summaryrefslogtreecommitdiffstats
path: root/src/backend/optimizer/plan/createplan.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/backend/optimizer/plan/createplan.c7160
1 files changed, 7160 insertions, 0 deletions
diff --git a/src/backend/optimizer/plan/createplan.c b/src/backend/optimizer/plan/createplan.c
new file mode 100644
index 0000000..0ed858f
--- /dev/null
+++ b/src/backend/optimizer/plan/createplan.c
@@ -0,0 +1,7160 @@
+/*-------------------------------------------------------------------------
+ *
+ * createplan.c
+ * Routines to create the desired plan for processing a query.
+ * Planning is complete, we just need to convert the selected
+ * Path into a Plan.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/plan/createplan.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include <limits.h>
+#include <math.h>
+
+#include "access/sysattr.h"
+#include "catalog/pg_class.h"
+#include "foreign/fdwapi.h"
+#include "miscadmin.h"
+#include "nodes/extensible.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "optimizer/cost.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/paramassign.h"
+#include "optimizer/paths.h"
+#include "optimizer/placeholder.h"
+#include "optimizer/plancat.h"
+#include "optimizer/planmain.h"
+#include "optimizer/prep.h"
+#include "optimizer/restrictinfo.h"
+#include "optimizer/subselect.h"
+#include "optimizer/tlist.h"
+#include "parser/parse_clause.h"
+#include "parser/parsetree.h"
+#include "partitioning/partprune.h"
+#include "utils/lsyscache.h"
+
+
+/*
+ * Flag bits that can appear in the flags argument of create_plan_recurse().
+ * These can be OR-ed together.
+ *
+ * CP_EXACT_TLIST specifies that the generated plan node must return exactly
+ * the tlist specified by the path's pathtarget (this overrides both
+ * CP_SMALL_TLIST and CP_LABEL_TLIST, if those are set). Otherwise, the
+ * plan node is allowed to return just the Vars and PlaceHolderVars needed
+ * to evaluate the pathtarget.
+ *
+ * CP_SMALL_TLIST specifies that a narrower tlist is preferred. This is
+ * passed down by parent nodes such as Sort and Hash, which will have to
+ * store the returned tuples.
+ *
+ * CP_LABEL_TLIST specifies that the plan node must return columns matching
+ * any sortgrouprefs specified in its pathtarget, with appropriate
+ * ressortgroupref labels. This is passed down by parent nodes such as Sort
+ * and Group, which need these values to be available in their inputs.
+ *
+ * CP_IGNORE_TLIST specifies that the caller plans to replace the targetlist,
+ * and therefore it doesn't matter a bit what target list gets generated.
+ */
+#define CP_EXACT_TLIST 0x0001 /* Plan must return specified tlist */
+#define CP_SMALL_TLIST 0x0002 /* Prefer narrower tlists */
+#define CP_LABEL_TLIST 0x0004 /* tlist must contain sortgrouprefs */
+#define CP_IGNORE_TLIST 0x0008 /* caller will replace tlist */
+
+
+static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path,
+ int flags);
+static Plan *create_scan_plan(PlannerInfo *root, Path *best_path,
+ int flags);
+static List *build_path_tlist(PlannerInfo *root, Path *path);
+static bool use_physical_tlist(PlannerInfo *root, Path *path, int flags);
+static List *get_gating_quals(PlannerInfo *root, List *quals);
+static Plan *create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
+ List *gating_quals);
+static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path);
+static bool is_async_capable_plan(Plan *plan, Path *path);
+static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path,
+ int flags);
+static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
+ int flags);
+static Result *create_group_result_plan(PlannerInfo *root,
+ GroupResultPath *best_path);
+static ProjectSet *create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path);
+static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path,
+ int flags);
+static Memoize *create_memoize_plan(PlannerInfo *root, MemoizePath *best_path,
+ int flags);
+static Plan *create_unique_plan(PlannerInfo *root, UniquePath *best_path,
+ int flags);
+static Gather *create_gather_plan(PlannerInfo *root, GatherPath *best_path);
+static Plan *create_projection_plan(PlannerInfo *root,
+ ProjectionPath *best_path,
+ int flags);
+static Plan *inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe);
+static Sort *create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags);
+static IncrementalSort *create_incrementalsort_plan(PlannerInfo *root,
+ IncrementalSortPath *best_path, int flags);
+static Group *create_group_plan(PlannerInfo *root, GroupPath *best_path);
+static Unique *create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path,
+ int flags);
+static Agg *create_agg_plan(PlannerInfo *root, AggPath *best_path);
+static Plan *create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path);
+static Result *create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path);
+static WindowAgg *create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path);
+static SetOp *create_setop_plan(PlannerInfo *root, SetOpPath *best_path,
+ int flags);
+static RecursiveUnion *create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path);
+static LockRows *create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
+ int flags);
+static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path);
+static Limit *create_limit_plan(PlannerInfo *root, LimitPath *best_path,
+ int flags);
+static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path,
+ List *tlist, List *scan_clauses, bool indexonly);
+static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root,
+ BitmapHeapPath *best_path,
+ List *tlist, List *scan_clauses);
+static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
+ List **qual, List **indexqual, List **indexECs);
+static void bitmap_subplan_mark_shared(Plan *plan);
+static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
+ List *tlist, List *scan_clauses);
+static TidRangeScan *create_tidrangescan_plan(PlannerInfo *root,
+ TidRangePath *best_path,
+ List *tlist,
+ List *scan_clauses);
+static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root,
+ SubqueryScanPath *best_path,
+ List *tlist, List *scan_clauses);
+static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static TableFuncScan *create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static NamedTuplestoreScan *create_namedtuplestorescan_plan(PlannerInfo *root,
+ Path *best_path, List *tlist, List *scan_clauses);
+static Result *create_resultscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
+ List *tlist, List *scan_clauses);
+static CustomScan *create_customscan_plan(PlannerInfo *root,
+ CustomPath *best_path,
+ List *tlist, List *scan_clauses);
+static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path);
+static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path);
+static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path);
+static Node *replace_nestloop_params(PlannerInfo *root, Node *expr);
+static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root);
+static void fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
+ List **stripped_indexquals_p,
+ List **fixed_indexquals_p);
+static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path);
+static Node *fix_indexqual_clause(PlannerInfo *root,
+ IndexOptInfo *index, int indexcol,
+ Node *clause, List *indexcolnos);
+static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol);
+static List *get_switched_clauses(List *clauses, Relids outerrelids);
+static List *order_qual_clauses(PlannerInfo *root, List *clauses);
+static void copy_generic_path_info(Plan *dest, Path *src);
+static void copy_plan_costsize(Plan *dest, Plan *src);
+static void label_sort_with_costsize(PlannerInfo *root, Sort *plan,
+ double limit_tuples);
+static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
+static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid,
+ TableSampleClause *tsc);
+static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
+ Oid indexid, List *indexqual, List *indexqualorig,
+ List *indexorderby, List *indexorderbyorig,
+ List *indexorderbyops,
+ ScanDirection indexscandir);
+static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual,
+ Index scanrelid, Oid indexid,
+ List *indexqual, List *recheckqual,
+ List *indexorderby,
+ List *indextlist,
+ ScanDirection indexscandir);
+static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid,
+ List *indexqual,
+ List *indexqualorig);
+static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
+ List *qpqual,
+ Plan *lefttree,
+ List *bitmapqualorig,
+ Index scanrelid);
+static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
+ List *tidquals);
+static TidRangeScan *make_tidrangescan(List *qptlist, List *qpqual,
+ Index scanrelid, List *tidrangequals);
+static SubqueryScan *make_subqueryscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ Plan *subplan);
+static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
+ Index scanrelid, List *functions, bool funcordinality);
+static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
+ Index scanrelid, List *values_lists);
+static TableFuncScan *make_tablefuncscan(List *qptlist, List *qpqual,
+ Index scanrelid, TableFunc *tablefunc);
+static CteScan *make_ctescan(List *qptlist, List *qpqual,
+ Index scanrelid, int ctePlanId, int cteParam);
+static NamedTuplestoreScan *make_namedtuplestorescan(List *qptlist, List *qpqual,
+ Index scanrelid, char *enrname);
+static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual,
+ Index scanrelid, int wtParam);
+static RecursiveUnion *make_recursive_union(List *tlist,
+ Plan *lefttree,
+ Plan *righttree,
+ int wtParam,
+ List *distinctList,
+ long numGroups);
+static BitmapAnd *make_bitmap_and(List *bitmapplans);
+static BitmapOr *make_bitmap_or(List *bitmapplans);
+static NestLoop *make_nestloop(List *tlist,
+ List *joinclauses, List *otherclauses, List *nestParams,
+ Plan *lefttree, Plan *righttree,
+ JoinType jointype, bool inner_unique);
+static HashJoin *make_hashjoin(List *tlist,
+ List *joinclauses, List *otherclauses,
+ List *hashclauses,
+ List *hashoperators, List *hashcollations,
+ List *hashkeys,
+ Plan *lefttree, Plan *righttree,
+ JoinType jointype, bool inner_unique);
+static Hash *make_hash(Plan *lefttree,
+ List *hashkeys,
+ Oid skewTable,
+ AttrNumber skewColumn,
+ bool skewInherit);
+static MergeJoin *make_mergejoin(List *tlist,
+ List *joinclauses, List *otherclauses,
+ List *mergeclauses,
+ Oid *mergefamilies,
+ Oid *mergecollations,
+ int *mergestrategies,
+ bool *mergenullsfirst,
+ Plan *lefttree, Plan *righttree,
+ JoinType jointype, bool inner_unique,
+ bool skip_mark_restore);
+static Sort *make_sort(Plan *lefttree, int numCols,
+ AttrNumber *sortColIdx, Oid *sortOperators,
+ Oid *collations, bool *nullsFirst);
+static IncrementalSort *make_incrementalsort(Plan *lefttree,
+ int numCols, int nPresortedCols,
+ AttrNumber *sortColIdx, Oid *sortOperators,
+ Oid *collations, bool *nullsFirst);
+static Plan *prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
+ Relids relids,
+ const AttrNumber *reqColIdx,
+ bool adjust_tlist_in_place,
+ int *p_numsortkeys,
+ AttrNumber **p_sortColIdx,
+ Oid **p_sortOperators,
+ Oid **p_collations,
+ bool **p_nullsFirst);
+static Sort *make_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
+ Relids relids);
+static IncrementalSort *make_incrementalsort_from_pathkeys(Plan *lefttree,
+ List *pathkeys, Relids relids, int nPresortedCols);
+static Sort *make_sort_from_groupcols(List *groupcls,
+ AttrNumber *grpColIdx,
+ Plan *lefttree);
+static Material *make_material(Plan *lefttree);
+static Memoize *make_memoize(Plan *lefttree, Oid *hashoperators,
+ Oid *collations, List *param_exprs,
+ bool singlerow, bool binary_mode,
+ uint32 est_entries, Bitmapset *keyparamids);
+static WindowAgg *make_windowagg(List *tlist, Index winref,
+ int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
+ int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
+ int frameOptions, Node *startOffset, Node *endOffset,
+ Oid startInRangeFunc, Oid endInRangeFunc,
+ Oid inRangeColl, bool inRangeAsc, bool inRangeNullsFirst,
+ Plan *lefttree);
+static Group *make_group(List *tlist, List *qual, int numGroupCols,
+ AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
+ Plan *lefttree);
+static Unique *make_unique_from_sortclauses(Plan *lefttree, List *distinctList);
+static Unique *make_unique_from_pathkeys(Plan *lefttree,
+ List *pathkeys, int numCols);
+static Gather *make_gather(List *qptlist, List *qpqual,
+ int nworkers, int rescan_param, bool single_copy, Plan *subplan);
+static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree,
+ List *distinctList, AttrNumber flagColIdx, int firstFlag,
+ long numGroups);
+static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam);
+static Result *make_result(List *tlist, Node *resconstantqual, Plan *subplan);
+static ProjectSet *make_project_set(List *tlist, Plan *subplan);
+static ModifyTable *make_modifytable(PlannerInfo *root, Plan *subplan,
+ CmdType operation, bool canSetTag,
+ Index nominalRelation, Index rootRelation,
+ bool partColsUpdated,
+ List *resultRelations,
+ List *updateColnosLists,
+ List *withCheckOptionLists, List *returningLists,
+ List *rowMarks, OnConflictExpr *onconflict, int epqParam);
+static GatherMerge *create_gather_merge_plan(PlannerInfo *root,
+ GatherMergePath *best_path);
+
+
+/*
+ * create_plan
+ * Creates the access plan for a query by recursively processing the
+ * desired tree of pathnodes, starting at the node 'best_path'. For
+ * every pathnode found, we create a corresponding plan node containing
+ * appropriate id, target list, and qualification information.
+ *
+ * The tlists and quals in the plan tree are still in planner format,
+ * ie, Vars still correspond to the parser's numbering. This will be
+ * fixed later by setrefs.c.
+ *
+ * best_path is the best access path
+ *
+ * Returns a Plan tree.
+ */
+Plan *
+create_plan(PlannerInfo *root, Path *best_path)
+{
+ Plan *plan;
+
+ /* plan_params should not be in use in current query level */
+ Assert(root->plan_params == NIL);
+
+ /* Initialize this module's workspace in PlannerInfo */
+ root->curOuterRels = NULL;
+ root->curOuterParams = NIL;
+
+ /* Recursively process the path tree, demanding the correct tlist result */
+ plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);
+
+ /*
+ * Make sure the topmost plan node's targetlist exposes the original
+ * column names and other decorative info. Targetlists generated within
+ * the planner don't bother with that stuff, but we must have it on the
+ * top-level tlist seen at execution time. However, ModifyTable plan
+ * nodes don't have a tlist matching the querytree targetlist.
+ */
+ if (!IsA(plan, ModifyTable))
+ apply_tlist_labeling(plan->targetlist, root->processed_tlist);
+
+ /*
+ * Attach any initPlans created in this query level to the topmost plan
+ * node. (In principle the initplans could go in any plan node at or
+ * above where they're referenced, but there seems no reason to put them
+ * any lower than the topmost node for the query level. Also, see
+ * comments for SS_finalize_plan before you try to change this.)
+ */
+ SS_attach_initplans(root, plan);
+
+ /* Check we successfully assigned all NestLoopParams to plan nodes */
+ if (root->curOuterParams != NIL)
+ elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
+
+ /*
+ * Reset plan_params to ensure param IDs used for nestloop params are not
+ * re-used later
+ */
+ root->plan_params = NIL;
+
+ return plan;
+}
+
+/*
+ * create_plan_recurse
+ * Recursive guts of create_plan().
+ */
+static Plan *
+create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
+{
+ Plan *plan;
+
+ /* Guard against stack overflow due to overly complex plans */
+ check_stack_depth();
+
+ switch (best_path->pathtype)
+ {
+ case T_SeqScan:
+ case T_SampleScan:
+ case T_IndexScan:
+ case T_IndexOnlyScan:
+ case T_BitmapHeapScan:
+ case T_TidScan:
+ case T_TidRangeScan:
+ case T_SubqueryScan:
+ case T_FunctionScan:
+ case T_TableFuncScan:
+ case T_ValuesScan:
+ case T_CteScan:
+ case T_WorkTableScan:
+ case T_NamedTuplestoreScan:
+ case T_ForeignScan:
+ case T_CustomScan:
+ plan = create_scan_plan(root, best_path, flags);
+ break;
+ case T_HashJoin:
+ case T_MergeJoin:
+ case T_NestLoop:
+ plan = create_join_plan(root,
+ (JoinPath *) best_path);
+ break;
+ case T_Append:
+ plan = create_append_plan(root,
+ (AppendPath *) best_path,
+ flags);
+ break;
+ case T_MergeAppend:
+ plan = create_merge_append_plan(root,
+ (MergeAppendPath *) best_path,
+ flags);
+ break;
+ case T_Result:
+ if (IsA(best_path, ProjectionPath))
+ {
+ plan = create_projection_plan(root,
+ (ProjectionPath *) best_path,
+ flags);
+ }
+ else if (IsA(best_path, MinMaxAggPath))
+ {
+ plan = (Plan *) create_minmaxagg_plan(root,
+ (MinMaxAggPath *) best_path);
+ }
+ else if (IsA(best_path, GroupResultPath))
+ {
+ plan = (Plan *) create_group_result_plan(root,
+ (GroupResultPath *) best_path);
+ }
+ else
+ {
+ /* Simple RTE_RESULT base relation */
+ Assert(IsA(best_path, Path));
+ plan = create_scan_plan(root, best_path, flags);
+ }
+ break;
+ case T_ProjectSet:
+ plan = (Plan *) create_project_set_plan(root,
+ (ProjectSetPath *) best_path);
+ break;
+ case T_Material:
+ plan = (Plan *) create_material_plan(root,
+ (MaterialPath *) best_path,
+ flags);
+ break;
+ case T_Memoize:
+ plan = (Plan *) create_memoize_plan(root,
+ (MemoizePath *) best_path,
+ flags);
+ break;
+ case T_Unique:
+ if (IsA(best_path, UpperUniquePath))
+ {
+ plan = (Plan *) create_upper_unique_plan(root,
+ (UpperUniquePath *) best_path,
+ flags);
+ }
+ else
+ {
+ Assert(IsA(best_path, UniquePath));
+ plan = create_unique_plan(root,
+ (UniquePath *) best_path,
+ flags);
+ }
+ break;
+ case T_Gather:
+ plan = (Plan *) create_gather_plan(root,
+ (GatherPath *) best_path);
+ break;
+ case T_Sort:
+ plan = (Plan *) create_sort_plan(root,
+ (SortPath *) best_path,
+ flags);
+ break;
+ case T_IncrementalSort:
+ plan = (Plan *) create_incrementalsort_plan(root,
+ (IncrementalSortPath *) best_path,
+ flags);
+ break;
+ case T_Group:
+ plan = (Plan *) create_group_plan(root,
+ (GroupPath *) best_path);
+ break;
+ case T_Agg:
+ if (IsA(best_path, GroupingSetsPath))
+ plan = create_groupingsets_plan(root,
+ (GroupingSetsPath *) best_path);
+ else
+ {
+ Assert(IsA(best_path, AggPath));
+ plan = (Plan *) create_agg_plan(root,
+ (AggPath *) best_path);
+ }
+ break;
+ case T_WindowAgg:
+ plan = (Plan *) create_windowagg_plan(root,
+ (WindowAggPath *) best_path);
+ break;
+ case T_SetOp:
+ plan = (Plan *) create_setop_plan(root,
+ (SetOpPath *) best_path,
+ flags);
+ break;
+ case T_RecursiveUnion:
+ plan = (Plan *) create_recursiveunion_plan(root,
+ (RecursiveUnionPath *) best_path);
+ break;
+ case T_LockRows:
+ plan = (Plan *) create_lockrows_plan(root,
+ (LockRowsPath *) best_path,
+ flags);
+ break;
+ case T_ModifyTable:
+ plan = (Plan *) create_modifytable_plan(root,
+ (ModifyTablePath *) best_path);
+ break;
+ case T_Limit:
+ plan = (Plan *) create_limit_plan(root,
+ (LimitPath *) best_path,
+ flags);
+ break;
+ case T_GatherMerge:
+ plan = (Plan *) create_gather_merge_plan(root,
+ (GatherMergePath *) best_path);
+ break;
+ default:
+ elog(ERROR, "unrecognized node type: %d",
+ (int) best_path->pathtype);
+ plan = NULL; /* keep compiler quiet */
+ break;
+ }
+
+ return plan;
+}
+
+/*
+ * create_scan_plan
+ * Create a scan plan for the parent relation of 'best_path'.
+ */
+static Plan *
+create_scan_plan(PlannerInfo *root, Path *best_path, int flags)
+{
+ RelOptInfo *rel = best_path->parent;
+ List *scan_clauses;
+ List *gating_clauses;
+ List *tlist;
+ Plan *plan;
+
+ /*
+ * Extract the relevant restriction clauses from the parent relation. The
+ * executor must apply all these restrictions during the scan, except for
+ * pseudoconstants which we'll take care of below.
+ *
+ * If this is a plain indexscan or index-only scan, we need not consider
+ * restriction clauses that are implied by the index's predicate, so use
+ * indrestrictinfo not baserestrictinfo. Note that we can't do that for
+ * bitmap indexscans, since there's not necessarily a single index
+ * involved; but it doesn't matter since create_bitmap_scan_plan() will be
+ * able to get rid of such clauses anyway via predicate proof.
+ */
+ switch (best_path->pathtype)
+ {
+ case T_IndexScan:
+ case T_IndexOnlyScan:
+ scan_clauses = castNode(IndexPath, best_path)->indexinfo->indrestrictinfo;
+ break;
+ default:
+ scan_clauses = rel->baserestrictinfo;
+ break;
+ }
+
+ /*
+ * If this is a parameterized scan, we also need to enforce all the join
+ * clauses available from the outer relation(s).
+ *
+ * For paranoia's sake, don't modify the stored baserestrictinfo list.
+ */
+ if (best_path->param_info)
+ scan_clauses = list_concat_copy(scan_clauses,
+ best_path->param_info->ppi_clauses);
+
+ /*
+ * Detect whether we have any pseudoconstant quals to deal with. Then, if
+ * we'll need a gating Result node, it will be able to project, so there
+ * are no requirements on the child's tlist.
+ */
+ gating_clauses = get_gating_quals(root, scan_clauses);
+ if (gating_clauses)
+ flags = 0;
+
+ /*
+ * For table scans, rather than using the relation targetlist (which is
+ * only those Vars actually needed by the query), we prefer to generate a
+ * tlist containing all Vars in order. This will allow the executor to
+ * optimize away projection of the table tuples, if possible.
+ *
+ * But if the caller is going to ignore our tlist anyway, then don't
+ * bother generating one at all. We use an exact equality test here, so
+ * that this only applies when CP_IGNORE_TLIST is the only flag set.
+ */
+ if (flags == CP_IGNORE_TLIST)
+ {
+ tlist = NULL;
+ }
+ else if (use_physical_tlist(root, best_path, flags))
+ {
+ if (best_path->pathtype == T_IndexOnlyScan)
+ {
+ /* For index-only scan, the preferred tlist is the index's */
+ tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);
+
+ /*
+ * Transfer sortgroupref data to the replacement tlist, if
+ * requested (use_physical_tlist checked that this will work).
+ */
+ if (flags & CP_LABEL_TLIST)
+ apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
+ }
+ else
+ {
+ tlist = build_physical_tlist(root, rel);
+ if (tlist == NIL)
+ {
+ /* Failed because of dropped cols, so use regular method */
+ tlist = build_path_tlist(root, best_path);
+ }
+ else
+ {
+ /* As above, transfer sortgroupref data to replacement tlist */
+ if (flags & CP_LABEL_TLIST)
+ apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
+ }
+ }
+ }
+ else
+ {
+ tlist = build_path_tlist(root, best_path);
+ }
+
+ switch (best_path->pathtype)
+ {
+ case T_SeqScan:
+ plan = (Plan *) create_seqscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_SampleScan:
+ plan = (Plan *) create_samplescan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_IndexScan:
+ plan = (Plan *) create_indexscan_plan(root,
+ (IndexPath *) best_path,
+ tlist,
+ scan_clauses,
+ false);
+ break;
+
+ case T_IndexOnlyScan:
+ plan = (Plan *) create_indexscan_plan(root,
+ (IndexPath *) best_path,
+ tlist,
+ scan_clauses,
+ true);
+ break;
+
+ case T_BitmapHeapScan:
+ plan = (Plan *) create_bitmap_scan_plan(root,
+ (BitmapHeapPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_TidScan:
+ plan = (Plan *) create_tidscan_plan(root,
+ (TidPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_TidRangeScan:
+ plan = (Plan *) create_tidrangescan_plan(root,
+ (TidRangePath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_SubqueryScan:
+ plan = (Plan *) create_subqueryscan_plan(root,
+ (SubqueryScanPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_FunctionScan:
+ plan = (Plan *) create_functionscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_TableFuncScan:
+ plan = (Plan *) create_tablefuncscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_ValuesScan:
+ plan = (Plan *) create_valuesscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_CteScan:
+ plan = (Plan *) create_ctescan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_NamedTuplestoreScan:
+ plan = (Plan *) create_namedtuplestorescan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_Result:
+ plan = (Plan *) create_resultscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_WorkTableScan:
+ plan = (Plan *) create_worktablescan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_ForeignScan:
+ plan = (Plan *) create_foreignscan_plan(root,
+ (ForeignPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_CustomScan:
+ plan = (Plan *) create_customscan_plan(root,
+ (CustomPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ default:
+ elog(ERROR, "unrecognized node type: %d",
+ (int) best_path->pathtype);
+ plan = NULL; /* keep compiler quiet */
+ break;
+ }
+
+ /*
+ * If there are any pseudoconstant clauses attached to this node, insert a
+ * gating Result node that evaluates the pseudoconstants as one-time
+ * quals.
+ */
+ if (gating_clauses)
+ plan = create_gating_plan(root, best_path, plan, gating_clauses);
+
+ return plan;
+}
+
+/*
+ * Build a target list (ie, a list of TargetEntry) for the Path's output.
+ *
+ * This is almost just make_tlist_from_pathtarget(), but we also have to
+ * deal with replacing nestloop params.
+ */
+static List *
+build_path_tlist(PlannerInfo *root, Path *path)
+{
+ List *tlist = NIL;
+ Index *sortgrouprefs = path->pathtarget->sortgrouprefs;
+ int resno = 1;
+ ListCell *v;
+
+ foreach(v, path->pathtarget->exprs)
+ {
+ Node *node = (Node *) lfirst(v);
+ TargetEntry *tle;
+
+ /*
+ * If it's a parameterized path, there might be lateral references in
+ * the tlist, which need to be replaced with Params. There's no need
+ * to remake the TargetEntry nodes, so apply this to each list item
+ * separately.
