * +create_limit_plan(PlannerInfo *root, LimitPath *best_path, int flags) +{ + Limit *plan; + Plan *subplan; + int numUniqkeys = 0; + AttrNumber *uniqColIdx = NULL; + Oid *uniqOperators = NULL; + Oid *uniqCollations = NULL; + + /* Limit doesn't project, so tlist requirements pass through */ + subplan = create_plan_recurse(root, best_path->subpath, flags); + + /* Extract information necessary for comparing rows for WITH TIES. */ + if (best_path->limitOption == LIMIT_OPTION_WITH_TIES) + { + Query *parse = root->parse; + ListCell *l; + + numUniqkeys = list_length(parse->sortClause); + uniqColIdx = (AttrNumber *) palloc(numUniqkeys * sizeof(AttrNumber)); + uniqOperators = (Oid *) palloc(numUniqkeys * sizeof(Oid)); + uniqCollations = (Oid *) palloc(numUniqkeys * sizeof(Oid)); + + numUniqkeys = 0; + foreach(l, parse->sortClause) + { + SortGroupClause *sortcl = (SortGroupClause *) lfirst(l); + TargetEntry *tle = get_sortgroupclause_tle(sortcl, parse->targetList); + + uniqColIdx[numUniqkeys] = tle->resno; + uniqOperators[numUniqkeys] = sortcl->eqop; + uniqCollations[numUniqkeys] = exprCollation((Node *) tle->expr); + numUniqkeys++; + } + } + + plan = make_limit(subplan, + best_path->limitOffset, + best_path->limitCount, + best_path->limitOption, + numUniqkeys, uniqColIdx, uniqOperators, uniqCollations); + + copy_generic_path_info(&plan->plan, (Path *) best_path); + + return plan; +} + + +/***************************************************************************** + * + * BASE-RELATION SCAN METHODS + * + *****************************************************************************/ + + +/* + * create_seqscan_plan + * Returns a seqscan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static SeqScan * +create_seqscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses) +{ + SeqScan *scan_plan; + Index scan_relid = best_path->parent->relid; + + /* it should be a base rel... */ + Assert(scan_relid > 0); + Assert(best_path->parent->rtekind == RTE_RELATION); + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + } + + scan_plan = make_seqscan(tlist, + scan_clauses, + scan_relid); + + copy_generic_path_info(&scan_plan->plan, best_path); + + return scan_plan; +} + +/* + * create_samplescan_plan + * Returns a samplescan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static SampleScan * +create_samplescan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses) +{ + SampleScan *scan_plan; + Index scan_relid = best_path->parent->relid; + RangeTblEntry *rte; + TableSampleClause *tsc; + + /* it should be a base rel with a tablesample clause... */ + Assert(scan_relid > 0); + rte = planner_rt_fetch(scan_relid, root); + Assert(rte->rtekind == RTE_RELATION); + tsc = rte->tablesample; + Assert(tsc != NULL); + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + tsc = (TableSampleClause *) + replace_nestloop_params(root, (Node *) tsc); + } + + scan_plan = make_samplescan(tlist, + scan_clauses, + scan_relid, + tsc); + + copy_generic_path_info(&scan_plan->scan.plan, best_path); + + return scan_plan; +} + +/* + * create_indexscan_plan + * Returns an indexscan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + * + * We use this for both plain IndexScans and IndexOnlyScans, because the + * qual preprocessing work is the same for both. Note that the caller tells + * us which to build --- we don't look at best_path->path.pathtype, because + * create_bitmap_subplan needs to be able to override the prior decision. + */ +static Scan * +create_indexscan_plan(PlannerInfo *root, + IndexPath *best_path, + List *tlist, + List *scan_clauses, + bool indexonly) +{ + Scan *scan_plan; + List *indexclauses = best_path->indexclauses; + List *indexorderbys = best_path->indexorderbys; + Index baserelid = best_path->path.parent->relid; + IndexOptInfo *indexinfo = best_path->indexinfo; + Oid indexoid = indexinfo->indexoid; + List *qpqual; + List *stripped_indexquals; + List *fixed_indexquals; + List *fixed_indexorderbys; + List *indexorderbyops = NIL; + ListCell *l; + + /* it should be a base rel... */ + Assert(baserelid > 0); + Assert(best_path->path.parent->rtekind == RTE_RELATION); + + /* + * Extract the index qual expressions (stripped of RestrictInfos) from the + * IndexClauses list, and prepare a copy with index Vars substituted for + * table Vars. (This step also does replace_nestloop_params on the + * fixed_indexquals.) + */ + fix_indexqual_references(root, best_path, + &stripped_indexquals, + &fixed_indexquals); + + /* + * Likewise fix up index attr references in the ORDER BY expressions. + */ + fixed_indexorderbys = fix_indexorderby_references(root, best_path); + + /* + * The qpqual list must contain all restrictions not automatically handled + * by the index, other than pseudoconstant clauses which will be handled + * by a separate gating plan node. All the predicates in the indexquals + * will be checked (either by the index itself, or by nodeIndexscan.c), + * but if there are any "special" operators involved then they must be + * included in qpqual. The upshot is that qpqual must contain + * scan_clauses minus whatever appears in indexquals. + * + * is_redundant_with_indexclauses() detects cases where a scan clause is + * present in the indexclauses list or is generated from the same + * EquivalenceClass as some indexclause, and is therefore redundant with + * it, though not equal. (The latter happens when indxpath.c prefers a + * different derived equality than what generate_join_implied_equalities + * picked for a parameterized scan's ppi_clauses.) Note that it will not + * match to lossy index clauses, which is critical because we have to + * include the original clause in qpqual in that case. + * + * In some situations (particularly with OR'd index conditions) we may + * have scan_clauses that are not equal to, but are logically implied by, + * the index quals; so we also try a predicate_implied_by() check to see + * if we can discard quals that way. (predicate_implied_by assumes its + * first input contains only immutable functions, so we have to check + * that.) + * + * Note: if you change this bit of code you should also look at + * extract_nonindex_conditions() in costsize.c. + */ + qpqual = NIL; + foreach(l, scan_clauses) + { + RestrictInfo *rinfo = lfirst_node(RestrictInfo, l); + + if (rinfo->pseudoconstant) + continue; /* we may drop pseudoconstants here */ + if (is_redundant_with_indexclauses(rinfo, indexclauses)) + continue; /* dup or derived from same EquivalenceClass */ + if (!contain_mutable_functions((Node *) rinfo->clause) && + predicate_implied_by(list_make1(rinfo->clause), stripped_indexquals, + false)) + continue; /* provably implied by indexquals */ + qpqual = lappend(qpqual, rinfo); + } + + /* Sort clauses into best execution order */ + qpqual = order_qual_clauses(root, qpqual); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + qpqual = extract_actual_clauses(qpqual, false); + + /* + * We have to replace any outer-relation variables with nestloop params in + * the indexqualorig, qpqual, and indexorderbyorig expressions. A bit + * annoying to have to do this separately from the processing in + * fix_indexqual_references --- rethink this when generalizing the inner + * indexscan support. But note we can't really do this earlier because + * it'd break the comparisons to predicates above ... (or would it? Those + * wouldn't have outer refs) + */ + if (best_path->path.param_info) + { + stripped_indexquals = (List *) + replace_nestloop_params(root, (Node *) stripped_indexquals); + qpqual = (List *) + replace_nestloop_params(root, (Node *) qpqual); + indexorderbys = (List *) + replace_nestloop_params(root, (Node *) indexorderbys); + } + + /* + * If there are ORDER BY expressions, look up the sort operators for their + * result datatypes. + */ + if (indexorderbys) + { + ListCell *pathkeyCell, + *exprCell; + + /* + * PathKey contains OID of the btree opfamily we're sorting by, but + * that's not quite enough because we need the expression's datatype + * to look up the sort operator in the operator family. + */ + Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys)); + forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys) + { + PathKey *pathkey = (PathKey *) lfirst(pathkeyCell); + Node *expr = (Node *) lfirst(exprCell); + Oid exprtype = exprType(expr); + Oid sortop; + + /* Get sort operator from opfamily */ + sortop = get_opfamily_member(pathkey->pk_opfamily, + exprtype, + exprtype, + pathkey->pk_strategy); + if (!OidIsValid(sortop)) + elog(ERROR, "missing operator %d(%u,%u) in opfamily %u", + pathkey->pk_strategy, exprtype, exprtype, pathkey->pk_opfamily); + indexorderbyops = lappend_oid(indexorderbyops, sortop); + } + } + + /* + * For an index-only scan, we must mark indextlist entries as resjunk if + * they are columns that the index AM can't return; this cues setrefs.c to + * not generate references to those columns. + */ + if (indexonly) + { + int i = 0; + + foreach(l, indexinfo->indextlist) + { + TargetEntry *indextle = (TargetEntry *) lfirst(l); + + indextle->resjunk = !indexinfo->canreturn[i]; + i++; + } + } + + /* Finally ready to build the plan node */ + if (indexonly) + scan_plan = (Scan *) make_indexonlyscan(tlist, + qpqual, + baserelid, + indexoid, + fixed_indexquals, + stripped_indexquals, + fixed_indexorderbys, + indexinfo->indextlist, + best_path->indexscandir); + else + scan_plan = (Scan *) make_indexscan(tlist, + qpqual, + baserelid, + indexoid, + fixed_indexquals, + stripped_indexquals, + fixed_indexorderbys, + indexorderbys, + indexorderbyops, + best_path->indexscandir); + + copy_generic_path_info(&scan_plan->plan, &best_path->path); + + return scan_plan; +} + +/* + * create_bitmap_scan_plan + * Returns a bitmap scan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static BitmapHeapScan * +create_bitmap_scan_plan(PlannerInfo *root, + BitmapHeapPath *best_path, + List *tlist, + List *scan_clauses) +{ + Index baserelid = best_path->path.parent->relid; + Plan *bitmapqualplan; + List *bitmapqualorig; + List *indexquals; + List *indexECs; + List *qpqual; + ListCell *l; + BitmapHeapScan *scan_plan; + + /* it should be a base rel... */ + Assert(baserelid > 0); + Assert(best_path->path.parent->rtekind == RTE_RELATION); + + /* Process the bitmapqual tree into a Plan tree and qual lists */ + bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual, + &bitmapqualorig, &indexquals, + &indexECs); + + if (best_path->path.parallel_aware) + bitmap_subplan_mark_shared(bitmapqualplan); + + /* + * The qpqual list must contain all restrictions not automatically handled + * by the index, other than pseudoconstant clauses which will be handled + * by a separate gating plan node. All the predicates in the indexquals + * will be checked (either by the index itself, or by + * nodeBitmapHeapscan.c), but if there are any "special" operators + * involved then they must be added to qpqual. The upshot is that qpqual + * must contain scan_clauses minus whatever appears in indexquals. + * + * This loop is similar to the comparable code in create_indexscan_plan(), + * but with some differences because it has to compare the scan clauses to + * stripped (no RestrictInfos) indexquals. See comments there for more + * info. + * + * In normal cases simple equal() checks will be enough to spot duplicate + * clauses, so we try that first. We next see if the scan clause is + * redundant with any top-level indexqual by virtue of being generated + * from the same EC. After that, try predicate_implied_by(). + * + * Unlike create_indexscan_plan(), the predicate_implied_by() test here is + * useful for getting rid of qpquals that are implied by index predicates, + * because the predicate conditions are included in the "indexquals" + * returned by create_bitmap_subplan(). Bitmap scans have to do it that + * way because predicate conditions need to be rechecked if the scan + * becomes lossy, so they have to be included in bitmapqualorig. + */ + qpqual = NIL; + foreach(l, scan_clauses) + { + RestrictInfo *rinfo = lfirst_node(RestrictInfo, l); + Node *clause = (Node *) rinfo->clause; + + if (rinfo->pseudoconstant) + continue; /* we may drop pseudoconstants here */ + if (list_member(indexquals, clause)) + continue; /* simple duplicate */ + if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec)) + continue; /* derived from same EquivalenceClass */ + if (!contain_mutable_functions(clause) && + predicate_implied_by(list_make1(clause), indexquals, false)) + continue; /* provably implied by indexquals */ + qpqual = lappend(qpqual, rinfo); + } + + /* Sort clauses into best execution order */ + qpqual = order_qual_clauses(root, qpqual); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + qpqual = extract_actual_clauses(qpqual, false); + + /* + * When dealing with special operators, we will at this point have + * duplicate clauses in qpqual and bitmapqualorig. We may as well drop + * 'em from bitmapqualorig, since there's no point in making the tests + * twice. + */ + bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual); + + /* + * We have to replace any outer-relation variables with nestloop params in + * the qpqual and bitmapqualorig expressions. (This was already done for + * expressions attached to plan nodes in the bitmapqualplan tree.) + */ + if (best_path->path.param_info) + { + qpqual = (List *) + replace_nestloop_params(root, (Node *) qpqual); + bitmapqualorig = (List *) + replace_nestloop_params(root, (Node *) bitmapqualorig); + } + + /* Finally ready to build the plan node */ + scan_plan = make_bitmap_heapscan(tlist, + qpqual, + bitmapqualplan, + bitmapqualorig, + baserelid); + + copy_generic_path_info(&scan_plan->scan.plan, &best_path->path); + + return scan_plan; +} + +/* + * Given a bitmapqual tree, generate the Plan tree that implements it + * + * As byproducts, we also return in *qual and *indexqual the qual lists + * (in implicit-AND form, without RestrictInfos) describing the original index + * conditions and the generated indexqual conditions. (These are the same in + * simple cases, but when special index operators are involved, the former + * list includes the special conditions while the latter includes the actual + * indexable conditions derived from them.) Both lists include partial-index + * predicates, because we have to recheck predicates as well as index + * conditions if the bitmap scan becomes lossy. + * + * In addition, we return a list of EquivalenceClass pointers for all the + * top-level indexquals that were possibly-redundantly derived from ECs. + * This allows removal of scan_clauses that are redundant with such quals. + * (We do not attempt to detect such redundancies for quals that are within + * OR subtrees. This could be done in a less hacky way if we returned the + * indexquals in RestrictInfo form, but that would be slower and still pretty + * messy, since we'd have to build new RestrictInfos in many cases.) + */ +static Plan * +create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual, + List **qual, List **indexqual, List **indexECs) +{ + Plan *plan; + + if (IsA(bitmapqual, BitmapAndPath)) + { + BitmapAndPath *apath = (BitmapAndPath *) bitmapqual; + List *subplans = NIL; + List *subquals = NIL; + List *subindexquals = NIL; + List *subindexECs = NIL; + ListCell *l; + + /* + * There