summaryrefslogtreecommitdiffstats
path: root/src/backend/utils/mmgr/freepage.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/utils/mmgr/freepage.c')
-rw-r--r--src/backend/utils/mmgr/freepage.c1886
1 files changed, 1886 insertions, 0 deletions
diff --git a/src/backend/utils/mmgr/freepage.c b/src/backend/utils/mmgr/freepage.c
new file mode 100644
index 0000000..4208317
--- /dev/null
+++ b/src/backend/utils/mmgr/freepage.c
@@ -0,0 +1,1886 @@
+/*-------------------------------------------------------------------------
+ *
+ * freepage.c
+ * Management of free memory pages.
+ *
+ * The intention of this code is to provide infrastructure for memory
+ * allocators written specifically for PostgreSQL. At least in the case
+ * of dynamic shared memory, we can't simply use malloc() or even
+ * relatively thin wrappers like palloc() which sit on top of it, because
+ * no allocator built into the operating system will deal with relative
+ * pointers. In the future, we may find other cases in which greater
+ * control over our own memory management seems desirable.
+ *
+ * A FreePageManager keeps track of which 4kB pages of memory are currently
+ * unused from the point of view of some higher-level memory allocator.
+ * Unlike a user-facing allocator such as palloc(), a FreePageManager can
+ * only allocate and free in units of whole pages, and freeing an
+ * allocation can only be done given knowledge of its length in pages.
+ *
+ * Since a free page manager has only a fixed amount of dedicated memory,
+ * and since there is no underlying allocator, it uses the free pages
+ * it is given to manage to store its bookkeeping data. It keeps multiple
+ * freelists of runs of pages, sorted by the size of the run; the head of
+ * each freelist is stored in the FreePageManager itself, and the first
+ * page of each run contains a relative pointer to the next run. See
+ * FreePageManagerGetInternal for more details on how the freelists are
+ * managed.
+ *
+ * To avoid memory fragmentation, it's important to consolidate adjacent
+ * spans of pages whenever possible; otherwise, large allocation requests
+ * might not be satisfied even when sufficient contiguous space is
+ * available. Therefore, in addition to the freelists, we maintain an
+ * in-memory btree of free page ranges ordered by page number. If a
+ * range being freed precedes or follows a range that is already free,
+ * the existing range is extended; if it exactly bridges the gap between
+ * free ranges, then the two existing ranges are consolidated with the
+ * newly-freed range to form one great big range of free pages.
+ *
+ * When there is only one range of free pages, the btree is trivial and
+ * is stored within the FreePageManager proper; otherwise, pages are
+ * allocated from the area under management as needed. Even in cases
+ * where memory fragmentation is very severe, only a tiny fraction of
+ * the pages under management are consumed by this btree.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * src/backend/utils/mmgr/freepage.c
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#include "postgres.h"
+#include "lib/stringinfo.h"
+#include "miscadmin.h"
+
+#include "utils/freepage.h"
+#include "utils/relptr.h"
+
+
+/* Magic numbers to identify various page types */
+#define FREE_PAGE_SPAN_LEADER_MAGIC 0xea4020f0
+#define FREE_PAGE_LEAF_MAGIC 0x98eae728
+#define FREE_PAGE_INTERNAL_MAGIC 0x19aa32c9
+
+/* Doubly linked list of spans of free pages; stored in first page of span. */
+struct FreePageSpanLeader
+{
+ int magic; /* always FREE_PAGE_SPAN_LEADER_MAGIC */
+ Size npages; /* number of pages in span */
+ RelptrFreePageSpanLeader prev;
+ RelptrFreePageSpanLeader next;
+};
+
+/* Common header for btree leaf and internal pages. */
+typedef struct FreePageBtreeHeader
+{
+ int magic; /* FREE_PAGE_LEAF_MAGIC or
+ * FREE_PAGE_INTERNAL_MAGIC */
+ Size nused; /* number of items used */
+ RelptrFreePageBtree parent; /* uplink */
+} FreePageBtreeHeader;
+
+/* Internal key; points to next level of btree. */
+typedef struct FreePageBtreeInternalKey
+{
+ Size first_page; /* low bound for keys on child page */
+ RelptrFreePageBtree child; /* downlink */
+} FreePageBtreeInternalKey;
+
+/* Leaf key; no payload data. */
+typedef struct FreePageBtreeLeafKey
+{
+ Size first_page; /* first page in span */
+ Size npages; /* number of pages in span */
+} FreePageBtreeLeafKey;
+
+/* Work out how many keys will fit on a page. */
+#define FPM_ITEMS_PER_INTERNAL_PAGE \
+ ((FPM_PAGE_SIZE - sizeof(FreePageBtreeHeader)) / \
+ sizeof(FreePageBtreeInternalKey))
+#define FPM_ITEMS_PER_LEAF_PAGE \
+ ((FPM_PAGE_SIZE - sizeof(FreePageBtreeHeader)) / \
+ sizeof(FreePageBtreeLeafKey))
+
+/* A btree page of either sort */
+struct FreePageBtree
+{
+ FreePageBtreeHeader hdr;
+ union
+ {
+ FreePageBtreeInternalKey internal_key[FPM_ITEMS_PER_INTERNAL_PAGE];
+ FreePageBtreeLeafKey leaf_key[FPM_ITEMS_PER_LEAF_PAGE];
+ } u;
+};
+
+/* Results of a btree search */
+typedef struct FreePageBtreeSearchResult
+{
+ FreePageBtree *page;
+ Size index;
+ bool found;
+ unsigned split_pages;
+} FreePageBtreeSearchResult;
+
+/* Helper functions */
+static void FreePageBtreeAdjustAncestorKeys(FreePageManager *fpm,
+ FreePageBtree *btp);
+static Size FreePageBtreeCleanup(FreePageManager *fpm);
+static FreePageBtree *FreePageBtreeFindLeftSibling(char *base,
+ FreePageBtree *btp);
+static FreePageBtree *FreePageBtreeFindRightSibling(char *base,
+ FreePageBtree *btp);
+static Size FreePageBtreeFirstKey(FreePageBtree *btp);
+static FreePageBtree *FreePageBtreeGetRecycled(FreePageManager *fpm);
+static void FreePageBtreeInsertInternal(char *base, FreePageBtree *btp,
+ Size index, Size first_page, FreePageBtree *child);
+static void FreePageBtreeInsertLeaf(FreePageBtree *btp, Size index,
+ Size first_page, Size npages);
+static void FreePageBtreeRecycle(FreePageManager *fpm, Size pageno);
+static void FreePageBtreeRemove(FreePageManager *fpm, FreePageBtree *btp,
+ Size index);
+static void FreePageBtreeRemovePage(FreePageManager *fpm, FreePageBtree *btp);
+static void FreePageBtreeSearch(FreePageManager *fpm, Size first_page,
+ FreePageBtreeSearchResult *result);
+static Size FreePageBtreeSearchInternal(FreePageBtree *btp, Size first_page);
+static Size FreePageBtreeSearchLeaf(FreePageBtree *btp, Size first_page);
+static FreePageBtree *FreePageBtreeSplitPage(FreePageManager *fpm,
+ FreePageBtree *btp);
+static void FreePageBtreeUpdateParentPointers(char *base, FreePageBtree *btp);
+static void FreePageManagerDumpBtree(FreePageManager *fpm, FreePageBtree *btp,
+ FreePageBtree *parent, int level, StringInfo buf);
+static void FreePageManagerDumpSpans(FreePageManager *fpm,
+ FreePageSpanLeader *span, Size expected_pages,
+ StringInfo buf);
+static bool FreePageManagerGetInternal(FreePageManager *fpm, Size npages,
+ Size *first_page);
+static Size FreePageManagerPutInternal(FreePageManager *fpm, Size first_page,
+ Size npages, bool soft);
+static void FreePagePopSpanLeader(FreePageManager *fpm, Size pageno);
+static void FreePagePushSpanLeader(FreePageManager *fpm, Size first_page,
+ Size npages);
+static Size FreePageManagerLargestContiguous(FreePageManager *fpm);
+static void FreePageManagerUpdateLargest(FreePageManager *fpm);
+
+#ifdef FPM_EXTRA_ASSERTS
+static Size sum_free_pages(FreePageManager *fpm);
+#endif
+
+/*
+ * Initialize a new, empty free page manager.
+ *
+ * 'fpm' should reference caller-provided memory large enough to contain a
+ * FreePageManager. We'll initialize it here.
