diff options
Diffstat (limited to '')
-rw-r--r-- | src/common/sha2.c | 1017 |
1 files changed, 1017 insertions, 0 deletions
diff --git a/src/common/sha2.c b/src/common/sha2.c new file mode 100644 index 0000000..ae4936b --- /dev/null +++ b/src/common/sha2.c @@ -0,0 +1,1017 @@ +/*------------------------------------------------------------------------- + * + * sha2.c + * SHA functions for SHA-224, SHA-256, SHA-384 and SHA-512. + * + * This includes the fallback implementation for SHA2 cryptographic + * hashes. + * + * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * IDENTIFICATION + * src/common/sha2.c + * + *------------------------------------------------------------------------- + */ + +/* $OpenBSD: sha2.c,v 1.6 2004/05/03 02:57:36 millert Exp $ */ +/* + * FILE: sha2.c + * AUTHOR: Aaron D. Gifford <me@aarongifford.com> + * + * Copyright (c) 2000-2001, Aaron D. Gifford + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ + */ + + +#ifndef FRONTEND +#include "postgres.h" +#else +#include "postgres_fe.h" +#endif + +#include "sha2_int.h" + +/* + * In backend, use palloc/pfree to ease the error handling. In frontend, + * use malloc to be able to return a failure status back to the caller. + */ +#ifndef FRONTEND +#define ALLOC(size) palloc(size) +#define FREE(ptr) pfree(ptr) +#else +#define ALLOC(size) malloc(size) +#define FREE(ptr) free(ptr) +#endif + +/* + * UNROLLED TRANSFORM LOOP NOTE: + * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform + * loop version for the hash transform rounds (defined using macros + * later in this file). Either define on the command line, for example: + * + * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c + * + * or define below: + * + * #define SHA2_UNROLL_TRANSFORM + * + */ + +/*** SHA-256/384/512 Various Length Definitions ***********************/ +#define PG_SHA256_SHORT_BLOCK_LENGTH (PG_SHA256_BLOCK_LENGTH - 8) +#define PG_SHA384_SHORT_BLOCK_LENGTH (PG_SHA384_BLOCK_LENGTH - 16) +#define PG_SHA512_SHORT_BLOCK_LENGTH (PG_SHA512_BLOCK_LENGTH - 16) + +/*** ENDIAN REVERSAL MACROS *******************************************/ +#ifndef WORDS_BIGENDIAN +#define REVERSE32(w,x) { \ + uint32 tmp = (w); \ + tmp = (tmp >> 16) | (tmp << 16); \ + (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ +} +#define REVERSE64(w,x) { \ + uint64 tmp = (w); \ + tmp = (tmp >> 32) | (tmp << 32); \ + tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ + ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ + (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ + ((tmp & 0x0000ffff0000ffffULL) << 16); \ +} +#endif /* not bigendian */ + +/* + * Macro for incrementally adding the unsigned 64-bit integer n to the + * unsigned 128-bit integer (represented using a two-element array of + * 64-bit words): + */ +#define ADDINC128(w,n) { \ + (w)[0] += (uint64)(n); \ + if ((w)[0] < (n)) { \ + (w)[1]++; \ + } \ +} + +/*** THE SIX LOGICAL FUNCTIONS ****************************************/ +/* + * Bit shifting and rotation (used by the six SHA-XYZ logical functions: + * + * NOTE: The naming of R and S appears backwards here (R is a SHIFT and + * S is a ROTATION) because the SHA-256/384/512 description document + * (see http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf) + * uses this same "backwards" definition. + */ +/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ +#define R(b,x) ((x) >> (b)) +/* 32-bit Rotate-right (used in SHA-256): */ +#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) +/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ +#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) + +/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ +#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) +#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +/* Four of six logical functions used in SHA-256: */ +#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) +#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) +#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) +#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) + +/* Four of six logical functions used in SHA-384 and SHA-512: */ +#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) +#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) +#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) +#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) + +/*** INTERNAL FUNCTION PROTOTYPES *************************************/ +/* NOTE: These should not be accessed directly from outside this + * library -- they are intended for private internal