+ */
+ if (path->param_info)
+ node = replace_nestloop_params(root, node);
+
+ tle = makeTargetEntry((Expr *) node,
+ resno,
+ NULL,
+ false);
+ if (sortgrouprefs)
+ tle->ressortgroupref = sortgrouprefs[resno - 1];
+
+ tlist = lappend(tlist, tle);
+ resno++;
+ }
+ return tlist;
+}
+
+/*
+ * use_physical_tlist
+ * Decide whether to use a tlist matching relation structure,
+ * rather than only those Vars actually referenced.
+ */
+static bool
+use_physical_tlist(PlannerInfo *root, Path *path, int flags)
+{
+ RelOptInfo *rel = path->parent;
+ int i;
+ ListCell *lc;
+
+ /*
+ * Forget it if either exact tlist or small tlist is demanded.
+ */
+ if (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))
+ return false;
+
+ /*
+ * We can do this for real relation scans, subquery scans, function scans,
+ * tablefunc scans, values scans, and CTE scans (but not for, eg, joins).
+ */
+ if (rel->rtekind != RTE_RELATION &&
+ rel->rtekind != RTE_SUBQUERY &&
+ rel->rtekind != RTE_FUNCTION &&
+ rel->rtekind != RTE_TABLEFUNC &&
+ rel->rtekind != RTE_VALUES &&
+ rel->rtekind != RTE_CTE)
+ return false;
+
+ /*
+ * Can't do it with inheritance cases either (mainly because Append
+ * doesn't project; this test may be unnecessary now that
+ * create_append_plan instructs its children to return an exact tlist).
+ */
+ if (rel->reloptkind != RELOPT_BASEREL)
+ return false;
+
+ /*
+ * Also, don't do it to a CustomPath; the premise that we're extracting
+ * columns from a simple physical tuple is unlikely to hold for those.
+ * (When it does make sense, the custom path creator can set up the path's
+ * pathtarget that way.)
+ */
+ if (IsA(path, CustomPath))
+ return false;
+
+ /*
+ * If a bitmap scan's tlist is empty, keep it as-is. This may allow the
+ * executor to skip heap page fetches, and in any case, the benefit of
+ * using a physical tlist instead would be minimal.
+ */
+ if (IsA(path, BitmapHeapPath) &&
+ path->pathtarget->exprs == NIL)
+ return false;
+
+ /*
+ * Can't do it if any system columns or whole-row Vars are requested.
+ * (This could possibly be fixed but would take some fragile assumptions
+ * in setrefs.c, I think.)
+ */
+ for (i = rel->min_attr; i <= 0; i++)
+ {
+ if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
+ return false;
+ }
+
+ /*
+ * Can't do it if the rel is required to emit any placeholder expressions,
+ * either.
+ */
+ foreach(lc, root->placeholder_list)
+ {
+ PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
+
+ if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
+ bms_is_subset(phinfo->ph_eval_at, rel->relids))
+ return false;
+ }
+
+ /*
+ * For an index-only scan, the "physical tlist" is the index's indextlist.
+ * We can only return that without a projection if all the index's columns
+ * are returnable.
+ */
+ if (path->pathtype == T_IndexOnlyScan)
+ {
+ IndexOptInfo *indexinfo = ((IndexPath *) path)->indexinfo;
+
+ for (i = 0; i < indexinfo->ncolumns; i++)
+ {
+ if (!indexinfo->canreturn[i])
+ return false;
+ }
+ }
+
+ /*
+ * Also, can't do it if CP_LABEL_TLIST is specified and path is requested
+ * to emit any sort/group columns that are not simple Vars. (If they are
+ * simple Vars, they should appear in the physical tlist, and
+ * apply_pathtarget_labeling_to_tlist will take care of getting them
+ * labeled again.) We also have to check that no two sort/group columns
+ * are the same Var, else that element of the physical tlist would need
+ * conflicting ressortgroupref labels.
+ */
+ if ((flags & CP_LABEL_TLIST) && path->pathtarget->sortgrouprefs)
+ {
+ Bitmapset *sortgroupatts = NULL;
+
+ i = 0;
+ foreach(lc, path->pathtarget->exprs)
+ {
+ Expr *expr = (Expr *) lfirst(lc);
+
+ if (path->pathtarget->sortgrouprefs[i])
+ {
+ if (expr && IsA(expr, Var))
+ {
+ int attno = ((Var *) expr)->varattno;
+
+ attno -= FirstLowInvalidHeapAttributeNumber;
+ if (bms_is_member(attno, sortgroupatts))
+ return false;
+ sortgroupatts = bms_add_member(sortgroupatts, attno);
+ }
+ else
+ return false;
+ }
+ i++;
+ }
+ }
+
+ return true;
+}
+
+/*
+ * get_gating_quals
+ * See if there are pseudoconstant quals in a node's quals list
+ *
+ * If the node's quals list includes any pseudoconstant quals,
+ * return just those quals.
+ */
+static List *
+get_gating_quals(PlannerInfo *root, List *quals)
+{
+ /* No need to look if we know there are no pseudoconstants */
+ if (!root->hasPseudoConstantQuals)
+ return NIL;
+
+ /* Sort into desirable execution order while still in RestrictInfo form */
+ quals = order_qual_clauses(root, quals);
+
+ /* Pull out any pseudoconstant quals from the RestrictInfo list */
+ return extract_actual_clauses(quals, true);
+}
+
+/*
+ * create_gating_plan
+ * Deal with pseudoconstant qual clauses
+ *
+ * Add a gating Result node atop the already-built plan.
+ */
+static Plan *
+create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
+ List *gating_quals)
+{
+ Plan *gplan;
+ Plan *splan;
+
+ Assert(gating_quals);
+
+ /*
+ * We might have a trivial Result plan already. Stacking one Result atop
+ * another is silly, so if that applies, just discard the input plan.
+ * (We're assuming its targetlist is uninteresting; it should be either
+ * the same as the result of build_path_tlist, or a simplified version.)
+ */
+ splan = plan;
+ if (IsA(plan, Result))
+ {
+ Result *rplan = (Result *) plan;
+
+ if (rplan->plan.lefttree == NULL &&
+ rplan->resconstantqual == NULL)
+ splan = NULL;
+ }
+
+ /*
+ * Since we need a Result node anyway, always return the path's requested
+ * tlist; that's never a wrong choice, even if the parent node didn't ask
+ * for CP_EXACT_TLIST.
+ */
+ gplan = (Plan *) make_result(build_path_tlist(root, path),
+ (Node *) gating_quals,
+ splan);
+
+ /*
+ * Notice that we don't change cost or size estimates when doing gating.
+ * The costs of qual eval were already included in the subplan's cost.
+ * Leaving the size alone amounts to assuming that the gating qual will
+ * succeed, which is the conservative estimate for planning upper queries.
+ * We certainly don't want to assume the output size is zero (unless the
+ * gating qual is actually constant FALSE, and that case is dealt with in
+ * clausesel.c). Interpolating between the two cases is silly, because it
+ * doesn't reflect what will really happen at runtime, and besides which
+ * in most cases we have only a very bad idea of the probability of the
+ * gating qual being true.
+ */
+ copy_plan_costsize(gplan, plan);
+
+ /* Gating quals could be unsafe, so better use the Path's safety flag */
+ gplan->parallel_safe = path->parallel_safe;
+
+ return gplan;
+}
+
+/*
+ * create_join_plan
+ * Create a join plan for 'best_path' and (recursively) plans for its
+ * inner and outer paths.
+ */
+static Plan *
+create_join_plan(PlannerInfo *root, JoinPath *best_path)
+{
+ Plan *plan;
+ List *gating_clauses;
+
+ switch (best_path->path.pathtype)
+ {
+ case T_MergeJoin:
+ plan = (Plan *) create_mergejoin_plan(root,
+ (MergePath *) best_path);
+ break;
+ case T_HashJoin:
+ plan = (Plan *) create_hashjoin_plan(root,
+ (HashPath *) best_path);
+ break;
+ case T_NestLoop:
+ plan = (Plan *) create_nestloop_plan(root,
+ (NestPath *) best_path);
+ break;
+ default:
+ elog(ERROR, "unrecognized node type: %d",
+ (int) best_path->path.pathtype);
+ plan = NULL; /* keep compiler quiet */
+ break;
+ }
+
+ /*
+ * If there are any pseudoconstant clauses attached to this node, insert a
+ * gating Result node that evaluates the pseudoconstants as one-time
+ * quals.
+ */
+ gating_clauses = get_gating_quals(root, best_path->joinrestrictinfo);
+ if (gating_clauses)
+ plan = create_gating_plan(root, (Path *) best_path, plan,
+ gating_clauses);
+
+#ifdef NOT_USED
+
+ /*
+ * * Expensive function pullups may have pulled local predicates * into
+ * this path node. Put them in the qpqual of the plan node. * JMH,
+ * 6/15/92
+ */
+ if (get_loc_restrictinfo(best_path) != NIL)
+ set_qpqual((Plan) plan,
+ list_concat(get_qpqual((Plan) plan),
+ get_actual_clauses(get_loc_restrictinfo(best_path))));
+#endif
+
+ return plan;
+}
+
+/*
+ * is_async_capable_plan
+ * Check whether the Plan node created from a Path node is async-capable.
+ */
+static bool
+is_async_capable_plan(Plan *plan, Path *path)
+{
+ switch (nodeTag(path))
+ {
+ case T_ForeignPath:
+ {
+ FdwRoutine *fdwroutine = path->parent->fdwroutine;
+
+ /*
+ * If the generated plan node includes a gating Result node,
+ * we can't execute it asynchronously.
+ */
+ if (IsA(plan, Result))
+ return false;
+
+ Assert(fdwroutine != NULL);
+ if (fdwroutine->IsForeignPathAsyncCapable != NULL &&
+ fdwroutine->IsForeignPathAsyncCapable((ForeignPath *) path))
+ return true;
+ }
+ break;
+ default:
+ break;
+ }
+ return false;
+}
+
+/*
+ * create_append_plan
+ * Create an Append plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Plan *
+create_append_plan(PlannerInfo *root, AppendPath *best_path, int flags)
+{
+ Append *plan;
+ List *tlist = build_path_tlist(root, &best_path->path);
+ int orig_tlist_length = list_length(tlist);
+ bool tlist_was_changed = false;
+ List *pathkeys = best_path->path.pathkeys;
+ List *subplans = NIL;
+ ListCell *subpaths;
+ int nasyncplans = 0;
+ RelOptInfo *rel = best_path->path.parent;
+ PartitionPruneInfo *partpruneinfo = NULL;
+ int nodenumsortkeys = 0;
+ AttrNumber *nodeSortColIdx = NULL;
+ Oid *nodeSortOperators = NULL;
+ Oid *nodeCollations = NULL;
+ bool *nodeNullsFirst = NULL;
+ bool consider_async = false;
+
+ /*
+ * The subpaths list could be empty, if every child was proven empty by
+ * constraint exclusion. In that case generate a dummy plan that returns
+ * no rows.
+ *
+ * Note that an AppendPath with no members is also generated in certain
+ * cases where there was no appending construct at all, but we know the
+ * relation is empty (see set_dummy_rel_pathlist and mark_dummy_rel).
+ */
+ if (best_path->subpaths == NIL)
+ {
+ /* Generate a Result plan with constant-FALSE gating qual */
+ Plan *plan;
+
+ plan = (Plan *) make_result(tlist,
+ (Node *) list_make1(makeBoolConst(false,
+ false)),
+ NULL);
+
+ copy_generic_path_info(plan, (Path *) best_path);
+
+ return plan;
+ }
+
+ /*
+ * Otherwise build an Append plan. Note that if there's just one child,
+ * the Append is pretty useless; but we wait till setrefs.c to get rid of
+ * it. Doing so here doesn't work because the varno of the child scan
+ * plan won't match the parent-rel Vars it'll be asked to emit.
+ *
+ * We don't have the actual creation of the Append node split out into a
+ * separate make_xxx function. This is because we want to run
+ * prepare_sort_from_pathkeys on it before we do so on the individual
+ * child plans, to make cross-checking the sort info easier.
+ */
+ plan = makeNode(Append);
+ plan->plan.targetlist = tlist;
+ plan->plan.qual = NIL;
+ plan->plan.lefttree = NULL;
+ plan->plan.righttree = NULL;
+ plan->apprelids = rel->relids;
+
+ if (pathkeys != NIL)
+ {
+ /*
+ * Compute sort column info, and adjust the Append's tlist as needed.
+ * Because we pass adjust_tlist_in_place = true, we may ignore the
+ * function result; it must be the same plan node. However, we then
+ * need to detect whether any tlist entries were added.
+ */
+ (void) prepare_sort_from_pathkeys((Plan *) plan, pathkeys,
+ best_path->path.parent->relids,
+ NULL,
+ true,
+ &nodenumsortkeys,
+ &nodeSortColIdx,
+ &nodeSortOperators,
+ &nodeCollations,
+ &nodeNullsFirst);
+ tlist_was_changed = (orig_tlist_length != list_length(plan->plan.targetlist));
+ }
+
+ /* If appropriate, consider async append */
+ consider_async = (enable_async_append && pathkeys == NIL &&
+ !best_path->path.parallel_safe &&
+ list_length(best_path->subpaths) > 1);
+
+ /* Build the plan for each child */
+ foreach(subpaths, best_path->subpaths)
+ {
+ Path *subpath = (Path *) lfirst(subpaths);
+ Plan *subplan;
+
+ /* Must insist that all children return the same tlist */
+ subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
+
+ /*
+ * For ordered Appends, we must insert a Sort node if subplan isn't
+ * sufficiently ordered.
+ */
+ if (pathkeys != NIL)
+ {
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /*
+ * Compute sort column info, and adjust subplan's tlist as needed.
+ * We must apply prepare_sort_from_pathkeys even to subplans that
+ * don't need an explicit sort, to make sure they are returning
+ * the same sort key columns the Append expects.
+ */
+ subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
+ subpath->parent->relids,
+ nodeSortColIdx,
+ false,
+ &numsortkeys,
+ &sortColIdx,
+ &sortOperators,
+ &collations,
+ &nullsFirst);
+
+ /*
+ * Check that we got the same sort key information. We just
+ * Assert that the sortops match, since those depend only on the
+ * pathkeys; but it seems like a good idea to check the sort
+ * column numbers explicitly, to ensure the tlists match up.
+ */
+ Assert(numsortkeys == nodenumsortkeys);
+ if (memcmp(sortColIdx, nodeSortColIdx,
+ numsortkeys * sizeof(AttrNumber)) != 0)
+ elog(ERROR, "Append child's targetlist doesn't match Append");
+ Assert(memcmp(sortOperators, nodeSortOperators,
+ numsortkeys * sizeof(Oid)) == 0);
+ Assert(memcmp(collations, nodeCollations,
+ numsortkeys * sizeof(Oid)) == 0);
+ Assert(memcmp(nullsFirst, nodeNullsFirst,
+ numsortkeys * sizeof(bool)) == 0);
+
+ /* Now, insert a Sort node if subplan isn't sufficiently ordered */
+ if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
+ {
+ Sort *sort = make_sort(subplan, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+
+ label_sort_with_costsize(root, sort, best_path->limit_tuples);
+ subplan = (Plan *) sort;
+ }
+ }
+
+ subplans = lappend(subplans, subplan);
+
+ /* If needed, check to see if subplan can be executed asynchronously */
+ if (consider_async && is_async_capable_plan(subplan, subpath))
+ {
+ subplan->async_capable = true;
+ ++nasyncplans;
+ }
+ }
+
+ /*
+ * If any quals exist, they may be useful to perform further partition
+ * pruning during execution. Gather information needed by the executor to
+ * do partition pruning.
+ */
+ if (enable_partition_pruning)
+ {
+ List *prunequal;
+
+ prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
+
+ if (best_path->path.param_info)
+ {
+ List *prmquals = best_path->path.param_info->ppi_clauses;
+
+ prmquals = extract_actual_clauses(prmquals, false);
+ prmquals = (List *) replace_nestloop_params(root,
+ (Node *) prmquals);
+
+ prunequal = list_concat(prunequal, prmquals);
+ }
+
+ if (prunequal != NIL)
+ partpruneinfo =
+ make_partition_pruneinfo(root, rel,
+ best_path->subpaths,
+ prunequal);
+ }
+
+ plan->appendplans = subplans;
+ plan->nasyncplans = nasyncplans;
+ plan->first_partial_plan = best_path->first_partial_path;
+ plan->part_prune_info = partpruneinfo;
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ /*
+ * If prepare_sort_from_pathkeys added sort columns, but we were told to
+ * produce either the exact tlist or a narrow tlist, we should get rid of
+ * the sort columns again. We must inject a projection node to do so.
+ */
+ if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
+ {
+ tlist = list_truncate(list_copy(plan->plan.targetlist),
+ orig_tlist_length);
+ return inject_projection_plan((Plan *) plan, tlist,
+ plan->plan.parallel_safe);
+ }
+ else
+ return (Plan *) plan;
+}
+
+/*
+ * create_merge_append_plan
+ * Create a MergeAppend plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Plan *
+create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
+ int flags)
+{
+ MergeAppend *node = makeNode(MergeAppend);
+ Plan *plan = &node->plan;
+ List *tlist = build_path_tlist(root, &best_path->path);
+ int orig_tlist_length = list_length(tlist);
+ bool tlist_was_changed;
+ List *pathkeys = best_path->path.pathkeys;
+ List *subplans = NIL;
+ ListCell *subpaths;
+ RelOptInfo *rel = best_path->path.parent;
+ PartitionPruneInfo *partpruneinfo = NULL;
+
+ /*
+ * We don't have the actual creation of the MergeAppend node split out
+ * into a separate make_xxx function. This is because we want to run
+ * prepare_sort_from_pathkeys on it before we do so on the individual
+ * child plans, to make cross-checking the sort info easier.
+ */
+ copy_generic_path_info(plan, (Path *) best_path);
+ plan->targetlist = tlist;
+ plan->qual = NIL;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->apprelids = rel->relids;
+
+ /*
+ * Compute sort column info, and adjust MergeAppend's tlist as needed.
+ * Because we pass adjust_tlist_in_place = true, we may ignore the
+ * function result; it must be the same plan node. However, we then need
+ * to detect whether any tlist entries were added.
+ */
+ (void) prepare_sort_from_pathkeys(plan, pathkeys,
+ best_path->path.parent->relids,
+ NULL,
+ true,
+ &node->numCols,
+ &node->sortColIdx,
+ &node->sortOperators,
+ &node->collations,
+ &node->nullsFirst);
+ tlist_was_changed = (orig_tlist_length != list_length(plan->targetlist));
+
+ /*
+ * Now prepare the child plans. We must apply prepare_sort_from_pathkeys
+ * even to subplans that don't need an explicit sort, to make sure they
+ * are returning the same sort key columns the MergeAppend expects.
+ */
+ foreach(subpaths, best_path->subpaths)
+ {
+ Path *subpath = (Path *) lfirst(subpaths);
+ Plan *subplan;
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Build the child plan */
+ /* Must insist that all children return the same tlist */
+ subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
+
+ /* Compute sort column info, and adjust subplan's tlist as needed */
+ subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
+ subpath->parent->relids,
+ node->sortColIdx,
+ false,
+ &numsortkeys,
+ &sortColIdx,
+ &sortOperators,
+ &collations,
+ &nullsFirst);
+
+ /*
+ * Check that we got the same sort key information. We just Assert
+ * that the sortops match, since those depend only on the pathkeys;
+ * but it seems like a good idea to check the sort column numbers
+ * explicitly, to ensure the tlists really do match up.
+ */
+ Assert(numsortkeys == node->numCols);
+ if (memcmp(sortColIdx, node->sortColIdx,
+ numsortkeys * sizeof(AttrNumber)) != 0)
+ elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
+ Assert(memcmp(sortOperators, node->sortOperators,
+ numsortkeys * sizeof(Oid)) == 0);
+ Assert(memcmp(collations, node->collations,
+ numsortkeys * sizeof(Oid)) == 0);
+ Assert(memcmp(nullsFirst, node->nullsFirst,
+ numsortkeys * sizeof(bool)) == 0);
+
+ /* Now, insert a Sort node if subplan isn't sufficiently ordered */
+ if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
+ {
+ Sort *sort = make_sort(subplan, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+
+ label_sort_with_costsize(root, sort, best_path->limit_tuples);
+ subplan = (Plan *) sort;
+ }
+
+ subplans = lappend(subplans, subplan);
+ }
+
+ /*
+ * If any quals exist, they may be useful to perform further partition
+ * pruning during execution. Gather information needed by the executor to
+ * do partition pruning.
+ */
+ if (enable_partition_pruning)
+ {
+ List *prunequal;
+
+ prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
+
+ if (best_path->path.param_info)
+ {
+ List *prmquals = best_path->path.param_info->ppi_clauses;
+
+ prmquals = extract_actual_clauses(prmquals, false);
+ prmquals = (List *) replace_nestloop_params(root,
+ (Node *) prmquals);
+
+ prunequal = list_concat(prunequal, prmquals);
+ }
+
+ if (prunequal != NIL)
+ partpruneinfo = make_partition_pruneinfo(root, rel,
+ best_path->subpaths,
+ prunequal);
+ }
+
+ node->mergeplans = subplans;
+ node->part_prune_info = partpruneinfo;
+
+ /*
+ * If prepare_sort_from_pathkeys added sort columns, but we were told to
+ * produce either the exact tlist or a narrow tlist, we should get rid of
+ * the sort columns again. We must inject a projection node to do so.
+ */
+ if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
+ {
+ tlist = list_truncate(list_copy(plan->targetlist), orig_tlist_length);
+ return inject_projection_plan(plan, tlist, plan->parallel_safe);
+ }
+ else
+ return plan;
+}
+
+/*
+ * create_group_result_plan
+ * Create a Result plan for 'best_path'.
+ * This is only used for degenerate grouping cases.
+ *
+ * Returns a Plan node.
+ */
+static Result *
+create_group_result_plan(PlannerInfo *root, GroupResultPath *best_path)
+{
+ Result *plan;
+ List *tlist;
+ List *quals;
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ /* best_path->quals is just bare clauses */
+ quals = order_qual_clauses(root, best_path->quals);
+
+ plan = make_result(tlist, (Node *) quals, NULL);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_project_set_plan
+ * Create a ProjectSet plan for 'best_path'.
+ *
+ * Returns a Plan node.
+ */
+static ProjectSet *
+create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path)
+{
+ ProjectSet *plan;
+ Plan *subplan;
+ List *tlist;
+
+ /* Since we intend to project, we don't need to constrain child tlist */
+ subplan = create_plan_recurse(root, best_path->subpath, 0);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ plan = make_project_set(tlist, subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_material_plan
+ * Create a Material plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Material *
+create_material_plan(PlannerInfo *root, MaterialPath *best_path, int flags)
+{
+ Material *plan;
+ Plan *subplan;
+
+ /*
+ * We don't want any excess columns in the materialized tuples, so request
+ * a smaller tlist. Otherwise, since Material doesn't project, tlist
+ * requirements pass through.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_SMALL_TLIST);
+
+ plan = make_material(subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_memoize_plan
+ * Create a Memoize plan for 'best_path' and (recursively) plans for its
+ * subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Memoize *
+create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, int flags)
+{
+ Memoize *plan;
+ Bitmapset *keyparamids;
+ Plan *subplan;
+ Oid *operators;
+ Oid *collations;
+ List *param_exprs = NIL;
+ ListCell *lc;
+ ListCell *lc2;
+ int nkeys;
+ int i;
+
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_SMALL_TLIST);
+
+ param_exprs = (List *) replace_nestloop_params(root, (Node *)
+ best_path->param_exprs);
+
+ nkeys = list_length(param_exprs);
+ Assert(nkeys > 0);
+ operators = palloc(nkeys * sizeof(Oid));
+ collations = palloc(nkeys * sizeof(Oid));
+
+ i = 0;
+ forboth(lc, param_exprs, lc2, best_path->hash_operators)
+ {
+ Expr *param_expr = (Expr *) lfirst(lc);
+ Oid opno = lfirst_oid(lc2);
+
+ operators[i] = opno;
+ collations[i] = exprCollation((Node *) param_expr);
+ i++;
+ }
+
+ keyparamids = pull_paramids((Expr *) param_exprs);
+
+ plan = make_memoize(subplan, operators, collations, param_exprs,
+ best_path->singlerow, best_path->binary_mode,
+ best_path->est_entries, keyparamids);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_unique_plan
+ * Create a Unique plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Plan *
+create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags)
+{
+ Plan *plan;
+ Plan *subplan;
+ List *in_operators;
+ List *uniq_exprs;
+ List *newtlist;
+ int nextresno;
+ bool newitems;
+ int numGroupCols;
+ AttrNumber *groupColIdx;
+ Oid *groupCollations;
+ int groupColPos;
+ ListCell *l;
+
+ /* Unique doesn't project, so tlist requirements pass through */
+ subplan = create_plan_recurse(root, best_path->subpath, flags);
+
+ /* Done if we don't need to do any actual unique-ifying */
+ if (best_path->umethod == UNIQUE_PATH_NOOP)
+ return subplan;
+
+ /*
+ * As constructed, the subplan has a "flat" tlist containing just the Vars
+ * needed here and at upper levels. The values we are supposed to
+ * unique-ify may be expressions in these variables. We have to add any
+ * such expressions to the subplan's tlist.