+ *
+ * 'base' is the address to which all pointers are relative. When managing
+ * a dynamic shared memory segment, it should normally be the base of the
+ * segment. When managing backend-private memory, it can be either NULL or,
+ * if managing a single contiguous extent of memory, the start of that extent.
+ */
+void
+FreePageManagerInitialize(FreePageManager *fpm, char *base)
+{
+ Size f;
+
+ relptr_store(base, fpm->self, fpm);
+ relptr_store(base, fpm->btree_root, (FreePageBtree *) NULL);
+ relptr_store(base, fpm->btree_recycle, (FreePageSpanLeader *) NULL);
+ fpm->btree_depth = 0;
+ fpm->btree_recycle_count = 0;
+ fpm->singleton_first_page = 0;
+ fpm->singleton_npages = 0;
+ fpm->contiguous_pages = 0;
+ fpm->contiguous_pages_dirty = true;
+#ifdef FPM_EXTRA_ASSERTS
+ fpm->free_pages = 0;
+#endif
+
+ for (f = 0; f < FPM_NUM_FREELISTS; f++)
+ relptr_store(base, fpm->freelist[f], (FreePageSpanLeader *) NULL);
+}
+
+/*
+ * Allocate a run of pages of the given length from the free page manager.
+ * The return value indicates whether we were able to satisfy the request;
+ * if true, the first page of the allocation is stored in *first_page.
+ */
+bool
+FreePageManagerGet(FreePageManager *fpm, Size npages, Size *first_page)
+{
+ bool result;
+ Size contiguous_pages;
+
+ result = FreePageManagerGetInternal(fpm, npages, first_page);
+
+ /*
+ * It's a bit counterintuitive, but allocating pages can actually create
+ * opportunities for cleanup that create larger ranges. We might pull a
+ * key out of the btree that enables the item at the head of the btree
+ * recycle list to be inserted; and then if there are more items behind it
+ * one of those might cause two currently-separated ranges to merge,
+ * creating a single range of contiguous pages larger than any that
+ * existed previously. It might be worth trying to improve the cleanup
+ * algorithm to avoid such corner cases, but for now we just notice the
+ * condition and do the appropriate reporting.
+ */
+ contiguous_pages = FreePageBtreeCleanup(fpm);
+ if (fpm->contiguous_pages < contiguous_pages)
+ fpm->contiguous_pages = contiguous_pages;
+
+ /*
+ * FreePageManagerGetInternal may have set contiguous_pages_dirty.
+ * Recompute contiguous_pages if so.
+ */
+ FreePageManagerUpdateLargest(fpm);
+
+#ifdef FPM_EXTRA_ASSERTS
+ if (result)
+ {
+ Assert(fpm->free_pages >= npages);
+ fpm->free_pages -= npages;
+ }
+ Assert(fpm->free_pages == sum_free_pages(fpm));
+ Assert(fpm->contiguous_pages == FreePageManagerLargestContiguous(fpm));
+#endif
+ return result;
+}
+
+#ifdef FPM_EXTRA_ASSERTS
+static void
+sum_free_pages_recurse(FreePageManager *fpm, FreePageBtree *btp, Size *sum)
+{
+ char *base = fpm_segment_base(fpm);
+
+ Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC ||
+ btp->hdr.magic == FREE_PAGE_LEAF_MAGIC);
+ ++*sum;
+ if (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC)
+ {
+ Size index;
+
+
+ for (index = 0; index < btp->hdr.nused; ++index)
+ {
+ FreePageBtree *child;
+
+ child = relptr_access(base, btp->u.internal_key[index].child);
+ sum_free_pages_recurse(fpm, child, sum);
+ }
+ }
+}
+static Size
+sum_free_pages(FreePageManager *fpm)
+{
+ FreePageSpanLeader *recycle;
+ char *base = fpm_segment_base(fpm);
+ Size sum = 0;
+ int list;
+
+ /* Count the spans by scanning the freelists. */
+ for (list = 0; list < FPM_NUM_FREELISTS; ++list)
+ {
+
+ if (!relptr_is_null(fpm->freelist[list]))
+ {
+ FreePageSpanLeader *candidate =
+ relptr_access(base, fpm->freelist[list]);
+
+ do
+ {
+ sum += candidate->npages;
+ candidate = relptr_access(base, candidate->next);
+ } while (candidate != NULL);
+ }
+ }
+
+ /* Count btree internal pages. */
+ if (fpm->btree_depth > 0)
+ {
+ FreePageBtree *root = relptr_access(base, fpm->btree_root);
+
+ sum_free_pages_recurse(fpm, root, &sum);
+ }
+
+ /* Count the recycle list. */
+ for (recycle = relptr_access(base, fpm->btree_recycle);
+ recycle != NULL;
+ recycle = relptr_access(base, recycle->next))
+ {
+ Assert(recycle->npages == 1);
+ ++sum;
+ }
+
+ return sum;
+}
+#endif
+
+/*
+ * Compute the size of the largest run of pages that the user could
+ * successfully get.
+ */
+static Size
+FreePageManagerLargestContiguous(FreePageManager *fpm)
+{
+ char *base;
+ Size largest;
+
+ base = fpm_segment_base(fpm);
+ largest = 0;
+ if (!relptr_is_null(fpm->freelist[FPM_NUM_FREELISTS - 1]))
+ {
+ FreePageSpanLeader *candidate;
+
+ candidate = relptr_access(base, fpm->freelist[FPM_NUM_FREELISTS - 1]);
+ do
+ {
+ if (candidate->npages > largest)
+ largest = candidate->npages;
+ candidate = relptr_access(base, candidate->next);
+ } while (candidate != NULL);
+ }
+ else
+ {
+ Size f = FPM_NUM_FREELISTS - 1;
+
+ do
+ {
+ --f;
+ if (!relptr_is_null(fpm->freelist[f]))
+ {
+ largest = f + 1;
+ break;
+ }
+ } while (f > 0);
+ }
+
+ return largest;
+}
+
+/*
+ * Recompute the size of the largest run of pages that the user could
+ * successfully get, if it has been marked dirty.
+ */
+static void
+FreePageManagerUpdateLargest(FreePageManager *fpm)
+{
+ if (!fpm->contiguous_pages_dirty)
+ return;
+
+ fpm->contiguous_pages = FreePageManagerLargestContiguous(fpm);
+ fpm->contiguous_pages_dirty = false;
+}
+
+/*
+ * Transfer a run of pages to the free page manager.
+ */
+void
+FreePageManagerPut(FreePageManager *fpm, Size first_page, Size npages)
+{
+ Size contiguous_pages;
+
+ Assert(npages > 0);
+
+ /* Record the new pages. */
+ contiguous_pages =
+ FreePageManagerPutInternal(fpm, first_page, npages, false);
+
+ /*
+ * If the new range we inserted into the page manager was contiguous with
+ * an existing range, it may have opened up cleanup opportunities.
+ */
+ if (contiguous_pages > npages)
+ {
+ Size cleanup_contiguous_pages;
+
+ cleanup_contiguous_pages = FreePageBtreeCleanup(fpm);
+ if (cleanup_contiguous_pages > contiguous_pages)
+ contiguous_pages = cleanup_contiguous_pages;
+ }
+
+ /* See if we now have a new largest chunk. */
+ if (fpm->contiguous_pages < contiguous_pages)
+ fpm->contiguous_pages = contiguous_pages;
+
+ /*
+ * The earlier call to FreePageManagerPutInternal may have set
+ * contiguous_pages_dirty if it needed to allocate internal pages, so
+ * recompute contiguous_pages if necessary.
+ */
+ FreePageManagerUpdateLargest(fpm);
+
+#ifdef FPM_EXTRA_ASSERTS
+ fpm->free_pages += npages;
+ Assert(fpm->free_pages == sum_free_pages(fpm));
+ Assert(fpm->contiguous_pages == FreePageManagerLargestContiguous(fpm));
+#endif
+}
+
+/*
+ * Produce a debugging dump of the state of a free page manager.