visibility/use + * only. + */ +static void SHA512_Last(pg_sha512_ctx *context); +static void SHA256_Transform(pg_sha256_ctx *context, const uint8 *data); +static void SHA512_Transform(pg_sha512_ctx *context, const uint8 *data); + +/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ +/* Hash constant words K for SHA-256: */ +static const uint32 K256[64] = { + 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, + 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, + 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, + 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, + 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, + 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, + 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, + 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, + 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, + 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, + 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, + 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, + 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, + 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, + 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, + 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL +}; + +/* Initial hash value H for SHA-224: */ +static const uint32 sha224_initial_hash_value[8] = { + 0xc1059ed8UL, + 0x367cd507UL, + 0x3070dd17UL, + 0xf70e5939UL, + 0xffc00b31UL, + 0x68581511UL, + 0x64f98fa7UL, + 0xbefa4fa4UL +}; + +/* Initial hash value H for SHA-256: */ +static const uint32 sha256_initial_hash_value[8] = { + 0x6a09e667UL, + 0xbb67ae85UL, + 0x3c6ef372UL, + 0xa54ff53aUL, + 0x510e527fUL, + 0x9b05688cUL, + 0x1f83d9abUL, + 0x5be0cd19UL +}; + +/* Hash constant words K for SHA-384 and SHA-512: */ +static const uint64 K512[80] = { + 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, + 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, + 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, + 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, + 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, + 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, + 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, + 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, + 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, + 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, + 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, + 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, + 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, + 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, + 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, + 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, + 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, + 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, + 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, + 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, + 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, + 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, + 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, + 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, + 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, + 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, + 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, + 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, + 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, + 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, + 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, + 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, + 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, + 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, + 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, + 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, + 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, + 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, + 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, + 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL +}; + +/* Initial hash value H for SHA-384 */ +static const uint64 sha384_initial_hash_value[8] = { + 0xcbbb9d5dc1059ed8ULL, + 0x629a292a367cd507ULL, + 0x9159015a3070dd17ULL, + 0x152fecd8f70e5939ULL, + 0x67332667ffc00b31ULL, + 0x8eb44a8768581511ULL, + 0xdb0c2e0d64f98fa7ULL, + 0x47b5481dbefa4fa4ULL +}; + +/* Initial hash value H for SHA-512 */ +static const uint64 sha512_initial_hash_value[8] = { + 0x6a09e667f3bcc908ULL, + 0xbb67ae8584caa73bULL, + 