+ *
+ * The subplan may have a "physical" tlist if it is a simple scan plan. If
+ * we're going to sort, this should be reduced to the regular tlist, so
+ * that we don't sort more data than we need to. For hashing, the tlist
+ * should be left as-is if we don't need to add any expressions; but if we
+ * do have to add expressions, then a projection step will be needed at
+ * runtime anyway, so we may as well remove unneeded items. Therefore
+ * newtlist starts from build_path_tlist() not just a copy of the
+ * subplan's tlist; and we don't install it into the subplan unless we are
+ * sorting or stuff has to be added.
+ */
+ in_operators = best_path->in_operators;
+ uniq_exprs = best_path->uniq_exprs;
+
+ /* initialize modified subplan tlist as just the "required" vars */
+ newtlist = build_path_tlist(root, &best_path->path);
+ nextresno = list_length(newtlist) + 1;
+ newitems = false;
+
+ foreach(l, uniq_exprs)
+ {
+ Expr *uniqexpr = lfirst(l);
+ TargetEntry *tle;
+
+ tle = tlist_member(uniqexpr, newtlist);
+ if (!tle)
+ {
+ tle = makeTargetEntry((Expr *) uniqexpr,
+ nextresno,
+ NULL,
+ false);
+ newtlist = lappend(newtlist, tle);
+ nextresno++;
+ newitems = true;
+ }
+ }
+
+ /* Use change_plan_targetlist in case we need to insert a Result node */
+ if (newitems || best_path->umethod == UNIQUE_PATH_SORT)
+ subplan = change_plan_targetlist(subplan, newtlist,
+ best_path->path.parallel_safe);
+
+ /*
+ * Build control information showing which subplan output columns are to
+ * be examined by the grouping step. Unfortunately we can't merge this
+ * with the previous loop, since we didn't then know which version of the
+ * subplan tlist we'd end up using.
+ */
+ newtlist = subplan->targetlist;
+ numGroupCols = list_length(uniq_exprs);
+ groupColIdx = (AttrNumber *) palloc(numGroupCols * sizeof(AttrNumber));
+ groupCollations = (Oid *) palloc(numGroupCols * sizeof(Oid));
+
+ groupColPos = 0;
+ foreach(l, uniq_exprs)
+ {
+ Expr *uniqexpr = lfirst(l);
+ TargetEntry *tle;
+
+ tle = tlist_member(uniqexpr, newtlist);
+ if (!tle) /* shouldn't happen */
+ elog(ERROR, "failed to find unique expression in subplan tlist");
+ groupColIdx[groupColPos] = tle->resno;
+ groupCollations[groupColPos] = exprCollation((Node *) tle->expr);
+ groupColPos++;
+ }
+
+ if (best_path->umethod == UNIQUE_PATH_HASH)
+ {
+ Oid *groupOperators;
+
+ /*
+ * Get the hashable equality operators for the Agg node to use.
+ * Normally these are the same as the IN clause operators, but if
+ * those are cross-type operators then the equality operators are the
+ * ones for the IN clause operators' RHS datatype.
+ */
+ groupOperators = (Oid *) palloc(numGroupCols * sizeof(Oid));
+ groupColPos = 0;
+ foreach(l, in_operators)
+ {
+ Oid in_oper = lfirst_oid(l);
+ Oid eq_oper;
+
+ if (!get_compatible_hash_operators(in_oper, NULL, &eq_oper))
+ elog(ERROR, "could not find compatible hash operator for operator %u",
+ in_oper);
+ groupOperators[groupColPos++] = eq_oper;
+ }
+
+ /*
+ * Since the Agg node is going to project anyway, we can give it the
+ * minimum output tlist, without any stuff we might have added to the
+ * subplan tlist.
+ */
+ plan = (Plan *) make_agg(build_path_tlist(root, &best_path->path),
+ NIL,
+ AGG_HASHED,
+ AGGSPLIT_SIMPLE,
+ numGroupCols,
+ groupColIdx,
+ groupOperators,
+ groupCollations,
+ NIL,
+ NIL,
+ best_path->path.rows,
+ 0,
+ subplan);
+ }
+ else
+ {
+ List *sortList = NIL;
+ Sort *sort;
+
+ /* Create an ORDER BY list to sort the input compatibly */
+ groupColPos = 0;
+ foreach(l, in_operators)
+ {
+ Oid in_oper = lfirst_oid(l);
+ Oid sortop;
+ Oid eqop;
+ TargetEntry *tle;
+ SortGroupClause *sortcl;
+
+ sortop = get_ordering_op_for_equality_op(in_oper, false);
+ if (!OidIsValid(sortop)) /* shouldn't happen */
+ elog(ERROR, "could not find ordering operator for equality operator %u",
+ in_oper);
+
+ /*
+ * The Unique node will need equality operators. Normally these
+ * are the same as the IN clause operators, but if those are
+ * cross-type operators then the equality operators are the ones
+ * for the IN clause operators' RHS datatype.
+ */
+ eqop = get_equality_op_for_ordering_op(sortop, NULL);
+ if (!OidIsValid(eqop)) /* shouldn't happen */
+ elog(ERROR, "could not find equality operator for ordering operator %u",
+ sortop);
+
+ tle = get_tle_by_resno(subplan->targetlist,
+ groupColIdx[groupColPos]);
+ Assert(tle != NULL);
+
+ sortcl = makeNode(SortGroupClause);
+ sortcl->tleSortGroupRef = assignSortGroupRef(tle,
+ subplan->targetlist);
+ sortcl->eqop = eqop;
+ sortcl->sortop = sortop;
+ sortcl->nulls_first = false;
+ sortcl->hashable = false; /* no need to make this accurate */
+ sortList = lappend(sortList, sortcl);
+ groupColPos++;
+ }
+ sort = make_sort_from_sortclauses(sortList, subplan);
+ label_sort_with_costsize(root, sort, -1.0);
+ plan = (Plan *) make_unique_from_sortclauses((Plan *) sort, sortList);
+ }
+
+ /* Copy cost data from Path to Plan */
+ copy_generic_path_info(plan, &best_path->path);
+
+ return plan;
+}
+
+/*
+ * create_gather_plan
+ *
+ * Create a Gather plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Gather *
+create_gather_plan(PlannerInfo *root, GatherPath *best_path)
+{
+ Gather *gather_plan;
+ Plan *subplan;
+ List *tlist;
+
+ /*
+ * Push projection down to the child node. That way, the projection work
+ * is parallelized, and there can be no system columns in the result (they
+ * can't travel through a tuple queue because it uses MinimalTuple
+ * representation).
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ gather_plan = make_gather(tlist,
+ NIL,
+ best_path->num_workers,
+ assign_special_exec_param(root),
+ best_path->single_copy,
+ subplan);
+
+ copy_generic_path_info(&gather_plan->plan, &best_path->path);
+
+ /* use parallel mode for parallel plans. */
+ root->glob->parallelModeNeeded = true;
+
+ return gather_plan;
+}
+
+/*
+ * create_gather_merge_plan
+ *
+ * Create a Gather Merge plan for 'best_path' and (recursively)
+ * plans for its subpaths.
+ */
+static GatherMerge *
+create_gather_merge_plan(PlannerInfo *root, GatherMergePath *best_path)
+{
+ GatherMerge *gm_plan;
+ Plan *subplan;
+ List *pathkeys = best_path->path.pathkeys;
+ List *tlist = build_path_tlist(root, &best_path->path);
+
+ /* As with Gather, project away columns in the workers. */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
+
+ /* Create a shell for a GatherMerge plan. */
+ gm_plan = makeNode(GatherMerge);
+ gm_plan->plan.targetlist = tlist;
+ gm_plan->num_workers = best_path->num_workers;
+ copy_generic_path_info(&gm_plan->plan, &best_path->path);
+
+ /* Assign the rescan Param. */
+ gm_plan->rescan_param = assign_special_exec_param(root);
+
+ /* Gather Merge is pointless with no pathkeys; use Gather instead. */
+ Assert(pathkeys != NIL);
+
+ /* Compute sort column info, and adjust subplan's tlist as needed */
+ subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
+ best_path->subpath->parent->relids,
+ gm_plan->sortColIdx,
+ false,
+ &gm_plan->numCols,
+ &gm_plan->sortColIdx,
+ &gm_plan->sortOperators,
+ &gm_plan->collations,
+ &gm_plan->nullsFirst);
+
+
+ /*
+ * All gather merge paths should have already guaranteed the necessary
+ * sort order either by adding an explicit sort node or by using presorted
+ * input. We can't simply add a sort here on additional pathkeys, because
+ * we can't guarantee the sort would be safe. For example, expressions may
+ * be volatile or otherwise parallel unsafe.
+ */
+ if (!pathkeys_contained_in(pathkeys, best_path->subpath->pathkeys))
+ elog(ERROR, "gather merge input not sufficiently sorted");
+
+ /* Now insert the subplan under GatherMerge. */
+ gm_plan->plan.lefttree = subplan;
+
+ /* use parallel mode for parallel plans. */
+ root->glob->parallelModeNeeded = true;
+
+ return gm_plan;
+}
+
+/*
+ * create_projection_plan
+ *
+ * Create a plan tree to do a projection step and (recursively) plans
+ * for its subpaths. We may need a Result node for the projection,
+ * but sometimes we can just let the subplan do the work.
+ */
+static Plan *
+create_projection_plan(PlannerInfo *root, ProjectionPath *best_path, int flags)
+{
+ Plan *plan;
+ Plan *subplan;
+ List *tlist;
+ bool needs_result_node = false;
+
+ /*
+ * Convert our subpath to a Plan and determine whether we need a Result
+ * node.
+ *
+ * In most cases where we don't need to project, creation_projection_path
+ * will have set dummypp, but not always. First, some createplan.c
+ * routines change the tlists of their nodes. (An example is that
+ * create_merge_append_plan might add resjunk sort columns to a
+ * MergeAppend.) Second, create_projection_path has no way of knowing
+ * what path node will be placed on top of the projection path and
+ * therefore can't predict whether it will require an exact tlist. For
+ * both of these reasons, we have to recheck here.
+ */
+ if (use_physical_tlist(root, &best_path->path, flags))
+ {
+ /*
+ * Our caller doesn't really care what tlist we return, so we don't
+ * actually need to project. However, we may still need to ensure
+ * proper sortgroupref labels, if the caller cares about those.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, 0);
+ tlist = subplan->targetlist;
+ if (flags & CP_LABEL_TLIST)
+ apply_pathtarget_labeling_to_tlist(tlist,
+ best_path->path.pathtarget);
+ }
+ else if (is_projection_capable_path(best_path->subpath))
+ {
+ /*
+ * Our caller requires that we return the exact tlist, but no separate
+ * result node is needed because the subpath is projection-capable.
+ * Tell create_plan_recurse that we're going to ignore the tlist it
+ * produces.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ CP_IGNORE_TLIST);
+ Assert(is_projection_capable_plan(subplan));
+ tlist = build_path_tlist(root, &best_path->path);
+ }
+ else
+ {
+ /*
+ * It looks like we need a result node, unless by good fortune the
+ * requested tlist is exactly the one the child wants to produce.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, 0);
+ tlist = build_path_tlist(root, &best_path->path);
+ needs_result_node = !tlist_same_exprs(tlist, subplan->targetlist);
+ }
+
+ /*
+ * If we make a different decision about whether to include a Result node
+ * than create_projection_path did, we'll have made slightly wrong cost
+ * estimates; but label the plan with the cost estimates we actually used,
+ * not "corrected" ones. (XXX this could be cleaned up if we moved more
+ * of the sortcolumn setup logic into Path creation, but that would add
+ * expense to creating Paths we might end up not using.)
+ */
+ if (!needs_result_node)
+ {
+ /* Don't need a separate Result, just assign tlist to subplan */
+ plan = subplan;
+ plan->targetlist = tlist;
+
+ /* Label plan with the estimated costs we actually used */
+ plan->startup_cost = best_path->path.startup_cost;
+ plan->total_cost = best_path->path.total_cost;
+ plan->plan_rows = best_path->path.rows;
+ plan->plan_width = best_path->path.pathtarget->width;
+ plan->parallel_safe = best_path->path.parallel_safe;
+ /* ... but don't change subplan's parallel_aware flag */
+ }
+ else
+ {
+ /* We need a Result node */
+ plan = (Plan *) make_result(tlist, NULL, subplan);
+
+ copy_generic_path_info(plan, (Path *) best_path);
+ }
+
+ return plan;
+}
+
+/*
+ * inject_projection_plan
+ * Insert a Result node to do a projection step.
+ *
+ * This is used in a few places where we decide on-the-fly that we need a
+ * projection step as part of the tree generated for some Path node.
+ * We should try to get rid of this in favor of doing it more honestly.
+ *
+ * One reason it's ugly is we have to be told the right parallel_safe marking
+ * to apply (since the tlist might be unsafe even if the child plan is safe).
+ */
+static Plan *
+inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
+{
+ Plan *plan;
+
+ plan = (Plan *) make_result(tlist, NULL, subplan);
+
+ /*
+ * In principle, we should charge tlist eval cost plus cpu_per_tuple per
+ * row for the Result node. But the former has probably been factored in
+ * already and the latter was not accounted for during Path construction,
+ * so being formally correct might just make the EXPLAIN output look less
+ * consistent not more so. Hence, just copy the subplan's cost.
+ */
+ copy_plan_costsize(plan, subplan);
+ plan->parallel_safe = parallel_safe;
+
+ return plan;
+}
+
+/*
+ * change_plan_targetlist
+ * Externally available wrapper for inject_projection_plan.
+ *
+ * This is meant for use by FDW plan-generation functions, which might
+ * want to adjust the tlist computed by some subplan tree. In general,
+ * a Result node is needed to compute the new tlist, but we can optimize
+ * some cases.
+ *
+ * In most cases, tlist_parallel_safe can just be passed as the parallel_safe
+ * flag of the FDW's own Path node.
+ */
+Plan *
+change_plan_targetlist(Plan *subplan, List *tlist, bool tlist_parallel_safe)
+{
+ /*
+ * If the top plan node can't do projections and its existing target list
+ * isn't already what we need, we need to add a Result node to help it
+ * along.
+ */
+ if (!is_projection_capable_plan(subplan) &&
+ !tlist_same_exprs(tlist, subplan->targetlist))
+ subplan = inject_projection_plan(subplan, tlist,
+ subplan->parallel_safe &&
+ tlist_parallel_safe);
+ else
+ {
+ /* Else we can just replace the plan node's tlist */
+ subplan->targetlist = tlist;
+ subplan->parallel_safe &= tlist_parallel_safe;
+ }
+ return subplan;
+}
+
+/*
+ * create_sort_plan
+ *
+ * Create a Sort plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Sort *
+create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags)
+{
+ Sort *plan;
+ Plan *subplan;
+
+ /*
+ * We don't want any excess columns in the sorted tuples, so request a
+ * smaller tlist. Otherwise, since Sort doesn't project, tlist
+ * requirements pass through.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_SMALL_TLIST);
+
+ /*
+ * make_sort_from_pathkeys indirectly calls find_ec_member_matching_expr,
+ * which will ignore any child EC members that don't belong to the given
+ * relids. Thus, if this sort path is based on a child relation, we must
+ * pass its relids.
+ */
+ plan = make_sort_from_pathkeys(subplan, best_path->path.pathkeys,
+ IS_OTHER_REL(best_path->subpath->parent) ?
+ best_path->path.parent->relids : NULL);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_incrementalsort_plan
+ *
+ * Do the same as create_sort_plan, but create IncrementalSort plan.
+ */
+static IncrementalSort *
+create_incrementalsort_plan(PlannerInfo *root, IncrementalSortPath *best_path,
+ int flags)
+{
+ IncrementalSort *plan;
+ Plan *subplan;
+
+ /* See comments in create_sort_plan() above */
+ subplan = create_plan_recurse(root, best_path->spath.subpath,
+ flags | CP_SMALL_TLIST);
+ plan = make_incrementalsort_from_pathkeys(subplan,
+ best_path->spath.path.pathkeys,
+ IS_OTHER_REL(best_path->spath.subpath->parent) ?
+ best_path->spath.path.parent->relids : NULL,
+ best_path->nPresortedCols);
+
+ copy_generic_path_info(&plan->sort.plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_group_plan
+ *
+ * Create a Group plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Group *
+create_group_plan(PlannerInfo *root, GroupPath *best_path)
+{
+ Group *plan;
+ Plan *subplan;
+ List *tlist;
+ List *quals;
+
+ /*
+ * Group can project, so no need to be terribly picky about child tlist,
+ * but we do need grouping columns to be available
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ quals = order_qual_clauses(root, best_path->qual);
+
+ plan = make_group(tlist,
+ quals,
+ list_length(best_path->groupClause),
+ extract_grouping_cols(best_path->groupClause,
+ subplan->targetlist),
+ extract_grouping_ops(best_path->groupClause),
+ extract_grouping_collations(best_path->groupClause,
+ subplan->targetlist),
+ subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_upper_unique_plan
+ *
+ * Create a Unique plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Unique *
+create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path, int flags)
+{
+ Unique *plan;
+ Plan *subplan;
+
+ /*
+ * Unique doesn't project, so tlist requirements pass through; moreover we
+ * need grouping columns to be labeled.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_LABEL_TLIST);
+
+ plan = make_unique_from_pathkeys(subplan,
+ best_path->path.pathkeys,
+ best_path->numkeys);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_agg_plan
+ *
+ * Create an Agg plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Agg *
+create_agg_plan(PlannerInfo *root, AggPath *best_path)
+{
+ Agg *plan;
+ Plan *subplan;
+ List *tlist;
+ List *quals;
+
+ /*
+ * Agg can project, so no need to be terribly picky about child tlist, but
+ * we do need grouping columns to be available
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ quals = order_qual_clauses(root, best_path->qual);
+
+ plan = make_agg(tlist, quals,
+ best_path->aggstrategy,
+ best_path->aggsplit,
+ list_length(best_path->groupClause),
+ extract_grouping_cols(best_path->groupClause,
+ subplan->targetlist),
+ extract_grouping_ops(best_path->groupClause),
+ extract_grouping_collations(best_path->groupClause,
+ subplan->targetlist),
+ NIL,
+ NIL,
+ best_path->numGroups,
+ best_path->transitionSpace,
+ subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * Given a groupclause for a collection of grouping sets, produce the
+ * corresponding groupColIdx.
+ *
+ * root->grouping_map maps the tleSortGroupRef to the actual column position in
+ * the input tuple. So we get the ref from the entries in the groupclause and
+ * look them up there.
+ */
+static AttrNumber *
+remap_groupColIdx(PlannerInfo *root, List *groupClause)
+{
+ AttrNumber *grouping_map = root->grouping_map;
+ AttrNumber *new_grpColIdx;
+ ListCell *lc;
+ int i;
+
+ Assert(grouping_map);
+
+ new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));
+
+ i = 0;
+ foreach(lc, groupClause)
+ {
+ SortGroupClause *clause = lfirst(lc);
+
+ new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
+ }
+
+ return new_grpColIdx;
+}
+
+/*
+ * create_groupingsets_plan
+ * Create a plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * What we emit is an Agg plan with some vestigial Agg and Sort nodes
+ * hanging off the side. The top Agg implements the last grouping set
+ * specified in the GroupingSetsPath, and any additional grouping sets
+ * each give rise to a subsidiary Agg and Sort node in the top Agg's
+ * "chain" list. These nodes don't participate in the plan directly,
+ * but they are a convenient way to represent the required data for
+ * the extra steps.
+ *
+ * Returns a Plan node.
+ */
+static Plan *
+create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path)
+{
+ Agg *plan;
+ Plan *subplan;
+ List *rollups = best_path->rollups;
+ AttrNumber *grouping_map;
+ int maxref;
+ List *chain;
+ ListCell *lc;
+
+ /* Shouldn't get here without grouping sets */
+ Assert(root->parse->groupingSets);
+ Assert(rollups != NIL);
+
+ /*
+ * Agg can project, so no need to be terribly picky about child tlist, but
+ * we do need grouping columns to be available
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
+
+ /*
+ * Compute the mapping from tleSortGroupRef to column index in the child's
+ * tlist. First, identify max SortGroupRef in groupClause, for array
+ * sizing.
+ */
+ maxref = 0;
+ foreach(lc, root->parse->groupClause)
+ {
+ SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
+
+ if (gc->tleSortGroupRef > maxref)
+ maxref = gc->tleSortGroupRef;
+ }
+
+ grouping_map = (AttrNumber *) palloc0((maxref + 1) * sizeof(AttrNumber));
+
+ /* Now look up the column numbers in the child's tlist */
+ foreach(lc, root->parse->groupClause)
+ {
+ SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
+ TargetEntry *tle = get_sortgroupclause_tle(gc, subplan->targetlist);
+
+ grouping_map[gc->tleSortGroupRef] = tle->resno;
+ }
+
+ /*
+ * During setrefs.c, we'll need the grouping_map to fix up the cols lists
+ * in GroupingFunc nodes. Save it for setrefs.c to use.
+ */
+ Assert(root->grouping_map == NULL);
+ root->grouping_map = grouping_map;
+
+ /*
+ * Generate the side nodes that describe the other sort and group
+ * operations besides the top one. Note that we don't worry about putting
+ * accurate cost estimates in the side nodes; only the topmost Agg node's
+ * costs will be shown by EXPLAIN.
+ */
+ chain = NIL;
+ if (list_length(rollups) > 1)
+ {
+ bool is_first_sort = ((RollupData *) linitial(rollups))->is_hashed;
+
+ for_each_from(lc, rollups, 1)
+ {
+ RollupData *rollup = lfirst(lc);
+ AttrNumber *new_grpColIdx;
+ Plan *sort_plan = NULL;
+ Plan *agg_plan;
+ AggStrategy strat;
+
+ new_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
+
+ if (!rollup->is_hashed && !is_first_sort)
+ {
+ sort_plan = (Plan *)
+ make_sort_from_groupcols(rollup->groupClause,
+ new_grpColIdx,
+ subplan);
+ }
+
+ if (!rollup->is_hashed)
+ is_first_sort = false;
+
+ if (rollup->is_hashed)
+ strat = AGG_HASHED;
+ else if (list_length(linitial(rollup->gsets)) == 0)
+ strat = AGG_PLAIN;
+ else
+ strat = AGG_SORTED;
+
+ agg_plan = (Plan *) make_agg(NIL,
+ NIL,
+ strat,
+ AGGSPLIT_SIMPLE,
+ list_length((List *) linitial(rollup->gsets)),
+ new_grpColIdx,
+ extract_grouping_ops(rollup->groupClause),
+ extract_grouping_collations(rollup->groupClause, subplan->targetlist),
+ rollup->gsets,
+ NIL,
+ rollup->numGroups,
+ best_path->transitionSpace,
+ sort_plan);
+
+ /*
+ * Remove stuff we don't need to avoid bloating debug output.
+ */
+ if (sort_plan)
+ {
+ sort_plan->targetlist = NIL;
+ sort_plan->lefttree = NULL;
+ }
+
+ chain = lappend(chain, agg_plan);
+ }
+ }
+
+ /*
+ * Now make the real Agg node
+ */
+ {
+ RollupData *rollup = linitial(rollups);
+ AttrNumber *top_grpColIdx;
+ int numGroupCols;
+
+ top_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
+
+ numGroupCols = list_length((List *) linitial(rollup->gsets));
+
+ plan = make_agg(build_path_tlist(root, &best_path->path),
+ best_path->qual,
+ best_path->aggstrategy,
+ AGGSPLIT_SIMPLE,
+ numGroupCols,
+ top_grpColIdx,
+ extract_grouping_ops(rollup->groupClause),
+ extract_grouping_collations(rollup->groupClause, subplan->targetlist),
+ rollup->gsets,
+ chain,
+ rollup->numGroups,
+ best_path->transitionSpace,
+ subplan);
+
+ /* Copy cost data from Path to Plan */
+ copy_generic_path_info(&plan->plan, &best_path->path);
+ }
+
+ return (Plan *) plan;
+}
+
+/*
+ * create_minmaxagg_plan
+ *
+ * Create a Result plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Result *
+create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path)
+{
+ Result *plan;
+ List *tlist;
+ ListCell *lc;
+
+ /* Prepare an InitPlan for each aggregate's subquery. */
+ foreach(lc, best_path->mmaggregates)
+ {
+ MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
+ PlannerInfo *subroot = mminfo->subroot;
+ Query *subparse = subroot->parse;
+ Plan *plan;
+
+ /*
+ * Generate the plan for the subquery. We already have a Path, but we
+ * have to convert it to a Plan and attach a LIMIT node above it.
+ * Since we are entering a different planner context (subroot),
+ * recurse to create_plan not create_plan_recurse.
+ */
+ plan = create_plan(subroot, mminfo->path);
+
+ plan = (Plan *) make_limit(plan,
+ subparse->limitOffset,
+ subparse->limitCount,
+ subparse->limitOption,
+ 0, NULL, NULL, NULL);
+
+ /* Must apply correct cost/width data to Limit node */
+ plan->startup_cost = mminfo->path->startup_cost;
+ plan->total_cost = mminfo->pathcost;
+ plan->plan_rows = 1;
+ plan->plan_width = mminfo->path->pathtarget->width;
+ plan->parallel_aware = false;
+ plan->parallel_safe = mminfo->path->parallel_safe;
+
+ /* Convert the plan into an InitPlan in the outer query. */
+ SS_make_initplan_from_plan(root, subroot, plan, mminfo->param);
+ }
+
+ /* Generate the output plan --- basically just a Result */
+ tlist = build_path_tlist(root, &best_path->path);
+
+ plan = make_result(tlist, (Node *) best_path->quals, NULL);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ /*
+ * During setrefs.c, we'll need to replace references to the Agg nodes
+ * with InitPlan output params. (We can't just do that locally in the
+ * MinMaxAgg node, because path nodes above here may have Agg references
+ * as well.) Save the mmaggregates list to tell setrefs.c to do that.