+ */
+char *
+FreePageManagerDump(FreePageManager *fpm)
+{
+ char *base = fpm_segment_base(fpm);
+ StringInfoData buf;
+ FreePageSpanLeader *recycle;
+ bool dumped_any_freelist = false;
+ Size f;
+
+ /* Initialize output buffer. */
+ initStringInfo(&buf);
+
+ /* Dump general stuff. */
+ appendStringInfo(&buf, "metadata: self %zu max contiguous pages = %zu\n",
+ relptr_offset(fpm->self), fpm->contiguous_pages);
+
+ /* Dump btree. */
+ if (fpm->btree_depth > 0)
+ {
+ FreePageBtree *root;
+
+ appendStringInfo(&buf, "btree depth %u:\n", fpm->btree_depth);
+ root = relptr_access(base, fpm->btree_root);
+ FreePageManagerDumpBtree(fpm, root, NULL, 0, &buf);
+ }
+ else if (fpm->singleton_npages > 0)
+ {
+ appendStringInfo(&buf, "singleton: %zu(%zu)\n",
+ fpm->singleton_first_page, fpm->singleton_npages);
+ }
+
+ /* Dump btree recycle list. */
+ recycle = relptr_access(base, fpm->btree_recycle);
+ if (recycle != NULL)
+ {
+ appendStringInfoString(&buf, "btree recycle:");
+ FreePageManagerDumpSpans(fpm, recycle, 1, &buf);
+ }
+
+ /* Dump free lists. */
+ for (f = 0; f < FPM_NUM_FREELISTS; ++f)
+ {
+ FreePageSpanLeader *span;
+
+ if (relptr_is_null(fpm->freelist[f]))
+ continue;
+ if (!dumped_any_freelist)
+ {
+ appendStringInfoString(&buf, "freelists:\n");
+ dumped_any_freelist = true;
+ }
+ appendStringInfo(&buf, " %zu:", f + 1);
+ span = relptr_access(base, fpm->freelist[f]);
+ FreePageManagerDumpSpans(fpm, span, f + 1, &buf);
+ }
+
+ /* And return result to caller. */
+ return buf.data;
+}
+
+
+/*
+ * The first_page value stored at index zero in any non-root page must match
+ * the first_page value stored in its parent at the index which points to that
+ * page. So when the value stored at index zero in a btree page changes, we've
+ * got to walk up the tree adjusting ancestor keys until we reach an ancestor
+ * where that key isn't index zero. This function should be called after
+ * updating the first key on the target page; it will propagate the change
+ * upward as far as needed.
+ *
+ * We assume here that the first key on the page has not changed enough to
+ * require changes in the ordering of keys on its ancestor pages. Thus,
+ * if we search the parent page for the first key greater than or equal to
+ * the first key on the current page, the downlink to this page will be either
+ * the exact index returned by the search (if the first key decreased)
+ * or one less (if the first key increased).
+ */
+static void
+FreePageBtreeAdjustAncestorKeys(FreePageManager *fpm, FreePageBtree *btp)
+{
+ char *base = fpm_segment_base(fpm);
+ Size first_page;
+ FreePageBtree *parent;
+ FreePageBtree *child;
+
+ /* This might be either a leaf or an internal page. */
+ Assert(btp->hdr.nused > 0);
+ if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC)
+ {
+ Assert(btp->hdr.nused <= FPM_ITEMS_PER_LEAF_PAGE);
+ first_page = btp->u.leaf_key[0].first_page;
+ }
+ else
+ {
+ Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ Assert(btp->hdr.nused <= FPM_ITEMS_PER_INTERNAL_PAGE);
+ first_page = btp->u.internal_key[0].first_page;
+ }
+ child = btp;
+
+ /* Loop until we find an ancestor that does not require adjustment. */
+ for (;;)
+ {
+ Size s;
+
+ parent = relptr_access(base, child->hdr.parent);
+ if (parent == NULL)
+ break;
+ s = FreePageBtreeSearchInternal(parent, first_page);
+
+ /* Key is either at index s or index s-1; figure out which. */
+ if (s >= parent->hdr.nused)
+ {
+ Assert(s == parent->hdr.nused);
+ --s;
+ }
+ else
+ {
+ FreePageBtree *check;
+
+ check = relptr_access(base, parent->u.internal_key[s].child);
+ if (check != child)
+ {
+ Assert(s > 0);
+ --s;
+ }
+ }
+
+#ifdef USE_ASSERT_CHECKING
+ /* Debugging double-check. */
+ {
+ FreePageBtree *check;
+
+ check = relptr_access(base, parent->u.internal_key[s].child);
+ Assert(s < parent->hdr.nused);
+ Assert(child == check);
+ }
+#endif
+
+ /* Update the parent key. */
+ parent->u.internal_key[s].first_page = first_page;
+
+ /*
+ * If this is the first key in the parent, go up another level; else
+ * done.
+ */
+ if (s > 0)
+ break;
+ child = parent;
+ }
+}
+
+/*
+ * Attempt to reclaim space from the free-page btree. The return value is
+ * the largest range of contiguous pages created by the cleanup operation.
+ */
+static Size
+FreePageBtreeCleanup(FreePageManager *fpm)
+{
+ char *base = fpm_segment_base(fpm);
+ Size max_contiguous_pages = 0;
+
+ /* Attempt to shrink the depth of the btree. */
+ while (!relptr_is_null(fpm->btree_root))
+ {
+ FreePageBtree *root = relptr_access(base, fpm->btree_root);
+
+ /* If the root contains only one key, reduce depth by one. */
+ if (root->hdr.nused == 1)
+ {
+ /* Shrink depth of tree by one. */
+ Assert(fpm->btree_depth > 0);
+ --fpm->btree_depth;
+ if (root->hdr.magic == FREE_PAGE_LEAF_MAGIC)
+ {
+ /* If root is a leaf, convert only entry to singleton range. */
+ relptr_store(base, fpm->btree_root, (FreePageBtree *) NULL);
+ fpm->singleton_first_page = root->u.leaf_key[0].first_page;
+ fpm->singleton_npages = root->u.leaf_key[0].npages;
+ }
+ else
+ {
+ FreePageBtree *newroot;
+
+ /* If root is an internal page, make only child the root. */
+ Assert(root->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ relptr_copy(fpm->btree_root, root->u.internal_key[0].child);
+ newroot = relptr_access(base, fpm->btree_root);
+ relptr_store(base, newroot->hdr.parent, (FreePageBtree *) NULL);
+ }
+ FreePageBtreeRecycle(fpm, fpm_pointer_to_page(base, root));
+ }
+ else if (root->hdr.nused == 2 &&
+ root->hdr.magic == FREE_PAGE_LEAF_MAGIC)
+ {
+ Size end_of_first;
+ Size start_of_second;
+
+ end_of_first = root->u.leaf_key[0].first_page +
+ root->u.leaf_key[0].npages;
+ start_of_second = root->u.leaf_key[1].first_page;
+
+ if (end_of_first + 1 == start_of_second)
+ {
+ Size root_page = fpm_pointer_to_page(base, root);
+
+ if (end_of_first == root_page)
+ {
+ FreePagePopSpanLeader(fpm, root->u.leaf_key[0].first_page);
+ FreePagePopSpanLeader(fpm, root->u.leaf_key[1].first_page);
+ fpm->singleton_first_page = root->u.leaf_key[0].first_page;
+ fpm->singleton_npages = root->u.leaf_key[0].npages +
+ root->u.leaf_key[1].npages + 1;
+ fpm->btree_depth = 0;
+ relptr_store(base, fpm->btree_root,
+ (FreePageBtree *) NULL);
+ FreePagePushSpanLeader(fpm, fpm->singleton_first_page,
+ fpm->singleton_npages);
+ Assert(max_contiguous_pages == 0);
+ max_contiguous_pages = fpm->singleton_npages;
+ }
+ }
+
+ /* Whether it worked or not, it's time to stop. */
+ break;
+ }
+ else
+ {
+ /* Nothing more to do. Stop. */
+ break;
+ }
+ }
+
+ /*
+ * Attempt to free recycled btree pages. We skip this if releasing the
+ * recycled page would require a btree page split, because the page we're
+ * trying to recycle would be consumed by the split, which would be
+ * counterproductive.
+ *
+ * We also currently only ever attempt to recycle the first page on the
+ * list; that could be made more aggressive, but it's not clear that the
+ * complexity would be worthwhile.
+ */
+ while (fpm->btree_recycle_count > 0)
+ {
+ FreePageBtree *btp;
+ Size first_page;
+ Size contiguous_pages;
+
+ btp = FreePageBtreeGetRecycled(fpm);
+ first_page = fpm_pointer_to_page(base, btp);
+ contiguous_pages = FreePageManagerPutInternal(fpm, first_page, 1, true);
+ if (contiguous_pages == 0)
+ {
+ FreePageBtreeRecycle(fpm, first_page);
+ break;
+ }
+ else
+ {
+ if (contiguous_pages > max_contiguous_pages)
+ max_contiguous_pages = contiguous_pages;
+ }
+ }
+
+ return max_contiguous_pages;
+}
+
+/*
+ * Consider consolidating the given page with its left or right sibling,
+ * if it's fairly empty.