0x3c6ef372fe94f82bULL, + 0xa54ff53a5f1d36f1ULL, + 0x510e527fade682d1ULL, + 0x9b05688c2b3e6c1fULL, + 0x1f83d9abfb41bd6bULL, + 0x5be0cd19137e2179ULL +}; + + +/*** SHA-256: *********************************************************/ +void +pg_sha256_init(pg_sha256_ctx *context) +{ + if (context == NULL) + return; + memcpy(context->state, sha256_initial_hash_value, PG_SHA256_DIGEST_LENGTH); + memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH); + context->bitcount = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-256 round macros: */ + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ + W256[j] = (uint32)data[3] | ((uint32)data[2] << 8) | \ + ((uint32)data[1] << 16) | ((uint32)data[0] << 24); \ + data += 4; \ + T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + +#define ROUND256(a,b,c,d,e,f,g,h) do { \ + s0 = W256[(j+1)&0x0f]; \ + s0 = sigma0_256(s0); \ + s1 = W256[(j+14)&0x0f]; \ + s1 = sigma1_256(s1); \ + T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + +static void +SHA256_Transform(pg_sha256_ctx *context, const uint8 *data) +{ + uint32 a, + b, + c, + d, + e, + f, + g, + h, + s0, + s1; + uint32 T1, + *W256; + int j; + + W256 = (uint32 *) context->buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do + { + /* Rounds 0 to 15 (unrolled): */ + ROUND256_0_TO_15(a, b, c, d, e, f, g, h); + ROUND256_0_TO_15(h, a, b, c, d, e, f, g); + ROUND256_0_TO_15(g, h, a, b, c, d, e, f); + ROUND256_0_TO_15(f, g, h, a, b, c, d, e); + ROUND256_0_TO_15(e, f, g, h, a, b, c, d); + ROUND256_0_TO_15(d, e, f, g, h, a, b, c); + ROUND256_0_TO_15(c, d, e, f, g, h, a, b); + ROUND256_0_TO_15(b, c, d, e, f, g, h, a); + } while (j < 16); + + /* Now for the remaining rounds to 64: */ + do + { + ROUND256(a, b, c, d, e, f, g, h); + ROUND256(h, a, b, c, d, e, f, g); + ROUND256(g, h, a, b, c, d, e, f); + ROUND256(f, g, h, a, b, c, d, e); + ROUND256(e, f, g, h, a, b, c, d); + ROUND256(d, e, f, g, h, a, b, c); + ROUND256(c, d, e, f, g, h, a, b); + ROUND256(b, c, d, e, f, g, h, a); + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} +#else /* SHA2_UNROLL_TRANSFORM */ + +static void +SHA256_Transform(pg_sha256_ctx *context, const uint8 *data) +{ + uint32 a, + b, + c, + d, + e, + f, + g, + h, + s0, + s1; + uint32 T1, + T2, + *W256; + int j; + + W256 = (uint32 *) context->buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do + { + W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) | + ((uint32) data[1] << 16) | ((uint32) data[0] << 24); + data += 4; + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do + { + /* Part of the message block expansion: */ + s0 = W256[(j + 1) & 0x0f]; + s0 = sigma0_256(s0); + s1 = W256[(j + 14) & 0x0f]; + s1 = sigma1_256(s1); + + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + + (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} +#endif /* SHA2_UNROLL_TRANSFORM */ + +void +pg_sha256_update(pg_sha256_ctx *context, const uint8 *data, size_t len) +{ + size_t freespace, + usedspace; + + /* Calling with no data is valid (we do nothing) */ + if (len == 0) + return; + + usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH; + if (usedspace > 0) + { + /* Calculate how much free space is available in the buffer */ + freespace = PG_SHA256_BLOCK_LENGTH - usedspace; + + if (len >= freespace) + { + /* Fill the buffer completely and process it */ + memcpy(&context->buffer[usedspace], data, freespace); + context->bitcount += freespace << 3; + len -= freespace; + data += freespace; + SHA256_Transform(context, context->buffer); + } + else + { + /* The buffer is not yet full */ + memcpy(&context->buffer[usedspace], data, len); + context->bitcount += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= PG_SHA256_BLOCK_LENGTH) + { + /* Process as many complete blocks as we can */ + SHA256_Transform(context, data); + context->bitcount += PG_SHA256_BLOCK_LENGTH << 3; + len -= PG_SHA256_BLOCK_LENGTH; + data += PG_SHA256_BLOCK_LENGTH; + } + if (len > 0) + { + /* There's left-overs, so save 'em */ + memcpy(context->buffer, data, len); + context->bitcount += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; +} + +static void +SHA256_Last(pg_sha256_ctx *context) +{ + unsigned int usedspace; + + usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH; +#ifndef WORDS_BIGENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->bitcount, context->bitcount); +#endif + if (usedspace > 0) + { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= PG_SHA256_SHORT_BLOCK_LENGTH) + { + /* Set-up for the last transform: */ + memset(&context->buffer[usedspace], 