+ */
+ Assert(root->minmax_aggs == NIL);
+ root->minmax_aggs = best_path->mmaggregates;
+
+ return plan;
+}
+
+/*
+ * create_windowagg_plan
+ *
+ * Create a WindowAgg plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static WindowAgg *
+create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path)
+{
+ WindowAgg *plan;
+ WindowClause *wc = best_path->winclause;
+ int numPart = list_length(wc->partitionClause);
+ int numOrder = list_length(wc->orderClause);
+ Plan *subplan;
+ List *tlist;
+ int partNumCols;
+ AttrNumber *partColIdx;
+ Oid *partOperators;
+ Oid *partCollations;
+ int ordNumCols;
+ AttrNumber *ordColIdx;
+ Oid *ordOperators;
+ Oid *ordCollations;
+ ListCell *lc;
+
+ /*
+ * Choice of tlist here is motivated by the fact that WindowAgg will be
+ * storing the input rows of window frames in a tuplestore; it therefore
+ * behooves us to request a small tlist to avoid wasting space. We do of
+ * course need grouping columns to be available.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ CP_LABEL_TLIST | CP_SMALL_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ /*
+ * Convert SortGroupClause lists into arrays of attr indexes and equality
+ * operators, as wanted by executor. (Note: in principle, it's possible
+ * to drop some of the sort columns, if they were proved redundant by
+ * pathkey logic. However, it doesn't seem worth going out of our way to
+ * optimize such cases. In any case, we must *not* remove the ordering
+ * column for RANGE OFFSET cases, as the executor needs that for in_range
+ * tests even if it's known to be equal to some partitioning column.)
+ */
+ partColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numPart);
+ partOperators = (Oid *) palloc(sizeof(Oid) * numPart);
+ partCollations = (Oid *) palloc(sizeof(Oid) * numPart);
+
+ partNumCols = 0;
+ foreach(lc, wc->partitionClause)
+ {
+ SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
+ TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
+
+ Assert(OidIsValid(sgc->eqop));
+ partColIdx[partNumCols] = tle->resno;
+ partOperators[partNumCols] = sgc->eqop;
+ partCollations[partNumCols] = exprCollation((Node *) tle->expr);
+ partNumCols++;
+ }
+
+ ordColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numOrder);
+ ordOperators = (Oid *) palloc(sizeof(Oid) * numOrder);
+ ordCollations = (Oid *) palloc(sizeof(Oid) * numOrder);
+
+ ordNumCols = 0;
+ foreach(lc, wc->orderClause)
+ {
+ SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
+ TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
+
+ Assert(OidIsValid(sgc->eqop));
+ ordColIdx[ordNumCols] = tle->resno;
+ ordOperators[ordNumCols] = sgc->eqop;
+ ordCollations[ordNumCols] = exprCollation((Node *) tle->expr);
+ ordNumCols++;
+ }
+
+ /* And finally we can make the WindowAgg node */
+ plan = make_windowagg(tlist,
+ wc->winref,
+ partNumCols,
+ partColIdx,
+ partOperators,
+ partCollations,
+ ordNumCols,
+ ordColIdx,
+ ordOperators,
+ ordCollations,
+ wc->frameOptions,
+ wc->startOffset,
+ wc->endOffset,
+ wc->startInRangeFunc,
+ wc->endInRangeFunc,
+ wc->inRangeColl,
+ wc->inRangeAsc,
+ wc->inRangeNullsFirst,
+ subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_setop_plan
+ *
+ * Create a SetOp plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static SetOp *
+create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags)
+{
+ SetOp *plan;
+ Plan *subplan;
+ long numGroups;
+
+ /*
+ * SetOp doesn't project, so tlist requirements pass through; moreover we
+ * need grouping columns to be labeled.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_LABEL_TLIST);
+
+ /* Convert numGroups to long int --- but 'ware overflow! */
+ numGroups = (long) Min(best_path->numGroups, (double) LONG_MAX);
+
+ plan = make_setop(best_path->cmd,
+ best_path->strategy,
+ subplan,
+ best_path->distinctList,
+ best_path->flagColIdx,
+ best_path->firstFlag,
+ numGroups);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_recursiveunion_plan
+ *
+ * Create a RecursiveUnion plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static RecursiveUnion *
+create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path)
+{
+ RecursiveUnion *plan;
+ Plan *leftplan;
+ Plan *rightplan;
+ List *tlist;
+ long numGroups;
+
+ /* Need both children to produce same tlist, so force it */
+ leftplan = create_plan_recurse(root, best_path->leftpath, CP_EXACT_TLIST);
+ rightplan = create_plan_recurse(root, best_path->rightpath, CP_EXACT_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ /* Convert numGroups to long int --- but 'ware overflow! */
+ numGroups = (long) Min(best_path->numGroups, (double) LONG_MAX);
+
+ plan = make_recursive_union(tlist,
+ leftplan,
+ rightplan,
+ best_path->wtParam,
+ best_path->distinctList,
+ numGroups);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_lockrows_plan
+ *
+ * Create a LockRows plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static LockRows *
+create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
+ int flags)
+{
+ LockRows *plan;
+ Plan *subplan;
+
+ /* LockRows doesn't project, so tlist requirements pass through */
+ subplan = create_plan_recurse(root, best_path->subpath, flags);
+
+ plan = make_lockrows(subplan, best_path->rowMarks, best_path->epqParam);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_modifytable_plan
+ * Create a ModifyTable plan for 'best_path'.
+ *
+ * Returns a Plan node.
+ */
+static ModifyTable *
+create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path)
+{
+ ModifyTable *plan;
+ Path *subpath = best_path->subpath;
+ Plan *subplan;
+
+ /* Subplan must produce exactly the specified tlist */
+ subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
+
+ /* Transfer resname/resjunk labeling, too, to keep executor happy */
+ apply_tlist_labeling(subplan->targetlist, root->processed_tlist);
+
+ plan = make_modifytable(root,
+ subplan,
+ best_path->operation,
+ best_path->canSetTag,
+ best_path->nominalRelation,
+ best_path->rootRelation,
+ best_path->partColsUpdated,
+ best_path->resultRelations,
+ best_path->updateColnosLists,
+ best_path->withCheckOptionLists,
+ best_path->returningLists,
+ best_path->rowMarks,
+ best_path->onconflict,
+ best_path->epqParam);
+
+ copy_generic_path_info(&plan->plan, &best_path->path);
+
+ return plan;
+}
+
+/*
+ * create_limit_plan
+ *
+ * Create a Limit plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Limit *
+create_limit_plan(PlannerInfo *root, LimitPath *best_path, int flags)
+{
+ Limit *plan;
+ Plan *subplan;
+ int numUniqkeys = 0;
+ AttrNumber *uniqColIdx = NULL;
+ Oid *uniqOperators = NULL;
+ Oid *uniqCollations = NULL;
+
+ /* Limit doesn't project, so tlist requirements pass through */
+ subplan = create_plan_recurse(root, best_path->subpath, flags);
+
+ /* Extract information necessary for comparing rows for WITH TIES. */
+ if (best_path->limitOption == LIMIT_OPTION_WITH_TIES)
+ {
+ Query *parse = root->parse;
+ ListCell *l;
+
+ numUniqkeys = list_length(parse->sortClause);
+ uniqColIdx = (AttrNumber *) palloc(numUniqkeys * sizeof(AttrNumber));
+ uniqOperators = (Oid *) palloc(numUniqkeys * sizeof(Oid));
+ uniqCollations = (Oid *) palloc(numUniqkeys * sizeof(Oid));
+
+ numUniqkeys = 0;
+ foreach(l, parse->sortClause)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl, parse->targetList);
+
+ uniqColIdx[numUniqkeys] = tle->resno;
+ uniqOperators[numUniqkeys] = sortcl->eqop;
+ uniqCollations[numUniqkeys] = exprCollation((Node *) tle->expr);
+ numUniqkeys++;
+ }
+ }
+
+ plan = make_limit(subplan,
+ best_path->limitOffset,
+ best_path->limitCount,
+ best_path->limitOption,
+ numUniqkeys, uniqColIdx, uniqOperators, uniqCollations);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+
+/*****************************************************************************
+ *
+ * BASE-RELATION SCAN METHODS
+ *
+ *****************************************************************************/
+
+
+/*
+ * create_seqscan_plan
+ * Returns a seqscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static SeqScan *
+create_seqscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ SeqScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+
+ /* it should be a base rel... */
+ Assert(scan_relid > 0);
+ Assert(best_path->parent->rtekind == RTE_RELATION);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_seqscan(tlist,
+ scan_clauses,
+ scan_relid);
+
+ copy_generic_path_info(&scan_plan->plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_samplescan_plan
+ * Returns a samplescan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static SampleScan *
+create_samplescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ SampleScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ TableSampleClause *tsc;
+
+ /* it should be a base rel with a tablesample clause... */
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_RELATION);
+ tsc = rte->tablesample;
+ Assert(tsc != NULL);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ tsc = (TableSampleClause *)
+ replace_nestloop_params(root, (Node *) tsc);
+ }
+
+ scan_plan = make_samplescan(tlist,
+ scan_clauses,
+ scan_relid,
+ tsc);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_indexscan_plan
+ * Returns an indexscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ *
+ * We use this for both plain IndexScans and IndexOnlyScans, because the
+ * qual preprocessing work is the same for both. Note that the caller tells
+ * us which to build --- we don't look at best_path->path.pathtype, because
+ * create_bitmap_subplan needs to be able to override the prior decision.
+ */
+static Scan *
+create_indexscan_plan(PlannerInfo *root,
+ IndexPath *best_path,
+ List *tlist,
+ List *scan_clauses,
+ bool indexonly)
+{
+ Scan *scan_plan;
+ List *indexclauses = best_path->indexclauses;
+ List *indexorderbys = best_path->indexorderbys;
+ Index baserelid = best_path->path.parent->relid;
+ IndexOptInfo *indexinfo = best_path->indexinfo;
+ Oid indexoid = indexinfo->indexoid;
+ List *qpqual;
+ List *stripped_indexquals;
+ List *fixed_indexquals;
+ List *fixed_indexorderbys;
+ List *indexorderbyops = NIL;
+ ListCell *l;
+
+ /* it should be a base rel... */
+ Assert(baserelid > 0);
+ Assert(best_path->path.parent->rtekind == RTE_RELATION);
+
+ /*
+ * Extract the index qual expressions (stripped of RestrictInfos) from the
+ * IndexClauses list, and prepare a copy with index Vars substituted for
+ * table Vars. (This step also does replace_nestloop_params on the
+ * fixed_indexquals.)
+ */
+ fix_indexqual_references(root, best_path,
+ &stripped_indexquals,
+ &fixed_indexquals);
+
+ /*
+ * Likewise fix up index attr references in the ORDER BY expressions.
+ */
+ fixed_indexorderbys = fix_indexorderby_references(root, best_path);
+
+ /*
+ * The qpqual list must contain all restrictions not automatically handled
+ * by the index, other than pseudoconstant clauses which will be handled
+ * by a separate gating plan node. All the predicates in the indexquals
+ * will be checked (either by the index itself, or by nodeIndexscan.c),
+ * but if there are any "special" operators involved then they must be
+ * included in qpqual. The upshot is that qpqual must contain
+ * scan_clauses minus whatever appears in indexquals.
+ *
+ * is_redundant_with_indexclauses() detects cases where a scan clause is
+ * present in the indexclauses list or is generated from the same
+ * EquivalenceClass as some indexclause, and is therefore redundant with
+ * it, though not equal. (The latter happens when indxpath.c prefers a
+ * different derived equality than what generate_join_implied_equalities
+ * picked for a parameterized scan's ppi_clauses.) Note that it will not
+ * match to lossy index clauses, which is critical because we have to
+ * include the original clause in qpqual in that case.
+ *
+ * In some situations (particularly with OR'd index conditions) we may
+ * have scan_clauses that are not equal to, but are logically implied by,
+ * the index quals; so we also try a predicate_implied_by() check to see
+ * if we can discard quals that way. (predicate_implied_by assumes its
+ * first input contains only immutable functions, so we have to check
+ * that.)
+ *
+ * Note: if you change this bit of code you should also look at
+ * extract_nonindex_conditions() in costsize.c.
+ */
+ qpqual = NIL;
+ foreach(l, scan_clauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
+
+ if (rinfo->pseudoconstant)
+ continue; /* we may drop pseudoconstants here */
+ if (is_redundant_with_indexclauses(rinfo, indexclauses))
+ continue; /* dup or derived from same EquivalenceClass */
+ if (!contain_mutable_functions((Node *) rinfo->clause) &&
+ predicate_implied_by(list_make1(rinfo->clause), stripped_indexquals,
+ false))
+ continue; /* provably implied by indexquals */
+ qpqual = lappend(qpqual, rinfo);
+ }
+
+ /* Sort clauses into best execution order */
+ qpqual = order_qual_clauses(root, qpqual);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ qpqual = extract_actual_clauses(qpqual, false);
+
+ /*
+ * We have to replace any outer-relation variables with nestloop params in
+ * the indexqualorig, qpqual, and indexorderbyorig expressions. A bit
+ * annoying to have to do this separately from the processing in
+ * fix_indexqual_references --- rethink this when generalizing the inner
+ * indexscan support. But note we can't really do this earlier because
+ * it'd break the comparisons to predicates above ... (or would it? Those
+ * wouldn't have outer refs)
+ */
+ if (best_path->path.param_info)
+ {
+ stripped_indexquals = (List *)
+ replace_nestloop_params(root, (Node *) stripped_indexquals);
+ qpqual = (List *)
+ replace_nestloop_params(root, (Node *) qpqual);
+ indexorderbys = (List *)
+ replace_nestloop_params(root, (Node *) indexorderbys);
+ }
+
+ /*
+ * If there are ORDER BY expressions, look up the sort operators for their
+ * result datatypes.
+ */
+ if (indexorderbys)
+ {
+ ListCell *pathkeyCell,
+ *exprCell;
+
+ /*
+ * PathKey contains OID of the btree opfamily we're sorting by, but
+ * that's not quite enough because we need the expression's datatype
+ * to look up the sort operator in the operator family.
+ */
+ Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys));
+ forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys)
+ {
+ PathKey *pathkey = (PathKey *) lfirst(pathkeyCell);
+ Node *expr = (Node *) lfirst(exprCell);
+ Oid exprtype = exprType(expr);
+ Oid sortop;
+
+ /* Get sort operator from opfamily */
+ sortop = get_opfamily_member(pathkey->pk_opfamily,
+ exprtype,
+ exprtype,
+ pathkey->pk_strategy);
+ if (!OidIsValid(sortop))
+ elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
+ pathkey->pk_strategy, exprtype, exprtype, pathkey->pk_opfamily);
+ indexorderbyops = lappend_oid(indexorderbyops, sortop);
+ }
+ }
+
+ /*
+ * For an index-only scan, we must mark indextlist entries as resjunk if
+ * they are columns that the index AM can't return; this cues setrefs.c to
+ * not generate references to those columns.
+ */
+ if (indexonly)
+ {
+ int i = 0;
+
+ foreach(l, indexinfo->indextlist)
+ {
+ TargetEntry *indextle = (TargetEntry *) lfirst(l);
+
+ indextle->resjunk = !indexinfo->canreturn[i];
+ i++;
+ }
+ }
+
+ /* Finally ready to build the plan node */
+ if (indexonly)
+ scan_plan = (Scan *) make_indexonlyscan(tlist,
+ qpqual,
+ baserelid,
+ indexoid,
+ fixed_indexquals,
+ stripped_indexquals,
+ fixed_indexorderbys,
+ indexinfo->indextlist,
+ best_path->indexscandir);
+ else
+ scan_plan = (Scan *) make_indexscan(tlist,
+ qpqual,
+ baserelid,
+ indexoid,
+ fixed_indexquals,
+ stripped_indexquals,
+ fixed_indexorderbys,
+ indexorderbys,
+ indexorderbyops,
+ best_path->indexscandir);
+
+ copy_generic_path_info(&scan_plan->plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * create_bitmap_scan_plan
+ * Returns a bitmap scan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static BitmapHeapScan *
+create_bitmap_scan_plan(PlannerInfo *root,
+ BitmapHeapPath *best_path,
+ List *tlist,
+ List *scan_clauses)
+{
+ Index baserelid = best_path->path.parent->relid;
+ Plan *bitmapqualplan;
+ List *bitmapqualorig;
+ List *indexquals;
+ List *indexECs;
+ List *qpqual;
+ ListCell *l;
+ BitmapHeapScan *scan_plan;
+
+ /* it should be a base rel... */
+ Assert(baserelid > 0);
+ Assert(best_path->path.parent->rtekind == RTE_RELATION);
+
+ /* Process the bitmapqual tree into a Plan tree and qual lists */
+ bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
+ &bitmapqualorig, &indexquals,
+ &indexECs);
+
+ if (best_path->path.parallel_aware)
+ bitmap_subplan_mark_shared(bitmapqualplan);
+
+ /*
+ * The qpqual list must contain all restrictions not automatically handled
+ * by the index, other than pseudoconstant clauses which will be handled
+ * by a separate gating plan node. All the predicates in the indexquals
+ * will be checked (either by the index itself, or by
+ * nodeBitmapHeapscan.c), but if there are any "special" operators
+ * involved then they must be added to qpqual. The upshot is that qpqual
+ * must contain scan_clauses minus whatever appears in indexquals.
+ *
+ * This loop is similar to the comparable code in create_indexscan_plan(),
+ * but with some differences because it has to compare the scan clauses to
+ * stripped (no RestrictInfos) indexquals. See comments there for more
+ * info.
+ *
+ * In normal cases simple equal() checks will be enough to spot duplicate
+ * clauses, so we try that first. We next see if the scan clause is
+ * redundant with any top-level indexqual by virtue of being generated
+ * from the same EC. After that, try predicate_implied_by().
+ *
+ * Unlike create_indexscan_plan(), the predicate_implied_by() test here is
+ * useful for getting rid of qpquals that are implied by index predicates,
+ * because the predicate conditions are included in the "indexquals"
+ * returned by create_bitmap_subplan(). Bitmap scans have to do it that
+ * way because predicate conditions need to be rechecked if the scan
+ * becomes lossy, so they have to be included in bitmapqualorig.
+ */
+ qpqual = NIL;
+ foreach(l, scan_clauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
+ Node *clause = (Node *) rinfo->clause;
+
+ if (rinfo->pseudoconstant)
+ continue; /* we may drop pseudoconstants here */
+ if (list_member(indexquals, clause))
+ continue; /* simple duplicate */
+ if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
+ continue; /* derived from same EquivalenceClass */
+ if (!contain_mutable_functions(clause) &&
+ predicate_implied_by(list_make1(clause), indexquals, false))
+ continue; /* provably implied by indexquals */
+ qpqual = lappend(qpqual, rinfo);
+ }
+
+ /* Sort clauses into best execution order */
+ qpqual = order_qual_clauses(root, qpqual);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ qpqual = extract_actual_clauses(qpqual, false);
+
+ /*
+ * When dealing with special operators, we will at this point have
+ * duplicate clauses in qpqual and bitmapqualorig. We may as well drop
+ * 'em from bitmapqualorig, since there's no point in making the tests
+ * twice.
+ */
+ bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);
+
+ /*
+ * We have to replace any outer-relation variables with nestloop params in
+ * the qpqual and bitmapqualorig expressions. (This was already done for
+ * expressions attached to plan nodes in the bitmapqualplan tree.)
+ */
+ if (best_path->path.param_info)
+ {
+ qpqual = (List *)
+ replace_nestloop_params(root, (Node *) qpqual);
+ bitmapqualorig = (List *)
+ replace_nestloop_params(root, (Node *) bitmapqualorig);
+ }
+
+ /* Finally ready to build the plan node */
+ scan_plan = make_bitmap_heapscan(tlist,
+ qpqual,
+ bitmapqualplan,
+ bitmapqualorig,
+ baserelid);
+
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * Given a bitmapqual tree, generate the Plan tree that implements it
+ *
+ * As byproducts, we also return in *qual and *indexqual the qual lists
+ * (in implicit-AND form, without RestrictInfos) describing the original index
+ * conditions and the generated indexqual conditions. (These are the same in
+ * simple cases, but when special index operators are involved, the former
+ * list includes the special conditions while the latter includes the actual
+ * indexable conditions derived from them.) Both lists include partial-index
+ * predicates, because we have to recheck predicates as well as index
+ * conditions if the bitmap scan becomes lossy.
+ *
+ * In addition, we return a list of EquivalenceClass pointers for all the
+ * top-level indexquals that were possibly-redundantly derived from ECs.
+ * This allows removal of scan_clauses that are redundant with such quals.
+ * (We do not attempt to detect such redundancies for quals that are within
+ * OR subtrees. This could be done in a less hacky way if we returned the
+ * indexquals in RestrictInfo form, but that would be slower and still pretty
+ * messy, since we'd have to build new RestrictInfos in many cases.)
+ */
+static Plan *
+create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
+ List **qual, List **indexqual, List **indexECs)
+{
+ Plan *plan;
+
+ if (IsA(bitmapqual, BitmapAndPath))
+ {
+ BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
+ List *subplans = NIL;
+ List *subquals = NIL;
+ List *subindexquals = NIL;
+ List *subindexECs = NIL;
+ ListCell *l;
+
+ /*
+ * There may well be redundant quals among the subplans, since a
+ * top-level WHERE qual might have gotten used to form several
+ * different index quals. We don't try exceedingly hard to eliminate
+ * redundancies, but we do eliminate obvious duplicates by using
+ * list_concat_unique.
+ */
+ foreach(l, apath->bitmapquals)
+ {
+ Plan *subplan;
+ List *subqual;
+ List *subindexqual;
+ List *subindexEC;
+
+ subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
+ &subqual, &subindexqual,
+ &subindexEC);
+ subplans = lappend(subplans, subplan);
+ subquals = list_concat_unique(subquals, subqual);
+ subindexquals = list_concat_unique(subindexquals, subindexqual);
+ /* Duplicates in indexECs aren't worth getting rid of */
+ subindexECs = list_concat(subindexECs, subindexEC);
+ }
+ plan = (Plan *) make_bitmap_and(subplans);
+ plan->startup_cost = apath->path.startup_cost;
+ plan->total_cost = apath->path.total_cost;
+ plan->plan_rows =
+ clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
+ plan->plan_width = 0; /* meaningless */
+ plan->parallel_aware = false;
+ plan->parallel_safe = apath->path.parallel_safe;
+ *qual = subquals;
+ *indexqual = subindexquals;
+ *indexECs = subindexECs;
+ }
+ else if (IsA(bitmapqual, BitmapOrPath))
+ {
+ BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
+ List *subplans = NIL;
+ List *subquals = NIL;
+ List *subindexquals = NIL;
+ bool const_true_subqual = false;
+ bool const_true_subindexqual = false;
+ ListCell *l;
+
+ /*
+ * Here, we only detect qual-free subplans. A qual-free subplan would
+ * cause us to generate "... OR true ..." which we may as well reduce
+ * to just "true". We do not try to eliminate redundant subclauses
+ * because (a) it's not as likely as in the AND case, and (b) we might
+ * well be working with hundreds or even thousands of OR conditions,
+ * perhaps from a long IN list. The performance of list_append_unique
+ * would be unacceptable.
+ */
+ foreach(l, opath->bitmapquals)
+ {
+ Plan *subplan;
+ List *subqual;
+ List *subindexqual;
+ List *subindexEC;
+
+ subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
+ &subqual, &subindexqual,
+ &subindexEC);
+ subplans = lappend(subplans, subplan);
+ if (subqual == NIL)
+ const_true_subqual = true;
+ else if (!const_true_subqual)
+ subquals = lappend(subquals,
+ make_ands_explicit(subqual));
+ if (subindexqual == NIL)
+ const_true_subindexqual = true;
+ else if (!const_true_subindexqual)
+ subindexquals = lappend(subindexquals,
+ make_ands_explicit(subindexqual));
+ }
+
+ /*
+ * In the presence of ScalarArrayOpExpr quals, we might have built
+ * BitmapOrPaths with just one subpath; don't add an OR step.
+ */
+ if (list_length(subplans) == 1)
+ {
+ plan = (Plan *) linitial(subplans);
+ }
+ else
+ {
+ plan = (Plan *) make_bitmap_or(subplans);
+ plan->startup_cost = opath->path.startup_cost;
+ plan->total_cost = opath->path.total_cost;
+ plan->plan_rows =
+ clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
+ plan->plan_width = 0; /* meaningless */
+ plan->parallel_aware = false;
+ plan->parallel_safe = opath->path.parallel_safe;
+ }
+
+ /*
+ * If there were constant-TRUE subquals, the OR reduces to constant
+ * TRUE. Also, avoid generating one-element ORs, which could happen
+ * due to redundancy elimination or ScalarArrayOpExpr quals.