+ */
+static void
+FreePageBtreeConsolidate(FreePageManager *fpm, FreePageBtree *btp)
+{
+ char *base = fpm_segment_base(fpm);
+ FreePageBtree *np;
+ Size max;
+
+ /*
+ * We only try to consolidate pages that are less than a third full. We
+ * could be more aggressive about this, but that might risk performing
+ * consolidation only to end up splitting again shortly thereafter. Since
+ * the btree should be very small compared to the space under management,
+ * our goal isn't so much to ensure that it always occupies the absolutely
+ * smallest possible number of pages as to reclaim pages before things get
+ * too egregiously out of hand.
+ */
+ if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC)
+ max = FPM_ITEMS_PER_LEAF_PAGE;
+ else
+ {
+ Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ max = FPM_ITEMS_PER_INTERNAL_PAGE;
+ }
+ if (btp->hdr.nused >= max / 3)
+ return;
+
+ /*
+ * If we can fit our right sibling's keys onto this page, consolidate.
+ */
+ np = FreePageBtreeFindRightSibling(base, btp);
+ if (np != NULL && btp->hdr.nused + np->hdr.nused <= max)
+ {
+ if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC)
+ {
+ memcpy(&btp->u.leaf_key[btp->hdr.nused], &np->u.leaf_key[0],
+ sizeof(FreePageBtreeLeafKey) * np->hdr.nused);
+ btp->hdr.nused += np->hdr.nused;
+ }
+ else
+ {
+ memcpy(&btp->u.internal_key[btp->hdr.nused], &np->u.internal_key[0],
+ sizeof(FreePageBtreeInternalKey) * np->hdr.nused);
+ btp->hdr.nused += np->hdr.nused;
+ FreePageBtreeUpdateParentPointers(base, btp);
+ }
+ FreePageBtreeRemovePage(fpm, np);
+ return;
+ }
+
+ /*
+ * If we can fit our keys onto our left sibling's page, consolidate. In
+ * this case, we move our keys onto the other page rather than vice versa,
+ * to avoid having to adjust ancestor keys.
+ */
+ np = FreePageBtreeFindLeftSibling(base, btp);
+ if (np != NULL && btp->hdr.nused + np->hdr.nused <= max)
+ {
+ if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC)
+ {
+ memcpy(&np->u.leaf_key[np->hdr.nused], &btp->u.leaf_key[0],
+ sizeof(FreePageBtreeLeafKey) * btp->hdr.nused);
+ np->hdr.nused += btp->hdr.nused;
+ }
+ else
+ {
+ memcpy(&np->u.internal_key[np->hdr.nused], &btp->u.internal_key[0],
+ sizeof(FreePageBtreeInternalKey) * btp->hdr.nused);
+ np->hdr.nused += btp->hdr.nused;
+ FreePageBtreeUpdateParentPointers(base, np);
+ }
+ FreePageBtreeRemovePage(fpm, btp);
+ return;
+ }
+}
+
+/*
+ * Find the passed page's left sibling; that is, the page at the same level
+ * of the tree whose keyspace immediately precedes ours.
+ */
+static FreePageBtree *
+FreePageBtreeFindLeftSibling(char *base, FreePageBtree *btp)
+{
+ FreePageBtree *p = btp;
+ int levels = 0;
+
+ /* Move up until we can move left. */
+ for (;;)
+ {
+ Size first_page;
+ Size index;
+
+ first_page = FreePageBtreeFirstKey(p);
+ p = relptr_access(base, p->hdr.parent);
+
+ if (p == NULL)
+ return NULL; /* we were passed the rightmost page */
+
+ index = FreePageBtreeSearchInternal(p, first_page);
+ if (index > 0)
+ {
+ Assert(p->u.internal_key[index].first_page == first_page);
+ p = relptr_access(base, p->u.internal_key[index - 1].child);
+ break;
+ }
+ Assert(index == 0);
+ ++levels;
+ }
+
+ /* Descend left. */
+ while (levels > 0)
+ {
+ Assert(p->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ p = relptr_access(base, p->u.internal_key[p->hdr.nused - 1].child);
+ --levels;
+ }
+ Assert(p->hdr.magic == btp->hdr.magic);
+
+ return p;
+}
+
+/*
+ * Find the passed page's right sibling; that is, the page at the same level
+ * of the tree whose keyspace immediately follows ours.
+ */
+static FreePageBtree *
+FreePageBtreeFindRightSibling(char *base, FreePageBtree *btp)
+{
+ FreePageBtree *p = btp;
+ int levels = 0;
+
+ /* Move up until we can move right. */
+ for (;;)
+ {
+ Size first_page;
+ Size index;
+
+ first_page = FreePageBtreeFirstKey(p);
+ p = relptr_access(base, p->hdr.parent);
+
+ if (p == NULL)
+ return NULL; /* we were passed the rightmost page */
+
+ index = FreePageBtreeSearchInternal(p, first_page);
+ if (index < p->hdr.nused - 1)
+ {
+ Assert(p->u.internal_key[index].first_page == first_page);
+ p = relptr_access(base, p->u.internal_key[index + 1].child);
+ break;
+ }
+ Assert(index == p->hdr.nused - 1);
+ ++levels;
+ }
+
+ /* Descend left. */
+ while (levels > 0)
+ {
+ Assert(p->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ p = relptr_access(base, p->u.internal_key[0].child);
+ --levels;
+ }
+ Assert(p->hdr.magic == btp->hdr.magic);
+
+ return p;
+}
+
+/*
+ * Get the first key on a btree page.
+ */
+static Size
+FreePageBtreeFirstKey(FreePageBtree *btp)
+{
+ Assert(btp->hdr.nused > 0);
+
+ if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC)
+ return btp->u.leaf_key[0].first_page;
+ else
+ {
+ Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ return btp->u.internal_key[0].first_page;
+ }
+}
+
+/*
+ * Get a page from the btree recycle list for use as a btree page.
+ */
+static FreePageBtree *
+FreePageBtreeGetRecycled(FreePageManager *fpm)
+{
+ char *base = fpm_segment_base(fpm);
+ FreePageSpanLeader *victim = relptr_access(base, fpm->btree_recycle);
+ FreePageSpanLeader *newhead;
+
+ Assert(victim != NULL);
+ newhead = relptr_access(base, victim->next);
+ if (newhead != NULL)
+ relptr_copy(newhead->prev, victim->prev);
+ relptr_store(base, fpm->btree_recycle, newhead);
+ Assert(fpm_pointer_is_page_aligned(base, victim));
+ fpm->btree_recycle_count--;
+ return (FreePageBtree *) victim;
+}
+
+/*
+ * Insert an item into an internal page.
+ */
+static void
+FreePageBtreeInsertInternal(char *base, FreePageBtree *btp, Size index,
+ Size first_page, FreePageBtree *child)
+{
+ Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ Assert(btp->hdr.nused <= FPM_ITEMS_PER_INTERNAL_PAGE);
+ Assert(index <= btp->hdr.nused);
+ memmove(&btp->u.internal_key[index + 1], &btp->u.internal_key[index],
+ sizeof(FreePageBtreeInternalKey) * (btp->hdr.nused - index));
+ btp->u.internal_key[index].first_page = first_page;
+ relptr_store(base, btp->u.internal_key[index].child, child);
+ ++btp->hdr.nused;
+}
+
+/*
+ * Insert an item into a leaf page.
+ */
+static void
+FreePageBtreeInsertLeaf(FreePageBtree *btp, Size index, Size first_page,
+ Size npages)
+{
+ Assert(btp->hdr.magic == FREE_PAGE_LEAF_MAGIC);
+ Assert(btp->hdr.nused <= FPM_ITEMS_PER_LEAF_PAGE);
+ Assert(index <= btp->hdr.nused);
+ memmove(&btp->u.leaf_key[index + 1], &btp->u.leaf_key[index],
+ sizeof(FreePageBtreeLeafKey) * (btp->hdr.nused - index));
+ btp->u.leaf_key[index].first_page = first_page;
+ btp->u.leaf_key[index].npages = npages;
+ ++btp->hdr.nused;
+}
+
+/*
+ * Put a page on the btree recycle list.