0, PG_SHA256_SHORT_BLOCK_LENGTH - usedspace); + } + else + { + if (usedspace < PG_SHA256_BLOCK_LENGTH) + { + memset(&context->buffer[usedspace], 0, PG_SHA256_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + SHA256_Transform(context, context->buffer); + + /* And set-up for the last transform: */ + memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH); + } + } + else + { + /* Set-up for the last transform: */ + memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Set the bit count: */ + *(uint64 *) &context->buffer[PG_SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; + + /* Final transform: */ + SHA256_Transform(context, context->buffer); +} + +void +pg_sha256_final(pg_sha256_ctx *context, uint8 *digest) +{ + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != NULL) + { + SHA256_Last(context); + +#ifndef WORDS_BIGENDIAN + { + /* Convert TO host byte order */ + int j; + + for (j = 0; j < 8; j++) + { + REVERSE32(context->state[j], context->state[j]); + } + } +#endif + memcpy(digest, context->state, PG_SHA256_DIGEST_LENGTH); + } + + /* Clean up state data: */ + memset(context, 0, sizeof(pg_sha256_ctx)); +} + + +/*** SHA-512: *********************************************************/ +void +pg_sha512_init(pg_sha512_ctx *context) +{ + if (context == NULL) + return; + memcpy(context->state, sha512_initial_hash_value, PG_SHA512_DIGEST_LENGTH); + memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH); + context->bitcount[0] = context->bitcount[1] = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-512 round macros: */ + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ + W512[j] = (uint64)data[7] | ((uint64)data[6] << 8) | \ + ((uint64)data[5] << 16) | ((uint64)data[4] << 24) | \ + ((uint64)data[3] << 32) | ((uint64)data[2] << 40) | \ + ((uint64)data[1] << 48) | ((uint64)data[0] << 56); \ + data += 8; \ + T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + + +#define ROUND512(a,b,c,d,e,f,g,h) do { \ + s0 = W512[(j+1)&0x0f]; \ + s0 = sigma0_512(s0); \ + s1 = W512[(j+14)&0x0f]; \ + s1 = sigma1_512(s1); \ + T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + +static void +SHA512_Transform(pg_sha512_ctx *context, const uint8 *data) +{ + uint64 a, + b, + c, + d, + e, + f, + g, + h, + s0, + s1; + uint64 T1, + *W512 = (uint64 *) context->buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do + { + ROUND512_0_TO_15(a, b, c, d, e, f, g, h); + ROUND512_0_TO_15(h, a, b, c, d, e, f, g); + ROUND512_0_TO_15(g, h, a, b, c, d, e, f); + ROUND512_0_TO_15(f, g, h, a, b, c, d, e); + ROUND512_0_TO_15(e, f, g, h, a, b, c, d); + ROUND512_0_TO_15(d, e, f, g, h, a, b, c); + ROUND512_0_TO_15(c, d, e, f, g, h, a, b); + ROUND512_0_TO_15(b, c, d, e, f, g, h, a); + } while (j < 16); + + /* Now for the remaining rounds up to 79: */ + do + { + ROUND512(a, b, c, d, e, f, g, h); + ROUND512(h, a, b, c, d, e, f, g); + ROUND512(g, h, a, b, c, d, e, f); + ROUND512(f, g, h, a, b, c, d, e); + ROUND512(e, f, g, h, a, b, c, d); + ROUND512(d, e, f, g, h, a, b, c); + ROUND512(c, d, e, f, g, h, a, b); + ROUND512(b, c, d, e, f, g, h, a); + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} +#else /* SHA2_UNROLL_TRANSFORM */ + +static void +SHA512_Transform(pg_sha512_ctx *context, const uint8 *data) +{ + uint64 a, + b, + c, + d, + e, + f, + g, + h, + s0, + s1; + uint64 T1, + T2, + *W512 = (uint64 *) context->buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do + { + W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) | + ((uint64) data[5] << 16) | ((uint64) data[4] << 24) | + ((uint64) data[3] << 32) | ((uint64) data[2] << 40) | + ((uint64) data[1] << 48) | ((uint64) data[0] << 56); + data += 8; + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do + { + /* Part of the message block expansion: */ + s0 = W512[(j + 1) & 0x0f]; + s0 = sigma0_512(s0); + s1 = W512[(j + 14) & 0x0f]; + s1 = sigma1_512(s1); + + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0); + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} +#endif /* SHA2_UNROLL_TRANSFORM */ + +void +pg_sha512_update(pg_sha512_ctx *context, const uint8 *data, size_t len) +{ + size_t freespace, + usedspace; + + /* Calling with no data is valid (we do nothing) */ + if (len == 0) + return; + + usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH; + if (usedspace > 0) + { + /* Calculate how much free space is available in the buffer */ + freespace = PG_SHA512_BLOCK_LENGTH - usedspace; + + if (len >= freespace) + { + /* Fill the buffer completely and process it */ + memcpy(&context->buffer[usedspace], data, freespace); + ADDINC128(context->bitcount, freespace << 3); + len -= freespace; + data += freespace; + SHA512_Transform(context, context->buffer); + } + else + { + /* The buffer is not yet full */ + memcpy(&context->buffer[usedspace], data, len); + ADDINC128(context->bitcount, len << 3); + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= PG_SHA512_BLOCK_LENGTH) + { + /* Process as many complete blocks as we can */ + SHA512_Transform(context, data); + ADDINC128(context->bitcount, PG_SHA512_BLOCK_LENGTH << 3); + len -= PG_SHA512_BLOCK_LENGTH; + data += PG_SHA512_BLOCK_LENGTH; + } + if (len > 0) + { + /* There's left-overs, so save 'em */ + memcpy(context->buffer, data, len); + ADDINC128(context->bitcount, len << 3); + } + /* Clean up: */ + usedspace = freespace = 0; +} + +static void +SHA512_Last(pg_sha512_ctx *context) +{ + unsigned int usedspace; + + usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH; +#ifndef WORDS_BIGENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->bitcount[0], context->bitcount[0]); + REVERSE64(context->bitcount[1], context->bitcount[1]); +#endif + if (usedspace > 0) + { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= PG_SHA512_SHORT_BLOCK_LENGTH) + { + /* Set-up for the last transform: */ + memset(&context->buffer[usedspace], 0, PG_SHA512_SHORT_BLOCK_LENGTH - usedspace); + } + else + { + if (usedspace < PG_SHA512_BLOCK_LENGTH) + { + memset(&context->buffer[usedspace], 0, PG_SHA512_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + SHA512_Transform(context, context->buffer); + + /* And set-up for the last transform: */ + memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH - 2); + } + } + else + { + /* Prepare for final transform: */ + memset(context->buffer, 0, PG_SHA512_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Store the length of input data (in bits): */ + *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; + *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0]; + + /* Final transform: */ + SHA512_Transform(context, context->buffer); +} + +void +pg_sha512_final(pg_sha512_ctx *context, uint8 *digest) +{ + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != NULL) + { + SHA512_Last(context); + + /* Save the hash data for output: */ +#ifndef WORDS_BIGENDIAN + { + /* Convert TO host byte order */ + int j; + + for (j = 0; j < 8; j++) + { + REVERSE64(context->state[j], context->state[j]); + } + } +#endif + memcpy(digest, context->state, PG_SHA512_DIGEST_LENGTH); + } + + /* Zero out state data */ + memset(context, 0, sizeof(pg_sha512_ctx)); +} + + +/*** SHA-384: *********************************************************/ +void +pg_sha384_init(pg_sha384_ctx *context) +{ + if (context == NULL) + return; + memcpy(context->state, sha384_initial_hash_value, PG_SHA512_DIGEST_LENGTH); + memset(context->buffer, 0, PG_SHA384_BLOCK_LENGTH); + context->bitcount[0] = context->bitcount[1] = 0; +} + +void +pg_sha384_update(pg_sha384_ctx *context, const uint8 *data, size_t len) +{ + pg_sha512_update((pg_sha512_ctx *) context, data, len); +} + +void +pg_sha384_final(pg_sha384_ctx *context, uint8 *digest) +{ + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != NULL) + { + SHA512_Last((pg_sha512_ctx *) context); + + /* Save the hash data for output: */ +#ifndef WORDS_BIGENDIAN + { + /* Convert TO host byte order */ + int j; + + for (j = 0; j < 6; j++) + { + REVERSE64(context->state[j], context->state[j]); + } + } +#endif + memcpy(digest, context->state, PG_SHA384_DIGEST_LENGTH); + } + + /* Zero out state data */ + memset(context, 0, sizeof(pg_sha384_ctx)); +} + +/*** SHA-224: *********************************************************/ +void +pg_sha224_init(pg_sha224_ctx *context) +{ + if (context == NULL) + return; + memcpy(context->state, sha224_initial_hash_value, PG_SHA256_DIGEST_LENGTH); + memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH); + context->bitcount = 0; +} + +void +pg_sha224_update(pg_sha224_ctx *context, const uint8 *data, size_t len) +{ + pg_sha256_update((pg_sha256_ctx *) context, data, len); +} + +void +pg_sha224_final(pg_sha224_ctx *context, uint8 *digest) +{ + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != NULL) + { + SHA256_Last(context); + +#ifndef WORDS_BIGENDIAN + { + /* Convert TO host byte order */ + int j; + + for (j = 0; j < 8; j++) + { + REVERSE32(context->state[j], context->state[j]); + } + } +#endif + memcpy(digest, context->state, PG_SHA224_DIGEST_LENGTH); + } + + /* Clean up state data: */ + memset(context, 0, sizeof(pg_sha224_ctx)); +} |