+ */
+ if (const_true_subqual)
+ *qual = NIL;
+ else if (list_length(subquals) <= 1)
+ *qual = subquals;
+ else
+ *qual = list_make1(make_orclause(subquals));
+ if (const_true_subindexqual)
+ *indexqual = NIL;
+ else if (list_length(subindexquals) <= 1)
+ *indexqual = subindexquals;
+ else
+ *indexqual = list_make1(make_orclause(subindexquals));
+ *indexECs = NIL;
+ }
+ else if (IsA(bitmapqual, IndexPath))
+ {
+ IndexPath *ipath = (IndexPath *) bitmapqual;
+ IndexScan *iscan;
+ List *subquals;
+ List *subindexquals;
+ List *subindexECs;
+ ListCell *l;
+
+ /* Use the regular indexscan plan build machinery... */
+ iscan = castNode(IndexScan,
+ create_indexscan_plan(root, ipath,
+ NIL, NIL, false));
+ /* then convert to a bitmap indexscan */
+ plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
+ iscan->indexid,
+ iscan->indexqual,
+ iscan->indexqualorig);
+ /* and set its cost/width fields appropriately */
+ plan->startup_cost = 0.0;
+ plan->total_cost = ipath->indextotalcost;
+ plan->plan_rows =
+ clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
+ plan->plan_width = 0; /* meaningless */
+ plan->parallel_aware = false;
+ plan->parallel_safe = ipath->path.parallel_safe;
+ /* Extract original index clauses, actual index quals, relevant ECs */
+ subquals = NIL;
+ subindexquals = NIL;
+ subindexECs = NIL;
+ foreach(l, ipath->indexclauses)
+ {
+ IndexClause *iclause = (IndexClause *) lfirst(l);
+ RestrictInfo *rinfo = iclause->rinfo;
+
+ Assert(!rinfo->pseudoconstant);
+ subquals = lappend(subquals, rinfo->clause);
+ subindexquals = list_concat(subindexquals,
+ get_actual_clauses(iclause->indexquals));
+ if (rinfo->parent_ec)
+ subindexECs = lappend(subindexECs, rinfo->parent_ec);
+ }
+ /* We can add any index predicate conditions, too */
+ foreach(l, ipath->indexinfo->indpred)
+ {
+ Expr *pred = (Expr *) lfirst(l);
+
+ /*
+ * We know that the index predicate must have been implied by the
+ * query condition as a whole, but it may or may not be implied by
+ * the conditions that got pushed into the bitmapqual. Avoid
+ * generating redundant conditions.
+ */
+ if (!predicate_implied_by(list_make1(pred), subquals, false))
+ {
+ subquals = lappend(subquals, pred);
+ subindexquals = lappend(subindexquals, pred);
+ }
+ }
+ *qual = subquals;
+ *indexqual = subindexquals;
+ *indexECs = subindexECs;
+ }
+ else
+ {
+ elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
+ plan = NULL; /* keep compiler quiet */
+ }
+
+ return plan;
+}
+
+/*
+ * create_tidscan_plan
+ * Returns a tidscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static TidScan *
+create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ TidScan *scan_plan;
+ Index scan_relid = best_path->path.parent->relid;
+ List *tidquals = best_path->tidquals;
+
+ /* it should be a base rel... */
+ Assert(scan_relid > 0);
+ Assert(best_path->path.parent->rtekind == RTE_RELATION);
+
+ /*
+ * The qpqual list must contain all restrictions not enforced by the
+ * tidquals list. Since tidquals has OR semantics, we have to be careful
+ * about matching it up to scan_clauses. It's convenient to handle the
+ * single-tidqual case separately from the multiple-tidqual case. In the
+ * single-tidqual case, we look through the scan_clauses while they are
+ * still in RestrictInfo form, and drop any that are redundant with the
+ * tidqual.
+ *
+ * In normal cases simple pointer equality checks will be enough to spot
+ * duplicate RestrictInfos, so we try that first.
+ *
+ * Another common case is that a scan_clauses entry is generated from the
+ * same EquivalenceClass as some tidqual, and is therefore redundant with
+ * it, though not equal.
+ *
+ * Unlike indexpaths, we don't bother with predicate_implied_by(); the
+ * number of cases where it could win are pretty small.
+ */
+ if (list_length(tidquals) == 1)
+ {
+ List *qpqual = NIL;
+ ListCell *l;
+
+ foreach(l, scan_clauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
+
+ if (rinfo->pseudoconstant)
+ continue; /* we may drop pseudoconstants here */
+ if (list_member_ptr(tidquals, rinfo))
+ continue; /* simple duplicate */
+ if (is_redundant_derived_clause(rinfo, tidquals))
+ continue; /* derived from same EquivalenceClass */
+ qpqual = lappend(qpqual, rinfo);
+ }
+ scan_clauses = qpqual;
+ }
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
+ tidquals = extract_actual_clauses(tidquals, false);
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /*
+ * If we have multiple tidquals, it's more convenient to remove duplicate
+ * scan_clauses after stripping the RestrictInfos. In this situation,
+ * because the tidquals represent OR sub-clauses, they could not have come
+ * from EquivalenceClasses so we don't have to worry about matching up
+ * non-identical clauses. On the other hand, because tidpath.c will have
+ * extracted those sub-clauses from some OR clause and built its own list,
+ * we will certainly not have pointer equality to any scan clause. So
+ * convert the tidquals list to an explicit OR clause and see if we can
+ * match it via equal() to any scan clause.
+ */
+ if (list_length(tidquals) > 1)
+ scan_clauses = list_difference(scan_clauses,
+ list_make1(make_orclause(tidquals)));
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->path.param_info)
+ {
+ tidquals = (List *)
+ replace_nestloop_params(root, (Node *) tidquals);
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_tidscan(tlist,
+ scan_clauses,
+ scan_relid,
+ tidquals);
+
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * create_tidrangescan_plan
+ * Returns a tidrangescan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static TidRangeScan *
+create_tidrangescan_plan(PlannerInfo *root, TidRangePath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ TidRangeScan *scan_plan;
+ Index scan_relid = best_path->path.parent->relid;
+ List *tidrangequals = best_path->tidrangequals;
+
+ /* it should be a base rel... */
+ Assert(scan_relid > 0);
+ Assert(best_path->path.parent->rtekind == RTE_RELATION);
+
+ /*
+ * The qpqual list must contain all restrictions not enforced by the
+ * tidrangequals list. tidrangequals has AND semantics, so we can simply
+ * remove any qual that appears in it.
+ */
+ {
+ List *qpqual = NIL;
+ ListCell *l;
+
+ foreach(l, scan_clauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
+
+ if (rinfo->pseudoconstant)
+ continue; /* we may drop pseudoconstants here */
+ if (list_member_ptr(tidrangequals, rinfo))
+ continue; /* simple duplicate */
+ qpqual = lappend(qpqual, rinfo);
+ }
+ scan_clauses = qpqual;
+ }
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
+ tidrangequals = extract_actual_clauses(tidrangequals, false);
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->path.param_info)
+ {
+ tidrangequals = (List *)
+ replace_nestloop_params(root, (Node *) tidrangequals);
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_tidrangescan(tlist,
+ scan_clauses,
+ scan_relid,
+ tidrangequals);
+
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * create_subqueryscan_plan
+ * Returns a subqueryscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static SubqueryScan *
+create_subqueryscan_plan(PlannerInfo *root, SubqueryScanPath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ SubqueryScan *scan_plan;
+ RelOptInfo *rel = best_path->path.parent;
+ Index scan_relid = rel->relid;
+ Plan *subplan;
+
+ /* it should be a subquery base rel... */
+ Assert(scan_relid > 0);
+ Assert(rel->rtekind == RTE_SUBQUERY);
+
+ /*
+ * Recursively create Plan from Path for subquery. Since we are entering
+ * a different planner context (subroot), recurse to create_plan not
+ * create_plan_recurse.
+ */
+ subplan = create_plan(rel->subroot, best_path->subpath);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->path.param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ process_subquery_nestloop_params(root,
+ rel->subplan_params);
+ }
+
+ scan_plan = make_subqueryscan(tlist,
+ scan_clauses,
+ scan_relid,
+ subplan);
+
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * create_functionscan_plan
+ * Returns a functionscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static FunctionScan *
+create_functionscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ FunctionScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ List *functions;
+
+ /* it should be a function base rel... */
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_FUNCTION);
+ functions = rte->functions;
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ /* The function expressions could contain nestloop params, too */
+ functions = (List *) replace_nestloop_params(root, (Node *) functions);
+ }
+
+ scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
+ functions, rte->funcordinality);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_tablefuncscan_plan
+ * Returns a tablefuncscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static TableFuncScan *
+create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ TableFuncScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ TableFunc *tablefunc;
+
+ /* it should be a function base rel... */
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_TABLEFUNC);
+ tablefunc = rte->tablefunc;
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ /* The function expressions could contain nestloop params, too */
+ tablefunc = (TableFunc *) replace_nestloop_params(root, (Node *) tablefunc);
+ }
+
+ scan_plan = make_tablefuncscan(tlist, scan_clauses, scan_relid,
+ tablefunc);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_valuesscan_plan
+ * Returns a valuesscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static ValuesScan *
+create_valuesscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ ValuesScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ List *values_lists;
+
+ /* it should be a values base rel... */
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_VALUES);
+ values_lists = rte->values_lists;
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ /* The values lists could contain nestloop params, too */
+ values_lists = (List *)
+ replace_nestloop_params(root, (Node *) values_lists);
+ }
+
+ scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
+ values_lists);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_ctescan_plan
+ * Returns a ctescan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static CteScan *
+create_ctescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ CteScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ SubPlan *ctesplan = NULL;
+ int plan_id;
+ int cte_param_id;
+ PlannerInfo *cteroot;
+ Index levelsup;
+ int ndx;
+ ListCell *lc;
+
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_CTE);
+ Assert(!rte->self_reference);
+
+ /*
+ * Find the referenced CTE, and locate the SubPlan previously made for it.
+ */
+ levelsup = rte->ctelevelsup;
+ cteroot = root;
+ while (levelsup-- > 0)
+ {
+ cteroot = cteroot->parent_root;
+ if (!cteroot) /* shouldn't happen */
+ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
+ }
+
+ /*
+ * Note: cte_plan_ids can be shorter than cteList, if we are still working
+ * on planning the CTEs (ie, this is a side-reference from another CTE).
+ * So we mustn't use forboth here.
+ */
+ ndx = 0;
+ foreach(lc, cteroot->parse->cteList)
+ {
+ CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
+
+ if (strcmp(cte->ctename, rte->ctename) == 0)
+ break;
+ ndx++;
+ }
+ if (lc == NULL) /* shouldn't happen */
+ elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
+ if (ndx >= list_length(cteroot->cte_plan_ids))
+ elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
+ plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
+ if (plan_id <= 0)
+ elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
+ foreach(lc, cteroot->init_plans)
+ {
+ ctesplan = (SubPlan *) lfirst(lc);
+ if (ctesplan->plan_id == plan_id)
+ break;
+ }
+ if (lc == NULL) /* shouldn't happen */
+ elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
+
+ /*
+ * We need the CTE param ID, which is the sole member of the SubPlan's
+ * setParam list.
+ */
+ cte_param_id = linitial_int(ctesplan->setParam);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
+ plan_id, cte_param_id);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_namedtuplestorescan_plan
+ * Returns a tuplestorescan plan for the base relation scanned by
+ * 'best_path' with restriction clauses 'scan_clauses' and targetlist
+ * 'tlist'.
+ */
+static NamedTuplestoreScan *
+create_namedtuplestorescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ NamedTuplestoreScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_namedtuplestorescan(tlist, scan_clauses, scan_relid,
+ rte->enrname);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_resultscan_plan
+ * Returns a Result plan for the RTE_RESULT base relation scanned by
+ * 'best_path' with restriction clauses 'scan_clauses' and targetlist
+ * 'tlist'.
+ */
+static Result *
+create_resultscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ Result *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;
+
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_RESULT);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_result(tlist, (Node *) scan_clauses, NULL);
+
+ copy_generic_path_info(&scan_plan->plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_worktablescan_plan
+ * Returns a worktablescan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static WorkTableScan *
+create_worktablescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ WorkTableScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ Index levelsup;
+ PlannerInfo *cteroot;
+
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_CTE);
+ Assert(rte->self_reference);
+
+ /*
+ * We need to find the worktable param ID, which is in the plan level
+ * that's processing the recursive UNION, which is one level *below* where
+ * the CTE comes from.
+ */
+ levelsup = rte->ctelevelsup;
+ if (levelsup == 0) /* shouldn't happen */
+ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
+ levelsup--;
+ cteroot = root;
+ while (levelsup-- > 0)
+ {
+ cteroot = cteroot->parent_root;
+ if (!cteroot) /* shouldn't happen */
+ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
+ }
+ if (cteroot->wt_param_id < 0) /* shouldn't happen */
+ elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
+ cteroot->wt_param_id);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_foreignscan_plan
+ * Returns a foreignscan plan for the relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static ForeignScan *
+create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ ForeignScan *scan_plan;
+ RelOptInfo *rel = best_path->path.parent;
+ Index scan_relid = rel->relid;
+ Oid rel_oid = InvalidOid;
+ Plan *outer_plan = NULL;
+
+ Assert(rel->fdwroutine != NULL);
+
+ /* transform the child path if any */
+ if (best_path->fdw_outerpath)
+ outer_plan = create_plan_recurse(root, best_path->fdw_outerpath,
+ CP_EXACT_TLIST);
+
+ /*
+ * If we're scanning a base relation, fetch its OID. (Irrelevant if
+ * scanning a join relation.)
+ */
+ if (scan_relid > 0)
+ {
+ RangeTblEntry *rte;
+
+ Assert(rel->rtekind == RTE_RELATION);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_RELATION);
+ rel_oid = rte->relid;
+ }
+
+ /*
+ * Sort clauses into best execution order. We do this first since the FDW
+ * might have more info than we do and wish to adjust the ordering.
+ */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /*
+ * Let the FDW perform its processing on the restriction clauses and
+ * generate the plan node. Note that the FDW might remove restriction
+ * clauses that it intends to execute remotely, or even add more (if it
+ * has selected some join clauses for remote use but also wants them
+ * rechecked locally).
+ */
+ scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid,
+ best_path,
+ tlist, scan_clauses,
+ outer_plan);
+
+ /* Copy cost data from Path to Plan; no need to make FDW do this */
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ /* Copy foreign server OID; likewise, no need to make FDW do this */
+ scan_plan->fs_server = rel->serverid;
+
+ /*
+ * Likewise, copy the relids that are represented by this foreign scan. An
+ * upper rel doesn't have relids set, but it covers all the base relations
+ * participating in the underlying scan, so use root's all_baserels.
+ */
+ if (rel->reloptkind == RELOPT_UPPER_REL)
+ scan_plan->fs_relids = root->all_baserels;
+ else
+ scan_plan->fs_relids = best_path->path.parent->relids;
+
+ /*
+ * If this is a foreign join, and to make it valid to push down we had to
+ * assume that the current user is the same as some user explicitly named
+ * in the query, mark the finished plan as depending on the current user.
+ */
+ if (rel->useridiscurrent)
+ root->glob->dependsOnRole = true;
+
+ /*
+ * Replace any outer-relation variables with nestloop params in the qual,
+ * fdw_exprs and fdw_recheck_quals expressions. We do this last so that
+ * the FDW doesn't have to be involved. (Note that parts of fdw_exprs or
+ * fdw_recheck_quals could have come from join clauses, so doing this
+ * beforehand on the scan_clauses wouldn't work.) We assume
+ * fdw_scan_tlist contains no such variables.
+ */
+ if (best_path->path.param_info)
+ {
+ scan_plan->scan.plan.qual = (List *)
+ replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
+ scan_plan->fdw_exprs = (List *)
+ replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
+ scan_plan->fdw_recheck_quals = (List *)
+ replace_nestloop_params(root,
+ (Node *) scan_plan->fdw_recheck_quals);
+ }
+
+ /*
+ * If rel is a base relation, detect whether any system columns are
+ * requested from the rel. (If rel is a join relation, rel->relid will be
+ * 0, but there can be no Var with relid 0 in the rel's targetlist or the
+ * restriction clauses, so we skip this in that case. Note that any such
+ * columns in base relations that were joined are assumed to be contained
+ * in fdw_scan_tlist.) This is a bit of a kluge and might go away
+ * someday, so we intentionally leave it out of the API presented to FDWs.
+ */
+ scan_plan->fsSystemCol = false;
+ if (scan_relid > 0)
+ {
+ Bitmapset *attrs_used = NULL;
+ ListCell *lc;
+ int i;
+
+ /*
+ * First, examine all the attributes needed for joins or final output.
+ * Note: we must look at rel's targetlist, not the attr_needed data,
+ * because attr_needed isn't computed for inheritance child rels.
+ */
+ pull_varattnos((Node *) rel->reltarget->exprs, scan_relid, &attrs_used);
+
+ /* Add all the attributes used by restriction clauses. */
+ foreach(lc, rel->baserestrictinfo)
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
+
+ pull_varattnos((Node *) rinfo->clause, scan_relid, &attrs_used);
+ }
+
+ /* Now, are any system columns requested from rel? */
+ for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
+ {
+ if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used))
+ {
+ scan_plan->fsSystemCol = true;
+ break;
+ }
+ }
+
+ bms_free(attrs_used);
+ }
+
+ return scan_plan;
+}
+
+/*
+ * create_customscan_plan
+ *
+ * Transform a CustomPath into a Plan.
+ */
+static CustomScan *
+create_customscan_plan(PlannerInfo *root, CustomPath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ CustomScan *cplan;
+ RelOptInfo *rel = best_path->path.parent;
+ List *custom_plans = NIL;
+ ListCell *lc;
+
+ /* Recursively transform child paths. */
+ foreach(lc, best_path->custom_paths)
+ {
+ Plan *plan = create_plan_recurse(root, (Path *) lfirst(lc),
+ CP_EXACT_TLIST);
+
+ custom_plans = lappend(custom_plans, plan);
+ }
+
+ /*
+ * Sort clauses into the best execution order, although custom-scan
+ * provider can reorder them again.
+ */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /*
+ * Invoke custom plan provider to create the Plan node represented by the
+ * CustomPath.
+ */
+ cplan = castNode(CustomScan,
+ best_path->methods->PlanCustomPath(root,
+ rel,
+ best_path,
+ tlist,
+ scan_clauses,
+ custom_plans));
+
+ /*
+ * Copy cost data from Path to Plan; no need to make custom-plan providers
+ * do this
+ */
+ copy_generic_path_info(&cplan->scan.plan, &best_path->path);
+
+ /* Likewise, copy the relids that are represented by this custom scan */
+ cplan->custom_relids = best_path->path.parent->relids;
+
+ /*
+ * Replace any outer-relation variables with nestloop params in the qual
+ * and custom_exprs expressions. We do this last so that the custom-plan
+ * provider doesn't have to be involved. (Note that parts of custom_exprs
+ * could have come from join clauses, so doing this beforehand on the
+ * scan_clauses wouldn't work.) We assume custom_scan_tlist contains no
+ * such variables.
+ */
+ if (best_path->path.param_info)
+ {
+ cplan->scan.plan.qual = (List *)
+ replace_nestloop_params(root, (Node *) cplan->scan.plan.qual);
+ cplan->custom_exprs = (List *)
+ replace_nestloop_params(root, (Node *) cplan->custom_exprs);
+ }
+
+ return cplan;
+}
+
+
+/*****************************************************************************
+ *
+ * JOIN METHODS
+ *
+ *****************************************************************************/
+
+static NestLoop *
+create_nestloop_plan(PlannerInfo *root,
+ NestPath *best_path)
+{
+ NestLoop *join_plan;
+ Plan *outer_plan;
+ Plan *inner_plan;
+ List *tlist = build_path_tlist(root, &best_path->path);
+ List *joinrestrictclauses = best_path->joinrestrictinfo;
+ List *joinclauses;
+ List *otherclauses;
+ Relids outerrelids;
+ List *nestParams;
+ Relids saveOuterRels = root->curOuterRels;
+
+ /* NestLoop can project, so no need to be picky about child tlists */
+ outer_plan = create_plan_recurse(root, best_path->outerjoinpath, 0);
+
+ /* For a nestloop, include outer relids in curOuterRels for inner side */
+ root->curOuterRels = bms_union(root->curOuterRels,
+ best_path->outerjoinpath->parent->relids);
+
+ inner_plan = create_plan_recurse(root, best_path->innerjoinpath, 0);
+
+ /* Restore curOuterRels */
+ bms_free(root->curOuterRels);
+ root->curOuterRels = saveOuterRels;
+
+ /* Sort join qual clauses into best execution order */
+ joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);
+
+ /* Get the join qual clauses (in plain expression form) */
+ /* Any pseudoconstant clauses are ignored here */
+ if (IS_OUTER_JOIN(best_path->jointype))
+ {
+ extract_actual_join_clauses(joinrestrictclauses,
+ best_path->path.parent->relids,
+ &joinclauses, &otherclauses);
+ }
+ else
+ {
+ /* We can treat all clauses alike for an inner join */
+ joinclauses = extract_actual_clauses(joinrestrictclauses, false);
+ otherclauses = NIL;
+ }
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->path.param_info)
+ {
+ joinclauses = (List *)
+ replace_nestloop_params(root, (Node *) joinclauses);
+ otherclauses = (List *)
+ replace_nestloop_params(root, (Node *) otherclauses);
+ }
+
+ /*
+ * Identify any nestloop parameters that should be supplied by this join
+ * node, and remove them from root->curOuterParams.
+ */
+ outerrelids = best_path->outerjoinpath->parent->relids;
+ nestParams = identify_current_nestloop_params(root, outerrelids);
+
+ join_plan = make_nestloop(tlist,
+ joinclauses,
+ otherclauses,
+ nestParams,
+ outer_plan,
+ inner_plan,
+ best_path->jointype,
+ best_path->inner_unique);
+
+ copy_generic_path_info(&join_plan->join.plan, &best_path->path);
+
+ return join_plan;
+}
+
+static MergeJoin *
+create_mergejoin_plan(PlannerInfo *root,
+ MergePath *best_path)
+{
+ MergeJoin *join_plan;
+ Plan *outer_plan;
+ Plan *inner_plan;
+ List *tlist = build_path_tlist(root, &best_path->jpath.path);
+ List *joinclauses;
+ List *otherclauses;
+ List *mergeclauses;
+ List *outerpathkeys;
+ List *innerpathkeys;
+ int nClauses;
+ Oid *mergefamilies;
+ Oid *mergecollations;
+ int *mergestrategies;
+ bool *mergenullsfirst;
+ PathKey *opathkey;
+ EquivalenceClass *opeclass;
+ int i;
+ ListCell *lc;
+ ListCell *lop;
+ ListCell *lip;
+ Path *outer_path = best_path->jpath.outerjoinpath;
+ Path *inner_path = best_path->jpath.innerjoinpath;
+
+ /*
+ * MergeJoin can project, so we don't have to demand exact tlists from the
+ * inputs. However, if we're intending to sort an input's result, it's
+ * best to request a small tlist so we aren't sorting more data than
+ * necessary.
+ */
+ outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
+ (best_path->outersortkeys != NIL) ? CP_SMALL_TLIST : 0);
+
+ inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
+ (best_path->innersortkeys != NIL) ? CP_SMALL_TLIST : 0);
+
+ /* Sort join qual clauses into best execution order */
+ /* NB: do NOT reorder the mergeclauses */
+ joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
+
+ /* Get the join qual clauses (in plain expression form) */
+ /* Any pseudoconstant clauses are ignored here */
+ if (IS_OUTER_JOIN(best_path->jpath.jointype))
+ {
+ extract_actual_join_clauses(joinclauses,
+ best_path->jpath.path.parent->relids,
+ &joinclauses, &otherclauses);
+ }
+ else
+ {
+ /* We can treat all clauses alike for an inner join */
+ joinclauses = extract_actual_clauses(joinclauses, false);
+ otherclauses = NIL;
+ }
+
+ /*
+ * Remove the mergeclauses from the list of join qual clauses, leaving the
+ * list of quals that must be checked as qpquals.
+ */
+ mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
+ joinclauses = list_difference(joinclauses, mergeclauses);
+
+ /*
+ * Replace any outer-relation variables with nestloop params. There
+ * should not be any in the mergeclauses.
+ */
+ if (best_path->jpath.path.param_info)
+ {
+ joinclauses = (List *)
+ replace_nestloop_params(root, (Node *) joinclauses);
+ otherclauses = (List *)
+ replace_nestloop_params(root, (Node *) otherclauses);
+ }
+
+ /*
+ * Rearrange mergeclauses, if needed, so that the outer variable is always
+ * on the left; mark the mergeclause restrictinfos with correct
+ * outer_is_left status.
+ */
+ mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
+ best_path->jpath.outerjoinpath->parent->relids);
+
+ /*
+ * Create explicit sort nodes for the outer and inner paths if necessary.
+ */
+ if (best_path->outersortkeys)
+ {
+ Relids outer_relids = outer_path->parent->relids;
+ Sort *sort = make_sort_from_pathkeys(outer_plan,
+ best_path->outersortkeys,
+ outer_relids);
+
+ label_sort_with_costsize(root, sort, -1.0);
+ outer_plan = (Plan *) sort;
+ outerpathkeys = best_path->outersortkeys;
+ }
+ else
+ outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;
+
+ if (best_path->innersortkeys)
+ {
+ Relids inner_relids = inner_path->parent->relids;
+ Sort *sort = make_sort_from_pathkeys(inner_plan,
+ best_path->innersortkeys,
+ inner_relids);
+
+ label_sort_with_costsize(root, sort, -1.0);
+ inner_plan = (Plan *) sort;
+ innerpathkeys = best_path->innersortkeys;
+ }
+ else
+ innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;
+
+ /*
+ * If specified, add a materialize node to shield the inner plan from the
+ * need to handle mark/restore.