+ */
+static void
+FreePageBtreeRecycle(FreePageManager *fpm, Size pageno)
+{
+ char *base = fpm_segment_base(fpm);
+ FreePageSpanLeader *head = relptr_access(base, fpm->btree_recycle);
+ FreePageSpanLeader *span;
+
+ span = (FreePageSpanLeader *) fpm_page_to_pointer(base, pageno);
+ span->magic = FREE_PAGE_SPAN_LEADER_MAGIC;
+ span->npages = 1;
+ relptr_store(base, span->next, head);
+ relptr_store(base, span->prev, (FreePageSpanLeader *) NULL);
+ if (head != NULL)
+ relptr_store(base, head->prev, span);
+ relptr_store(base, fpm->btree_recycle, span);
+ fpm->btree_recycle_count++;
+}
+
+/*
+ * Remove an item from the btree at the given position on the given page.
+ */
+static void
+FreePageBtreeRemove(FreePageManager *fpm, FreePageBtree *btp, Size index)
+{
+ Assert(btp->hdr.magic == FREE_PAGE_LEAF_MAGIC);
+ Assert(index < btp->hdr.nused);
+
+ /* When last item is removed, extirpate entire page from btree. */
+ if (btp->hdr.nused == 1)
+ {
+ FreePageBtreeRemovePage(fpm, btp);
+ return;
+ }
+
+ /* Physically remove the key from the page. */
+ --btp->hdr.nused;
+ if (index < btp->hdr.nused)
+ memmove(&btp->u.leaf_key[index], &btp->u.leaf_key[index + 1],
+ sizeof(FreePageBtreeLeafKey) * (btp->hdr.nused - index));
+
+ /* If we just removed the first key, adjust ancestor keys. */
+ if (index == 0)
+ FreePageBtreeAdjustAncestorKeys(fpm, btp);
+
+ /* Consider whether to consolidate this page with a sibling. */
+ FreePageBtreeConsolidate(fpm, btp);
+}
+
+/*
+ * Remove a page from the btree. Caller is responsible for having relocated
+ * any keys from this page that are still wanted. The page is placed on the
+ * recycled list.
+ */
+static void
+FreePageBtreeRemovePage(FreePageManager *fpm, FreePageBtree *btp)
+{
+ char *base = fpm_segment_base(fpm);
+ FreePageBtree *parent;
+ Size index;
+ Size first_page;
+
+ for (;;)
+ {
+ /* Find parent page. */
+ parent = relptr_access(base, btp->hdr.parent);
+ if (parent == NULL)
+ {
+ /* We are removing the root page. */
+ relptr_store(base, fpm->btree_root, (FreePageBtree *) NULL);
+ fpm->btree_depth = 0;
+ Assert(fpm->singleton_first_page == 0);
+ Assert(fpm->singleton_npages == 0);
+ return;
+ }
+
+ /*
+ * If the parent contains only one item, we need to remove it as well.
+ */
+ if (parent->hdr.nused > 1)
+ break;
+ FreePageBtreeRecycle(fpm, fpm_pointer_to_page(base, btp));
+ btp = parent;
+ }
+
+ /* Find and remove the downlink. */
+ first_page = FreePageBtreeFirstKey(btp);
+ if (parent->hdr.magic == FREE_PAGE_LEAF_MAGIC)
+ {
+ index = FreePageBtreeSearchLeaf(parent, first_page);
+ Assert(index < parent->hdr.nused);
+ if (index < parent->hdr.nused - 1)
+ memmove(&parent->u.leaf_key[index],
+ &parent->u.leaf_key[index + 1],
+ sizeof(FreePageBtreeLeafKey)
+ * (parent->hdr.nused - index - 1));
+ }
+ else
+ {
+ index = FreePageBtreeSearchInternal(parent, first_page);
+ Assert(index < parent->hdr.nused);
+ if (index < parent->hdr.nused - 1)
+ memmove(&parent->u.internal_key[index],
+ &parent->u.internal_key[index + 1],
+ sizeof(FreePageBtreeInternalKey)
+ * (parent->hdr.nused - index - 1));
+ }
+ parent->hdr.nused--;
+ Assert(parent->hdr.nused > 0);
+
+ /* Recycle the page. */
+ FreePageBtreeRecycle(fpm, fpm_pointer_to_page(base, btp));
+
+ /* Adjust ancestor keys if needed. */
+ if (index == 0)
+ FreePageBtreeAdjustAncestorKeys(fpm, parent);
+
+ /* Consider whether to consolidate the parent with a sibling. */
+ FreePageBtreeConsolidate(fpm, parent);
+}
+
+/*
+ * Search the btree for an entry for the given first page and initialize
+ * *result with the results of the search. result->page and result->index
+ * indicate either the position of an exact match or the position at which
+ * the new key should be inserted. result->found is true for an exact match,
+ * otherwise false. result->split_pages will contain the number of additional
+ * btree pages that will be needed when performing a split to insert a key.
+ * Except as described above, the contents of fields in the result object are
+ * undefined on return.
+ */
+static void
+FreePageBtreeSearch(FreePageManager *fpm, Size first_page,
+ FreePageBtreeSearchResult *result)
+{
+ char *base = fpm_segment_base(fpm);
+ FreePageBtree *btp = relptr_access(base, fpm->btree_root);
+ Size index;
+
+ result->split_pages = 1;
+
+ /* If the btree is empty, there's nothing to find. */
+ if (btp == NULL)
+ {
+ result->page = NULL;
+ result->found = false;
+ return;
+ }
+
+ /* Descend until we hit a leaf. */
+ while (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC)
+ {
+ FreePageBtree *child;
+ bool found_exact;
+
+ index = FreePageBtreeSearchInternal(btp, first_page);
+ found_exact = index < btp->hdr.nused &&
+ btp->u.internal_key[index].first_page == first_page;
+
+ /*
+ * If we found an exact match we descend directly. Otherwise, we
+ * descend into the child to the left if possible so that we can find
+ * the insertion point at that child's high end.
+ */
+ if (!found_exact && index > 0)
+ --index;
+
+ /* Track required split depth for leaf insert. */
+ if (btp->hdr.nused >= FPM_ITEMS_PER_INTERNAL_PAGE)
+ {
+ Assert(btp->hdr.nused == FPM_ITEMS_PER_INTERNAL_PAGE);
+ result->split_pages++;
+ }
+ else
+ result->split_pages = 0;
+
+ /* Descend to appropriate child page. */
+ Assert(index < btp->hdr.nused);
+ child = relptr_access(base, btp->u.internal_key[index].child);
+ Assert(relptr_access(base, child->hdr.parent) == btp);
+ btp = child;
+ }
+
+ /* Track required split depth for leaf insert. */
+ if (btp->hdr.nused >= FPM_ITEMS_PER_LEAF_PAGE)
+ {
+ Assert(btp->hdr.nused == FPM_ITEMS_PER_INTERNAL_PAGE);
+ result->split_pages++;
+ }
+ else
+ result->split_pages = 0;
+
+ /* Search leaf page. */
+ index = FreePageBtreeSearchLeaf(btp, first_page);
+
+ /* Assemble results. */
+ result->page = btp;
+ result->index = index;
+ result->found = index < btp->hdr.nused &&
+ first_page == btp->u.leaf_key[index].first_page;
+}
+
+/*
+ * Search an internal page for the first key greater than or equal to a given
+ * page number. Returns the index of that key, or one greater than the number
+ * of keys on the page if none.
+ */
+static Size
+FreePageBtreeSearchInternal(FreePageBtree *btp, Size first_page)
+{
+ Size low = 0;
+ Size high = btp->hdr.nused;
+
+ Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ Assert(high > 0 && high <= FPM_ITEMS_PER_INTERNAL_PAGE);
+
+ while (low < high)
+ {
+ Size mid = (low + high) / 2;
+ Size val = btp->u.internal_key[mid].first_page;
+
+ if (first_page == val)
+ return mid;
+ else if (first_page < val)
+ high = mid;
+ else
+ low = mid + 1;
+ }
+
+ return low;
+}
+
+/*
+ * Search a leaf page for the first key greater than or equal to a given
+ * page number. Returns the index of that key, or one greater than the number
+ * of keys on the page if none.
+ */
+static Size
+FreePageBtreeSearchLeaf(FreePageBtree *btp, Size first_page)
+{
+ Size low = 0;
+ Size high = btp->hdr.nused;
+
+ Assert(btp->hdr.magic == FREE_PAGE_LEAF_MAGIC);
+ Assert(high > 0 && high <= FPM_ITEMS_PER_LEAF_PAGE);
+
+ while (low < high)
+ {
+ Size mid = (low + high) / 2;
+ Size val = btp->u.leaf_key[mid].first_page;
+
+ if (first_page == val)
+ return mid;
+ else if (first_page < val)
+ high = mid;
+ else
+ low = mid + 1;
+ }
+
+ return low;
+}
+
+/*
+ * Allocate a new btree page and move half the keys from the provided page
+ * to the new page. Caller is responsible for making sure that there's a
+ * page available from fpm->btree_recycle. Returns a pointer to the new page,
+ * to which caller must add a downlink.