may well be redundant quals among the subplans, since a + * top-level WHERE qual might have gotten used to form several + * different index quals. We don't try exceedingly hard to eliminate + * redundancies, but we do eliminate obvious duplicates by using + * list_concat_unique. + */ + foreach(l, apath->bitmapquals) + { + Plan *subplan; + List *subqual; + List *subindexqual; + List *subindexEC; + + subplan = create_bitmap_subplan(root, (Path *) lfirst(l), + &subqual, &subindexqual, + &subindexEC); + subplans = lappend(subplans, subplan); + subquals = list_concat_unique(subquals, subqual); + subindexquals = list_concat_unique(subindexquals, subindexqual); + /* Duplicates in indexECs aren't worth getting rid of */ + subindexECs = list_concat(subindexECs, subindexEC); + } + plan = (Plan *) make_bitmap_and(subplans); + plan->startup_cost = apath->path.startup_cost; + plan->total_cost = apath->path.total_cost; + plan->plan_rows = + clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples); + plan->plan_width = 0; /* meaningless */ + plan->parallel_aware = false; + plan->parallel_safe = apath->path.parallel_safe; + *qual = subquals; + *indexqual = subindexquals; + *indexECs = subindexECs; + } + else if (IsA(bitmapqual, BitmapOrPath)) + { + BitmapOrPath *opath = (BitmapOrPath *) bitmapqual; + List *subplans = NIL; + List *subquals = NIL; + List *subindexquals = NIL; + bool const_true_subqual = false; + bool const_true_subindexqual = false; + ListCell *l; + + /* + * Here, we only detect qual-free subplans. A qual-free subplan would + * cause us to generate "... OR true ..." which we may as well reduce + * to just "true". We do not try to eliminate redundant subclauses + * because (a) it's not as likely as in the AND case, and (b) we might + * well be working with hundreds or even thousands of OR conditions, + * perhaps from a long IN list. The performance of list_append_unique + * would be unacceptable. + */ + foreach(l, opath->bitmapquals) + { + Plan *subplan; + List *subqual; + List *subindexqual; + List *subindexEC; + + subplan = create_bitmap_subplan(root, (Path *) lfirst(l), + &subqual, &subindexqual, + &subindexEC); + subplans = lappend(subplans, subplan); + if (subqual == NIL) + const_true_subqual = true; + else if (!const_true_subqual) + subquals = lappend(subquals, + make_ands_explicit(subqual)); + if (subindexqual == NIL) + const_true_subindexqual = true; + else if (!const_true_subindexqual) + subindexquals = lappend(subindexquals, + make_ands_explicit(subindexqual)); + } + + /* + * In the presence of ScalarArrayOpExpr quals, we might have built + * BitmapOrPaths with just one subpath; don't add an OR step. + */ + if (list_length(subplans) == 1) + { + plan = (Plan *) linitial(subplans); + } + else + { + plan = (Plan *) make_bitmap_or(subplans); + plan->startup_cost = opath->path.startup_cost; + plan->total_cost = opath->path.total_cost; + plan->plan_rows = + clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples); + plan->plan_width = 0; /* meaningless */ + plan->parallel_aware = false; + plan->parallel_safe = opath->path.parallel_safe; + } + + /* + * If there were constant-TRUE subquals, the OR reduces to constant + * TRUE. Also, avoid generating one-element ORs, which could happen + * due to redundancy elimination or ScalarArrayOpExpr quals. + */ + if (const_true_subqual) + *qual = NIL; + else if (list_length(subquals) <= 1) + *qual = subquals; + else + *qual = list_make1(make_orclause(subquals)); + if (const_true_subindexqual) + *indexqual = NIL; + else if (list_length(subindexquals) <= 1) + *indexqual = subindexquals; + else + *indexqual = list_make1(make_orclause(subindexquals)); + *indexECs = NIL; + } + else if (IsA(bitmapqual, IndexPath)) + { + IndexPath *ipath = (IndexPath *) bitmapqual; + IndexScan *iscan; + List *subquals; + List *subindexquals; + List *subindexECs; + ListCell *l; + + /* Use the regular indexscan plan build machinery... */ + iscan = castNode(IndexScan, + create_indexscan_plan(root, ipath, + NIL, NIL, false)); + /* then convert to a bitmap indexscan */ + plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid, + iscan->indexid, + iscan->indexqual, + iscan->indexqualorig); + /* and set its cost/width fields appropriately */ + plan->startup_cost = 0.0; + plan->total_cost = ipath->indextotalcost; + plan->plan_rows = + clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples); + plan->plan_width = 0; /* meaningless */ + plan->parallel_aware = false; + plan->parallel_safe = ipath->path.parallel_safe; + /* Extract original index clauses, actual index quals, relevant ECs */ + subquals = NIL; + subindexquals = NIL; + subindexECs = NIL; + foreach(l, ipath->indexclauses) + { + IndexClause *iclause = (IndexClause *) lfirst(l); + RestrictInfo *rinfo = iclause->rinfo; + + Assert(!rinfo->pseudoconstant); + subquals = lappend(subquals, rinfo->clause); + subindexquals = list_concat(subindexquals, + get_actual_clauses(iclause->indexquals)); + if (rinfo->parent_ec) + subindexECs = lappend(subindexECs, rinfo->parent_ec); + } + /* We can add any index predicate conditions, too */ + foreach(l, ipath->indexinfo->indpred) + { + Expr *pred = (Expr *) lfirst(l); + + /* + * We know that the index predicate must have been implied by the + * query condition as a whole, but it may or may not be implied by + * the conditions that got pushed into the bitmapqual. Avoid + * generating redundant conditions. + */ + if (!predicate_implied_by(list_make1(pred), subquals, false)) + { + subquals = lappend(subquals, pred); + subindexquals = lappend(subindexquals, pred); + } + } + *qual = subquals; + *indexqual = subindexquals; + *indexECs = subindexECs; + } + else + { + elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual)); + plan = NULL; /* keep compiler quiet */ + } + + return plan; +} + +/* + * create_tidscan_plan + * Returns a tidscan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static TidScan * +create_tidscan_plan(PlannerInfo *root, TidPath *best_path, + List *tlist, List *scan_clauses) +{ + TidScan *scan_plan; + Index scan_relid = best_path->path.parent->relid; + List *tidquals = best_path->tidquals; + + /* it should be a base rel... */ + Assert(scan_relid > 0); + Assert(best_path->path.parent->rtekind == RTE_RELATION); + + /* + * The qpqual list must contain all restrictions not enforced by the + * tidquals list. Since tidquals has OR semantics, we have to be careful + * about matching it up to scan_clauses. It's convenient to handle the + * single-tidqual case separately from the multiple-tidqual case. In the + * single-tidqual case, we look through the scan_clauses while they are + * still in RestrictInfo form, and drop any that are redundant with the + * tidqual. + * + * In normal cases simple pointer equality checks will be enough to spot + * duplicate RestrictInfos, so we try that first. + * + * Another common case is that a scan_clauses entry is generated from the + * same EquivalenceClass as some tidqual, and is therefore redundant with + * it, though not equal. + * + * Unlike indexpaths, we don't bother with predicate_implied_by(); the + * number of cases where it could win are pretty small. + */ + if (list_length(tidquals) == 1) + { + List *qpqual = NIL; + ListCell *l; + + foreach(l, scan_clauses) + { + RestrictInfo *rinfo = lfirst_node(RestrictInfo, l); + + if (rinfo->pseudoconstant) + continue; /* we may drop pseudoconstants here */ + if (list_member_ptr(tidquals, rinfo)) + continue; /* simple duplicate */ + if (is_redundant_derived_clause(rinfo, tidquals)) + continue; /* derived from same EquivalenceClass */ + qpqual = lappend(qpqual, rinfo); + } + scan_clauses = qpqual; + } + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */ + tidquals = extract_actual_clauses(tidquals, false); + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* + * If we have multiple tidquals, it's more convenient to remove duplicate + * scan_clauses after stripping the RestrictInfos. In this situation, + * because the tidquals represent OR sub-clauses, they could not have come + * from EquivalenceClasses so we don't have to worry about matching up + * non-identical clauses. On the other hand, because tidpath.c will have + * extracted those sub-clauses from some OR clause and built its own list, + * we will certainly not have pointer equality to any scan clause. So + * convert the tidquals list to an explicit OR clause and see if we can + * match it via equal() to any scan clause. + */ + if (list_length(tidquals) > 1) + scan_clauses = list_difference(scan_clauses, + list_make1(make_orclause(tidquals))); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->path.param_info) + { + tidquals = (List *) + replace_nestloop_params(root, (Node *) tidquals); + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + } + + scan_plan = make_tidscan(tlist, + scan_clauses, + scan_relid, + tidquals); + + copy_generic_path_info(&scan_plan->scan.plan, &best_path->path); + + return scan_plan; +} + +/* + * create_tidrangescan_plan + * Returns a tidrangescan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static TidRangeScan * +create_tidrangescan_plan(PlannerInfo *root, TidRangePath *best_path, + List *tlist, List *scan_clauses) +{ + TidRangeScan *scan_plan; + Index scan_relid = best_path->path.parent->relid; + List *tidrangequals = best_path->tidrangequals; + + /* it should be a base rel... */ + Assert(scan_relid > 0); + Assert(best_path->path.parent->rtekind == RTE_RELATION); + + /* + * The qpqual list must contain all restrictions not enforced by the + * tidrangequals list. tidrangequals has AND semantics, so we can simply + * remove any qual that appears in it. + */ + { + List *qpqual = NIL; + ListCell *l; + + foreach(l, scan_clauses) + { + RestrictInfo *rinfo = lfirst_node(RestrictInfo, l); + + if (rinfo->pseudoconstant) + continue; /* we may drop pseudoconstants here */ + if (list_member_ptr(tidrangequals, rinfo)) + continue; /* simple duplicate */ + qpqual = lappend(qpqual, rinfo); + } + scan_clauses = qpqual; + } + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */ + tidrangequals = extract_actual_clauses(tidrangequals, false); + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->path.param_info) + { + tidrangequals = (List *) + replace_nestloop_params(root, (Node *) tidrangequals); + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + } + + scan_plan = make_tidrangescan(tlist, + scan_clauses, + scan_relid, + tidrangequals); + + copy_generic_path_info(&scan_plan->scan.plan, &best_path->path); + + return scan_plan; +} + +/* + * create_subqueryscan_plan + * Returns a subqueryscan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static SubqueryScan * +create_subqueryscan_plan(PlannerInfo *root, SubqueryScanPath *best_path, + List *tlist, List *scan_clauses) +{ + SubqueryScan *scan_plan; + RelOptInfo *rel = best_path->path.parent; + Index scan_relid = rel->relid; + Plan *subplan; + + /* it should be a subquery base rel... */ + Assert(scan_relid > 0); + Assert(rel->rtekind == RTE_SUBQUERY); + + /* + * Recursively create Plan from Path for subquery. Since we are entering + * a different planner context (subroot), recurse to create_plan not + * create_plan_recurse. + */ + subplan = create_plan(rel->subroot, best_path->subpath); + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->path.param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + process_subquery_nestloop_params(root, + rel->subplan_params); + } + + scan_plan = make_subqueryscan(tlist, + scan_clauses, + scan_relid, + subplan); + + copy_generic_path_info(&scan_plan->scan.plan, &best_path->path); + + return scan_plan; +} + +/* + * create_functionscan_plan + * Returns a functionscan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static FunctionScan * +create_functionscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses) +{ + FunctionScan *scan_plan; + Index scan_relid = best_path->parent->relid; + RangeTblEntry *rte; + List *functions; + + /* it should be a function base rel... */ + Assert(scan_relid > 0); + rte = planner_rt_fetch(scan_relid, root); + Assert(rte->rtekind == RTE_FUNCTION); + functions = rte->functions; + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + /* The function expressions could contain nestloop params, too */ + functions = (List *) replace_nestloop_params(root, (Node *) functions); + } + + scan_plan = make_functionscan(tlist, scan_clauses, scan_relid, + functions, rte->funcordinality); + + copy_generic_path_info(&scan_plan->scan.plan, best_path); + + return scan_plan; +} + +/* + * create_tablefuncscan_plan + * Returns a tablefuncscan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static TableFuncScan * +create_tablefuncscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses) +{ + TableFuncScan *scan_plan; + Index scan_relid = best_path->parent->relid; + RangeTblEntry *rte; + TableFunc *tablefunc; + + /* it should be a function base rel... */ + Assert(scan_relid > 0); + rte = planner_rt_fetch(scan_relid, root); + Assert(rte->rtekind == RTE_TABLEFUNC); + tablefunc = rte->tablefunc; + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + /* The function expressions could contain nestloop params, too */ + tablefunc = (TableFunc *) replace_nestloop_params(root, (Node *) tablefunc); + } + + scan_plan = make_tablefuncscan(tlist, scan_clauses, scan_relid, + tablefunc); + + copy_generic_path_info(&scan_plan->scan.plan, best_path); + + return scan_plan; +} + +/* + * create_valuesscan_plan + * Returns a valuesscan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static ValuesScan * +create_valuesscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses) +{ + ValuesScan *scan_plan; + Index scan_relid = best_path->parent->relid; + RangeTblEntry *rte; + List *values_lists; + + /* it should be a values base rel... */ + Assert(scan_relid > 0); + rte = planner_rt_fetch(scan_relid, root); + Assert(rte->rtekind == RTE_VALUES); + values_lists = rte->values_lists; + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + /* The values lists could contain nestloop params, too */ + values_lists = (List *) + replace_nestloop_params(root, (Node *) values_lists); + } + + scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid, + values_lists); + + copy_generic_path_info(&scan_plan->scan.plan, best_path); + + return scan_plan; +} + +/* + * create_ctescan_plan + * Returns a ctescan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static CteScan * +create_ctescan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses) +{ + CteScan *scan_plan; + Index scan_relid = best_path->parent->relid; + RangeTblEntry *rte; + SubPlan *ctesplan = NULL; + int plan_id; + int cte_param_id; + PlannerInfo *cteroot; + Index levelsup; + int ndx; + ListCell *lc; + + Assert(scan_relid > 0); + rte = planner_rt_fetch(scan_relid, root); + Assert(rte->rtekind == RTE_CTE); + Assert(!rte->self_reference); + + /* + * Find the referenced CTE, and locate the SubPlan previously made for it. + */ + levelsup = rte->ctelevelsup; + cteroot = root; + while (levelsup-- > 0) + { + cteroot = cteroot->parent_root; + if (!cteroot) /* shouldn't happen */ + elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename); + } + + /* + * Note: cte_plan_ids can be shorter than cteList, if we are still working + * on planning the CTEs (ie, this is a side-reference