+ */
+ if (best_path->materialize_inner)
+ {
+ Plan *matplan = (Plan *) make_material(inner_plan);
+
+ /*
+ * We assume the materialize will not spill to disk, and therefore
+ * charge just cpu_operator_cost per tuple. (Keep this estimate in
+ * sync with final_cost_mergejoin.)
+ */
+ copy_plan_costsize(matplan, inner_plan);
+ matplan->total_cost += cpu_operator_cost * matplan->plan_rows;
+
+ inner_plan = matplan;
+ }
+
+ /*
+ * Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
+ * executor. The information is in the pathkeys for the two inputs, but
+ * we need to be careful about the possibility of mergeclauses sharing a
+ * pathkey, as well as the possibility that the inner pathkeys are not in
+ * an order matching the mergeclauses.
+ */
+ nClauses = list_length(mergeclauses);
+ Assert(nClauses == list_length(best_path->path_mergeclauses));
+ mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
+ mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
+ mergestrategies = (int *) palloc(nClauses * sizeof(int));
+ mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));
+
+ opathkey = NULL;
+ opeclass = NULL;
+ lop = list_head(outerpathkeys);
+ lip = list_head(innerpathkeys);
+ i = 0;
+ foreach(lc, best_path->path_mergeclauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
+ EquivalenceClass *oeclass;
+ EquivalenceClass *ieclass;
+ PathKey *ipathkey = NULL;
+ EquivalenceClass *ipeclass = NULL;
+ bool first_inner_match = false;
+
+ /* fetch outer/inner eclass from mergeclause */
+ if (rinfo->outer_is_left)
+ {
+ oeclass = rinfo->left_ec;
+ ieclass = rinfo->right_ec;
+ }
+ else
+ {
+ oeclass = rinfo->right_ec;
+ ieclass = rinfo->left_ec;
+ }
+ Assert(oeclass != NULL);
+ Assert(ieclass != NULL);
+
+ /*
+ * We must identify the pathkey elements associated with this clause
+ * by matching the eclasses (which should give a unique match, since
+ * the pathkey lists should be canonical). In typical cases the merge
+ * clauses are one-to-one with the pathkeys, but when dealing with
+ * partially redundant query conditions, things are more complicated.
+ *
+ * lop and lip reference the first as-yet-unmatched pathkey elements.
+ * If they're NULL then all pathkey elements have been matched.
+ *
+ * The ordering of the outer pathkeys should match the mergeclauses,
+ * by construction (see find_mergeclauses_for_outer_pathkeys()). There
+ * could be more than one mergeclause for the same outer pathkey, but
+ * no pathkey may be entirely skipped over.
+ */
+ if (oeclass != opeclass) /* multiple matches are not interesting */
+ {
+ /* doesn't match the current opathkey, so must match the next */
+ if (lop == NULL)
+ elog(ERROR, "outer pathkeys do not match mergeclauses");
+ opathkey = (PathKey *) lfirst(lop);
+ opeclass = opathkey->pk_eclass;
+ lop = lnext(outerpathkeys, lop);
+ if (oeclass != opeclass)
+ elog(ERROR, "outer pathkeys do not match mergeclauses");
+ }
+
+ /*
+ * The inner pathkeys likewise should not have skipped-over keys, but
+ * it's possible for a mergeclause to reference some earlier inner
+ * pathkey if we had redundant pathkeys. For example we might have
+ * mergeclauses like "o.a = i.x AND o.b = i.y AND o.c = i.x". The
+ * implied inner ordering is then "ORDER BY x, y, x", but the pathkey
+ * mechanism drops the second sort by x as redundant, and this code
+ * must cope.
+ *
+ * It's also possible for the implied inner-rel ordering to be like
+ * "ORDER BY x, y, x DESC". We still drop the second instance of x as
+ * redundant; but this means that the sort ordering of a redundant
+ * inner pathkey should not be considered significant. So we must
+ * detect whether this is the first clause matching an inner pathkey.
+ */
+ if (lip)
+ {
+ ipathkey = (PathKey *) lfirst(lip);
+ ipeclass = ipathkey->pk_eclass;
+ if (ieclass == ipeclass)
+ {
+ /* successful first match to this inner pathkey */
+ lip = lnext(innerpathkeys, lip);
+ first_inner_match = true;
+ }
+ }
+ if (!first_inner_match)
+ {
+ /* redundant clause ... must match something before lip */
+ ListCell *l2;
+
+ foreach(l2, innerpathkeys)
+ {
+ if (l2 == lip)
+ break;
+ ipathkey = (PathKey *) lfirst(l2);
+ ipeclass = ipathkey->pk_eclass;
+ if (ieclass == ipeclass)
+ break;
+ }
+ if (ieclass != ipeclass)
+ elog(ERROR, "inner pathkeys do not match mergeclauses");
+ }
+
+ /*
+ * The pathkeys should always match each other as to opfamily and
+ * collation (which affect equality), but if we're considering a
+ * redundant inner pathkey, its sort ordering might not match. In
+ * such cases we may ignore the inner pathkey's sort ordering and use
+ * the outer's. (In effect, we're lying to the executor about the
+ * sort direction of this inner column, but it does not matter since
+ * the run-time row comparisons would only reach this column when
+ * there's equality for the earlier column containing the same eclass.
+ * There could be only one value in this column for the range of inner
+ * rows having a given value in the earlier column, so it does not
+ * matter which way we imagine this column to be ordered.) But a
+ * non-redundant inner pathkey had better match outer's ordering too.
+ */
+ if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
+ opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation)
+ elog(ERROR, "left and right pathkeys do not match in mergejoin");
+ if (first_inner_match &&
+ (opathkey->pk_strategy != ipathkey->pk_strategy ||
+ opathkey->pk_nulls_first != ipathkey->pk_nulls_first))
+ elog(ERROR, "left and right pathkeys do not match in mergejoin");
+
+ /* OK, save info for executor */
+ mergefamilies[i] = opathkey->pk_opfamily;
+ mergecollations[i] = opathkey->pk_eclass->ec_collation;
+ mergestrategies[i] = opathkey->pk_strategy;
+ mergenullsfirst[i] = opathkey->pk_nulls_first;
+ i++;
+ }
+
+ /*
+ * Note: it is not an error if we have additional pathkey elements (i.e.,
+ * lop or lip isn't NULL here). The input paths might be better-sorted
+ * than we need for the current mergejoin.
+ */
+
+ /*
+ * Now we can build the mergejoin node.
+ */
+ join_plan = make_mergejoin(tlist,
+ joinclauses,
+ otherclauses,
+ mergeclauses,
+ mergefamilies,
+ mergecollations,
+ mergestrategies,
+ mergenullsfirst,
+ outer_plan,
+ inner_plan,
+ best_path->jpath.jointype,
+ best_path->jpath.inner_unique,
+ best_path->skip_mark_restore);
+
+ /* Costs of sort and material steps are included in path cost already */
+ copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
+
+ return join_plan;
+}
+
+static HashJoin *
+create_hashjoin_plan(PlannerInfo *root,
+ HashPath *best_path)
+{
+ HashJoin *join_plan;
+ Hash *hash_plan;
+ Plan *outer_plan;
+ Plan *inner_plan;
+ List *tlist = build_path_tlist(root, &best_path->jpath.path);
+ List *joinclauses;
+ List *otherclauses;
+ List *hashclauses;
+ List *hashoperators = NIL;
+ List *hashcollations = NIL;
+ List *inner_hashkeys = NIL;
+ List *outer_hashkeys = NIL;
+ Oid skewTable = InvalidOid;
+ AttrNumber skewColumn = InvalidAttrNumber;
+ bool skewInherit = false;
+ ListCell *lc;
+
+ /*
+ * HashJoin can project, so we don't have to demand exact tlists from the
+ * inputs. However, it's best to request a small tlist from the inner
+ * side, so that we aren't storing more data than necessary. Likewise, if
+ * we anticipate batching, request a small tlist from the outer side so
+ * that we don't put extra data in the outer batch files.
+ */
+ outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
+ (best_path->num_batches > 1) ? CP_SMALL_TLIST : 0);
+
+ inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
+ CP_SMALL_TLIST);
+
+ /* Sort join qual clauses into best execution order */
+ joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
+ /* There's no point in sorting the hash clauses ... */
+
+ /* Get the join qual clauses (in plain expression form) */
+ /* Any pseudoconstant clauses are ignored here */
+ if (IS_OUTER_JOIN(best_path->jpath.jointype))
+ {
+ extract_actual_join_clauses(joinclauses,
+ best_path->jpath.path.parent->relids,
+ &joinclauses, &otherclauses);
+ }
+ else
+ {
+ /* We can treat all clauses alike for an inner join */
+ joinclauses = extract_actual_clauses(joinclauses, false);
+ otherclauses = NIL;
+ }
+
+ /*
+ * Remove the hashclauses from the list of join qual clauses, leaving the
+ * list of quals that must be checked as qpquals.
+ */
+ hashclauses = get_actual_clauses(best_path->path_hashclauses);
+ joinclauses = list_difference(joinclauses, hashclauses);
+
+ /*
+ * Replace any outer-relation variables with nestloop params. There
+ * should not be any in the hashclauses.
+ */
+ if (best_path->jpath.path.param_info)
+ {
+ joinclauses = (List *)
+ replace_nestloop_params(root, (Node *) joinclauses);
+ otherclauses = (List *)
+ replace_nestloop_params(root, (Node *) otherclauses);
+ }
+
+ /*
+ * Rearrange hashclauses, if needed, so that the outer variable is always
+ * on the left.
+ */
+ hashclauses = get_switched_clauses(best_path->path_hashclauses,
+ best_path->jpath.outerjoinpath->parent->relids);
+
+ /*
+ * If there is a single join clause and we can identify the outer variable
+ * as a simple column reference, supply its identity for possible use in
+ * skew optimization. (Note: in principle we could do skew optimization
+ * with multiple join clauses, but we'd have to be able to determine the
+ * most common combinations of outer values, which we don't currently have
+ * enough stats for.)
+ */
+ if (list_length(hashclauses) == 1)
+ {
+ OpExpr *clause = (OpExpr *) linitial(hashclauses);
+ Node *node;
+
+ Assert(is_opclause(clause));
+ node = (Node *) linitial(clause->args);
+ if (IsA(node, RelabelType))
+ node = (Node *) ((RelabelType *) node)->arg;
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+ RangeTblEntry *rte;
+
+ rte = root->simple_rte_array[var->varno];
+ if (rte->rtekind == RTE_RELATION)
+ {
+ skewTable = rte->relid;
+ skewColumn = var->varattno;
+ skewInherit = rte->inh;
+ }
+ }
+ }
+
+ /*
+ * Collect hash related information. The hashed expressions are
+ * deconstructed into outer/inner expressions, so they can be computed
+ * separately (inner expressions are used to build the hashtable via Hash,
+ * outer expressions to perform lookups of tuples from HashJoin's outer
+ * plan in the hashtable). Also collect operator information necessary to
+ * build the hashtable.
+ */
+ foreach(lc, hashclauses)
+ {
+ OpExpr *hclause = lfirst_node(OpExpr, lc);
+
+ hashoperators = lappend_oid(hashoperators, hclause->opno);
+ hashcollations = lappend_oid(hashcollations, hclause->inputcollid);
+ outer_hashkeys = lappend(outer_hashkeys, linitial(hclause->args));
+ inner_hashkeys = lappend(inner_hashkeys, lsecond(hclause->args));
+ }
+
+ /*
+ * Build the hash node and hash join node.
+ */
+ hash_plan = make_hash(inner_plan,
+ inner_hashkeys,
+ skewTable,
+ skewColumn,
+ skewInherit);
+
+ /*
+ * Set Hash node's startup & total costs equal to total cost of input
+ * plan; this only affects EXPLAIN display not decisions.
+ */
+ copy_plan_costsize(&hash_plan->plan, inner_plan);
+ hash_plan->plan.startup_cost = hash_plan->plan.total_cost;
+
+ /*
+ * If parallel-aware, the executor will also need an estimate of the total
+ * number of rows expected from all participants so that it can size the
+ * shared hash table.
+ */
+ if (best_path->jpath.path.parallel_aware)
+ {
+ hash_plan->plan.parallel_aware = true;
+ hash_plan->rows_total = best_path->inner_rows_total;
+ }
+
+ join_plan = make_hashjoin(tlist,
+ joinclauses,
+ otherclauses,
+ hashclauses,
+ hashoperators,
+ hashcollations,
+ outer_hashkeys,
+ outer_plan,
+ (Plan *) hash_plan,
+ best_path->jpath.jointype,
+ best_path->jpath.inner_unique);
+
+ copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
+
+ return join_plan;
+}
+
+
+/*****************************************************************************
+ *
+ * SUPPORTING ROUTINES
+ *
+ *****************************************************************************/
+
+/*
+ * replace_nestloop_params
+ * Replace outer-relation Vars and PlaceHolderVars in the given expression
+ * with nestloop Params
+ *
+ * All Vars and PlaceHolderVars belonging to the relation(s) identified by
+ * root->curOuterRels are replaced by Params, and entries are added to
+ * root->curOuterParams if not already present.
+ */
+static Node *
+replace_nestloop_params(PlannerInfo *root, Node *expr)
+{
+ /* No setup needed for tree walk, so away we go */
+ return replace_nestloop_params_mutator(expr, root);
+}
+
+static Node *
+replace_nestloop_params_mutator(Node *node, PlannerInfo *root)
+{
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+
+ /* Upper-level Vars should be long gone at this point */
+ Assert(var->varlevelsup == 0);
+ /* If not to be replaced, we can just return the Var unmodified */
+ if (!bms_is_member(var->varno, root->curOuterRels))
+ return node;
+ /* Replace the Var with a nestloop Param */
+ return (Node *) replace_nestloop_param_var(root, var);
+ }
+ if (IsA(node, PlaceHolderVar))
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+
+ /* Upper-level PlaceHolderVars should be long gone at this point */
+ Assert(phv->phlevelsup == 0);
+
+ /*
+ * Check whether we need to replace the PHV. We use bms_overlap as a
+ * cheap/quick test to see if the PHV might be evaluated in the outer
+ * rels, and then grab its PlaceHolderInfo to tell for sure.
+ */
+ if (!bms_overlap(phv->phrels, root->curOuterRels) ||
+ !bms_is_subset(find_placeholder_info(root, phv, false)->ph_eval_at,
+ root->curOuterRels))
+ {
+ /*
+ * We can't replace the whole PHV, but we might still need to
+ * replace Vars or PHVs within its expression, in case it ends up
+ * actually getting evaluated here. (It might get evaluated in
+ * this plan node, or some child node; in the latter case we don't
+ * really need to process the expression here, but we haven't got
+ * enough info to tell if that's the case.) Flat-copy the PHV
+ * node and then recurse on its expression.
+ *
+ * Note that after doing this, we might have different
+ * representations of the contents of the same PHV in different
+ * parts of the plan tree. This is OK because equal() will just
+ * match on phid/phlevelsup, so setrefs.c will still recognize an
+ * upper-level reference to a lower-level copy of the same PHV.
+ */
+ PlaceHolderVar *newphv = makeNode(PlaceHolderVar);
+
+ memcpy(newphv, phv, sizeof(PlaceHolderVar));
+ newphv->phexpr = (Expr *)
+ replace_nestloop_params_mutator((Node *) phv->phexpr,
+ root);
+ return (Node *) newphv;
+ }
+ /* Replace the PlaceHolderVar with a nestloop Param */
+ return (Node *) replace_nestloop_param_placeholdervar(root, phv);
+ }
+ return expression_tree_mutator(node,
+ replace_nestloop_params_mutator,
+ (void *) root);
+}
+
+/*
+ * fix_indexqual_references
+ * Adjust indexqual clauses to the form the executor's indexqual
+ * machinery needs.
+ *
+ * We have three tasks here:
+ * * Select the actual qual clauses out of the input IndexClause list,
+ * and remove RestrictInfo nodes from the qual clauses.
+ * * Replace any outer-relation Var or PHV nodes with nestloop Params.
+ * (XXX eventually, that responsibility should go elsewhere?)
+ * * Index keys must be represented by Var nodes with varattno set to the
+ * index's attribute number, not the attribute number in the original rel.
+ *
+ * *stripped_indexquals_p receives a list of the actual qual clauses.
+ *
+ * *fixed_indexquals_p receives a list of the adjusted quals. This is a copy
+ * that shares no substructure with the original; this is needed in case there
+ * are subplans in it (we need two separate copies of the subplan tree, or
+ * things will go awry).
+ */
+static void
+fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
+ List **stripped_indexquals_p, List **fixed_indexquals_p)
+{
+ IndexOptInfo *index = index_path->indexinfo;
+ List *stripped_indexquals;
+ List *fixed_indexquals;
+ ListCell *lc;
+
+ stripped_indexquals = fixed_indexquals = NIL;
+
+ foreach(lc, index_path->indexclauses)
+ {
+ IndexClause *iclause = lfirst_node(IndexClause, lc);
+ int indexcol = iclause->indexcol;
+ ListCell *lc2;
+
+ foreach(lc2, iclause->indexquals)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
+ Node *clause = (Node *) rinfo->clause;
+
+ stripped_indexquals = lappend(stripped_indexquals, clause);
+ clause = fix_indexqual_clause(root, index, indexcol,
+ clause, iclause->indexcols);
+ fixed_indexquals = lappend(fixed_indexquals, clause);
+ }
+ }
+
+ *stripped_indexquals_p = stripped_indexquals;
+ *fixed_indexquals_p = fixed_indexquals;
+}
+
+/*
+ * fix_indexorderby_references
+ * Adjust indexorderby clauses to the form the executor's index
+ * machinery needs.
+ *
+ * This is a simplified version of fix_indexqual_references. The input is
+ * bare clauses and a separate indexcol list, instead of IndexClauses.
+ */
+static List *
+fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path)
+{
+ IndexOptInfo *index = index_path->indexinfo;
+ List *fixed_indexorderbys;
+ ListCell *lcc,
+ *lci;
+
+ fixed_indexorderbys = NIL;
+
+ forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
+ {
+ Node *clause = (Node *) lfirst(lcc);
+ int indexcol = lfirst_int(lci);
+
+ clause = fix_indexqual_clause(root, index, indexcol, clause, NIL);
+ fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
+ }
+
+ return fixed_indexorderbys;
+}
+
+/*
+ * fix_indexqual_clause
+ * Convert a single indexqual clause to the form needed by the executor.
+ *
+ * We replace nestloop params here, and replace the index key variables
+ * or expressions by index Var nodes.
+ */
+static Node *
+fix_indexqual_clause(PlannerInfo *root, IndexOptInfo *index, int indexcol,
+ Node *clause, List *indexcolnos)
+{
+ /*
+ * Replace any outer-relation variables with nestloop params.
+ *
+ * This also makes a copy of the clause, so it's safe to modify it
+ * in-place below.
+ */
+ clause = replace_nestloop_params(root, clause);
+
+ if (IsA(clause, OpExpr))
+ {
+ OpExpr *op = (OpExpr *) clause;
+
+ /* Replace the indexkey expression with an index Var. */
+ linitial(op->args) = fix_indexqual_operand(linitial(op->args),
+ index,
+ indexcol);
+ }
+ else if (IsA(clause, RowCompareExpr))
+ {
+ RowCompareExpr *rc = (RowCompareExpr *) clause;
+ ListCell *lca,
+ *lcai;
+
+ /* Replace the indexkey expressions with index Vars. */
+ Assert(list_length(rc->largs) == list_length(indexcolnos));
+ forboth(lca, rc->largs, lcai, indexcolnos)
+ {
+ lfirst(lca) = fix_indexqual_operand(lfirst(lca),
+ index,
+ lfirst_int(lcai));
+ }
+ }
+ else if (IsA(clause, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
+
+ /* Replace the indexkey expression with an index Var. */
+ linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
+ index,
+ indexcol);
+ }
+ else if (IsA(clause, NullTest))
+ {
+ NullTest *nt = (NullTest *) clause;
+
+ /* Replace the indexkey expression with an index Var. */
+ nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
+ index,
+ indexcol);
+ }
+ else
+ elog(ERROR, "unsupported indexqual type: %d",
+ (int) nodeTag(clause));
+
+ return clause;
+}
+
+/*
+ * fix_indexqual_operand
+ * Convert an indexqual expression to a Var referencing the index column.
+ *
+ * We represent index keys by Var nodes having varno == INDEX_VAR and varattno
+ * equal to the index's attribute number (index column position).
+ *
+ * Most of the code here is just for sanity cross-checking that the given
+ * expression actually matches the index column it's claimed to.
+ */
+static Node *
+fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol)
+{
+ Var *result;
+ int pos;
+ ListCell *indexpr_item;
+
+ /*
+ * Remove any binary-compatible relabeling of the indexkey
+ */
+ if (IsA(node, RelabelType))
+ node = (Node *) ((RelabelType *) node)->arg;
+
+ Assert(indexcol >= 0 && indexcol < index->ncolumns);
+
+ if (index->indexkeys[indexcol] != 0)
+ {
+ /* It's a simple index column */
+ if (IsA(node, Var) &&
+ ((Var *) node)->varno == index->rel->relid &&
+ ((Var *) node)->varattno == index->indexkeys[indexcol])
+ {
+ result = (Var *) copyObject(node);
+ result->varno = INDEX_VAR;
+ result->varattno = indexcol + 1;
+ return (Node *) result;
+ }
+ else
+ elog(ERROR, "index key does not match expected index column");
+ }
+
+ /* It's an index expression, so find and cross-check the expression */
+ indexpr_item = list_head(index->indexprs);
+ for (pos = 0; pos < index->ncolumns; pos++)
+ {
+ if (index->indexkeys[pos] == 0)
+ {
+ if (indexpr_item == NULL)
+ elog(ERROR, "too few entries in indexprs list");
+ if (pos == indexcol)
+ {
+ Node *indexkey;
+
+ indexkey = (Node *) lfirst(indexpr_item);
+ if (indexkey && IsA(indexkey, RelabelType))
+ indexkey = (Node *) ((RelabelType *) indexkey)->arg;
+ if (equal(node, indexkey))
+ {
+ result = makeVar(INDEX_VAR, indexcol + 1,
+ exprType(lfirst(indexpr_item)), -1,
+ exprCollation(lfirst(indexpr_item)),
+ 0);
+ return (Node *) result;
+ }
+ else
+ elog(ERROR, "index key does not match expected index column");
+ }
+ indexpr_item = lnext(index->indexprs, indexpr_item);
+ }
+ }
+
+ /* Oops... */
+ elog(ERROR, "index key does not match expected index column");
+ return NULL; /* keep compiler quiet */
+}
+
+/*
+ * get_switched_clauses
+ * Given a list of merge or hash joinclauses (as RestrictInfo nodes),
+ * extract the bare clauses, and rearrange the elements within the
+ * clauses, if needed, so the outer join variable is on the left and
+ * the inner is on the right. The original clause data structure is not
+ * touched; a modified list is returned. We do, however, set the transient
+ * outer_is_left field in each RestrictInfo to show which side was which.
+ */
+static List *
+get_switched_clauses(List *clauses, Relids outerrelids)
+{
+ List *t_list = NIL;
+ ListCell *l;
+
+ foreach(l, clauses)
+ {
+ RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
+ OpExpr *clause = (OpExpr *) restrictinfo->clause;
+
+ Assert(is_opclause(clause));
+ if (bms_is_subset(restrictinfo->right_relids, outerrelids))
+ {
+ /*
+ * Duplicate just enough of the structure to allow commuting the
+ * clause without changing the original list. Could use
+ * copyObject, but a complete deep copy is overkill.
+ */
+ OpExpr *temp = makeNode(OpExpr);
+
+ temp->opno = clause->opno;
+ temp->opfuncid = InvalidOid;
+ temp->opresulttype = clause->opresulttype;
+ temp->opretset = clause->opretset;
+ temp->opcollid = clause->opcollid;
+ temp->inputcollid = clause->inputcollid;
+ temp->args = list_copy(clause->args);
+ temp->location = clause->location;
+ /* Commute it --- note this modifies the temp node in-place. */
+ CommuteOpExpr(temp);
+ t_list = lappend(t_list, temp);
+ restrictinfo->outer_is_left = false;
+ }
+ else
+ {
+ Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
+ t_list = lappend(t_list, clause);
+ restrictinfo->outer_is_left = true;
+ }
+ }
+ return t_list;
+}
+
+/*
+ * order_qual_clauses
+ * Given a list of qual clauses that will all be evaluated at the same
+ * plan node, sort the list into the order we want to check the quals
+ * in at runtime.
+ *
+ * When security barrier quals are used in the query, we may have quals with
+ * different security levels in the list. Quals of lower security_level
+ * must go before quals of higher security_level, except that we can grant
+ * exceptions to move up quals that are leakproof. When security level
+ * doesn't force the decision, we prefer to order clauses by estimated
+ * execution cost, cheapest first.
+ *
+ * Ideally the order should be driven by a combination of execution cost and
+ * selectivity, but it's not immediately clear how to account for both,
+ * and given the uncertainty of the estimates the reliability of the decisions
+ * would be doubtful anyway. So we just order by security level then
+ * estimated per-tuple cost, being careful not to change the order when
+ * (as is often the case) the estimates are identical.
+ *
+ * Although this will work on either bare clauses or RestrictInfos, it's
+ * much faster to apply it to RestrictInfos, since it can re-use cost
+ * information that is cached in RestrictInfos. XXX in the bare-clause
+ * case, we are also not able to apply security considerations. That is
+ * all right for the moment, because the bare-clause case doesn't occur
+ * anywhere that barrier quals could be present, but it would be better to
+ * get rid of it.
+ *
+ * Note: some callers pass lists that contain entries that will later be
+ * removed; this is the easiest way to let this routine see RestrictInfos
+ * instead of bare clauses. This is another reason why trying to consider
+ * selectivity in the ordering would likely do the wrong thing.