+ */
+static FreePageBtree *
+FreePageBtreeSplitPage(FreePageManager *fpm, FreePageBtree *btp)
+{
+ FreePageBtree *newsibling;
+
+ newsibling = FreePageBtreeGetRecycled(fpm);
+ newsibling->hdr.magic = btp->hdr.magic;
+ newsibling->hdr.nused = btp->hdr.nused / 2;
+ relptr_copy(newsibling->hdr.parent, btp->hdr.parent);
+ btp->hdr.nused -= newsibling->hdr.nused;
+
+ if (btp->hdr.magic == FREE_PAGE_LEAF_MAGIC)
+ memcpy(&newsibling->u.leaf_key,
+ &btp->u.leaf_key[btp->hdr.nused],
+ sizeof(FreePageBtreeLeafKey) * newsibling->hdr.nused);
+ else
+ {
+ Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ memcpy(&newsibling->u.internal_key,
+ &btp->u.internal_key[btp->hdr.nused],
+ sizeof(FreePageBtreeInternalKey) * newsibling->hdr.nused);
+ FreePageBtreeUpdateParentPointers(fpm_segment_base(fpm), newsibling);
+ }
+
+ return newsibling;
+}
+
+/*
+ * When internal pages are split or merged, the parent pointers of their
+ * children must be updated.
+ */
+static void
+FreePageBtreeUpdateParentPointers(char *base, FreePageBtree *btp)
+{
+ Size i;
+
+ Assert(btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC);
+ for (i = 0; i < btp->hdr.nused; ++i)
+ {
+ FreePageBtree *child;
+
+ child = relptr_access(base, btp->u.internal_key[i].child);
+ relptr_store(base, child->hdr.parent, btp);
+ }
+}
+
+/*
+ * Debugging dump of btree data.
+ */
+static void
+FreePageManagerDumpBtree(FreePageManager *fpm, FreePageBtree *btp,
+ FreePageBtree *parent, int level, StringInfo buf)
+{
+ char *base = fpm_segment_base(fpm);
+ Size pageno = fpm_pointer_to_page(base, btp);
+ Size index;
+ FreePageBtree *check_parent;
+
+ check_stack_depth();
+ check_parent = relptr_access(base, btp->hdr.parent);
+ appendStringInfo(buf, " %zu@%d %c", pageno, level,
+ btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC ? 'i' : 'l');
+ if (parent != check_parent)
+ appendStringInfo(buf, " [actual parent %zu, expected %zu]",
+ fpm_pointer_to_page(base, check_parent),
+ fpm_pointer_to_page(base, parent));
+ appendStringInfoChar(buf, ':');
+ for (index = 0; index < btp->hdr.nused; ++index)
+ {
+ if (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC)
+ appendStringInfo(buf, " %zu->%zu",
+ btp->u.internal_key[index].first_page,
+ relptr_offset(btp->u.internal_key[index].child) / FPM_PAGE_SIZE);
+ else
+ appendStringInfo(buf, " %zu(%zu)",
+ btp->u.leaf_key[index].first_page,
+ btp->u.leaf_key[index].npages);
+ }
+ appendStringInfoChar(buf, '\n');
+
+ if (btp->hdr.magic == FREE_PAGE_INTERNAL_MAGIC)
+ {
+ for (index = 0; index < btp->hdr.nused; ++index)
+ {
+ FreePageBtree *child;
+
+ child = relptr_access(base, btp->u.internal_key[index].child);
+ FreePageManagerDumpBtree(fpm, child, btp, level + 1, buf);
+ }
+ }
+}
+
+/*
+ * Debugging dump of free-span data.
+ */
+static void
+FreePageManagerDumpSpans(FreePageManager *fpm, FreePageSpanLeader *span,
+ Size expected_pages, StringInfo buf)
+{
+ char *base = fpm_segment_base(fpm);
+
+ while (span != NULL)
+ {
+ if (span->npages != expected_pages)
+ appendStringInfo(buf, " %zu(%zu)", fpm_pointer_to_page(base, span),
+ span->npages);
+ else
+ appendStringInfo(buf, " %zu", fpm_pointer_to_page(base, span));
+ span = relptr_access(base, span->next);
+ }
+
+ appendStringInfoChar(buf, '\n');
+}
+
+/*
+ * This function allocates a run of pages of the given length from the free
+ * page manager.
+ */
+static bool
+FreePageManagerGetInternal(FreePageManager *fpm, Size npages, Size *first_page)
+{
+ char *base = fpm_segment_base(fpm);
+ FreePageSpanLeader *victim = NULL;
+ FreePageSpanLeader *prev;
+ FreePageSpanLeader *next;
+ FreePageBtreeSearchResult result;
+ Size victim_page = 0; /* placate compiler */
+ Size f;
+
+ /*
+ * Search for a free span.
+ *
+ * Right now, we use a simple best-fit policy here, but it's possible for
+ * this to result in memory fragmentation if we're repeatedly asked to
+ * allocate chunks just a little smaller than what we have available.
+ * Hopefully, this is unlikely, because we expect most requests to be
+ * single pages or superblock-sized chunks -- but no policy can be optimal
+ * under all circumstances unless it has knowledge of future allocation
+ * patterns.
+ */
+ for (f = Min(npages, FPM_NUM_FREELISTS) - 1; f < FPM_NUM_FREELISTS; ++f)
+ {
+ /* Skip empty freelists. */
+ if (relptr_is_null(fpm->freelist[f]))
+ continue;
+
+ /*
+ * All of the freelists except the last one contain only items of a
+ * single size, so we just take the first one. But the final free
+ * list contains everything too big for any of the other lists, so we
+ * need to search the list.
+ */
+ if (f < FPM_NUM_FREELISTS - 1)
+ victim = relptr_access(base, fpm->freelist[f]);
+ else
+ {
+ FreePageSpanLeader *candidate;
+
+ candidate = relptr_access(base, fpm->freelist[f]);
+ do
+ {
+ if (candidate->npages >= npages && (victim == NULL ||
+ victim->npages > candidate->npages))
+ {
+ victim = candidate;
+ if (victim->npages == npages)
+ break;
+ }
+ candidate = relptr_access(base, candidate->next);
+ } while (candidate != NULL);
+ }
+ break;
+ }
+
+ /* If we didn't find an allocatable span, return failure. */
+ if (victim == NULL)
+ return false;
+
+ /* Remove span from free list. */
+ Assert(victim->magic == FREE_PAGE_SPAN_LEADER_MAGIC);
+ prev = relptr_access(base, victim->prev);
+ next = relptr_access(base, victim->next);
+ if (prev != NULL)
+ relptr_copy(prev->next, victim->next);
+ else
+ relptr_copy(fpm->freelist[f], victim->next);
+ if (next != NULL)
+ relptr_copy(next->prev, victim->prev);
+ victim_page = fpm_pointer_to_page(base, victim);
+
+ /* Decide whether we might be invalidating contiguous_pages. */
+ if (f == FPM_NUM_FREELISTS - 1 &&
+ victim->npages == fpm->contiguous_pages)
+ {
+ /*
+ * The victim span came from the oversized freelist, and had the same
+ * size as the longest span. There may or may not be another one of
+ * the same size, so contiguous_pages must be recomputed just to be
+ * safe.
+ */
+ fpm->contiguous_pages_dirty = true;
+ }
+ else if (f + 1 == fpm->contiguous_pages &&
+ relptr_is_null(fpm->freelist[f]))
+ {
+ /*
+ * The victim span came from a fixed sized freelist, and it was the
+ * list for spans of the same size as the current longest span, and
+ * the list is now empty after removing the victim. So
+ * contiguous_pages must be recomputed without a doubt.
+ */
+ fpm->contiguous_pages_dirty = true;
+ }
+
+ /*
+ * If we haven't initialized the btree yet, the victim must be the single
+ * span stored within the FreePageManager itself. Otherwise, we need to
+ * update the btree.
+ */
+ if (relptr_is_null(fpm->btree_root))
+ {
+ Assert(victim_page == fpm->singleton_first_page);
+ Assert(victim->npages == fpm->singleton_npages);
+ Assert(victim->npages >= npages);
+ fpm->singleton_first_page += npages;
+ fpm->singleton_npages -= npages;
+ if (fpm->singleton_npages > 0)
+ FreePagePushSpanLeader(fpm, fpm->singleton_first_page,
+ fpm->singleton_npages);
+ }
+ else
+ {
+ /*
+ * If the span we found is exactly the right size, remove it from the
+ * btree completely. Otherwise, adjust the btree entry to reflect the
+ * still-unallocated portion of the span, and put that portion on the
+ * appropriate free list.