from another CTE). + * So we mustn't use forboth here. + */ + ndx = 0; + foreach(lc, cteroot->parse->cteList) + { + CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc); + + if (strcmp(cte->ctename, rte->ctename) == 0) + break; + ndx++; + } + if (lc == NULL) /* shouldn't happen */ + elog(ERROR, "could not find CTE \"%s\"", rte->ctename); + if (ndx >= list_length(cteroot->cte_plan_ids)) + elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename); + plan_id = list_nth_int(cteroot->cte_plan_ids, ndx); + if (plan_id <= 0) + elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename); + foreach(lc, cteroot->init_plans) + { + ctesplan = (SubPlan *) lfirst(lc); + if (ctesplan->plan_id == plan_id) + break; + } + if (lc == NULL) /* shouldn't happen */ + elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename); + + /* + * We need the CTE param ID, which is the sole member of the SubPlan's + * setParam list. + */ + cte_param_id = linitial_int(ctesplan->setParam); + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + } + + scan_plan = make_ctescan(tlist, scan_clauses, scan_relid, + plan_id, cte_param_id); + + copy_generic_path_info(&scan_plan->scan.plan, best_path); + + return scan_plan; +} + +/* + * create_namedtuplestorescan_plan + * Returns a tuplestorescan plan for the base relation scanned by + * 'best_path' with restriction clauses 'scan_clauses' and targetlist + * 'tlist'. + */ +static NamedTuplestoreScan * +create_namedtuplestorescan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses) +{ + NamedTuplestoreScan *scan_plan; + Index scan_relid = best_path->parent->relid; + RangeTblEntry *rte; + + Assert(scan_relid > 0); + rte = planner_rt_fetch(scan_relid, root); + Assert(rte->rtekind == RTE_NAMEDTUPLESTORE); + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + } + + scan_plan = make_namedtuplestorescan(tlist, scan_clauses, scan_relid, + rte->enrname); + + copy_generic_path_info(&scan_plan->scan.plan, best_path); + + return scan_plan; +} + +/* + * create_resultscan_plan + * Returns a Result plan for the RTE_RESULT base relation scanned by + * 'best_path' with restriction clauses 'scan_clauses' and targetlist + * 'tlist'. + */ +static Result * +create_resultscan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses) +{ + Result *scan_plan; + Index scan_relid = best_path->parent->relid; + RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY; + + Assert(scan_relid > 0); + rte = planner_rt_fetch(scan_relid, root); + Assert(rte->rtekind == RTE_RESULT); + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + } + + scan_plan = make_result(tlist, (Node *) scan_clauses, NULL); + + copy_generic_path_info(&scan_plan->plan, best_path); + + return scan_plan; +} + +/* + * create_worktablescan_plan + * Returns a worktablescan plan for the base relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static WorkTableScan * +create_worktablescan_plan(PlannerInfo *root, Path *best_path, + List *tlist, List *scan_clauses) +{ + WorkTableScan *scan_plan; + Index scan_relid = best_path->parent->relid; + RangeTblEntry *rte; + Index levelsup; + PlannerInfo *cteroot; + + Assert(scan_relid > 0); + rte = planner_rt_fetch(scan_relid, root); + Assert(rte->rtekind == RTE_CTE); + Assert(rte->self_reference); + + /* + * We need to find the worktable param ID, which is in the plan level + * that's processing the recursive UNION, which is one level *below* where + * the CTE comes from. + */ + levelsup = rte->ctelevelsup; + if (levelsup == 0) /* shouldn't happen */ + elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename); + levelsup--; + cteroot = root; + while (levelsup-- > 0) + { + cteroot = cteroot->parent_root; + if (!cteroot) /* shouldn't happen */ + elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename); + } + if (cteroot->wt_param_id < 0) /* shouldn't happen */ + elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename); + + /* Sort clauses into best execution order */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */ + scan_clauses = extract_actual_clauses(scan_clauses, false); + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->param_info) + { + scan_clauses = (List *) + replace_nestloop_params(root, (Node *) scan_clauses); + } + + scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid, + cteroot->wt_param_id); + + copy_generic_path_info(&scan_plan->scan.plan, best_path); + + return scan_plan; +} + +/* + * create_foreignscan_plan + * Returns a foreignscan plan for the relation scanned by 'best_path' + * with restriction clauses 'scan_clauses' and targetlist 'tlist'. + */ +static ForeignScan * +create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path, + List *tlist, List *scan_clauses) +{ + ForeignScan *scan_plan; + RelOptInfo *rel = best_path->path.parent; + Index scan_relid = rel->relid; + Oid rel_oid = InvalidOid; + Plan *outer_plan = NULL; + + Assert(rel->fdwroutine != NULL); + + /* transform the child path if any */ + if (best_path->fdw_outerpath) + outer_plan = create_plan_recurse(root, best_path->fdw_outerpath, + CP_EXACT_TLIST); + + /* + * If we're scanning a base relation, fetch its OID. (Irrelevant if + * scanning a join relation.) + */ + if (scan_relid > 0) + { + RangeTblEntry *rte; + + Assert(rel->rtekind == RTE_RELATION); + rte = planner_rt_fetch(scan_relid, root); + Assert(rte->rtekind == RTE_RELATION); + rel_oid = rte->relid; + } + + /* + * Sort clauses into best execution order. We do this first since the FDW + * might have more info than we do and wish to adjust the ordering. + */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* + * Let the FDW perform its processing on the restriction clauses and + * generate the plan node. Note that the FDW might remove restriction + * clauses that it intends to execute remotely, or even add more (if it + * has selected some join clauses for remote use but also wants them + * rechecked locally). + */ + scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid, + best_path, + tlist, scan_clauses, + outer_plan); + + /* Copy cost data from Path to Plan; no need to make FDW do this */ + copy_generic_path_info(&scan_plan->scan.plan, &best_path->path); + + /* Copy foreign server OID; likewise, no need to make FDW do this */ + scan_plan->fs_server = rel->serverid; + + /* + * Likewise, copy the relids that are represented by this foreign scan. An + * upper rel doesn't have relids set, but it covers all the base relations + * participating in the underlying scan, so use root's all_baserels. + */ + if (rel->reloptkind == RELOPT_UPPER_REL) + scan_plan->fs_relids = root->all_baserels; + else + scan_plan->fs_relids = best_path->path.parent->relids; + + /* + * If this is a foreign join, and to make it valid to push down we had to + * assume that the current user is the same as some user explicitly named + * in the query, mark the finished plan as depending on the current user. + */ + if (rel->useridiscurrent) + root->glob->dependsOnRole = true; + + /* + * Replace any outer-relation variables with nestloop params in the qual, + * fdw_exprs and fdw_recheck_quals expressions. We do this last so that + * the FDW doesn't have to be involved. (Note that parts of fdw_exprs or + * fdw_recheck_quals could have come from join clauses, so doing this + * beforehand on the scan_clauses wouldn't work.) We assume + * fdw_scan_tlist contains no such variables. + */ + if (best_path->path.param_info) + { + scan_plan->scan.plan.qual = (List *) + replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual); + scan_plan->fdw_exprs = (List *) + replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs); + scan_plan->fdw_recheck_quals = (List *) + replace_nestloop_params(root, + (Node *) scan_plan->fdw_recheck_quals); + } + + /* + * If rel is a base relation, detect whether any system columns are + * requested from the rel. (If rel is a join relation, rel->relid will be + * 0, but there can be no Var with relid 0 in the rel's targetlist or the + * restriction clauses, so we skip this in that case. Note that any such + * columns in base relations that were joined are assumed to be contained + * in fdw_scan_tlist.) This is a bit of a kluge and might go away + * someday, so we intentionally leave it out of the API presented to FDWs. + */ + scan_plan->fsSystemCol = false; + if (scan_relid > 0) + { + Bitmapset *attrs_used = NULL; + ListCell *lc; + int i; + + /* + * First, examine all the attributes needed for joins or final output. + * Note: we must look at rel's targetlist, not the attr_needed data, + * because attr_needed isn't computed for inheritance child rels. + */ + pull_varattnos((Node *) rel->reltarget->exprs, scan_relid, &attrs_used); + + /* Add all the attributes used by restriction clauses. */ + foreach(lc, rel->baserestrictinfo) + { + RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); + + pull_varattnos((Node *) rinfo->clause, scan_relid, &attrs_used); + } + + /* Now, are any system columns requested from rel? */ + for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++) + { + if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used)) + { + scan_plan->fsSystemCol = true; + break; + } + } + + bms_free(attrs_used); + } + + return scan_plan; +} + +/* + * create_customscan_plan + * + * Transform a CustomPath into a Plan. + */ +static CustomScan * +create_customscan_plan(PlannerInfo *root, CustomPath *best_path, + List *tlist, List *scan_clauses) +{ + CustomScan *cplan; + RelOptInfo *rel = best_path->path.parent; + List *custom_plans = NIL; + ListCell *lc; + + /* Recursively transform child paths. */ + foreach(lc, best_path->custom_paths) + { + Plan *plan = create_plan_recurse(root, (Path *) lfirst(lc), + CP_EXACT_TLIST); + + custom_plans = lappend(custom_plans, plan); + } + + /* + * Sort clauses into the best execution order, although custom-scan + * provider can reorder them again. + */ + scan_clauses = order_qual_clauses(root, scan_clauses); + + /* + * Invoke custom plan provider to create the Plan node represented by the + * CustomPath. + */ + cplan = castNode(CustomScan, + best_path->methods->PlanCustomPath(root, + rel, + best_path, + tlist, + scan_clauses, + custom_plans)); + + /* + * Copy cost data from Path to Plan; no need to make custom-plan providers + * do this + */ + copy_generic_path_info(&cplan->scan.plan, &best_path->path); + + /* Likewise, copy the relids that are represented by this custom scan */ + cplan->custom_relids = best_path->path.parent->relids; + + /* + * Replace any outer-relation variables with nestloop params in the qual + * and custom_exprs expressions. We do this last so that the custom-plan + * provider doesn't have to be involved. (Note that parts of custom_exprs + * could have come from join clauses, so doing this beforehand on the + * scan_clauses wouldn't work.) We assume custom_scan_tlist contains no + * such variables. + */ + if (best_path->path.param_info) + { + cplan->scan.plan.qual = (List *) + replace_nestloop_params(root, (Node *) cplan->scan.plan.qual); + cplan->custom_exprs = (List *) + replace_nestloop_params(root, (Node *) cplan->custom_exprs); + } + + return cplan; +} + + +/***************************************************************************** + * + * JOIN METHODS + * + *****************************************************************************/ + +static NestLoop * +create_nestloop_plan(PlannerInfo *root, + NestPath *best_path) +{ + NestLoop *join_plan; + Plan *outer_plan; + Plan *inner_plan; + List *tlist = build_path_tlist(root, &best_path->path); + List *joinrestrictclauses = best_path->joinrestrictinfo; + List *joinclauses; + List *otherclauses; + Relids outerrelids; + List *nestParams; + Relids saveOuterRels = root->curOuterRels; + + /* NestLoop can project, so no need to be picky about child tlists */ + outer_plan = create_plan_recurse(root, best_path->outerjoinpath, 0); + + /* For a nestloop, include outer relids in curOuterRels for inner side */ + root->curOuterRels = bms_union(root->curOuterRels, + best_path->outerjoinpath->parent->relids); + + inner_plan = create_plan_recurse(root, best_path->innerjoinpath, 0); + + /* Restore curOuterRels */ + bms_free(root->curOuterRels); + root->curOuterRels = saveOuterRels; + + /* Sort join qual clauses into best execution order */ + joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses); + + /* Get the join qual clauses (in plain expression form) */ + /* Any pseudoconstant clauses are ignored here */ + if (IS_OUTER_JOIN(best_path->jointype)) + { + extract_actual_join_clauses(joinrestrictclauses, + best_path->path.parent->relids, + &joinclauses, &otherclauses); + } + else + { + /* We can treat all clauses alike for an inner join */ + joinclauses = extract_actual_clauses(joinrestrictclauses, false); + otherclauses = NIL; + } + + /* Replace any outer-relation variables with nestloop params */ + if (best_path->path.param_info) + { + joinclauses = (List *) + replace_nestloop_params(root, (Node *) joinclauses); + otherclauses = (List *) + replace_nestloop_params(root, (Node *) otherclauses); + } + + /* + * Identify any nestloop parameters that should be supplied by this join + * node, and remove them from root->curOuterParams. + */ + outerrelids = best_path->outerjoinpath->parent->relids; + nestParams = identify_current_nestloop_params(root, outerrelids); + + join_plan = make_nestloop(tlist, + joinclauses, + otherclauses, + nestParams, + outer_plan, + inner_plan, + best_path->jointype, + best_path->inner_unique); + + copy_generic_path_info(&join_plan->join.plan, &best_path->path); + + return join_plan; +} + +static MergeJoin * +create_mergejoin_plan(PlannerInfo *root, + MergePath *best_path) +{ + MergeJoin *join_plan; + Plan *outer_plan; + Plan *inner_plan; + List *tlist = build_path_tlist(root, &best_path->jpath.path); + List *joinclauses; + List *otherclauses; + List *mergeclauses; + List *outerpathkeys; + List *innerpathkeys; + int nClauses; + Oid *mergefamilies; + Oid *mergecollations; + int *mergestrategies; + bool *mergenullsfirst; + PathKey *opathkey; + EquivalenceClass *opeclass; + int i; + ListCell *lc; + ListCell *lop; + ListCell *lip; + Path *outer_path = best_path->jpath.outerjoinpath; + Path *inner_path = best_path->jpath.innerjoinpath; + + /* + * MergeJoin can project, so we don't have to demand exact tlists from the + * inputs. However, if we're intending to sort an input's result, it's + * best to request a small tlist so we aren't sorting more data than + * necessary. + */ + outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath, + (best_path->outersortkeys != NIL) ? CP_SMALL_TLIST : 0); + + inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath, + (best_path->innersortkeys != NIL) ? CP_SMALL_TLIST : 0); + + /* Sort join qual clauses into best execution order */ + /* NB: do NOT reorder the mergeclauses */ + joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo); + + /* Get the join qual clauses (in plain expression form) */ + /* Any pseudoconstant clauses are ignored here */ + if (IS_OUTER_JOIN(best_path->jpath.jointype)) + { + extract_actual_join_clauses(joinclauses, + best_path->jpath.path.parent->relids, + &joinclauses, &otherclauses); + } + else + { + /* We can treat all clauses alike for an inner join */ + joinclauses = extract_actual_clauses(joinclauses, false); + otherclauses = NIL; + } + + /* + * Remove