+ */
+static List *
+order_qual_clauses(PlannerInfo *root, List *clauses)
+{
+ typedef struct
+ {
+ Node *clause;
+ Cost cost;
+ Index security_level;
+ } QualItem;
+ int nitems = list_length(clauses);
+ QualItem *items;
+ ListCell *lc;
+ int i;
+ List *result;
+
+ /* No need to work hard for 0 or 1 clause */
+ if (nitems <= 1)
+ return clauses;
+
+ /*
+ * Collect the items and costs into an array. This is to avoid repeated
+ * cost_qual_eval work if the inputs aren't RestrictInfos.
+ */
+ items = (QualItem *) palloc(nitems * sizeof(QualItem));
+ i = 0;
+ foreach(lc, clauses)
+ {
+ Node *clause = (Node *) lfirst(lc);
+ QualCost qcost;
+
+ cost_qual_eval_node(&qcost, clause, root);
+ items[i].clause = clause;
+ items[i].cost = qcost.per_tuple;
+ if (IsA(clause, RestrictInfo))
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) clause;
+
+ /*
+ * If a clause is leakproof, it doesn't have to be constrained by
+ * its nominal security level. If it's also reasonably cheap
+ * (here defined as 10X cpu_operator_cost), pretend it has
+ * security_level 0, which will allow it to go in front of
+ * more-expensive quals of lower security levels. Of course, that
+ * will also force it to go in front of cheaper quals of its own
+ * security level, which is not so great, but we can alleviate
+ * that risk by applying the cost limit cutoff.
+ */
+ if (rinfo->leakproof && items[i].cost < 10 * cpu_operator_cost)
+ items[i].security_level = 0;
+ else
+ items[i].security_level = rinfo->security_level;
+ }
+ else
+ items[i].security_level = 0;
+ i++;
+ }
+
+ /*
+ * Sort. We don't use qsort() because it's not guaranteed stable for
+ * equal keys. The expected number of entries is small enough that a
+ * simple insertion sort should be good enough.
+ */
+ for (i = 1; i < nitems; i++)
+ {
+ QualItem newitem = items[i];
+ int j;
+
+ /* insert newitem into the already-sorted subarray */
+ for (j = i; j > 0; j--)
+ {
+ QualItem *olditem = &items[j - 1];
+
+ if (newitem.security_level > olditem->security_level ||
+ (newitem.security_level == olditem->security_level &&
+ newitem.cost >= olditem->cost))
+ break;
+ items[j] = *olditem;
+ }
+ items[j] = newitem;
+ }
+
+ /* Convert back to a list */
+ result = NIL;
+ for (i = 0; i < nitems; i++)
+ result = lappend(result, items[i].clause);
+
+ return result;
+}
+
+/*
+ * Copy cost and size info from a Path node to the Plan node created from it.
+ * The executor usually won't use this info, but it's needed by EXPLAIN.
+ * Also copy the parallel-related flags, which the executor *will* use.
+ */
+static void
+copy_generic_path_info(Plan *dest, Path *src)
+{
+ dest->startup_cost = src->startup_cost;
+ dest->total_cost = src->total_cost;
+ dest->plan_rows = src->rows;
+ dest->plan_width = src->pathtarget->width;
+ dest->parallel_aware = src->parallel_aware;
+ dest->parallel_safe = src->parallel_safe;
+}
+
+/*
+ * Copy cost and size info from a lower plan node to an inserted node.
+ * (Most callers alter the info after copying it.)
+ */
+static void
+copy_plan_costsize(Plan *dest, Plan *src)
+{
+ dest->startup_cost = src->startup_cost;
+ dest->total_cost = src->total_cost;
+ dest->plan_rows = src->plan_rows;
+ dest->plan_width = src->plan_width;
+ /* Assume the inserted node is not parallel-aware. */
+ dest->parallel_aware = false;
+ /* Assume the inserted node is parallel-safe, if child plan is. */
+ dest->parallel_safe = src->parallel_safe;
+}
+
+/*
+ * Some places in this file build Sort nodes that don't have a directly
+ * corresponding Path node. The cost of the sort is, or should have been,
+ * included in the cost of the Path node we're working from, but since it's
+ * not split out, we have to re-figure it using cost_sort(). This is just
+ * to label the Sort node nicely for EXPLAIN.
+ *
+ * limit_tuples is as for cost_sort (in particular, pass -1 if no limit)
+ */
+static void
+label_sort_with_costsize(PlannerInfo *root, Sort *plan, double limit_tuples)
+{
+ Plan *lefttree = plan->plan.lefttree;
+ Path sort_path; /* dummy for result of cost_sort */
+
+ /*
+ * This function shouldn't have to deal with IncrementalSort plans because
+ * they are only created from corresponding Path nodes.
+ */
+ Assert(IsA(plan, Sort));
+
+ cost_sort(&sort_path, root, NIL,
+ lefttree->total_cost,
+ lefttree->plan_rows,
+ lefttree->plan_width,
+ 0.0,
+ work_mem,
+ limit_tuples);
+ plan->plan.startup_cost = sort_path.startup_cost;
+ plan->plan.total_cost = sort_path.total_cost;
+ plan->plan.plan_rows = lefttree->plan_rows;
+ plan->plan.plan_width = lefttree->plan_width;
+ plan->plan.parallel_aware = false;
+ plan->plan.parallel_safe = lefttree->parallel_safe;
+}
+
+/*
+ * bitmap_subplan_mark_shared
+ * Set isshared flag in bitmap subplan so that it will be created in
+ * shared memory.
+ */
+static void
+bitmap_subplan_mark_shared(Plan *plan)
+{
+ if (IsA(plan, BitmapAnd))
+ bitmap_subplan_mark_shared(linitial(((BitmapAnd *) plan)->bitmapplans));
+ else if (IsA(plan, BitmapOr))
+ {
+ ((BitmapOr *) plan)->isshared = true;
+ bitmap_subplan_mark_shared(linitial(((BitmapOr *) plan)->bitmapplans));
+ }
+ else if (IsA(plan, BitmapIndexScan))
+ ((BitmapIndexScan *) plan)->isshared = true;
+ else
+ elog(ERROR, "unrecognized node type: %d", nodeTag(plan));
+}
+
+/*****************************************************************************
+ *
+ * PLAN NODE BUILDING ROUTINES
+ *
+ * In general, these functions are not passed the original Path and therefore
+ * leave it to the caller to fill in the cost/width fields from the Path,
+ * typically by calling copy_generic_path_info(). This convention is
+ * somewhat historical, but it does support a few places above where we build
+ * a plan node without having an exactly corresponding Path node. Under no
+ * circumstances should one of these functions do its own cost calculations,
+ * as that would be redundant with calculations done while building Paths.
+ *
+ *****************************************************************************/
+
+static SeqScan *
+make_seqscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid)
+{
+ SeqScan *node = makeNode(SeqScan);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scanrelid = scanrelid;
+
+ return node;
+}
+
+static SampleScan *
+make_samplescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ TableSampleClause *tsc)
+{
+ SampleScan *node = makeNode(SampleScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->tablesample = tsc;
+
+ return node;
+}
+
+static IndexScan *
+make_indexscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ Oid indexid,
+ List *indexqual,
+ List *indexqualorig,
+ List *indexorderby,
+ List *indexorderbyorig,
+ List *indexorderbyops,
+ ScanDirection indexscandir)
+{
+ IndexScan *node = makeNode(IndexScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->indexid = indexid;
+ node->indexqual = indexqual;
+ node->indexqualorig = indexqualorig;
+ node->indexorderby = indexorderby;
+ node->indexorderbyorig = indexorderbyorig;
+ node->indexorderbyops = indexorderbyops;
+ node->indexorderdir = indexscandir;
+
+ return node;
+}
+
+static IndexOnlyScan *
+make_indexonlyscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ Oid indexid,
+ List *indexqual,
+ List *recheckqual,
+ List *indexorderby,
+ List *indextlist,
+ ScanDirection indexscandir)
+{
+ IndexOnlyScan *node = makeNode(IndexOnlyScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->indexid = indexid;
+ node->indexqual = indexqual;
+ node->recheckqual = recheckqual;
+ node->indexorderby = indexorderby;
+ node->indextlist = indextlist;
+ node->indexorderdir = indexscandir;
+
+ return node;
+}
+
+static BitmapIndexScan *
+make_bitmap_indexscan(Index scanrelid,
+ Oid indexid,
+ List *indexqual,
+ List *indexqualorig)
+{
+ BitmapIndexScan *node = makeNode(BitmapIndexScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = NIL; /* not used */
+ plan->qual = NIL; /* not used */
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->indexid = indexid;
+ node->indexqual = indexqual;
+ node->indexqualorig = indexqualorig;
+
+ return node;
+}
+
+static BitmapHeapScan *
+make_bitmap_heapscan(List *qptlist,
+ List *qpqual,
+ Plan *lefttree,
+ List *bitmapqualorig,
+ Index scanrelid)
+{
+ BitmapHeapScan *node = makeNode(BitmapHeapScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->bitmapqualorig = bitmapqualorig;
+
+ return node;
+}
+
+static TidScan *
+make_tidscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *tidquals)
+{
+ TidScan *node = makeNode(TidScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->tidquals = tidquals;
+
+ return node;
+}
+
+static TidRangeScan *
+make_tidrangescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *tidrangequals)
+{
+ TidRangeScan *node = makeNode(TidRangeScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->tidrangequals = tidrangequals;
+
+ return node;
+}
+
+static SubqueryScan *
+make_subqueryscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ Plan *subplan)
+{
+ SubqueryScan *node = makeNode(SubqueryScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->subplan = subplan;
+
+ return node;
+}
+
+static FunctionScan *
+make_functionscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *functions,
+ bool funcordinality)
+{
+ FunctionScan *node = makeNode(FunctionScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->functions = functions;
+ node->funcordinality = funcordinality;
+
+ return node;
+}
+
+static TableFuncScan *
+make_tablefuncscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ TableFunc *tablefunc)
+{
+ TableFuncScan *node = makeNode(TableFuncScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->tablefunc = tablefunc;
+
+ return node;
+}
+
+static ValuesScan *
+make_valuesscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *values_lists)
+{
+ ValuesScan *node = makeNode(ValuesScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->values_lists = values_lists;
+
+ return node;
+}
+
+static CteScan *
+make_ctescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ int ctePlanId,
+ int cteParam)
+{
+ CteScan *node = makeNode(CteScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->ctePlanId = ctePlanId;
+ node->cteParam = cteParam;
+
+ return node;
+}
+
+static NamedTuplestoreScan *
+make_namedtuplestorescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ char *enrname)
+{
+ NamedTuplestoreScan *node = makeNode(NamedTuplestoreScan);
+ Plan *plan = &node->scan.plan;
+
+ /* cost should be inserted by caller */
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->enrname = enrname;
+
+ return node;
+}
+
+static WorkTableScan *
+make_worktablescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ int wtParam)
+{
+ WorkTableScan *node = makeNode(WorkTableScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->wtParam = wtParam;
+
+ return node;
+}
+
+ForeignScan *
+make_foreignscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *fdw_exprs,
+ List *fdw_private,
+ List *fdw_scan_tlist,
+ List *fdw_recheck_quals,
+ Plan *outer_plan)
+{
+ ForeignScan *node = makeNode(ForeignScan);
+ Plan *plan = &node->scan.plan;
+
+ /* cost will be filled in by create_foreignscan_plan */
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = outer_plan;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+
+ /* these may be overridden by the FDW's PlanDirectModify callback. */
+ node->operation = CMD_SELECT;
+ node->resultRelation = 0;
+
+ /* fs_server will be filled in by create_foreignscan_plan */
+ node->fs_server = InvalidOid;
+ node->fdw_exprs = fdw_exprs;
+ node->fdw_private = fdw_private;
+ node->fdw_scan_tlist = fdw_scan_tlist;
+ node->fdw_recheck_quals = fdw_recheck_quals;
+ /* fs_relids will be filled in by create_foreignscan_plan */
+ node->fs_relids = NULL;
+ /* fsSystemCol will be filled in by create_foreignscan_plan */
+ node->fsSystemCol = false;
+
+ return node;
+}
+
+static RecursiveUnion *
+make_recursive_union(List *tlist,
+ Plan *lefttree,
+ Plan *righttree,
+ int wtParam,
+ List *distinctList,
+ long numGroups)
+{
+ RecursiveUnion *node = makeNode(RecursiveUnion);
+ Plan *plan = &node->plan;
+ int numCols = list_length(distinctList);
+
+ plan->targetlist = tlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = righttree;
+ node->wtParam = wtParam;
+
+ /*
+ * convert SortGroupClause list into arrays of attr indexes and equality
+ * operators, as wanted by executor
+ */
+ node->numCols = numCols;
+ if (numCols > 0)
+ {
+ int keyno = 0;
+ AttrNumber *dupColIdx;
+ Oid *dupOperators;
+ Oid *dupCollations;
+ ListCell *slitem;
+
+ dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
+ dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
+ dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);
+
+ foreach(slitem, distinctList)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl,
+ plan->targetlist);
+
+ dupColIdx[keyno] = tle->resno;
+ dupOperators[keyno] = sortcl->eqop;
+ dupCollations[keyno] = exprCollation((Node *) tle->expr);
+ Assert(OidIsValid(dupOperators[keyno]));
+ keyno++;
+ }
+ node->dupColIdx = dupColIdx;
+ node->dupOperators = dupOperators;
+ node->dupCollations = dupCollations;
+ }
+ node->numGroups = numGroups;
+
+ return node;
+}
+
+static BitmapAnd *
+make_bitmap_and(List *bitmapplans)
+{
+ BitmapAnd *node = makeNode(BitmapAnd);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = NIL;
+ plan->qual = NIL;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->bitmapplans = bitmapplans;
+
+ return node;
+}
+
+static BitmapOr *
+make_bitmap_or(List *bitmapplans)
+{
+ BitmapOr *node = makeNode(BitmapOr);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = NIL;
+ plan->qual = NIL;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->bitmapplans = bitmapplans;
+
+ return node;
+}
+
+static NestLoop *
+make_nestloop(List *tlist,
+ List *joinclauses,
+ List *otherclauses,
+ List *nestParams,
+ Plan *lefttree,
+ Plan *righttree,
+ JoinType jointype,
+ bool inner_unique)
+{
+ NestLoop *node = makeNode(NestLoop);
+ Plan *plan = &node->join.plan;
+
+ plan->targetlist = tlist;
+ plan->qual = otherclauses;
+ plan->lefttree = lefttree;
+ plan->righttree = righttree;
+ node->join.jointype = jointype;
+ node->join.inner_unique = inner_unique;
+ node->join.joinqual = joinclauses;
+ node->nestParams = nestParams;
+
+ return node;
+}
+
+static HashJoin *
+make_hashjoin(List *tlist,
+ List *joinclauses,
+ List *otherclauses,
+ List *hashclauses,
+ List *hashoperators,
+ List *hashcollations,
+ List *hashkeys,
+ Plan *lefttree,
+ Plan *righttree,
+ JoinType jointype,
+ bool inner_unique)
+{
+ HashJoin *node = makeNode(HashJoin);
+ Plan *plan = &node->join.plan;
+
+ plan->targetlist = tlist;
+ plan->qual = otherclauses;
+ plan->lefttree = lefttree;
+ plan->righttree = righttree;
+ node->hashclauses = hashclauses;
+ node->hashoperators = hashoperators;
+ node->hashcollations = hashcollations;
+ node->hashkeys = hashkeys;
+ node->join.jointype = jointype;
+ node->join.inner_unique = inner_unique;
+ node->join.joinqual = joinclauses;
+
+ return node;
+}
+
+static Hash *
+make_hash(Plan *lefttree,
+ List *hashkeys,
+ Oid skewTable,
+ AttrNumber skewColumn,
+ bool skewInherit)
+{
+ Hash *node = makeNode(Hash);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ node->hashkeys = hashkeys;
+ node->skewTable = skewTable;
+ node->skewColumn = skewColumn;
+ node->skewInherit = skewInherit;
+
+ return node;
+}
+
+static MergeJoin *
+make_mergejoin(List *tlist,
+ List *joinclauses,
+ List *otherclauses,
+ List *mergeclauses,
+ Oid *mergefamilies,
+ Oid *mergecollations,
+ int *mergestrategies,
+ bool *mergenullsfirst,
+ Plan *lefttree,
+ Plan *righttree,
+ JoinType jointype,
+ bool inner_unique,
+ bool skip_mark_restore)
+{
+ MergeJoin *node = makeNode(MergeJoin);
+ Plan *plan = &node->join.plan;
+
+ plan->targetlist = tlist;
+ plan->qual = otherclauses;
+ plan->lefttree = lefttree;
+ plan->righttree = righttree;
+ node->skip_mark_restore = skip_mark_restore;
+ node->mergeclauses = mergeclauses;
+ node->mergeFamilies = mergefamilies;
+ node->mergeCollations = mergecollations;
+ node->mergeStrategies = mergestrategies;
+ node->mergeNullsFirst = mergenullsfirst;
+ node->join.jointype = jointype;
+ node->join.inner_unique = inner_unique;
+ node->join.joinqual = joinclauses;
+
+ return node;
+}
+
+/*
+ * make_sort --- basic routine to build a Sort plan node
+ *
+ * Caller must have built the sortColIdx, sortOperators, collations, and
+ * nullsFirst arrays already.
+ */
+static Sort *
+make_sort(Plan *lefttree, int numCols,
+ AttrNumber *sortColIdx, Oid *sortOperators,
+ Oid *collations, bool *nullsFirst)
+{
+ Sort *node;
+ Plan *plan;
+
+ node = makeNode(Sort);
+
+ plan = &node->plan;
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+ node->numCols = numCols;
+ node->sortColIdx = sortColIdx;
+ node->sortOperators = sortOperators;
+ node->collations = collations;
+ node->nullsFirst = nullsFirst;
+
+ return node;
+}
+
+/*
+ * make_incrementalsort --- basic routine to build an IncrementalSort plan node
+ *
+ * Caller must have built the sortColIdx, sortOperators, collations, and
+ * nullsFirst arrays already.
+ */
+static IncrementalSort *
+make_incrementalsort(Plan *lefttree, int numCols, int nPresortedCols,
+ AttrNumber *sortColIdx, Oid *sortOperators,
+ Oid *collations, bool *nullsFirst)
+{
+ IncrementalSort *node;
+ Plan *plan;
+
+ node = makeNode(IncrementalSort);
+
+ plan = &node->sort.plan;
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+ node->nPresortedCols = nPresortedCols;
+ node->sort.numCols = numCols;
+ node->sort.sortColIdx = sortColIdx;
+ node->sort.sortOperators = sortOperators;
+ node->sort.collations = collations;
+ node->sort.nullsFirst = nullsFirst;
+
+ return node;
+}
+
+/*
+ * prepare_sort_from_pathkeys
+ * Prepare to sort according to given pathkeys
+ *
+ * This is used to set up for Sort, MergeAppend, and Gather Merge nodes. It
+ * calculates the executor's representation of the sort key information, and
+ * adjusts the plan targetlist if needed to add resjunk sort columns.
+ *
+ * Input parameters:
+ * 'lefttree' is the plan node which yields input tuples
+ * 'pathkeys' is the list of pathkeys by which the result is to be sorted
+ * 'relids' identifies the child relation being sorted, if any
+ * 'reqColIdx' is NULL or an array of required sort key column numbers
+ * 'adjust_tlist_in_place' is true if lefttree must be modified in-place
+ *
+ * We must convert the pathkey information into arrays of sort key column
+ * numbers, sort operator OIDs, collation OIDs, and nulls-first flags,
+ * which is the representation the executor wants. These are returned into
+ * the output parameters *p_numsortkeys etc.
+ *
+ * When looking for matches to an EquivalenceClass's members, we will only
+ * consider child EC members if they belong to given 'relids'. This protects
+ * against possible incorrect matches to child expressions that contain no
+ * Vars.
+ *
+ * If reqColIdx isn't NULL then it contains sort key column numbers that
+ * we should match. This is used when making child plans for a MergeAppend;
+ * it's an error if we can't match the columns.
+ *
+ * If the pathkeys include expressions that aren't simple Vars, we will
+ * usually need to add resjunk items to the input plan's targetlist to
+ * compute these expressions, since a Sort or MergeAppend node itself won't
+ * do any such calculations. If the input plan type isn't one that can do
+ * projections, this means adding a Result node just to do the projection.
+ * However, the caller can pass adjust_tlist_in_place = true to force the
+ * lefttree tlist to be modified in-place regardless of whether the node type
+ * can project --- we use this for fixing the tlist of MergeAppend itself.
+ *
+ * Returns the node which is to be the input to the Sort (either lefttree,
+ * or a Result stacked atop lefttree).
+ */
+static Plan *
+prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
+ Relids relids,
+ const AttrNumber *reqColIdx,
+ bool adjust_tlist_in_place,
+ int *p_numsortkeys,
+ AttrNumber **p_sortColIdx,
+ Oid **p_sortOperators,
+ Oid **p_collations,
+ bool **p_nullsFirst)
+{
+ List *tlist = lefttree->targetlist;
+ ListCell *i;
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /*
+ * We will need at most list_length(pathkeys) sort columns; possibly less
+ */
+ numsortkeys = list_length(pathkeys);
+ sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
+ sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
+
+ numsortkeys = 0;
+
+ foreach(i, pathkeys)
+ {
+ PathKey *pathkey = (PathKey *) lfirst(i);
+ EquivalenceClass *ec = pathkey->pk_eclass;
+ EquivalenceMember *em;
+ TargetEntry *tle = NULL;
+ Oid pk_datatype = InvalidOid;
+ Oid sortop;
+ ListCell *j;
+
+ if (ec->ec_has_volatile)
+ {
+ /*
+ * If the pathkey's EquivalenceClass is volatile, then it must
+ * have come from an ORDER BY clause, and we have to match it to
+ * that same targetlist entry.
+ */
+ if (ec->ec_sortref == 0) /* can't happen */
+ elog(ERROR, "volatile EquivalenceClass has no sortref");
+ tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
+ Assert(tle);
+ Assert(list_length(ec->ec_members) == 1);
+ pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
+ }
+ else if (reqColIdx != NULL)
+ {
+ /*
+ * If we are given a sort column number to match, only consider
+ * the single TLE at that position. It's possible that there is
+ * no such TLE, in which case fall through and generate a resjunk
+ * targetentry (we assume this must have happened in the parent
+ * plan as well). If there is a TLE but it doesn't match the
+ * pathkey's EC, we do the same, which is probably the wrong thing
+ * but we'll leave it to caller to complain about the mismatch.
+ */
+ tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
+ if (tle)
+ {
+ em = find_ec_member_matching_expr(ec, tle->expr, relids);
+ if (em)
+ {
+ /* found expr at right place in tlist */
+ pk_datatype = em->em_datatype;
+ }
+ else
+ tle = NULL;
+ }
+ }
+ else
+ {
+ /*
+ * Otherwise, we can sort by any non-constant expression listed in
+ * the pathkey's EquivalenceClass. For now, we take the first
+ * tlist item found in the EC. If there's no match, we'll generate
+ * a resjunk entry using the first EC member that is an expression
+ * in the input's vars. (The non-const restriction only matters
+ * if the EC is below_outer_join; but if it isn't, it won't
+ * contain consts anyway, else we'd have discarded the pathkey as
+ * redundant.)
+ *
+ * XXX if we have a choice, is there any way of figuring out which
+ * might be cheapest to execute? (For example, int4lt is likely
+ * much cheaper to execute than numericlt, but both might appear
+ * in the same equivalence class...) Not clear that we ever will
+ * have an interesting choice in practice, so it may not matter.
+ */
+ foreach(j, tlist)
+ {
+ tle = (TargetEntry *) lfirst(j);
+ em = find_ec_member_matching_expr(ec, tle->expr, relids);
+ if (em)
+ {
+ /* found expr already in tlist */
+ pk_datatype = em->em_datatype;
+ break;
+ }
+ tle = NULL;
+ }
+ }
+
+ if (!tle)
+ {
+ /*
+ * No matching tlist item; look for a computable expression.
+ */
+ em = find_computable_ec_member(NULL, ec, tlist, relids, false);
+ if (!em)
+ elog(ERROR, "could not find pathkey item to sort");
+ pk_datatype = em->em_datatype;
+
+ /*
+ * Do we need to insert a Result node?
+ */
+ if (!adjust_tlist_in_place &&
+ !is_projection_capable_plan(lefttree))
+ {
+ /* copy needed so we don't modify input's tlist below */
+ tlist = copyObject(tlist);
+ lefttree = inject_projection_plan(lefttree, tlist,
+ lefttree->parallel_safe);
+ }
+
+ /* Don't bother testing is_projection_capable_plan again */
+ adjust_tlist_in_place = true;
+
+ /*
+ * Add resjunk entry to input's tlist
+ */
+ tle = makeTargetEntry(copyObject(em->em_expr),
+ list_length(tlist) + 1,
+ NULL,
+ true);
+ tlist = lappend(tlist, tle);
+ lefttree->targetlist = tlist; /* just in case NIL before */
+ }
+
+ /*
+ * Look up the correct sort operator from the PathKey's slightly
+ * abstracted representation.