+ */
+ FreePageBtreeSearch(fpm, victim_page, &result);
+ Assert(result.found);
+ if (victim->npages == npages)
+ FreePageBtreeRemove(fpm, result.page, result.index);
+ else
+ {
+ FreePageBtreeLeafKey *key;
+
+ /* Adjust btree to reflect remaining pages. */
+ Assert(victim->npages > npages);
+ key = &result.page->u.leaf_key[result.index];
+ Assert(key->npages == victim->npages);
+ key->first_page += npages;
+ key->npages -= npages;
+ if (result.index == 0)
+ FreePageBtreeAdjustAncestorKeys(fpm, result.page);
+
+ /* Put the unallocated pages back on the appropriate free list. */
+ FreePagePushSpanLeader(fpm, victim_page + npages,
+ victim->npages - npages);
+ }
+ }
+
+ /* Return results to caller. */
+ *first_page = fpm_pointer_to_page(base, victim);
+ return true;
+}
+
+/*
+ * Put a range of pages into the btree and freelists, consolidating it with
+ * existing free spans just before and/or after it. If 'soft' is true,
+ * only perform the insertion if it can be done without allocating new btree
+ * pages; if false, do it always. Returns 0 if the soft flag caused the
+ * insertion to be skipped, or otherwise the size of the contiguous span
+ * created by the insertion. This may be larger than npages if we're able
+ * to consolidate with an adjacent range.
+ */
+static Size
+FreePageManagerPutInternal(FreePageManager *fpm, Size first_page, Size npages,
+ bool soft)
+{
+ char *base = fpm_segment_base(fpm);
+ FreePageBtreeSearchResult result;
+ FreePageBtreeLeafKey *prevkey = NULL;
+ FreePageBtreeLeafKey *nextkey = NULL;
+ FreePageBtree *np;
+ Size nindex;
+
+ Assert(npages > 0);
+
+ /* We can store a single free span without initializing the btree. */
+ if (fpm->btree_depth == 0)
+ {
+ if (fpm->singleton_npages == 0)
+ {
+ /* Don't have a span yet; store this one. */
+ fpm->singleton_first_page = first_page;
+ fpm->singleton_npages = npages;
+ FreePagePushSpanLeader(fpm, first_page, npages);
+ return fpm->singleton_npages;
+ }
+ else if (fpm->singleton_first_page + fpm->singleton_npages ==
+ first_page)
+ {
+ /* New span immediately follows sole existing span. */
+ fpm->singleton_npages += npages;
+ FreePagePopSpanLeader(fpm, fpm->singleton_first_page);
+ FreePagePushSpanLeader(fpm, fpm->singleton_first_page,
+ fpm->singleton_npages);
+ return fpm->singleton_npages;
+ }
+ else if (first_page + npages == fpm->singleton_first_page)
+ {
+ /* New span immediately precedes sole existing span. */
+ FreePagePopSpanLeader(fpm, fpm->singleton_first_page);
+ fpm->singleton_first_page = first_page;
+ fpm->singleton_npages += npages;
+ FreePagePushSpanLeader(fpm, fpm->singleton_first_page,
+ fpm->singleton_npages);
+ return fpm->singleton_npages;
+ }
+ else
+ {
+ /* Not contiguous; we need to initialize the btree. */
+ Size root_page;
+ FreePageBtree *root;
+
+ if (!relptr_is_null(fpm->btree_recycle))
+ root = FreePageBtreeGetRecycled(fpm);
+ else if (soft)
+ return 0; /* Should not allocate if soft. */
+ else if (FreePageManagerGetInternal(fpm, 1, &root_page))
+ root = (FreePageBtree *) fpm_page_to_pointer(base, root_page);
+ else
+ {
+ /* We'd better be able to get a page from the existing range. */
+ elog(FATAL, "free page manager btree is corrupt");
+ }
+
+ /* Create the btree and move the preexisting range into it. */
+ root->hdr.magic = FREE_PAGE_LEAF_MAGIC;
+ root->hdr.nused = 1;
+ relptr_store(base, root->hdr.parent, (FreePageBtree *) NULL);
+ root->u.leaf_key[0].first_page = fpm->singleton_first_page;
+ root->u.leaf_key[0].npages = fpm->singleton_npages;
+ relptr_store(base, fpm->btree_root, root);
+ fpm->singleton_first_page = 0;
+ fpm->singleton_npages = 0;
+ fpm->btree_depth = 1;
+
+ /*
+ * Corner case: it may be that the btree root took the very last
+ * free page. In that case, the sole btree entry covers a zero
+ * page run, which is invalid. Overwrite it with the entry we're
+ * trying to insert and get out.
+ */
+ if (root->u.leaf_key[0].npages == 0)
+ {
+ root->u.leaf_key[0].first_page = first_page;
+ root->u.leaf_key[0].npages = npages;
+ FreePagePushSpanLeader(fpm, first_page, npages);
+ return npages;
+ }
+
+ /* Fall through to insert the new key. */
+ }
+ }
+
+ /* Search the btree. */
+ FreePageBtreeSearch(fpm, first_page, &result);
+ Assert(!result.found);
+ if (result.index > 0)
+ prevkey = &result.page->u.leaf_key[result.index - 1];
+ if (result.index < result.page->hdr.nused)
+ {
+ np = result.page;
+ nindex = result.index;
+ nextkey = &result.page->u.leaf_key[result.index];
+ }
+ else
+ {
+ np = FreePageBtreeFindRightSibling(base, result.page);
+ nindex = 0;
+ if (np != NULL)
+ nextkey = &np->u.leaf_key[0];
+ }
+
+ /* Consolidate with the previous entry if possible. */
+ if (prevkey != NULL && prevkey->first_page + prevkey->npages >= first_page)
+ {
+ bool remove_next = false;
+ Size result;
+
+ Assert(prevkey->first_page + prevkey->npages == first_page);
+ prevkey->npages = (first_page - prevkey->first_page) + npages;
+
+ /* Check whether we can *also* consolidate with the following entry. */
+ if (nextkey != NULL &&
+ prevkey->first_page + prevkey->npages >= nextkey->first_page)
+ {
+ Assert(prevkey->first_page + prevkey->npages ==
+ nextkey->first_page);
+ prevkey->npages = (nextkey->first_page - prevkey->first_page)
+ + nextkey->npages;
+ FreePagePopSpanLeader(fpm, nextkey->first_page);
+ remove_next = true;
+ }
+
+ /* Put the span on the correct freelist and save size. */
+ FreePagePopSpanLeader(fpm, prevkey->first_page);
+ FreePagePushSpanLeader(fpm, prevkey->first_page, prevkey->npages);
+ result = prevkey->npages;
+
+ /*
+ * If we consolidated with both the preceding and following entries,
+ * we must remove the following entry. We do this last, because
+ * removing an element from the btree may invalidate pointers we hold
+ * into the current data structure.
+ *
+ * NB: The btree is technically in an invalid state a this point
+ * because we've already updated prevkey to cover the same key space
+ * as nextkey. FreePageBtreeRemove() shouldn't notice that, though.
+ */
+ if (remove_next)
+ FreePageBtreeRemove(fpm, np, nindex);
+
+ return result;
+ }
+
+ /* Consolidate with the next entry if possible. */
+ if (nextkey != NULL && first_page + npages >= nextkey->first_page)
+ {
+ Size newpages;
+
+ /* Compute new size for span. */
+ Assert(first_page + npages == nextkey->first_page);
+ newpages = (nextkey->first_page - first_page) + nextkey->npages;
+
+ /* Put span on correct free list. */
+ FreePagePopSpanLeader(fpm, nextkey->first_page);
+ FreePagePushSpanLeader(fpm, first_page, newpages);
+
+ /* Update key in place. */
+ nextkey->first_page = first_page;
+ nextkey->npages = newpages;
+
+ /* If reducing first key on page, ancestors might need adjustment. */
+ if (nindex == 0)
+ FreePageBtreeAdjustAncestorKeys(fpm, np);
+
+ return nextkey->npages;
+ }
+
+ /* Split leaf page and as many of its ancestors as necessary. */
+ if (result.split_pages > 0)
+ {
+ /*
+ * NB: We could consider various coping strategies here to avoid a
+ * split; most obviously, if np != result.page, we could target that
+ * page instead. More complicated shuffling strategies could be
+ * possible as well; basically, unless every single leaf page is 100%
+ * full, we can jam this key in there if we try hard enough. It's
+ * unlikely that trying that hard is worthwhile, but it's possible we
+ * might need to make more than no effort. For now, we just do the
+ * easy thing, which is nothing.