the mergeclauses from the list of join qual clauses, leaving the + * list of quals that must be checked as qpquals. + */ + mergeclauses = get_actual_clauses(best_path->path_mergeclauses); + joinclauses = list_difference(joinclauses, mergeclauses); + + /* + * Replace any outer-relation variables with nestloop params. There + * should not be any in the mergeclauses. + */ + if (best_path->jpath.path.param_info) + { + joinclauses = (List *) + replace_nestloop_params(root, (Node *) joinclauses); + otherclauses = (List *) + replace_nestloop_params(root, (Node *) otherclauses); + } + + /* + * Rearrange mergeclauses, if needed, so that the outer variable is always + * on the left; mark the mergeclause restrictinfos with correct + * outer_is_left status. + */ + mergeclauses = get_switched_clauses(best_path->path_mergeclauses, + best_path->jpath.outerjoinpath->parent->relids); + + /* + * Create explicit sort nodes for the outer and inner paths if necessary. + */ + if (best_path->outersortkeys) + { + Relids outer_relids = outer_path->parent->relids; + Sort *sort = make_sort_from_pathkeys(outer_plan, + best_path->outersortkeys, + outer_relids); + + label_sort_with_costsize(root, sort, -1.0); + outer_plan = (Plan *) sort; + outerpathkeys = best_path->outersortkeys; + } + else + outerpathkeys = best_path->jpath.outerjoinpath->pathkeys; + + if (best_path->innersortkeys) + { + Relids inner_relids = inner_path->parent->relids; + Sort *sort = make_sort_from_pathkeys(inner_plan, + best_path->innersortkeys, + inner_relids); + + label_sort_with_costsize(root, sort, -1.0); + inner_plan = (Plan *) sort; + innerpathkeys = best_path->innersortkeys; + } + else + innerpathkeys = best_path->jpath.innerjoinpath->pathkeys; + + /* + * If specified, add a materialize node to shield the inner plan from the + * need to handle mark/restore. + */ + if (best_path->materialize_inner) + { + Plan *matplan = (Plan *) make_material(inner_plan); + + /* + * We assume the materialize will not spill to disk, and therefore + * charge just cpu_operator_cost per tuple. (Keep this estimate in + * sync with final_cost_mergejoin.) + */ + copy_plan_costsize(matplan, inner_plan); + matplan->total_cost += cpu_operator_cost * matplan->plan_rows; + + inner_plan = matplan; + } + + /* + * Compute the opfamily/collation/strategy/nullsfirst arrays needed by the + * executor. The information is in the pathkeys for the two inputs, but + * we need to be careful about the possibility of mergeclauses sharing a + * pathkey, as well as the possibility that the inner pathkeys are not in + * an order matching the mergeclauses. + */ + nClauses = list_length(mergeclauses); + Assert(nClauses == list_length(best_path->path_mergeclauses)); + mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid)); + mergecollations = (Oid *) palloc(nClauses * sizeof(Oid)); + mergestrategies = (int *) palloc(nClauses * sizeof(int)); + mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool)); + + opathkey = NULL; + opeclass = NULL; + lop = list_head(outerpathkeys); + lip = list_head(innerpathkeys); + i = 0; + foreach(lc, best_path->path_mergeclauses) + { + RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc); + EquivalenceClass *oeclass; + EquivalenceClass *ieclass; + PathKey *ipathkey = NULL; + EquivalenceClass *ipeclass = NULL; + bool first_inner_match = false; + + /* fetch outer/inner eclass from mergeclause */ + if (rinfo->outer_is_left) + { + oeclass = rinfo->left_ec; + ieclass = rinfo->right_ec; + } + else + { + oeclass = rinfo->right_ec; + ieclass = rinfo->left_ec; + } + Assert(oeclass != NULL); + Assert(ieclass != NULL); + + /* + * We must identify the pathkey elements associated with this clause + * by matching the eclasses (which should give a unique match, since + * the pathkey lists should be canonical). In typical cases the merge + * clauses are one-to-one with the pathkeys, but when dealing with + * partially redundant query conditions, things are more complicated. + * + * lop and lip reference the first as-yet-unmatched pathkey elements. + * If they're NULL then all pathkey elements have been matched. + * + * The ordering of the outer pathkeys should match the mergeclauses, + * by construction (see find_mergeclauses_for_outer_pathkeys()). There + * could be more than one mergeclause for the same outer pathkey, but + * no pathkey may be entirely skipped over. + */ + if (oeclass != opeclass) /* multiple matches are not interesting */ + { + /* doesn't match the current opathkey, so must match the next */ + if (lop == NULL) + elog(ERROR, "outer pathkeys do not match mergeclauses"); + opathkey = (PathKey *) lfirst(lop); + opeclass = opathkey->pk_eclass; + lop = lnext(outerpathkeys, lop); + if (oeclass != opeclass) + elog(ERROR, "outer pathkeys do not match mergeclauses"); + } + + /* + * The inner pathkeys likewise should not have skipped-over keys, but + * it's possible for a mergeclause to reference some earlier inner + * pathkey if we had redundant pathkeys. For example we might have + * mergeclauses like "o.a = i.x AND o.b = i.y AND o.c = i.x". The + * implied inner ordering is then "ORDER BY x, y, x", but the pathkey + * mechanism drops the second sort by x as redundant, and this code + * must cope. + * + * It's also possible for the implied inner-rel ordering to be like + * "ORDER BY x, y, x DESC". We still drop the second instance of x as + * redundant; but this means that the sort ordering of a redundant + * inner pathkey should not be considered significant. So we must + * detect whether this is the first clause matching an inner pathkey. + */ + if (lip) + { + ipathkey = (PathKey *) lfirst(lip); + ipeclass = ipathkey->pk_eclass; + if (ieclass == ipeclass) + { + /* successful first match to this inner pathkey */ + lip = lnext(innerpathkeys, lip); + first_inner_match = true; + } + } + if (!first_inner_match) + { + /* redundant clause ... must match something before lip */ + ListCell *l2; + + foreach(l2, innerpathkeys) + { + if (l2 == lip) + break; + ipathkey = (PathKey *) lfirst(l2); + ipeclass = ipathkey->pk_eclass; + if (ieclass == ipeclass) + break; + } + if (ieclass != ipeclass) + elog(ERROR, "inner pathkeys do not match mergeclauses"); + } + + /* + * The pathkeys should always match each other as to opfamily and + * collation (which affect equality), but if we're considering a + * redundant inner pathkey, its sort ordering might not match. In + * such cases we may ignore the inner pathkey's sort ordering and use + * the outer's. (In effect, we're lying to the executor about the + * sort direction of this inner column, but it does not matter since + * the run-time row comparisons would only reach this column when + * there's equality for the earlier column containing the same eclass. + * There could be only one value in this column for the range of inner + * rows having a given value in the earlier column, so it does not + * matter which way we imagine this column to be ordered.) But a + * non-redundant inner pathkey had better match outer's ordering too. + */ + if (opathkey->pk_opfamily != ipathkey->pk_opfamily || + opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation) + elog(ERROR, "left and right pathkeys do not match in mergejoin"); + if (first_inner_match && + (opathkey->pk_strategy != ipathkey->pk_strategy || + opathkey->pk_nulls_first != ipathkey->pk_nulls_first)) + elog(ERROR, "left and right pathkeys do not match in mergejoin"); + + /* OK, save info for executor */ + mergefamilies[i] = opathkey->pk_opfamily; + mergecollations[i] = opathkey->pk_eclass->ec_collation; + mergestrategies[i] = opathkey->pk_strategy; + mergenullsfirst[i] = opathkey->pk_nulls_first; + i++; + } + + /* + * Note: it is not an error if we have additional pathkey elements (i.e., + * lop or lip isn't NULL here). The input paths might be better-sorted + * than we need for the current mergejoin. + */ + + /* + * Now we can build the mergejoin node. + */ + join_plan = make_mergejoin(tlist, + joinclauses, + otherclauses, + mergeclauses, + mergefamilies, + mergecollations, + mergestrategies, + mergenullsfirst, + outer_plan, + inner_plan, + best_path->jpath.jointype, + best_path->jpath.inner_unique, + best_path->skip_mark_restore); + + /* Costs of sort and material steps are included in path cost already */ + copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path); + + return join_plan; +} + +static HashJoin * +create_hashjoin_plan(PlannerInfo *root, + HashPath *best_path) +{ + HashJoin *join_plan; + Hash *hash_plan; + Plan *outer_plan; + Plan *inner_plan; + List *tlist = build_path_tlist(root, &best_path->jpath.path); + List *joinclauses; + List *otherclauses; + List *hashclauses; + List *hashoperators = NIL; + List *hashcollations = NIL; + List *inner_hashkeys = NIL; + List *outer_hashkeys = NIL; + Oid skewTable = InvalidOid; + AttrNumber skewColumn = InvalidAttrNumber; + bool skewInherit = false; + ListCell *lc; + + /* + * HashJoin can project, so we don't have to demand exact tlists from the + * inputs. However, it's best to request a small tlist from the inner + * side, so that we aren't storing more data than necessary. Likewise, if + * we anticipate batching, request a small tlist from the outer side so + * that we don't put extra data in the outer batch files. + */ + outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath, + (best_path->num_batches > 1) ? CP_SMALL_TLIST : 0); + + inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath, + CP_SMALL_TLIST); + + /* Sort join qual clauses into best execution order */ + joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo); + /* There's no point in sorting the hash clauses ... */ + + /* Get the join qual clauses (in plain expression form) */ + /* Any pseudoconstant clauses are ignored here */ + if (IS_OUTER_JOIN(best_path->jpath.jointype)) + { + extract_actual_join_clauses(joinclauses, + best_path->jpath.path.parent->relids, + &joinclauses, &otherclauses); + } + else + { + /* We can treat all clauses alike for an inner join */ + joinclauses = extract_actual_clauses(joinclauses, false); + otherclauses = NIL; + } + + /* + * Remove the hashclauses from the list of join qual clauses, leaving the + * list of quals that must be checked as qpquals. + */ + hashclauses = get_actual_clauses(best_path->path_hashclauses); + joinclauses = list_difference(joinclauses, hashclauses); + + /* + * Replace any outer-relation variables with nestloop params. There + * should not be any in the hashclauses. + */ + if (best_path->jpath.path.param_info) + { + joinclauses = (List *) + replace_nestloop_params(root, (Node *) joinclauses); + otherclauses = (List *) + replace_nestloop_params(root, (Node *) otherclauses); + } + + /* + * Rearrange hashclauses, if needed, so that the outer variable is always + * on the left. + */ + hashclauses = get_switched_clauses(best_path->path_hashclauses, + best_path->jpath.outerjoinpath->parent->relids); + + /* + * If there is a single join clause and we can identify the outer variable + * as a simple column reference, supply its identity for possible use in + * skew optimization. (Note: in principle we could do skew optimization + * with multiple join clauses, but we'd have to be able to determine the + * most common combinations of outer values, which we don't currently have + * enough stats for.) + */ + if (list_length(hashclauses) == 1) + { + OpExpr *clause = (OpExpr *) linitial(hashclauses); + Node *node; + + Assert(is_opclause(clause)); + node = (Node *) linitial(clause->args); + if (IsA(node, RelabelType)) + node = (Node *) ((RelabelType *) node)->arg; + if (IsA(node, Var)) + { + Var *var = (Var *) node; + RangeTblEntry *rte; + + rte = root->simple_rte_array[var->varno]; + if (rte->rtekind == RTE_RELATION) + { + skewTable = rte->relid; + skewColumn = var->varattno; + skewInherit = rte->inh; + } + } + } + + /* + * Collect hash related information. The hashed expressions are + * deconstructed into outer/inner expressions, so they can be computed + * separately (inner expressions are used to build the hashtable via Hash, + * outer expressions to perform lookups of tuples from HashJoin's outer + * plan in the hashtable). Also collect operator information necessary to + * build the hashtable. + */ + foreach(lc, hashclauses) + { + OpExpr *hclause = lfirst_node(OpExpr, lc); + + hashoperators = lappend_oid(hashoperators, hclause->opno); + hashcollations = lappend_oid(hashcollations, hclause->inputcollid); + outer_hashkeys = lappend(outer_hashkeys, linitial(hclause->args)); + inner_hashkeys = lappend(inner_hashkeys, lsecond(hclause->args)); + } + + /* + * Build the hash node and hash join node. + */ + hash_plan = make_hash(inner_plan, + inner_hashkeys, + skewTable, + skewColumn, + skewInherit); + + /* + * Set Hash node's startup & total costs equal to total cost of input + * plan; this only affects EXPLAIN display not decisions. + */ + copy_plan_costsize(&hash_plan->plan, inner_plan); + hash_plan->plan.startup_cost = hash_plan->plan.total_cost; + + /* + * If parallel-aware, the executor will also need an estimate of the total + * number of rows expected from all participants so that it can size the + * shared hash table. + */ + if (best_path->jpath.path.parallel_aware) + { + hash_plan->plan.parallel_aware = true; + hash_plan->rows_total = best_path->inner_rows_total; + } + + join_plan = make_hashjoin(tlist, + joinclauses, + otherclauses, + hashclauses, + hashoperators, + hashcollations, + outer_hashkeys, + outer_plan, + (Plan *) hash_plan, + best_path->jpath.jointype, + best_path->jpath.inner_unique); + + copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path); + + return join_plan; +} + + +/***************************************************************************** + * + * SUPPORTING ROUTINES + * + *****************************************************************************/ + +/* + * replace_nestloop_params + * Replace outer-relation Vars and PlaceHolderVars in the given expression + * with nestloop Params + * + * All Vars and PlaceHolderVars belonging to the relation(s) identified by + * root->curOuterRels are replaced by Params, and entries are added to + * root->curOuterParams if not already present. + */ +static Node * +replace_nestloop_params(PlannerInfo *root, Node *expr) +{ + /* No setup needed for tree walk, so away we go */ + return replace_nestloop_params_mutator(expr, root); +} + +static Node * +replace_nestloop_params_mutator(Node *node, PlannerInfo *root) +{ + if (node == NULL) + return NULL; + if (IsA(node, Var)) + { + Var *var = (Var *) node; + + /* Upper-level Vars should be long gone at this point */ + Assert(var->varlevelsup == 0); + /* If not to be replaced, we can just return the Var unmodified */ + if (!bms_is_member(var->varno, root->curOuterRels)) + return node; + /* Replace the Var with a nestloop Param */ + return (Node *) replace_nestloop_param_var(root, var); + } + if (IsA(node, PlaceHolderVar)) + { + PlaceHolderVar *phv = (PlaceHolderVar *) node; + + /* Upper-level PlaceHolderVars should be long gone at this point */ + Assert(phv->phlevelsup == 0); + + /* + * Check whether we need to replace the PHV. We use bms_overlap as a + * cheap/quick test to see if the PHV might be evaluated in the outer + * rels, and then grab its PlaceHolderInfo to tell for sure. + */ + if (!bms_overlap(phv->phrels, root->curOuterRels) || + !bms_is_subset(find_placeholder_info(root, phv, false)->ph_eval_at, + root->curOuterRels)) + { + /* + * We can't replace the whole PHV, but we might still need to + * replace Vars or PHVs within its expression, in case it ends up + * actually getting evaluated here. (It might get evaluated in + * this plan node, or some child node; in the latter case we don't + * really need to process the expression here, but we haven't got + * enough info to tell if that's the case.) Flat-copy the PHV + * node and then recurse on its expression. + * + * Note that after doing this, we might have different + * representations of the contents of the same PHV in different + * parts of the plan tree. This is OK because equal() will just + * match on phid/phlevelsup, so setrefs.c will still recognize an + * upper-level reference to a lower-level copy of the same PHV. + */ + PlaceHolderVar *newphv = makeNode(PlaceHolderVar); + + memcpy(newphv, phv, sizeof(PlaceHolderVar)); + newphv->phexpr = (Expr *) + replace_nestloop_params_mutator((Node *) phv->phexpr, + root); + return (Node *) newphv; + } + /* Replace the PlaceHolderVar with a nestloop Param */ + return (Node *) replace_nestloop_param_placeholdervar(root, phv); + } + return expression_tree_mutator(node, + replace_nestloop_params_mutator, + (void *) root); +} + +/* + * fix_indexqual_references + * Adjust indexqual clauses to the form the executor's indexqual + * machinery needs. + * + * We have three tasks here: + * * Select the actual qual clauses out of the input IndexClause list, + * and remove RestrictInfo nodes from the qual clauses. + * * Replace any outer-relation Var or PHV nodes with nestloop Params. + * (XXX eventually, that responsibility should go elsewhere?) + * * Index keys must be represented by Var nodes with varattno set to the + * index's attribute number, not the attribute number in the original rel. + * + * *stripped_indexquals_p receives a list of the actual qual clauses. + * + * *fixed_indexquals_p receives a list of the adjusted quals. This is a copy + * that shares no substructure with the original; this is needed in case there + * are subplans in it (we need two separate copies of the subplan tree, or + * things will go awry). + */ +static void +fix_indexqual_references(PlannerInfo *root, IndexPath *index_path, + List **stripped_indexquals_p, List **fixed_indexquals_p) +{ + IndexOptInfo *index = index_path->indexinfo; + List *stripped_indexquals; + List *fixed_indexquals; + ListCell *lc; + + stripped_indexquals = fixed_indexquals = NIL; + + foreach(lc, index_path->indexclauses) + { + IndexClause *iclause = lfirst_node(IndexClause, lc); + int indexcol = iclause->indexcol; + ListCell *lc2; + + foreach(lc2, iclause->indexquals) + { + RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2); + Node *clause = (Node *) rinfo->clause; + + stripped_indexquals = lappend(stripped_indexquals, clause); + clause = fix_indexqual_clause(root, index, indexcol, + clause, iclause->indexcols); + fixed_indexquals = lappend(fixed_indexquals, clause); + } + } + + *stripped_indexquals_p = stripped_indexquals; + *fixed_indexquals_p = fixed_indexquals; +} + +/* + * fix_indexorderby_references + * Adjust indexorderby clauses to the form the executor's index + * machinery needs. + * + * This is a simplified version of fix_indexqual_references. The input is + * bare clauses and a separate indexcol list, instead of IndexClauses. + */ +static List * +fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path) +{ + IndexOptInfo *index = index_path->indexinfo; + List *fixed_indexorderbys; + ListCell *lcc, + *lci; + + fixed_indexorderbys = NIL; + + forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols) + { + Node *clause = (Node *) lfirst(lcc); + int indexcol = lfirst_int(lci); + + clause = fix_indexqual_clause(root, index, indexcol, clause, NIL); + fixed_indexorderbys = lappend(fixed_indexorderbys, clause); + } + + return fixed_indexorderbys; +} + +/* + * fix_indexqual_clause + * Convert a single indexqual clause to the form needed by the executor. + * + * We replace nestloop params here, and replace the index key variables + * or expressions by index Var nodes. + */ +static Node * +fix_indexqual_clause(PlannerInfo *root, IndexOptInfo *index, int indexcol, + Node *clause, List *indexcolnos) +{ + /* + * Replace any outer-relation variables with nestloop params. + * + * This also makes a copy of the clause, so it's safe to modify it + * in-place below. + */ + clause = replace_nestloop_params(root, clause); + + if (IsA(clause, OpExpr)) + { + OpExpr *op = (OpExpr *) clause; + + /* Replace the indexkey expression with an index Var. */ + linitial(op->args) = fix_indexqual_operand(linitial(op->args), + index, + indexcol); + } + else if (IsA(clause, RowCompareExpr)) + { + RowCompareExpr *rc = (RowCompareExpr *) clause; + ListCell *lca, + *lcai; + + /* Replace the indexkey expressions with index Vars. */ + Assert(list_length(rc->largs) == list_length(indexcolnos)); + forboth(lca, rc->largs, lcai, indexcolnos) + { + lfirst(lca) = fix_indexqual_operand(lfirst(lca), + index, + lfirst_int(lcai)); + } + } + else if (IsA(clause, ScalarArrayOpExpr)) + { + ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; + + /* Replace the indexkey expression with an index Var. */ + linitial(saop->args) = fix_indexqual_operand(linitial(saop->args), + index, + indexcol); + } + else if (IsA(clause, NullTest)) + { + NullTest *nt = (NullTest *) clause; + + /* Replace the indexkey expression with an index Var. */ + nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg, + index, + indexcol); + } + else + elog(ERROR, "unsupported indexqual type: %d", + (int) nodeTag(clause)); + + return clause; +} + +/* + * fix_indexqual_operand + * Convert an indexqual expression to a Var referencing the index column. + * + * We represent index keys by Var nodes having varno == INDEX_VAR and varattno + * equal to the index's attribute number (index column position). + * + * Most of the code here is just for sanity cross-checking that the given + * expression actually matches the index column it's claimed to. + */ +static Node * +fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol) +{ + Var *result; + int pos; + ListCell *indexpr_item; + + /* + * Remove any binary-compatible relabeling of the indexkey + */ + if (IsA(node, RelabelType)) + node = (Node *) ((RelabelType *) node)->arg; + + Assert(indexcol >= 0 && indexcol < index->ncolumns); + + if (index->indexkeys[indexcol] != 0) + { + /* It's a simple index column */ + if (IsA(node, Var) && + ((Var *) node)->varno == index->rel->relid && + ((Var *) node)->varattno == index->indexkeys[indexcol]) + { + result = (Var *) copyObject(node); + result->varno = INDEX_VAR; + result->varattno = indexcol + 1; + return (Node *) result; + } + else + elog(ERROR, "index key does not match expected index column"); + } + + /* It's an index expression, so find and cross-check the expression */ + indexpr_item = list_head(index->indexprs); + for (pos = 0; pos < index->ncolumns; pos++) + { + if (index->indexkeys[pos] == 0) + { + if (indexpr_item == NULL) + elog(ERROR, "too few entries in indexprs list"); + if (pos == indexcol) + { + Node *indexkey; + + indexkey = (Node *) lfirst(indexpr_item); + if (indexkey && IsA(indexkey, RelabelType)) + indexkey = (Node *) ((RelabelType *) indexkey)->arg; + if (equal(node, indexkey)) + { + result = makeVar(INDEX_VAR, indexcol + 1, + exprType(lfirst(indexpr_item)), -1, + exprCollation(lfirst(indexpr_item)), + 0); + return (Node *) result; + } + else + elog(ERROR, "index key does not match expected index column"); + } + indexpr_item = lnext(index->indexprs, indexpr_item); + } + } + + /* Oops... */ + elog(ERROR, "index key does not match expected index column"); + return NULL; /* keep compiler quiet */ +} + +/* + * get_switched_clauses + * Given a list of merge or hash joinclauses (as RestrictInfo nodes), + * extract the bare clauses, and rearrange the elements within the + * clauses, if needed, so the outer join variable is on the left and + * the inner is on the right. The original clause data structure is not + * touched; a modified list is returned. We do, however, set the transient + * outer_is_left field in each RestrictInfo to show which side was which. + */ +static List * +get_switched_clauses(List *clauses, Relids outerrelids) +{ + List *t_list = NIL; + ListCell *l; + + foreach(l, clauses) + { + RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l); + OpExpr *clause = (OpExpr *) restrictinfo->clause; + + Assert(is_opclause(clause)); + if (bms_is_subset(restrictinfo->right_relids, outerrelids)) + { + /* + * Duplicate just enough of the structure to allow commuting the + * clause without changing the original list. Could use + * copyObject, but a complete deep copy is overkill. + */ + OpExpr *temp = makeNode(OpExpr); + + temp->opno = clause->opno; + temp->opfuncid = InvalidOid; + temp->opresulttype = clause->opresulttype; + temp->opretset = clause->opretset; + temp->opcollid = clause->opcollid; + temp->inputcollid = clause->inputcollid; + temp->args = list_copy(clause->args); + temp->location = clause->location; + /* Commute it --- note this modifies the temp node in-place. */ + CommuteOpExpr(temp); + t_list = lappend(t_list, temp); + restrictinfo->outer_is_left = false; + } + else + { + Assert(bms_is_subset(restrictinfo->left_relids, outerrelids)); + t_list = lappend(t_list, clause); + restrictinfo->outer_is_left = true; + } + } + return t_list; +} + +/* + * order_qual_clauses + * Given a list of qual clauses that will all be evaluated at the same + * plan node, sort the list into the order we want to check the quals + * in at runtime. + * + * When security barrier quals are used in the query, we may have quals with + * different security levels in the list. Quals of lower security_level + * must go before quals of higher security_level, except that we can grant + * exceptions to move up quals that are leakproof. When security level + * doesn't force the decision, we prefer to order clauses by estimated + * execution cost, cheapest first. + * + * Ideally the order should be driven by a combination of execution cost and + * selectivity, but it's not immediately clear how to account for both, + * and given the uncertainty of the estimates the reliability of the decisions + * would be doubtful anyway. So we just order by security level then + * estimated per-tuple cost, being careful not to change the order when + * (as is often the case) the estimates are identical. + * + * Although this will work on either bare clauses or RestrictInfos, it's + * much faster to apply it to RestrictInfos, since it can re-use cost + * information that is cached in RestrictInfos. XXX in the bare-clause + * case, we are also not able to apply security considerations. That is + * all right for the moment, because the bare-clause case doesn't occur + * anywhere that barrier quals could be present, but it would be better to + * get rid of it. + * + * Note: some callers pass lists that contain entries that will later be + * removed; this is the easiest way to let this routine see RestrictInfos + * instead of bare clauses. This is another reason why trying to consider + * selectivity in the ordering would likely do the wrong thing. + */ +static List * +order_qual_clauses(PlannerInfo *root, List *clauses) +{ + typedef struct + { + Node *clause; + Cost cost; + Index security_level; + } QualItem; + int nitems = list_length(clauses); + QualItem *items; + ListCell *lc; + int i; + List *result; + + /* No need to work hard for 0 or 1 clause */ + if (nitems <= 1) + return clauses; + + /* + * Collect the items and costs into an array. This is to avoid repeated + * cost_qual_eval work if the inputs aren't RestrictInfos. + */ + items = (QualItem *) palloc(nitems * sizeof(QualItem)); + i = 0; + foreach(lc, clauses) + { + Node *clause = (Node *) lfirst(lc); + QualCost qcost; + + cost_qual_eval_node(&qcost, clause, root); + items[i].clause = clause; + items[i].cost = qcost.per_tuple; + if (IsA(clause, RestrictInfo)) + { + RestrictInfo *rinfo = (RestrictInfo *) clause; + + /* + * If a clause is leakproof, it doesn't have to be constrained by + * its nominal security level. If it's also reasonably cheap + * (here defined as 10X cpu_operator_cost), pretend it has + * security_level 0, which will allow it to go in front of + * more-expensive quals of lower security levels. Of course, that + * will also force it to go in front of cheaper quals of its own + * security level, which is not so great, but we can alleviate + * that risk by applying the cost limit cutoff. + */ + if (rinfo->leakproof && items[i].cost < 10 * cpu_operator_cost) + items[i].security_level = 0; + else + items[i].security_level = rinfo->security_level; + } + else + items[i].security_level = 0; + i++; + } + + /* + * Sort. We don't use qsort() because it's not guaranteed stable for + * equal keys. The expected number of entries is small enough that a + * simple insertion sort should be good enough. + */ + for (i = 1; i < nitems; i++) + { + QualItem newitem = items[i]; + int j; + + /* insert newitem into the already-sorted subarray */ + for (j = i; j > 0; j--) + { + QualItem *olditem = &items[j - 1]; + + if (newitem.security_level > olditem->security_level || + (newitem.security_level == olditem->security_level && + newitem.cost >= olditem->cost)) + break; + items[j] = *olditem; + } + items[j] = newitem; + } + + /* Convert back to a list */ + result = NIL; + for (i = 0; i < nitems; i++) + result = lappend(result, items[i].clause); + + return result; +} + +/* + * Copy cost and size info from a Path node to the Plan node created from it. + * The executor usually won't use this info, but it's needed by EXPLAIN. + * Also copy the parallel-related flags, which the executor *will* use. + */ +static void +copy_generic_path_info(Plan *dest, Path *src) +{ + dest->startup_cost = src->startup_cost; + dest->total_cost = src->total_cost; + dest->plan_rows = src->rows; + dest->plan_width = src->pathtarget->width; + dest->parallel_aware = src->parallel_aware; + dest->parallel_safe = src->parallel_safe; +} + +/* + * Copy cost and size info from a lower plan node to an inserted node. + * (Most callers alter the info after copying it.) + */ +static void +copy_plan_costsize(Plan *dest, Plan *src) +{ + dest->startup_cost = src->startup_cost; + dest->total_cost = src->total_cost; + dest->plan_rows = src->plan_rows; + dest->plan_width = src->plan_width; + /* Assume the inserted node is not parallel-aware. */ + dest->parallel_aware = false; + /* Assume the inserted node is parallel-safe, if child plan is. */ + dest->parallel_safe = src->parallel_safe; +} + +/* + * Some places in this file build Sort nodes that don't have a directly + * corresponding Path node. The cost of the sort is, or should have been, + * included in the cost of the Path node we're working from, but since it's + * not split out, we have to re-figure it using cost_sort(). This is just + * to label the Sort node nicely for EXPLAIN. + * + * limit_tuples is as for cost_sort (in particular, pass -1 if no limit) + */ +static void +label_sort_with_costsize(PlannerInfo *root, Sort *plan, double limit_tuples) +{ + Plan *lefttree = plan->plan.lefttree; + Path sort_path; /* dummy for result of cost_sort */ + + /* + * This function shouldn't have to deal with IncrementalSort plans because + * they are only created from corresponding Path nodes. + */ + Assert(IsA(plan, Sort)); + + cost_sort(&sort_path, root, NIL, + lefttree->total_cost, + lefttree->plan_rows, + lefttree->plan_width, + 0.0, + work_mem, + limit_tuples); + plan->plan.startup_cost = sort_path.startup_cost; + plan->plan.total_cost = sort_path.total_cost; + plan->plan.plan_rows = lefttree->plan_rows; + plan->plan.plan_width = lefttree->plan_width; + plan->plan.parallel_aware = false; + plan->plan.parallel_safe = lefttree->parallel_safe; +} + +/* + * bitmap_subplan_mark_shared + * Set isshared flag in bitmap subplan so that it will be created in + * shared memory. + */ +static void +bitmap_subplan_mark_shared(Plan *plan) +{ + if (IsA(plan, BitmapAnd)) + bitmap_subplan_mark_shared(linitial(((BitmapAnd *) plan)->bitmapplans)); + else if (IsA(plan, BitmapOr)) + { + ((BitmapOr *) plan)->isshared = true; + bitmap_subplan_mark_shared(linitial(((BitmapOr *) plan)->bitmapplans)); + } + else if (IsA(plan, BitmapIndexScan)) + ((BitmapIndexScan *) plan)->isshared = true; + else + elog(ERROR, "unrecognized node type: %d", nodeTag(plan)); +} + +/***************************************************************************** + * + * PLAN NODE BUILDING ROUTINES + * + * In general, these functions are not passed the original Path and therefore + * leave it to the caller to fill in the cost/width fields from the Path, + * typically by calling copy_generic_path_info(). This convention is + * somewhat historical, but it does support a few places above where we build + * a plan node without having an exactly corresponding Path node. Under no + * circumstances should one of these functions do its own cost calculations, + * as that would be redundant with calculations done while building Paths. + * + *****************************************************************************/ + +static SeqScan * +make_seqscan(List *qptlist, + List *qpqual, + Index scanrelid) +{ + SeqScan *node = makeNode(SeqScan); + Plan *plan = &node->plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scanrelid = scanrelid; + + return node; +} + +static SampleScan * +make_samplescan(List *qptlist, + List *qpqual, + Index scanrelid, + TableSampleClause *tsc) +{ + SampleScan *node = makeNode(SampleScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->tablesample = tsc; + + return node; +} + +static IndexScan * +make_indexscan(List *qptlist, + List *qpqual, + Index scanrelid, + Oid indexid, + List *indexqual, + List *indexqualorig, + List *indexorderby, + List *indexorderbyorig, + List *indexorderbyops, + ScanDirection indexscandir) +{ + IndexScan *node = makeNode(IndexScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->indexid = indexid; + node->indexqual = indexqual; + node->indexqualorig = indexqualorig; + node->indexorderby = indexorderby; + node->indexorderbyorig = indexorderbyorig; + node->indexorderbyops = indexorderbyops; + node->indexorderdir = indexscandir; + + return node; +} + +static IndexOnlyScan * +make_indexonlyscan(List *qptlist, + List *qpqual, + Index scanrelid, + Oid indexid, + List *indexqual, + List *recheckqual, + List *indexorderby, + List *indextlist, + ScanDirection indexscandir) +{ + IndexOnlyScan *node = makeNode(IndexOnlyScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->indexid = indexid; + node->indexqual = indexqual; + node->recheckqual = recheckqual; + node->indexorderby = indexorderby; + node->indextlist = indextlist; + node->indexorderdir = indexscandir; + + return node; +} + +static BitmapIndexScan * +make_bitmap_indexscan(Index scanrelid, + Oid indexid, + List *indexqual, + List *indexqualorig) +{ + BitmapIndexScan *node = makeNode(BitmapIndexScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = NIL; /* not used */ + plan->qual = NIL; /* not used */ + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->indexid = indexid; + node->indexqual = indexqual; + node->indexqualorig = indexqualorig; + + return node; +} + +static BitmapHeapScan * +make_bitmap_heapscan(List *qptlist, + List *qpqual, + Plan *lefttree, + List *bitmapqualorig, + Index scanrelid) +{ + BitmapHeapScan *node = makeNode(BitmapHeapScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = lefttree; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->bitmapqualorig = bitmapqualorig; + + return node; +} + +static TidScan * +make_tidscan(List *qptlist, + List *qpqual, + Index scanrelid, + List *tidquals) +{ + TidScan *node = makeNode(TidScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->tidquals = tidquals; + + return node; +} + +static TidRangeScan * +make_tidrangescan(List *qptlist, + List *qpqual, + Index scanrelid, + List *tidrangequals) +{ + TidRangeScan *node = makeNode(TidRangeScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->tidrangequals = tidrangequals; + + return node; +} + +static SubqueryScan * +make_subqueryscan(List *qptlist, + List *qpqual, + Index scanrelid, + Plan *subplan) +{ + SubqueryScan *node = makeNode(SubqueryScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->subplan = subplan; + + return node; +} + +static FunctionScan * +make_functionscan(List *qptlist, + List *qpqual, + Index scanrelid, + List *functions, + bool funcordinality) +{ + FunctionScan *node = makeNode(FunctionScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->functions = functions; + node->funcordinality = funcordinality; + + return node; +} + +static TableFuncScan * +make_tablefuncscan(List *qptlist, + List *qpqual, + Index scanrelid, + TableFunc *tablefunc) +{ + TableFuncScan *node = makeNode(TableFuncScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->tablefunc = tablefunc; + + return node; +} + +static ValuesScan * +make_valuesscan(List *qptlist, + List *qpqual, + Index scanrelid, + List *values_lists) +{ + ValuesScan *node = makeNode(ValuesScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->values_lists = values_lists; + + return node; +} + +static CteScan * +make_ctescan(List *qptlist, + List *qpqual, + Index scanrelid, + int ctePlanId, + int cteParam) +{ + CteScan *node = makeNode(CteScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->ctePlanId = ctePlanId; + node->cteParam = cteParam; + + return node; +} + +static NamedTuplestoreScan * +make_namedtuplestorescan(List *qptlist, + List *qpqual, + Index scanrelid, + char *enrname) +{ + NamedTuplestoreScan *node = makeNode(NamedTuplestoreScan); + Plan *plan = &node->scan.plan; + + /* cost should be inserted by caller */ + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->enrname = enrname; + + return node; +} + +static WorkTableScan * +make_worktablescan(List *qptlist, + List *qpqual, + Index scanrelid, + int wtParam) +{ + WorkTableScan *node = makeNode(WorkTableScan); + Plan *plan = &node->scan.plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = NULL; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + node->wtParam = wtParam; + + return node; +} + +ForeignScan * +make_foreignscan(List *qptlist, + List *qpqual, + Index scanrelid, + List *fdw_exprs, + List *fdw_private, + List *fdw_scan_tlist, + List *fdw_recheck_quals, + Plan *outer_plan) +{ + ForeignScan *node = makeNode(ForeignScan); + Plan *plan = &node->scan.plan; + + /* cost will be filled in by create_foreignscan_plan */ + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = outer_plan; + plan->righttree = NULL; + node->scan.scanrelid = scanrelid; + + /* these may be overridden by the FDW's PlanDirectModify callback. */ + node->operation = CMD_SELECT; + node->resultRelation = 0; + + /* fs_server will be filled in by create_foreignscan_plan */ + node->fs_server = InvalidOid; + node->fdw_exprs = fdw_exprs; + node->fdw_private = fdw_private; + node->fdw_scan_tlist = fdw_scan_tlist; + node->fdw_recheck_quals = fdw_recheck_quals; + /* fs_relids will be filled in by create_foreignscan_plan */ + node->fs_relids = NULL; + /* fsSystemCol will be filled in by create_foreignscan_plan */ + node->fsSystemCol = false; + + return node; +} + +static RecursiveUnion * +make_recursive_union(List *tlist, + Plan *lefttree, + Plan *righttree, + int wtParam, + List *distinctList, + long numGroups) +{ + RecursiveUnion *node = makeNode(RecursiveUnion); + Plan *plan = &node->plan; + int numCols = list_length(distinctList); + + plan->targetlist = tlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = righttree; + node->wtParam = wtParam; + + /* + * convert SortGroupClause list into arrays of attr indexes and equality + * operators, as wanted by executor + */ + node->numCols = numCols; + if (numCols > 0) + { + int keyno = 0; + AttrNumber *dupColIdx; + Oid *dupOperators; + Oid *dupCollations; + ListCell *slitem; + + dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols); + dupOperators = (Oid *) palloc(sizeof(Oid) * numCols); + dupCollations = (Oid *) palloc(sizeof(Oid) * numCols); + + foreach(slitem, distinctList) + { + SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem); + TargetEntry *tle = get_sortgroupclause_tle(sortcl, + plan->targetlist); + + dupColIdx[keyno] = tle->resno; + dupOperators[keyno] = sortcl->eqop; + dupCollations[keyno] = exprCollation((Node *) tle->expr); + Assert(OidIsValid(dupOperators[keyno])); + keyno++; + } + node->dupColIdx = dupColIdx; + node->dupOperators = dupOperators; + node->dupCollations = dupCollations; + } + node->numGroups = numGroups; + + return node; +} + +static BitmapAnd * +make_bitmap_and(List *bitmapplans) +{ + BitmapAnd *node = makeNode(BitmapAnd); + Plan *plan = &node->plan; + + plan->targetlist = NIL; + plan->qual = NIL; + plan->lefttree = NULL; + plan->righttree = NULL; + node->bitmapplans = bitmapplans; + + return node; +} + +static BitmapOr * +make_bitmap_or(List *bitmapplans) +{ + BitmapOr *node = makeNode(BitmapOr); + Plan *plan = &node->plan; + + plan->targetlist = NIL; + plan->qual = NIL; + plan->lefttree = NULL; + plan->righttree = NULL; + node->bitmapplans = bitmapplans; + + return node; +} + +static NestLoop * +make_nestloop(List *tlist, + List *joinclauses, + List *otherclauses, + List *nestParams, + Plan *lefttree, + Plan *righttree, + JoinType jointype, + bool inner_unique) +{ + NestLoop *node = makeNode(NestLoop); + Plan *plan = &node->join.plan; + + plan->targetlist = tlist; + plan->qual = otherclauses; + plan->lefttree = lefttree; + plan->righttree = righttree; + node->join.jointype = jointype; + node->join.inner_unique = inner_unique; + node->join.joinqual = joinclauses; + node->nestParams = nestParams; + + return node; +} + +static HashJoin * +make_hashjoin(List *tlist, + List *joinclauses, + List *otherclauses, + List *hashclauses, + List *hashoperators, + List *hashcollations, + List *hashkeys, + Plan *lefttree, + Plan *righttree, + JoinType jointype, + bool inner_unique) +{ + HashJoin *node = makeNode(HashJoin); + Plan *plan = &node->join.plan; + + plan->targetlist = tlist; + plan->qual = otherclauses; + plan->lefttree = lefttree; + plan->righttree = righttree; + node->hashclauses = hashclauses; + node->hashoperators = hashoperators; + node->hashcollations = hashcollations; + node->hashkeys = hashkeys; + node->join.jointype = jointype; + node->join.inner_unique = inner_unique; + node->join.joinqual = joinclauses; + + return node; +} + +static Hash * +make_hash(Plan *lefttree, + List *hashkeys, + Oid skewTable, + AttrNumber skewColumn, + bool skewInherit) +{ + Hash *node = makeNode(Hash); + Plan *plan = &node->plan; + + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + + node->hashkeys = hashkeys; + node->skewTable = skewTable; + node->skewColumn = skewColumn; + node->skewInherit = skewInherit; + + return node; +} + +static MergeJoin * +make_mergejoin(List *tlist, + List *joinclauses, + List *otherclauses, + List *mergeclauses, + Oid *mergefamilies, + Oid *mergecollations, + int *mergestrategies, + bool *mergenullsfirst, + Plan *lefttree, + Plan *righttree, + JoinType jointype, + bool inner_unique, + bool skip_mark_restore) +{ + MergeJoin *node = makeNode(MergeJoin); + Plan *plan = &node->join.plan; + + plan->targetlist = tlist; + plan->qual = otherclauses; + plan->lefttree = lefttree; + plan->righttree = righttree; + node->skip_mark_restore = skip_mark_restore; + node->mergeclauses = mergeclauses; + node->mergeFamilies = mergefamilies; + node->mergeCollations = mergecollations; + node->mergeStrategies = mergestrategies; + node->mergeNullsFirst = mergenullsfirst; + node->join.jointype = jointype; + node->join.inner_unique = inner_unique; + node->join.joinqual = joinclauses; + + return node; +} + +/* + * make_sort --- basic routine to build a Sort plan node + * + * Caller must have built the sortColIdx, sortOperators, collations, and + * nullsFirst arrays already. + */ +static Sort * +make_sort(Plan *lefttree, int numCols, + AttrNumber *sortColIdx, Oid *sortOperators, + Oid *collations, bool *nullsFirst) +{ + Sort *node; + Plan *plan; + + node = makeNode(Sort); + + plan = &node->plan; + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + node->numCols = numCols; + node->sortColIdx = sortColIdx; + node->sortOperators = sortOperators; + node->collations = collations; + node->nullsFirst = nullsFirst; + + return node; +} + +/* + * make_incrementalsort --- basic routine to build an IncrementalSort plan node + * + * Caller must have built the sortColIdx, sortOperators, collations, and + * nullsFirst arrays already. + */ +static IncrementalSort * +make_incrementalsort(Plan *lefttree, int numCols, int nPresortedCols, + AttrNumber *sortColIdx, Oid *sortOperators, + Oid *collations, bool *nullsFirst) +{ + IncrementalSort *node; + Plan *plan; + + node = makeNode(IncrementalSort); + + plan = &node->sort.plan; + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + node->nPresortedCols = nPresortedCols; + node->sort.numCols = numCols; + node->sort.sortColIdx = sortColIdx; + node->sort.sortOperators = sortOperators; + node->sort.collations = collations; + node->sort.nullsFirst = nullsFirst; + + return node; +} + +/* + * prepare_sort_from_pathkeys + * Prepare to sort according to given pathkeys + * + * This is used to set up for Sort, MergeAppend, and Gather Merge nodes. It + * calculates the executor's representation of the sort key information, and + * adjusts the plan targetlist if needed to add resjunk sort columns. + * + * Input parameters: + * 'lefttree' is the plan node which yields input tuples + * 'pathkeys' is the list of pathkeys by which the result is to be sorted + * 'relids' identifies the child relation being sorted, if any + * 'reqColIdx' is NULL or an array of required sort key column numbers + * 'adjust_tlist_in_place' is true if lefttree must be modified in-place + * + * We must convert the pathkey information into arrays of sort key column + * numbers, sort operator OIDs, collation OIDs, and nulls-first flags, + * which is the representation the executor wants. These are returned into + * the output parameters *p_numsortkeys etc. + * + * When looking for matches to an EquivalenceClass's members, we will only + * consider child EC members if they belong to given 'relids'. This protects + * against possible incorrect matches to child expressions that contain no + * Vars. + * + * If reqColIdx isn't NULL then it contains