+ */
+ sortop = get_opfamily_member(pathkey->pk_opfamily,
+ pk_datatype,
+ pk_datatype,
+ pathkey->pk_strategy);
+ if (!OidIsValid(sortop)) /* should not happen */
+ elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
+ pathkey->pk_strategy, pk_datatype, pk_datatype,
+ pathkey->pk_opfamily);
+
+ /* Add the column to the sort arrays */
+ sortColIdx[numsortkeys] = tle->resno;
+ sortOperators[numsortkeys] = sortop;
+ collations[numsortkeys] = ec->ec_collation;
+ nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
+ numsortkeys++;
+ }
+
+ /* Return results */
+ *p_numsortkeys = numsortkeys;
+ *p_sortColIdx = sortColIdx;
+ *p_sortOperators = sortOperators;
+ *p_collations = collations;
+ *p_nullsFirst = nullsFirst;
+
+ return lefttree;
+}
+
+/*
+ * make_sort_from_pathkeys
+ * Create sort plan to sort according to given pathkeys
+ *
+ * 'lefttree' is the node which yields input tuples
+ * 'pathkeys' is the list of pathkeys by which the result is to be sorted
+ * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
+ */
+static Sort *
+make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, Relids relids)
+{
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Compute sort column info, and adjust lefttree as needed */
+ lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
+ relids,
+ NULL,
+ false,
+ &numsortkeys,
+ &sortColIdx,
+ &sortOperators,
+ &collations,
+ &nullsFirst);
+
+ /* Now build the Sort node */
+ return make_sort(lefttree, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+}
+
+/*
+ * make_incrementalsort_from_pathkeys
+ * Create sort plan to sort according to given pathkeys
+ *
+ * 'lefttree' is the node which yields input tuples
+ * 'pathkeys' is the list of pathkeys by which the result is to be sorted
+ * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
+ * 'nPresortedCols' is the number of presorted columns in input tuples
+ */
+static IncrementalSort *
+make_incrementalsort_from_pathkeys(Plan *lefttree, List *pathkeys,
+ Relids relids, int nPresortedCols)
+{
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Compute sort column info, and adjust lefttree as needed */
+ lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
+ relids,
+ NULL,
+ false,
+ &numsortkeys,
+ &sortColIdx,
+ &sortOperators,
+ &collations,
+ &nullsFirst);
+
+ /* Now build the Sort node */
+ return make_incrementalsort(lefttree, numsortkeys, nPresortedCols,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+}
+
+/*
+ * make_sort_from_sortclauses
+ * Create sort plan to sort according to given sortclauses
+ *
+ * 'sortcls' is a list of SortGroupClauses
+ * 'lefttree' is the node which yields input tuples
+ */
+Sort *
+make_sort_from_sortclauses(List *sortcls, Plan *lefttree)
+{
+ List *sub_tlist = lefttree->targetlist;
+ ListCell *l;
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Convert list-ish representation to arrays wanted by executor */
+ numsortkeys = list_length(sortcls);
+ sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
+ sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
+
+ numsortkeys = 0;
+ foreach(l, sortcls)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
+
+ sortColIdx[numsortkeys] = tle->resno;
+ sortOperators[numsortkeys] = sortcl->sortop;
+ collations[numsortkeys] = exprCollation((Node *) tle->expr);
+ nullsFirst[numsortkeys] = sortcl->nulls_first;
+ numsortkeys++;
+ }
+
+ return make_sort(lefttree, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+}
+
+/*
+ * make_sort_from_groupcols
+ * Create sort plan to sort based on grouping columns
+ *
+ * 'groupcls' is the list of SortGroupClauses
+ * 'grpColIdx' gives the column numbers to use
+ *
+ * This might look like it could be merged with make_sort_from_sortclauses,
+ * but presently we *must* use the grpColIdx[] array to locate sort columns,
+ * because the child plan's tlist is not marked with ressortgroupref info
+ * appropriate to the grouping node. So, only the sort ordering info
+ * is used from the SortGroupClause entries.
+ */
+static Sort *
+make_sort_from_groupcols(List *groupcls,
+ AttrNumber *grpColIdx,
+ Plan *lefttree)
+{
+ List *sub_tlist = lefttree->targetlist;
+ ListCell *l;
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Convert list-ish representation to arrays wanted by executor */
+ numsortkeys = list_length(groupcls);
+ sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
+ sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
+
+ numsortkeys = 0;
+ foreach(l, groupcls)
+ {
+ SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
+ TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);
+
+ if (!tle)
+ elog(ERROR, "could not retrieve tle for sort-from-groupcols");
+
+ sortColIdx[numsortkeys] = tle->resno;
+ sortOperators[numsortkeys] = grpcl->sortop;
+ collations[numsortkeys] = exprCollation((Node *) tle->expr);
+ nullsFirst[numsortkeys] = grpcl->nulls_first;
+ numsortkeys++;
+ }
+
+ return make_sort(lefttree, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+}
+
+static Material *
+make_material(Plan *lefttree)
+{
+ Material *node = makeNode(Material);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ return node;
+}
+
+/*
+ * materialize_finished_plan: stick a Material node atop a completed plan
+ *
+ * There are a couple of places where we want to attach a Material node
+ * after completion of create_plan(), without any MaterialPath path.
+ * Those places should probably be refactored someday to do this on the
+ * Path representation, but it's not worth the trouble yet.
+ */
+Plan *
+materialize_finished_plan(Plan *subplan)
+{
+ Plan *matplan;
+ Path matpath; /* dummy for result of cost_material */
+
+ matplan = (Plan *) make_material(subplan);
+
+ /*
+ * XXX horrid kluge: if there are any initPlans attached to the subplan,
+ * move them up to the Material node, which is now effectively the top
+ * plan node in its query level. This prevents failure in
+ * SS_finalize_plan(), which see for comments. We don't bother adjusting
+ * the subplan's cost estimate for this.
+ */
+ matplan->initPlan = subplan->initPlan;
+ subplan->initPlan = NIL;
+
+ /* Set cost data */
+ cost_material(&matpath,
+ subplan->startup_cost,
+ subplan->total_cost,
+ subplan->plan_rows,
+ subplan->plan_width);
+ matplan->startup_cost = matpath.startup_cost;
+ matplan->total_cost = matpath.total_cost;
+ matplan->plan_rows = subplan->plan_rows;
+ matplan->plan_width = subplan->plan_width;
+ matplan->parallel_aware = false;
+ matplan->parallel_safe = subplan->parallel_safe;
+
+ return matplan;
+}
+
+static Memoize *
+make_memoize(Plan *lefttree, Oid *hashoperators, Oid *collations,
+ List *param_exprs, bool singlerow, bool binary_mode,
+ uint32 est_entries, Bitmapset *keyparamids)
+{
+ Memoize *node = makeNode(Memoize);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ node->numKeys = list_length(param_exprs);
+ node->hashOperators = hashoperators;
+ node->collations = collations;
+ node->param_exprs = param_exprs;
+ node->singlerow = singlerow;
+ node->binary_mode = binary_mode;
+ node->est_entries = est_entries;
+ node->keyparamids = keyparamids;
+
+ return node;
+}
+
+Agg *
+make_agg(List *tlist, List *qual,
+ AggStrategy aggstrategy, AggSplit aggsplit,
+ int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
+ List *groupingSets, List *chain, double dNumGroups,
+ Size transitionSpace, Plan *lefttree)
+{
+ Agg *node = makeNode(Agg);
+ Plan *plan = &node->plan;
+ long numGroups;
+
+ /* Reduce to long, but 'ware overflow! */
+ numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
+
+ node->aggstrategy = aggstrategy;
+ node->aggsplit = aggsplit;
+ node->numCols = numGroupCols;
+ node->grpColIdx = grpColIdx;
+ node->grpOperators = grpOperators;
+ node->grpCollations = grpCollations;
+ node->numGroups = numGroups;
+ node->transitionSpace = transitionSpace;
+ node->aggParams = NULL; /* SS_finalize_plan() will fill this */
+ node->groupingSets = groupingSets;
+ node->chain = chain;
+
+ plan->qual = qual;
+ plan->targetlist = tlist;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ return node;
+}
+
+static WindowAgg *
+make_windowagg(List *tlist, Index winref,
+ int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
+ int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
+ int frameOptions, Node *startOffset, Node *endOffset,
+ Oid startInRangeFunc, Oid endInRangeFunc,
+ Oid inRangeColl, bool inRangeAsc, bool inRangeNullsFirst,
+ Plan *lefttree)
+{
+ WindowAgg *node = makeNode(WindowAgg);
+ Plan *plan = &node->plan;
+
+ node->winref = winref;
+ node->partNumCols = partNumCols;
+ node->partColIdx = partColIdx;
+ node->partOperators = partOperators;
+ node->partCollations = partCollations;
+ node->ordNumCols = ordNumCols;
+ node->ordColIdx = ordColIdx;
+ node->ordOperators = ordOperators;
+ node->ordCollations = ordCollations;
+ node->frameOptions = frameOptions;
+ node->startOffset = startOffset;
+ node->endOffset = endOffset;
+ node->startInRangeFunc = startInRangeFunc;
+ node->endInRangeFunc = endInRangeFunc;
+ node->inRangeColl = inRangeColl;
+ node->inRangeAsc = inRangeAsc;
+ node->inRangeNullsFirst = inRangeNullsFirst;
+
+ plan->targetlist = tlist;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+ /* WindowAgg nodes never have a qual clause */
+ plan->qual = NIL;
+
+ return node;
+}
+
+static Group *
+make_group(List *tlist,
+ List *qual,
+ int numGroupCols,
+ AttrNumber *grpColIdx,
+ Oid *grpOperators,
+ Oid *grpCollations,
+ Plan *lefttree)
+{
+ Group *node = makeNode(Group);
+ Plan *plan = &node->plan;
+
+ node->numCols = numGroupCols;
+ node->grpColIdx = grpColIdx;
+ node->grpOperators = grpOperators;
+ node->grpCollations = grpCollations;
+
+ plan->qual = qual;
+ plan->targetlist = tlist;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ return node;
+}
+
+/*
+ * distinctList is a list of SortGroupClauses, identifying the targetlist items
+ * that should be considered by the Unique filter. The input path must
+ * already be sorted accordingly.
+ */
+static Unique *
+make_unique_from_sortclauses(Plan *lefttree, List *distinctList)
+{
+ Unique *node = makeNode(Unique);
+ Plan *plan = &node->plan;
+ int numCols = list_length(distinctList);
+ int keyno = 0;
+ AttrNumber *uniqColIdx;
+ Oid *uniqOperators;
+ Oid *uniqCollations;
+ ListCell *slitem;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ /*
+ * convert SortGroupClause list into arrays of attr indexes and equality
+ * operators, as wanted by executor
+ */
+ Assert(numCols > 0);
+ uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
+ uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
+ uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);
+
+ foreach(slitem, distinctList)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
+
+ uniqColIdx[keyno] = tle->resno;
+ uniqOperators[keyno] = sortcl->eqop;
+ uniqCollations[keyno] = exprCollation((Node *) tle->expr);
+ Assert(OidIsValid(uniqOperators[keyno]));
+ keyno++;
+ }
+
+ node->numCols = numCols;
+ node->uniqColIdx = uniqColIdx;
+ node->uniqOperators = uniqOperators;
+ node->uniqCollations = uniqCollations;
+
+ return node;
+}
+
+/*
+ * as above, but use pathkeys to identify the sort columns and semantics
+ */
+static Unique *
+make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols)
+{
+ Unique *node = makeNode(Unique);
+ Plan *plan = &node->plan;
+ int keyno = 0;
+ AttrNumber *uniqColIdx;
+ Oid *uniqOperators;
+ Oid *uniqCollations;
+ ListCell *lc;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ /*
+ * Convert pathkeys list into arrays of attr indexes and equality
+ * operators, as wanted by executor. This has a lot in common with
+ * prepare_sort_from_pathkeys ... maybe unify sometime?
+ */
+ Assert(numCols >= 0 && numCols <= list_length(pathkeys));
+ uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
+ uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
+ uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);
+
+ foreach(lc, pathkeys)
+ {
+ PathKey *pathkey = (PathKey *) lfirst(lc);
+ EquivalenceClass *ec = pathkey->pk_eclass;
+ EquivalenceMember *em;
+ TargetEntry *tle = NULL;
+ Oid pk_datatype = InvalidOid;
+ Oid eqop;
+ ListCell *j;
+
+ /* Ignore pathkeys beyond the specified number of columns */
+ if (keyno >= numCols)
+ break;
+
+ if (ec->ec_has_volatile)
+ {
+ /*
+ * If the pathkey's EquivalenceClass is volatile, then it must
+ * have come from an ORDER BY clause, and we have to match it to
+ * that same targetlist entry.
+ */
+ if (ec->ec_sortref == 0) /* can't happen */
+ elog(ERROR, "volatile EquivalenceClass has no sortref");
+ tle = get_sortgroupref_tle(ec->ec_sortref, plan->targetlist);
+ Assert(tle);
+ Assert(list_length(ec->ec_members) == 1);
+ pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
+ }
+ else
+ {
+ /*
+ * Otherwise, we can use any non-constant expression listed in the
+ * pathkey's EquivalenceClass. For now, we take the first tlist
+ * item found in the EC.
+ */
+ foreach(j, plan->targetlist)
+ {
+ tle = (TargetEntry *) lfirst(j);
+ em = find_ec_member_matching_expr(ec, tle->expr, NULL);
+ if (em)
+ {
+ /* found expr already in tlist */
+ pk_datatype = em->em_datatype;
+ break;
+ }
+ tle = NULL;
+ }
+ }
+
+ if (!tle)
+ elog(ERROR, "could not find pathkey item to sort");
+
+ /*
+ * Look up the correct equality operator from the PathKey's slightly
+ * abstracted representation.
+ */
+ eqop = get_opfamily_member(pathkey->pk_opfamily,
+ pk_datatype,
+ pk_datatype,
+ BTEqualStrategyNumber);
+ if (!OidIsValid(eqop)) /* should not happen */
+ elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
+ BTEqualStrategyNumber, pk_datatype, pk_datatype,
+ pathkey->pk_opfamily);
+
+ uniqColIdx[keyno] = tle->resno;
+ uniqOperators[keyno] = eqop;
+ uniqCollations[keyno] = ec->ec_collation;
+
+ keyno++;
+ }
+
+ node->numCols = numCols;
+ node->uniqColIdx = uniqColIdx;
+ node->uniqOperators = uniqOperators;
+ node->uniqCollations = uniqCollations;
+
+ return node;
+}
+
+static Gather *
+make_gather(List *qptlist,
+ List *qpqual,
+ int nworkers,
+ int rescan_param,
+ bool single_copy,
+ Plan *subplan)
+{
+ Gather *node = makeNode(Gather);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = subplan;
+ plan->righttree = NULL;
+ node->num_workers = nworkers;
+ node->rescan_param = rescan_param;
+ node->single_copy = single_copy;
+ node->invisible = false;
+ node->initParam = NULL;
+
+ return node;
+}
+
+/*
+ * distinctList is a list of SortGroupClauses, identifying the targetlist
+ * items that should be considered by the SetOp filter. The input path must
+ * already be sorted accordingly.
+ */
+static SetOp *
+make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree,
+ List *distinctList, AttrNumber flagColIdx, int firstFlag,
+ long numGroups)
+{
+ SetOp *node = makeNode(SetOp);
+ Plan *plan = &node->plan;
+ int numCols = list_length(distinctList);
+ int keyno = 0;
+ AttrNumber *dupColIdx;
+ Oid *dupOperators;
+ Oid *dupCollations;
+ ListCell *slitem;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ /*
+ * convert SortGroupClause list into arrays of attr indexes and equality
+ * operators, as wanted by executor
+ */
+ dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
+ dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
+ dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);
+
+ foreach(slitem, distinctList)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
+
+ dupColIdx[keyno] = tle->resno;
+ dupOperators[keyno] = sortcl->eqop;
+ dupCollations[keyno] = exprCollation((Node *) tle->expr);
+ Assert(OidIsValid(dupOperators[keyno]));
+ keyno++;
+ }
+
+ node->cmd = cmd;
+ node->strategy = strategy;
+ node->numCols = numCols;
+ node->dupColIdx = dupColIdx;
+ node->dupOperators = dupOperators;
+ node->dupCollations = dupCollations;
+ node->flagColIdx = flagColIdx;
+ node->firstFlag = firstFlag;
+ node->numGroups = numGroups;
+
+ return node;
+}
+
+/*
+ * make_lockrows
+ * Build a LockRows plan node
+ */
+static LockRows *
+make_lockrows(Plan *lefttree, List *rowMarks, int epqParam)
+{
+ LockRows *node = makeNode(LockRows);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ node->rowMarks = rowMarks;
+ node->epqParam = epqParam;
+
+ return node;
+}
+
+/*
+ * make_limit
+ * Build a Limit plan node
+ */
+Limit *
+make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount,
+ LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx,
+ Oid *uniqOperators, Oid *uniqCollations)
+{
+ Limit *node = makeNode(Limit);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ node->limitOffset = limitOffset;
+ node->limitCount = limitCount;
+ node->limitOption = limitOption;
+ node->uniqNumCols = uniqNumCols;
+ node->uniqColIdx = uniqColIdx;
+ node->uniqOperators = uniqOperators;
+ node->uniqCollations = uniqCollations;
+
+ return node;
+}
+
+/*
+ * make_result
+ * Build a Result plan node
+ */
+static Result *
+make_result(List *tlist,
+ Node *resconstantqual,
+ Plan *subplan)
+{
+ Result *node = makeNode(Result);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = tlist;
+ plan->qual = NIL;
+ plan->lefttree = subplan;
+ plan->righttree = NULL;
+ node->resconstantqual = resconstantqual;
+
+ return node;
+}
+
+/*
+ * make_project_set
+ * Build a ProjectSet plan node
+ */
+static ProjectSet *
+make_project_set(List *tlist,
+ Plan *subplan)
+{
+ ProjectSet *node = makeNode(ProjectSet);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = tlist;
+ plan->qual = NIL;
+ plan->lefttree = subplan;
+ plan->righttree = NULL;
+
+ return node;
+}
+
+/*
+ * make_modifytable
+ * Build a ModifyTable plan node
+ */
+static ModifyTable *
+make_modifytable(PlannerInfo *root, Plan *subplan,
+ CmdType operation, bool canSetTag,
+ Index nominalRelation, Index rootRelation,
+ bool partColsUpdated,
+ List *resultRelations,
+ List *updateColnosLists,
+ List *withCheckOptionLists, List *returningLists,
+ List *rowMarks, OnConflictExpr *onconflict, int epqParam)
+{
+ ModifyTable *node = makeNode(ModifyTable);
+ List *fdw_private_list;
+ Bitmapset *direct_modify_plans;
+ ListCell *lc;
+ int i;
+
+ Assert(operation == CMD_UPDATE ?
+ list_length(resultRelations) == list_length(updateColnosLists) :
+ updateColnosLists == NIL);
+ Assert(withCheckOptionLists == NIL ||
+ list_length(resultRelations) == list_length(withCheckOptionLists));
+ Assert(returningLists == NIL ||
+ list_length(resultRelations) == list_length(returningLists));
+
+ node->plan.lefttree = subplan;
+ node->plan.righttree = NULL;
+ node->plan.qual = NIL;
+ /* setrefs.c will fill in the targetlist, if needed */
+ node->plan.targetlist = NIL;
+
+ node->operation = operation;
+ node->canSetTag = canSetTag;
+ node->nominalRelation = nominalRelation;
+ node->rootRelation = rootRelation;
+ node->partColsUpdated = partColsUpdated;
+ node->resultRelations = resultRelations;
+ if (!onconflict)
+ {
+ node->onConflictAction = ONCONFLICT_NONE;
+ node->onConflictSet = NIL;
+ node->onConflictCols = NIL;
+ node->onConflictWhere = NULL;
+ node->arbiterIndexes = NIL;
+ node->exclRelRTI = 0;
+ node->exclRelTlist = NIL;
+ }
+ else
+ {
+ node->onConflictAction = onconflict->action;
+
+ /*
+ * Here we convert the ON CONFLICT UPDATE tlist, if any, to the
+ * executor's convention of having consecutive resno's. The actual
+ * target column numbers are saved in node->onConflictCols. (This
+ * could be done earlier, but there seems no need to.)
+ */
+ node->onConflictSet = onconflict->onConflictSet;
+ node->onConflictCols =
+ extract_update_targetlist_colnos(node->onConflictSet);
+ node->onConflictWhere = onconflict->onConflictWhere;
+
+ /*
+ * If a set of unique index inference elements was provided (an
+ * INSERT...ON CONFLICT "inference specification"), then infer
+ * appropriate unique indexes (or throw an error if none are
+ * available).
+ */
+ node->arbiterIndexes = infer_arbiter_indexes(root);
+
+ node->exclRelRTI = onconflict->exclRelIndex;
+ node->exclRelTlist = onconflict->exclRelTlist;
+ }
+ node->updateColnosLists = updateColnosLists;
+ node->withCheckOptionLists = withCheckOptionLists;
+ node->returningLists = returningLists;
+ node->rowMarks = rowMarks;
+ node->epqParam = epqParam;
+
+ /*
+ * For each result relation that is a foreign table, allow the FDW to
+ * construct private plan data, and accumulate it all into a list.
+ */
+ fdw_private_list = NIL;
+ direct_modify_plans = NULL;
+ i = 0;
+ foreach(lc, resultRelations)
+ {
+ Index rti = lfirst_int(lc);
+ FdwRoutine *fdwroutine;
+ List *fdw_private;
+ bool direct_modify;
+
+ /*
+ * If possible, we want to get the FdwRoutine from our RelOptInfo for
+ * the table. But sometimes we don't have a RelOptInfo and must get
+ * it the hard way. (In INSERT, the target relation is not scanned,
+ * so it's not a baserel; and there are also corner cases for
+ * updatable views where the target rel isn't a baserel.)
+ */
+ if (rti < root->simple_rel_array_size &&
+ root->simple_rel_array[rti] != NULL)
+ {
+ RelOptInfo *resultRel = root->simple_rel_array[rti];
+
+ fdwroutine = resultRel->fdwroutine;
+ }
+ else
+ {
+ RangeTblEntry *rte = planner_rt_fetch(rti, root);
+
+ Assert(rte->rtekind == RTE_RELATION);
+ if (rte->relkind == RELKIND_FOREIGN_TABLE)
+ fdwroutine = GetFdwRoutineByRelId(rte->relid);
+ else
+ fdwroutine = NULL;
+ }
+
+ /*
+ * Try to modify the foreign table directly if (1) the FDW provides
+ * callback functions needed for that and (2) there are no local
+ * structures that need to be run for each modified row: row-level
+ * triggers on the foreign table, stored generated columns, WITH CHECK
+ * OPTIONs from parent views.
+ */
+ direct_modify = false;
+ if (fdwroutine != NULL &&
+ fdwroutine->PlanDirectModify != NULL &&
+ fdwroutine->BeginDirectModify != NULL &&
+ fdwroutine->IterateDirectModify != NULL &&
+ fdwroutine->EndDirectModify != NULL &&
+ withCheckOptionLists == NIL &&
+ !has_row_triggers(root, rti, operation) &&
+ !has_stored_generated_columns(root, rti))
+ direct_modify = fdwroutine->PlanDirectModify(root, node, rti, i);
+ if (direct_modify)
+ direct_modify_plans = bms_add_member(direct_modify_plans, i);
+
+ if (!direct_modify &&
+ fdwroutine != NULL &&
+ fdwroutine->PlanForeignModify != NULL)
+ fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
+ else
+ fdw_private = NIL;
+ fdw_private_list = lappend(fdw_private_list, fdw_private);
+ i++;
+ }
+ node->fdwPrivLists = fdw_private_list;
+ node->fdwDirectModifyPlans = direct_modify_plans;
+
+ return node;
+}
+
+/*
+ * is_projection_capable_path
+ * Check whether a given Path node is able to do projection.
+ */
+bool
+is_projection_capable_path(Path *path)
+{
+ /* Most plan types can project, so just list the ones that can't */
+ switch (path->pathtype)
+ {
+ case T_Hash:
+ case T_Material:
+ case T_Memoize:
+ case T_Sort:
+ case T_IncrementalSort:
+ case T_Unique:
+ case T_SetOp:
+ case T_LockRows:
+ case T_Limit:
+ case T_ModifyTable:
+ case T_MergeAppend:
+ case T_RecursiveUnion:
+ return false;
+ case T_Append:
+
+ /*
+ * Append can't project, but if an AppendPath is being used to
+ * represent a dummy path, what will actually be generated is a
+ * Result which can project.
+ */
+ return IS_DUMMY_APPEND(path);
+ case T_ProjectSet:
+
+ /*
+ * Although ProjectSet certainly projects, say "no" because we
+ * don't want the planner to randomly replace its tlist with
+ * something else; the SRFs have to stay at top level. This might
+ * get relaxed later.
+ */
+ return false;
+ default:
+ break;
+ }
+ return true;
+}
+
+/*
+ * is_projection_capable_plan
+ * Check whether a given Plan node is able to do projection.
+ */
+bool
+is_projection_capable_plan(Plan *plan)
+{
+ /* Most plan types can project, so just list the ones that can't */
+ switch (nodeTag(plan))
+ {
+ case T_Hash:
+ case T_Material:
+ case T_Memoize:
+ case T_Sort:
+ case T_Unique:
+ case T_SetOp:
+ case T_LockRows:
+ case T_Limit:
+ case T_ModifyTable:
+ case T_Append:
+ case T_MergeAppend:
+ case T_RecursiveUnion:
+ return false;
+ case T_ProjectSet:
+
+ /*
+ * Although ProjectSet certainly projects, say "no" because we
+ * don't want the planner to randomly replace its tlist with
+ * something else; the SRFs have to stay at top level. This might
+ * get relaxed later.
+ */
+ return false;
+ default:
+ break;
+ }
+ return true;
+}