+ */
+
+ /* If this is a soft insert, it's time to give up. */
+ if (soft)
+ return 0;
+
+ /* Check whether we need to allocate more btree pages to split. */
+ if (result.split_pages > fpm->btree_recycle_count)
+ {
+ Size pages_needed;
+ Size recycle_page;
+ Size i;
+
+ /*
+ * Allocate the required number of pages and split each one in
+ * turn. This should never fail, because if we've got enough
+ * spans of free pages kicking around that we need additional
+ * storage space just to remember them all, then we should
+ * certainly have enough to expand the btree, which should only
+ * ever use a tiny number of pages compared to the number under
+ * management. If it does, something's badly screwed up.
+ */
+ pages_needed = result.split_pages - fpm->btree_recycle_count;
+ for (i = 0; i < pages_needed; ++i)
+ {
+ if (!FreePageManagerGetInternal(fpm, 1, &recycle_page))
+ elog(FATAL, "free page manager btree is corrupt");
+ FreePageBtreeRecycle(fpm, recycle_page);
+ }
+
+ /*
+ * The act of allocating pages to recycle may have invalidated the
+ * results of our previous btree research, so repeat it. (We could
+ * recheck whether any of our split-avoidance strategies that were
+ * not viable before now are, but it hardly seems worthwhile, so
+ * we don't bother. Consolidation can't be possible now if it
+ * wasn't previously.)
+ */
+ FreePageBtreeSearch(fpm, first_page, &result);
+
+ /*
+ * The act of allocating pages for use in constructing our btree
+ * should never cause any page to become more full, so the new
+ * split depth should be no greater than the old one, and perhaps
+ * less if we fortuitously allocated a chunk that freed up a slot
+ * on the page we need to update.
+ */
+ Assert(result.split_pages <= fpm->btree_recycle_count);
+ }
+
+ /* If we still need to perform a split, do it. */
+ if (result.split_pages > 0)
+ {
+ FreePageBtree *split_target = result.page;
+ FreePageBtree *child = NULL;
+ Size key = first_page;
+
+ for (;;)
+ {
+ FreePageBtree *newsibling;
+ FreePageBtree *parent;
+
+ /* Identify parent page, which must receive downlink. */
+ parent = relptr_access(base, split_target->hdr.parent);
+
+ /* Split the page - downlink not added yet. */
+ newsibling = FreePageBtreeSplitPage(fpm, split_target);
+
+ /*
+ * At this point in the loop, we're always carrying a pending
+ * insertion. On the first pass, it's the actual key we're
+ * trying to insert; on subsequent passes, it's the downlink
+ * that needs to be added as a result of the split performed
+ * during the previous loop iteration. Since we've just split
+ * the page, there's definitely room on one of the two
+ * resulting pages.
+ */
+ if (child == NULL)
+ {
+ Size index;
+ FreePageBtree *insert_into;
+
+ insert_into = key < newsibling->u.leaf_key[0].first_page ?
+ split_target : newsibling;
+ index = FreePageBtreeSearchLeaf(insert_into, key);
+ FreePageBtreeInsertLeaf(insert_into, index, key, npages);
+ if (index == 0 && insert_into == split_target)
+ FreePageBtreeAdjustAncestorKeys(fpm, split_target);
+ }
+ else
+ {
+ Size index;
+ FreePageBtree *insert_into;
+
+ insert_into =
+ key < newsibling->u.internal_key[0].first_page ?
+ split_target : newsibling;
+ index = FreePageBtreeSearchInternal(insert_into, key);
+ FreePageBtreeInsertInternal(base, insert_into, index,
+ key, child);
+ relptr_store(base, child->hdr.parent, insert_into);
+ if (index == 0 && insert_into == split_target)
+ FreePageBtreeAdjustAncestorKeys(fpm, split_target);
+ }
+
+ /* If the page we just split has no parent, split the root. */
+ if (parent == NULL)
+ {
+ FreePageBtree *newroot;
+
+ newroot = FreePageBtreeGetRecycled(fpm);
+ newroot->hdr.magic = FREE_PAGE_INTERNAL_MAGIC;
+ newroot->hdr.nused = 2;
+ relptr_store(base, newroot->hdr.parent,
+ (FreePageBtree *) NULL);
+ newroot->u.internal_key[0].first_page =
+ FreePageBtreeFirstKey(split_target);
+ relptr_store(base, newroot->u.internal_key[0].child,
+ split_target);
+ relptr_store(base, split_target->hdr.parent, newroot);
+ newroot->u.internal_key[1].first_page =
+ FreePageBtreeFirstKey(newsibling);
+ relptr_store(base, newroot->u.internal_key[1].child,
+ newsibling);
+ relptr_store(base, newsibling->hdr.parent, newroot);
+ relptr_store(base, fpm->btree_root, newroot);
+ fpm->btree_depth++;
+
+ break;
+ }
+
+ /* If the parent page isn't full, insert the downlink. */
+ key = newsibling->u.internal_key[0].first_page;
+ if (parent->hdr.nused < FPM_ITEMS_PER_INTERNAL_PAGE)
+ {
+ Size index;
+
+ index = FreePageBtreeSearchInternal(parent, key);
+ FreePageBtreeInsertInternal(base, parent, index,
+ key, newsibling);
+ relptr_store(base, newsibling->hdr.parent, parent);
+ if (index == 0)
+ FreePageBtreeAdjustAncestorKeys(fpm, parent);
+ break;
+ }
+
+ /* The parent also needs to be split, so loop around. */
+ child = newsibling;
+ split_target = parent;
+ }
+
+ /*
+ * The loop above did the insert, so just need to update the free
+ * list, and we're done.
+ */
+ FreePagePushSpanLeader(fpm, first_page, npages);
+
+ return npages;
+ }
+ }
+
+ /* Physically add the key to the page. */
+ Assert(result.page->hdr.nused < FPM_ITEMS_PER_LEAF_PAGE);
+ FreePageBtreeInsertLeaf(result.page, result.index, first_page, npages);
+
+ /* If new first key on page, ancestors might need adjustment. */
+ if (result.index == 0)
+ FreePageBtreeAdjustAncestorKeys(fpm, result.page);
+
+ /* Put it on the free list. */
+ FreePagePushSpanLeader(fpm, first_page, npages);
+
+ return npages;
+}
+
+/*
+ * Remove a FreePageSpanLeader from the linked-list that contains it, either
+ * because we're changing the size of the span, or because we're allocating it.
+ */
+static void
+FreePagePopSpanLeader(FreePageManager *fpm, Size pageno)
+{
+ char *base = fpm_segment_base(fpm);
+ FreePageSpanLeader *span;
+ FreePageSpanLeader *next;
+ FreePageSpanLeader *prev;
+
+ span = (FreePageSpanLeader *) fpm_page_to_pointer(base, pageno);
+
+ next = relptr_access(base, span->next);
+ prev = relptr_access(base, span->prev);
+ if (next != NULL)
+ relptr_copy(next->prev, span->prev);
+ if (prev != NULL)
+ relptr_copy(prev->next, span->next);
+ else
+ {
+ Size f = Min(span->npages, FPM_NUM_FREELISTS) - 1;
+
+ Assert(relptr_offset(fpm->freelist[f]) == pageno * FPM_PAGE_SIZE);
+ relptr_copy(fpm->freelist[f], span->next);
+ }
+}
+
+/*
+ * Initialize a new FreePageSpanLeader and put it on the appropriate free list.
+ */
+static void
+FreePagePushSpanLeader(FreePageManager *fpm, Size first_page, Size npages)
+{
+ char *base = fpm_segment_base(fpm);
+ Size f = Min(npages, FPM_NUM_FREELISTS) - 1;
+ FreePageSpanLeader *head = relptr_access(base, fpm->freelist[f]);
+ FreePageSpanLeader *span;
+
+ span = (FreePageSpanLeader *) fpm_page_to_pointer(base, first_page);
+ span->magic = FREE_PAGE_SPAN_LEADER_MAGIC;
+ span->npages = npages;
+ relptr_store(base, span->next, head);
+ relptr_store(base, span->prev, (FreePageSpanLeader *) NULL);
+ if (head != NULL)
+ relptr_store(base, head->prev, span);
+ relptr_store(base, fpm->freelist[f], span);
+}