sort key column numbers that + * we should match. This is used when making child plans for a MergeAppend; + * it's an error if we can't match the columns. + * + * If the pathkeys include expressions that aren't simple Vars, we will + * usually need to add resjunk items to the input plan's targetlist to + * compute these expressions, since a Sort or MergeAppend node itself won't + * do any such calculations. If the input plan type isn't one that can do + * projections, this means adding a Result node just to do the projection. + * However, the caller can pass adjust_tlist_in_place = true to force the + * lefttree tlist to be modified in-place regardless of whether the node type + * can project --- we use this for fixing the tlist of MergeAppend itself. + * + * Returns the node which is to be the input to the Sort (either lefttree, + * or a Result stacked atop lefttree). + */ +static Plan * +prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys, + Relids relids, + const AttrNumber *reqColIdx, + bool adjust_tlist_in_place, + int *p_numsortkeys, + AttrNumber **p_sortColIdx, + Oid **p_sortOperators, + Oid **p_collations, + bool **p_nullsFirst) +{ + List *tlist = lefttree->targetlist; + ListCell *i; + int numsortkeys; + AttrNumber *sortColIdx; + Oid *sortOperators; + Oid *collations; + bool *nullsFirst; + + /* + * We will need at most list_length(pathkeys) sort columns; possibly less + */ + numsortkeys = list_length(pathkeys); + sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber)); + sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid)); + collations = (Oid *) palloc(numsortkeys * sizeof(Oid)); + nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool)); + + numsortkeys = 0; + + foreach(i, pathkeys) + { + PathKey *pathkey = (PathKey *) lfirst(i); + EquivalenceClass *ec = pathkey->pk_eclass; + EquivalenceMember *em; + TargetEntry *tle = NULL; + Oid pk_datatype = InvalidOid; + Oid sortop; + ListCell *j; + + if (ec->ec_has_volatile) + { + /* + * If the pathkey's EquivalenceClass is volatile, then it must + * have come from an ORDER BY clause, and we have to match it to + * that same targetlist entry. + */ + if (ec->ec_sortref == 0) /* can't happen */ + elog(ERROR, "volatile EquivalenceClass has no sortref"); + tle = get_sortgroupref_tle(ec->ec_sortref, tlist); + Assert(tle); + Assert(list_length(ec->ec_members) == 1); + pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype; + } + else if (reqColIdx != NULL) + { + /* + * If we are given a sort column number to match, only consider + * the single TLE at that position. It's possible that there is + * no such TLE, in which case fall through and generate a resjunk + * targetentry (we assume this must have happened in the parent + * plan as well). If there is a TLE but it doesn't match the + * pathkey's EC, we do the same, which is probably the wrong thing + * but we'll leave it to caller to complain about the mismatch. + */ + tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]); + if (tle) + { + em = find_ec_member_matching_expr(ec, tle->expr, relids); + if (em) + { + /* found expr at right place in tlist */ + pk_datatype = em->em_datatype; + } + else + tle = NULL; + } + } + else + { + /* + * Otherwise, we can sort by any non-constant expression listed in + * the pathkey's EquivalenceClass. For now, we take the first + * tlist item found in the EC. If there's no match, we'll generate + * a resjunk entry using the first EC member that is an expression + * in the input's vars. (The non-const restriction only matters + * if the EC is below_outer_join; but if it isn't, it won't + * contain consts anyway, else we'd have discarded the pathkey as + * redundant.) + * + * XXX if we have a choice, is there any way of figuring out which + * might be cheapest to execute? (For example, int4lt is likely + * much cheaper to execute than numericlt, but both might appear + * in the same equivalence class...) Not clear that we ever will + * have an interesting choice in practice, so it may not matter. + */ + foreach(j, tlist) + { + tle = (TargetEntry *) lfirst(j); + em = find_ec_member_matching_expr(ec, tle->expr, relids); + if (em) + { + /* found expr already in tlist */ + pk_datatype = em->em_datatype; + break; + } + tle = NULL; + } + } + + if (!tle) + { + /* + * No matching tlist item; look for a computable expression. + */ + em = find_computable_ec_member(NULL, ec, tlist, relids, false); + if (!em) + elog(ERROR, "could not find pathkey item to sort"); + pk_datatype = em->em_datatype; + + /* + * Do we need to insert a Result node? + */ + if (!adjust_tlist_in_place && + !is_projection_capable_plan(lefttree)) + { + /* copy needed so we don't modify input's tlist below */ + tlist = copyObject(tlist); + lefttree = inject_projection_plan(lefttree, tlist, + lefttree->parallel_safe); + } + + /* Don't bother testing is_projection_capable_plan again */ + adjust_tlist_in_place = true; + + /* + * Add resjunk entry to input's tlist + */ + tle = makeTargetEntry(copyObject(em->em_expr), + list_length(tlist) + 1, + NULL, + true); + tlist = lappend(tlist, tle); + lefttree->targetlist = tlist; /* just in case NIL before */ + } + + /* + * Look up the correct sort operator from the PathKey's slightly + * abstracted representation. + */ + sortop = get_opfamily_member(pathkey->pk_opfamily, + pk_datatype, + pk_datatype, + pathkey->pk_strategy); + if (!OidIsValid(sortop)) /* should not happen */ + elog(ERROR, "missing operator %d(%u,%u) in opfamily %u", + pathkey->pk_strategy, pk_datatype, pk_datatype, + pathkey->pk_opfamily); + + /* Add the column to the sort arrays */ + sortColIdx[numsortkeys] = tle->resno; + sortOperators[numsortkeys] = sortop; + collations[numsortkeys] = ec->ec_collation; + nullsFirst[numsortkeys] = pathkey->pk_nulls_first; + numsortkeys++; + } + + /* Return results */ + *p_numsortkeys = numsortkeys; + *p_sortColIdx = sortColIdx; + *p_sortOperators = sortOperators; + *p_collations = collations; + *p_nullsFirst = nullsFirst; + + return lefttree; +} + +/* + * make_sort_from_pathkeys + * Create sort plan to sort according to given pathkeys + * + * 'lefttree' is the node which yields input tuples + * 'pathkeys' is the list of pathkeys by which the result is to be sorted + * 'relids' is the set of relations required by prepare_sort_from_pathkeys() + */ +static Sort * +make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, Relids relids) +{ + int numsortkeys; + AttrNumber *sortColIdx; + Oid *sortOperators; + Oid *collations; + bool *nullsFirst; + + /* Compute sort column info, and adjust lefttree as needed */ + lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys, + relids, + NULL, + false, + &numsortkeys, + &sortColIdx, + &sortOperators, + &collations, + &nullsFirst); + + /* Now build the Sort node */ + return make_sort(lefttree, numsortkeys, + sortColIdx, sortOperators, + collations, nullsFirst); +} + +/* + * make_incrementalsort_from_pathkeys + * Create sort plan to sort according to given pathkeys + * + * 'lefttree' is the node which yields input tuples + * 'pathkeys' is the list of pathkeys by which the result is to be sorted + * 'relids' is the set of relations required by prepare_sort_from_pathkeys() + * 'nPresortedCols' is the number of presorted columns in input tuples + */ +static IncrementalSort * +make_incrementalsort_from_pathkeys(Plan *lefttree, List *pathkeys, + Relids relids, int nPresortedCols) +{ + int numsortkeys; + AttrNumber *sortColIdx; + Oid *sortOperators; + Oid *collations; + bool *nullsFirst; + + /* Compute sort column info, and adjust lefttree as needed */ + lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys, + relids, + NULL, + false, + &numsortkeys, + &sortColIdx, + &sortOperators, + &collations, + &nullsFirst); + + /* Now build the Sort node */ + return make_incrementalsort(lefttree, numsortkeys, nPresortedCols, + sortColIdx, sortOperators, + collations, nullsFirst); +} + +/* + * make_sort_from_sortclauses + * Create sort plan to sort according to given sortclauses + * + * 'sortcls' is a list of SortGroupClauses + * 'lefttree' is the node which yields input tuples + */ +Sort * +make_sort_from_sortclauses(List *sortcls, Plan *lefttree) +{ + List *sub_tlist = lefttree->targetlist; + ListCell *l; + int numsortkeys; + AttrNumber *sortColIdx; + Oid *sortOperators; + Oid *collations; + bool *nullsFirst; + + /* Convert list-ish representation to arrays wanted by executor */ + numsortkeys = list_length(sortcls); + sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber)); + sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid)); + collations = (Oid *) palloc(numsortkeys * sizeof(Oid)); + nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool)); + + numsortkeys = 0; + foreach(l, sortcls) + { + SortGroupClause *sortcl = (SortGroupClause *) lfirst(l); + TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist); + + sortColIdx[numsortkeys] = tle->resno; + sortOperators[numsortkeys] = sortcl->sortop; + collations[numsortkeys] = exprCollation((Node *) tle->expr); + nullsFirst[numsortkeys] = sortcl->nulls_first; + numsortkeys++; + } + + return make_sort(lefttree, numsortkeys, + sortColIdx, sortOperators, + collations, nullsFirst); +} + +/* + * make_sort_from_groupcols + * Create sort plan to sort based on grouping columns + * + * 'groupcls' is the list of SortGroupClauses + * 'grpColIdx' gives the column numbers to use + * + * This might look like it could be merged with make_sort_from_sortclauses, + * but presently we *must* use the grpColIdx[] array to locate sort columns, + * because the child plan's tlist is not marked with ressortgroupref info + * appropriate to the grouping node. So, only the sort ordering info + * is used from the SortGroupClause entries. + */ +static Sort * +make_sort_from_groupcols(List *groupcls, + AttrNumber *grpColIdx, + Plan *lefttree) +{ + List *sub_tlist = lefttree->targetlist; + ListCell *l; + int numsortkeys; + AttrNumber *sortColIdx; + Oid *sortOperators; + Oid *collations; + bool *nullsFirst; + + /* Convert list-ish representation to arrays wanted by executor */ + numsortkeys = list_length(groupcls); + sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber)); + sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid)); + collations = (Oid *) palloc(numsortkeys * sizeof(Oid)); + nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool)); + + numsortkeys = 0; + foreach(l, groupcls) + { + SortGroupClause *grpcl = (SortGroupClause *) lfirst(l); + TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]); + + if (!tle) + elog(ERROR, "could not retrieve tle for sort-from-groupcols"); + + sortColIdx[numsortkeys] = tle->resno; + sortOperators[numsortkeys] = grpcl->sortop; + collations[numsortkeys] = exprCollation((Node *) tle->expr); + nullsFirst[numsortkeys] = grpcl->nulls_first; + numsortkeys++; + } + + return make_sort(lefttree, numsortkeys, + sortColIdx, sortOperators, + collations, nullsFirst); +} + +static Material * +make_material(Plan *lefttree) +{ + Material *node = makeNode(Material); + Plan *plan = &node->plan; + + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + + return node; +} + +/* + * materialize_finished_plan: stick a Material node atop a completed plan + * + * There are a couple of places where we want to attach a Material node + * after completion of create_plan(), without any MaterialPath path. + * Those places should probably be refactored someday to do this on the + * Path representation, but it's not worth the trouble yet. + */ +Plan * +materialize_finished_plan(Plan *subplan) +{ + Plan *matplan; + Path matpath; /* dummy for result of cost_material */ + + matplan = (Plan *) make_material(subplan); + + /* + * XXX horrid kluge: if there are any initPlans attached to the subplan, + * move them up to the Material node, which is now effectively the top + * plan node in its query level. This prevents failure in + * SS_finalize_plan(), which see for comments. We don't bother adjusting + * the subplan's cost estimate for this. + */ + matplan->initPlan = subplan->initPlan; + subplan->initPlan = NIL; + + /* Set cost data */ + cost_material(&matpath, + subplan->startup_cost, + subplan->total_cost, + subplan->plan_rows, + subplan->plan_width); + matplan->startup_cost = matpath.startup_cost; + matplan->total_cost = matpath.total_cost; + matplan->plan_rows = subplan->plan_rows; + matplan->plan_width = subplan->plan_width; + matplan->parallel_aware = false; + matplan->parallel_safe = subplan->parallel_safe; + + return matplan; +} + +static Memoize * +make_memoize(Plan *lefttree, Oid *hashoperators, Oid *collations, + List *param_exprs, bool singlerow, bool binary_mode, + uint32 est_entries, Bitmapset *keyparamids) +{ + Memoize *node = makeNode(Memoize); + Plan *plan = &node->plan; + + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + + node->numKeys = list_length(param_exprs); + node->hashOperators = hashoperators; + node->collations = collations; + node->param_exprs = param_exprs; + node->singlerow = singlerow; + node->binary_mode = binary_mode; + node->est_entries = est_entries; + node->keyparamids = keyparamids; + + return node; +} + +Agg * +make_agg(List *tlist, List *qual, + AggStrategy aggstrategy, AggSplit aggsplit, + int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations, + List *groupingSets, List *chain, double dNumGroups, + Size transitionSpace, Plan *lefttree) +{ + Agg *node = makeNode(Agg); + Plan *plan = &node->plan; + long numGroups; + + /* Reduce to long, but 'ware overflow! */ + numGroups = (long) Min(dNumGroups, (double) LONG_MAX); + + node->aggstrategy = aggstrategy; + node->aggsplit = aggsplit; + node->numCols = numGroupCols; + node->grpColIdx = grpColIdx; + node->grpOperators = grpOperators; + node->grpCollations = grpCollations; + node->numGroups = numGroups; + node->transitionSpace = transitionSpace; + node->aggParams = NULL; /* SS_finalize_plan() will fill this */ + node->groupingSets = groupingSets; + node->chain = chain; + + plan->qual = qual; + plan->targetlist = tlist; + plan->lefttree = lefttree; + plan->righttree = NULL; + + return node; +} + +static WindowAgg * +make_windowagg(List *tlist, Index winref, + int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations, + int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations, + int frameOptions, Node *startOffset, Node *endOffset, + Oid startInRangeFunc, Oid endInRangeFunc, + Oid inRangeColl, bool inRangeAsc, bool inRangeNullsFirst, + Plan *lefttree) +{ + WindowAgg *node = makeNode(WindowAgg); + Plan *plan = &node->plan; + + node->winref = winref; + node->partNumCols = partNumCols; + node->partColIdx = partColIdx; + node->partOperators = partOperators; + node->partCollations = partCollations; + node->ordNumCols = ordNumCols; + node->ordColIdx = ordColIdx; + node->ordOperators = ordOperators; + node->ordCollations = ordCollations; + node->frameOptions = frameOptions; + node->startOffset = startOffset; + node->endOffset = endOffset; + node->startInRangeFunc = startInRangeFunc; + node->endInRangeFunc = endInRangeFunc; + node->inRangeColl = inRangeColl; + node->inRangeAsc = inRangeAsc; + node->inRangeNullsFirst = inRangeNullsFirst; + + plan->targetlist = tlist; + plan->lefttree = lefttree; + plan->righttree = NULL; + /* WindowAgg nodes never have a qual clause */ + plan->qual = NIL; + + return node; +} + +static Group * +make_group(List *tlist, + List *qual, + int numGroupCols, + AttrNumber *grpColIdx, + Oid *grpOperators, + Oid *grpCollations, + Plan *lefttree) +{ + Group *node = makeNode(Group); + Plan *plan = &node->plan; + + node->numCols = numGroupCols; + node->grpColIdx = grpColIdx; + node->grpOperators = grpOperators; + node->grpCollations = grpCollations; + + plan->qual = qual; + plan->targetlist = tlist; + plan->lefttree = lefttree; + plan->righttree = NULL; + + return node; +} + +/* + * distinctList is a list of SortGroupClauses, identifying the targetlist items + * that should be considered by the Unique filter. The input path must + * already be sorted accordingly. + */ +static Unique * +make_unique_from_sortclauses(Plan *lefttree, List *distinctList) +{ + Unique *node = makeNode(Unique); + Plan *plan = &node->plan; + int numCols = list_length(distinctList); + int keyno = 0; + AttrNumber *uniqColIdx; + Oid *uniqOperators; + Oid *uniqCollations; + ListCell *slitem; + + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + + /* + * convert SortGroupClause list into arrays of attr indexes and equality + * operators, as wanted by executor + */ + Assert(numCols > 0); + uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols); + uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols); + uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols); + + foreach(slitem, distinctList) + { + SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem); + TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist); + + uniqColIdx[keyno] = tle->resno; + uniqOperators[keyno] = sortcl->eqop; + uniqCollations[keyno] = exprCollation((Node *) tle->expr); + Assert(OidIsValid(uniqOperators[keyno])); + keyno++; + } + + node->numCols = numCols; + node->uniqColIdx = uniqColIdx; + node->uniqOperators = uniqOperators; + node->uniqCollations = uniqCollations; + + return node; +} + +/* + * as above, but use pathkeys to identify the sort columns and semantics + */ +static Unique * +make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols) +{ + Unique *node = makeNode(Unique); + Plan *plan = &node->plan; + int keyno = 0; + AttrNumber *uniqColIdx; + Oid *uniqOperators; + Oid *uniqCollations; + ListCell *lc; + + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + + /* + * Convert pathkeys list into arrays of attr indexes and equality + * operators, as wanted by executor. This has a lot in common with + * prepare_sort_from_pathkeys ... maybe unify sometime? + */ + Assert(numCols >= 0 && numCols <= list_length(pathkeys)); + uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols); + uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols); + uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols); + + foreach(lc, pathkeys) + { + PathKey *pathkey = (PathKey *) lfirst(lc); + EquivalenceClass *ec = pathkey->pk_eclass; + EquivalenceMember *em; + TargetEntry *tle = NULL; + Oid pk_datatype = InvalidOid; + Oid eqop; + ListCell *j; + + /* Ignore pathkeys beyond the specified number of columns */ + if (keyno >= numCols) + break; + + if (ec->ec_has_volatile) + { + /* + * If the pathkey's EquivalenceClass is volatile, then it must + * have come from an ORDER BY clause, and we have to match it to + * that same targetlist entry. + */ + if (ec->ec_sortref == 0) /* can't happen */ + elog(ERROR, "volatile EquivalenceClass has no sortref"); + tle = get_sortgroupref_tle(ec->ec_sortref, plan->targetlist); + Assert(tle); + Assert(list_length(ec->ec_members) == 1); + pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype; + } + else + { + /* + * Otherwise, we can use any non-constant expression listed in the + * pathkey's EquivalenceClass. For now, we take the first tlist + * item found in the EC. + */ + foreach(j, plan->targetlist) + { + tle = (TargetEntry *) lfirst(j); + em = find_ec_member_matching_expr(ec, tle->expr, NULL); + if (em) + { + /* found expr already in tlist */ + pk_datatype = em->em_datatype; + break; + } + tle = NULL; + } + } + + if (!tle) + elog(ERROR, "could not find pathkey item to sort"); + + /* + * Look up the correct equality operator from the PathKey's slightly + * abstracted representation. + */ + eqop = get_opfamily_member(pathkey->pk_opfamily, + pk_datatype, + pk_datatype, + BTEqualStrategyNumber); + if (!OidIsValid(eqop)) /* should not happen */ + elog(ERROR, "missing operator %d(%u,%u) in opfamily %u", + BTEqualStrategyNumber, pk_datatype, pk_datatype, + pathkey->pk_opfamily); + + uniqColIdx[keyno] = tle->resno; + uniqOperators[keyno] = eqop; + uniqCollations[keyno] = ec->ec_collation; + + keyno++; + } + + node->numCols = numCols; + node->uniqColIdx = uniqColIdx; + node->uniqOperators = uniqOperators; + node->uniqCollations = uniqCollations; + + return node; +} + +static Gather * +make_gather(List *qptlist, + List *qpqual, + int nworkers, + int rescan_param, + bool single_copy, + Plan *subplan) +{ + Gather *node = makeNode(Gather); + Plan *plan = &node->plan; + + plan->targetlist = qptlist; + plan->qual = qpqual; + plan->lefttree = subplan; + plan->righttree = NULL; + node->num_workers = nworkers; + node->rescan_param = rescan_param; + node->single_copy = single_copy; + node->invisible = false; + node->initParam = NULL; + + return node; +} + +/* + * distinctList is a list of SortGroupClauses, identifying the targetlist + * items that should be considered by the SetOp filter. The input path must + * already be sorted accordingly. + */ +static SetOp * +make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree, + List *distinctList, AttrNumber flagColIdx, int firstFlag, + long numGroups) +{ + SetOp *node = makeNode(SetOp); + Plan *plan = &node->plan; + int numCols = list_length(distinctList); + int keyno = 0; + AttrNumber *dupColIdx; + Oid *dupOperators; + Oid *dupCollations; + ListCell *slitem; + + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + + /* + * convert SortGroupClause list into arrays of attr indexes and equality + * operators, as wanted by executor + */ + dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols); + dupOperators = (Oid *) palloc(sizeof(Oid) * numCols); + dupCollations = (Oid *) palloc(sizeof(Oid) * numCols); + + foreach(slitem, distinctList) + { + SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem); + TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist); + + dupColIdx[keyno] = tle->resno; + dupOperators[keyno] = sortcl->eqop; + dupCollations[keyno] = exprCollation((Node *) tle->expr); + Assert(OidIsValid(dupOperators[keyno])); + keyno++; + } + + node->cmd = cmd; + node->strategy = strategy; + node->numCols = numCols; + node->dupColIdx = dupColIdx; + node->dupOperators = dupOperators; + node->dupCollations = dupCollations; + node->flagColIdx = flagColIdx; + node->firstFlag = firstFlag; + node->numGroups = numGroups; + + return node; +} + +/* + * make_lockrows + * Build a LockRows plan node + */ +static LockRows * +make_lockrows(Plan *lefttree, List *rowMarks, int epqParam) +{ + LockRows *node = makeNode(LockRows); + Plan *plan = &node->plan; + + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + + node->rowMarks = rowMarks; + node->epqParam = epqParam; + + return node; +} + +/* + * make_limit + * Build a Limit plan node + */ +Limit * +make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount, + LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx, + Oid *uniqOperators, Oid *uniqCollations) +{ + Limit *node = makeNode(Limit); + Plan *plan = &node->plan; + + plan->targetlist = lefttree->targetlist; + plan->qual = NIL; + plan->lefttree = lefttree; + plan->righttree = NULL; + + node->limitOffset = limitOffset; + node->limitCount = limitCount; + node->limitOption = limitOption; + node->uniqNumCols = uniqNumCols; + node->uniqColIdx = uniqColIdx; + node->uniqOperators = uniqOperators; + node->uniqCollations = uniqCollations; + + return node; +} + +/* + * make_result + * Build a Result plan node + */ +static Result * +make_result(List *tlist, + Node *resconstantqual, + Plan *subplan) +{ + Result *node = makeNode(Result); + Plan *plan = &node->plan; + + plan->targetlist = tlist; + plan->qual = NIL; + plan->lefttree = subplan; + plan->righttree = NULL; + node->resconstantqual = resconstantqual; + + return node; +} + +/* + * make_project_set + * Build a ProjectSet plan node + */ +static ProjectSet * +make_project_set(List *tlist, + Plan *subplan) +{ + ProjectSet *node = makeNode(ProjectSet); + Plan *plan = &node->plan; + + plan->targetlist = tlist; + plan->qual = NIL; + plan->lefttree = subplan; + plan->righttree = NULL; + + return node; +} + +/* + * make_modifytable + * Build a ModifyTable plan node + */ +static ModifyTable * +make_modifytable(PlannerInfo *root, Plan *subplan, + CmdType operation, bool canSetTag, + Index nominalRelation, Index rootRelation, + bool partColsUpdated, + List *resultRelations, + List *updateColnosLists, + List *withCheckOptionLists, List *returningLists, + List *rowMarks, OnConflictExpr *onconflict, int epqParam) +{ + ModifyTable *node = makeNode(ModifyTable); + List *fdw_private_list; + Bitmapset *direct_modify_plans; + ListCell *lc; + int i; + + Assert(operation == CMD_UPDATE ? + list_length(resultRelations) == list_length(updateColnosLists) : + updateColnosLists == NIL); + Assert(withCheckOptionLists == NIL || + list_length(resultRelations) == list_length(withCheckOptionLists)); + Assert(returningLists == NIL || + list_length(resultRelations) == list_length(returningLists)); + + node->plan.lefttree = subplan; + node->plan.righttree = NULL; + node->plan.qual = NIL; + /* setrefs.c will fill in the targetlist, if needed */ + node->plan.targetlist = NIL; + + node->operation = operation; + node->canSetTag = canSetTag; + node->nominalRelation = nominalRelation; + node->rootRelation = rootRelation; + node->partColsUpdated = partColsUpdated; + node->resultRelations = resultRelations; + if (!onconflict) + { + node->onConflictAction = ONCONFLICT_NONE; + node->onConflictSet = NIL; + node->onConflictCols = NIL; + node->onConflictWhere = NULL; + node->arbiterIndexes = NIL; + node->exclRelRTI = 0; + node->exclRelTlist = NIL; + } + else + { + node->onConflictAction = onconflict->action; + + /* + * Here we convert the ON CONFLICT UPDATE tlist, if any, to the + * executor's convention of having consecutive resno's. The actual + * target column numbers are saved in node->onConflictCols. (This + * could be done earlier, but there seems no need to.) + */ + node->onConflictSet = onconflict->onConflictSet; + node->onConflictCols = + extract_update_targetlist_colnos(node->onConflictSet); + node->onConflictWhere = onconflict->onConflictWhere; + + /* + * If a set of unique index inference elements was provided (an + * INSERT...ON CONFLICT "inference specification"), then infer + * appropriate unique indexes (or throw an error if none are + * available). + */ + node->arbiterIndexes = infer_arbiter_indexes(root); + + node->exclRelRTI = onconflict->exclRelIndex; + node->exclRelTlist = onconflict->exclRelTlist; + } + node->updateColnosLists = updateColnosLists; + node->withCheckOptionLists = withCheckOptionLists; + node->returningLists = returningLists; + node->rowMarks = rowMarks; + node->epqParam = epqParam; + + /* + * For each result relation that is a foreign table, allow the FDW to + * construct private plan data, and accumulate it all into a list. + */ + fdw_private_list = NIL; + direct_modify_plans = NULL; + i = 0; + foreach(lc, resultRelations) + { + Index rti = lfirst_int(lc); + FdwRoutine *fdwroutine; + List *fdw_private; + bool direct_modify; + + /* + * If possible, we want to get the FdwRoutine from our RelOptInfo for + * the table. But sometimes we don't have a RelOptInfo and must get + * it the hard way. (In INSERT, the target relation is not scanned, + * so it's not a baserel; and there are also corner cases for + * updatable views where the target rel isn't a baserel.) + */ + if (rti < root->simple_rel_array_size && + root->simple_rel_array[rti] != NULL) + { + RelOptInfo *resultRel = root->simple_rel_array[rti]; + + fdwroutine = resultRel->fdwroutine; + } + else + { + RangeTblEntry *rte = planner_rt_fetch(rti, root); + + Assert(rte->rtekind == RTE_RELATION); + if (rte->relkind == RELKIND_FOREIGN_TABLE) + fdwroutine = GetFdwRoutineByRelId(rte->relid); + else + fdwroutine = NULL; + } + + /* + * Try to modify the foreign table directly if (1) the FDW provides + * callback functions needed for that and (2) there are no local + * structures that need to be run for each modified row: row-level + * triggers on the foreign table, stored generated columns, WITH CHECK + * OPTIONs from parent views. + */ + direct_modify = false; + if (fdwroutine != NULL && + fdwroutine->PlanDirectModify != NULL && + fdwroutine->BeginDirectModify != NULL && + fdwroutine->IterateDirectModify != NULL && + fdwroutine->EndDirectModify != NULL && + withCheckOptionLists == NIL && + !has_row_triggers(root, rti, operation) && + !has_stored_generated_columns(root, rti)) + direct_modify = fdwroutine->PlanDirectModify(root, node, rti, i); + if (direct_modify) + direct_modify_plans = bms_add_member(direct_modify_plans, i); + + if (!direct_modify && + fdwroutine != NULL && + fdwroutine->PlanForeignModify != NULL) + fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i); + else + fdw_private = NIL; + fdw_private_list = lappend(fdw_private_list, fdw_private); + i++; + } + node->fdwPrivLists = fdw_private_list; + node->fdwDirectModifyPlans = direct_modify_plans; + + return node; +} + +/* + * is_projection_capable_path + * Check whether a given Path node is able to do projection. + */ +bool +is_projection_capable_path(Path *path) +{ + /* Most plan types can project, so just list the ones that can't */ + switch (path->pathtype) + { + case T_Hash: + case T_Material: + case T_Memoize: + case T_Sort: + case T_IncrementalSort: + case T_Unique: + case T_SetOp: + case T_LockRows: + case T_Limit: + case T_ModifyTable: + case T_MergeAppend: + case T_RecursiveUnion: + return false; + case T_Append: + + /* + * Append can't project, but if an AppendPath is being used to + * represent a dummy path, what will actually be generated is a + * Result which can project. + */ + return IS_DUMMY_APPEND(path); + case T_ProjectSet: + + /* + * Although ProjectSet certainly projects, say "no" because we + * don't want the planner to randomly replace its tlist with + * something else; the SRFs have to stay at top level. This might + * get relaxed later. + */ + return false; + default: + break; + } + return true; +} + +/* + * is_projection_capable_plan + * Check whether a given Plan node is able to do projection. + */ +bool +is_projection_capable_plan(Plan *plan) +{ + /* Most plan types can project, so just list the ones that can't */ + switch (nodeTag(plan)) + { + case T_Hash: + case T_Material: + case T_Memoize: + case T_Sort: + case T_Unique: + case T_SetOp: + case T_LockRows: + case T_Limit: + case T_ModifyTable: + case T_Append: + case T_MergeAppend: + case T_RecursiveUnion: + return false; + case T_ProjectSet: + + /* + * Although ProjectSet certainly projects, say "no" because we + * don't want the planner to randomly replace its tlist with + * something else; the SRFs have to stay at top level. This might + * get relaxed later. + */ + return false; + default: + break; + } + return true; +} |