/*------------------------------------------------------------------------- * * execGrouping.c * executor utility routines for grouping, hashing, and aggregation * * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/executor/execGrouping.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/parallel.h" #include "common/hashfn.h" #include "executor/executor.h" #include "miscadmin.h" #include "utils/lsyscache.h" #include "utils/memutils.h" static int TupleHashTableMatch(struct tuplehash_hash *tb, const MinimalTuple tuple1, const MinimalTuple tuple2); static inline uint32 TupleHashTableHash_internal(struct tuplehash_hash *tb, const MinimalTuple tuple); static inline TupleHashEntry LookupTupleHashEntry_internal(TupleHashTable hashtable, TupleTableSlot *slot, bool *isnew, uint32 hash); /* * Define parameters for tuple hash table code generation. The interface is * *also* declared in execnodes.h (to generate the types, which are externally * visible). */ #define SH_PREFIX tuplehash #define SH_ELEMENT_TYPE TupleHashEntryData #define SH_KEY_TYPE MinimalTuple #define SH_KEY firstTuple #define SH_HASH_KEY(tb, key) TupleHashTableHash_internal(tb, key) #define SH_EQUAL(tb, a, b) TupleHashTableMatch(tb, a, b) == 0 #define SH_SCOPE extern #define SH_STORE_HASH #define SH_GET_HASH(tb, a) a->hash #define SH_DEFINE #include "lib/simplehash.h" /***************************************************************************** * Utility routines for grouping tuples together *****************************************************************************/ /* * execTuplesMatchPrepare * Build expression that can be evaluated using ExecQual(), returning * whether an ExprContext's inner/outer tuples are NOT DISTINCT */ ExprState * execTuplesMatchPrepare(TupleDesc desc, int numCols, const AttrNumber *keyColIdx, const Oid *eqOperators, const Oid *collations, PlanState *parent) { Oid *eqFunctions = (Oid *) palloc(numCols * sizeof(Oid)); int i; ExprState *expr; if (numCols == 0) return NULL; /* lookup equality functions */ for (i = 0; i < numCols; i++) eqFunctions[i] = get_opcode(eqOperators[i]); /* build actual expression */ expr = ExecBuildGroupingEqual(desc, desc, NULL, NULL, numCols, keyColIdx, eqFunctions, collations, parent); return expr; } /* * execTuplesHashPrepare * Look up the equality and hashing functions needed for a TupleHashTable. * * This is similar to execTuplesMatchPrepare, but we also need to find the * hash functions associated with the equality operators. *eqFunctions and * *hashFunctions receive the palloc'd result arrays. * * Note: we expect that the given operators are not cross-type comparisons. */ void execTuplesHashPrepare(int numCols, const Oid *eqOperators, Oid **eqFuncOids, FmgrInfo **hashFunctions) { int i; *eqFuncOids = (Oid *) palloc(numCols * sizeof(Oid)); *hashFunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo)); for (i = 0; i < numCols; i++) { Oid eq_opr = eqOperators[i]; Oid eq_function; Oid left_hash_function; Oid right_hash_function; eq_function = get_opcode(eq_opr); if (!get_op_hash_functions(eq_opr, &left_hash_function, &right_hash_function)) elog(ERROR, "could not find hash function for hash operator %u", eq_opr); /* We're not supporting cross-type cases here */ Assert(left_hash_function == right_hash_function); (*eqFuncOids)[i] = eq_function; fmgr_info(right_hash_function, &(*hashFunctions)[i]); } } /***************************************************************************** * Utility routines for all-in-memory hash tables * * These routines build hash tables for grouping tuples together (eg, for * hash aggregation). There is one entry for each not-distinct set of tuples * presented. *****************************************************************************/ /* * Construct an empty TupleHashTable * * numCols, keyColIdx: identify the tuple fields to use as lookup key * eqfunctions: equality comparison functions to use * hashfunctions: datatype-specific hashing functions to use * nbuckets: initial estimate of hashtable size * additionalsize: size of data stored in ->additional * metacxt: memory context for long-lived allocation, but not per-entry data * tablecxt: memory context in which to store table entries * tempcxt: short-lived context for evaluation hash and comparison functions * * The function arrays may be made with execTuplesHashPrepare(). Note they * are not cross-type functions, but expect to see the table datatype(s) * on both sides. * * Note that keyColIdx, eqfunctions, and hashfunctions must be allocated in * storage that will live as long as the hashtable does. */ TupleHashTable BuildTupleHashTableExt(PlanState *parent, TupleDesc inputDesc, int numCols, AttrNumber *keyColIdx, const Oid *eqfuncoids, FmgrInfo *hashfunctions, Oid *collations, long nbuckets, Size additionalsize, MemoryContext metacxt, MemoryContext tablecxt, MemoryContext tempcxt, bool use_variable_hash_iv) { TupleHashTable hashtable; Size entrysize = sizeof(TupleHashEntryData) + additionalsize; Size hash_mem_limit; MemoryContext oldcontext; bool allow_jit; Assert(nbuckets > 0); /* Limit initial table size request to not more than hash_mem */ hash_mem_limit = get_hash_memory_limit() / entrysize; if (nbuckets > hash_mem_limit) nbuckets = hash_mem_limit; oldcontext = MemoryContextSwitchTo(metacxt); hashtable = (TupleHashTable) palloc(sizeof(TupleHashTableData)); hashtable->numCols = numCols; hashtable->keyColIdx = keyColIdx; hashtable->tab_hash_funcs = hashfunctions; hashtable->tab_collations = collations; hashtable->tablecxt = tablecxt; hashtable->tempcxt = tempcxt; hashtable->entrysize = entrysize; hashtable->tableslot = NULL; /* will be made on first lookup */ hashtable->inputslot = NULL; hashtable->in_hash_funcs = NULL; hashtable->cur_eq_func = NULL; /* * If parallelism is in use, even if the leader backend is performing the * scan itself, we don't want to create the hashtable exactly the same way * in all workers. As hashtables are iterated over in keyspace-order, * doing so in all processes in the same way is likely to lead to * "unbalanced" hashtables when the table size initially is * underestimated. */ if (use_variable_hash_iv) hashtable->hash_iv = murmurhash32(ParallelWorkerNumber); else hashtable->hash_iv = 0; hashtable->hashtab = tuplehash_create(metacxt, nbuckets, hashtable); /* * We copy the input tuple descriptor just for safety --- we assume all * input tuples will have equivalent descriptors. */ hashtable->tableslot = MakeSingleTupleTableSlot(CreateTupleDescCopy(inputDesc), &TTSOpsMinimalTuple); /* * If the old reset interface is used (i.e. BuildTupleHashTable, rather * than BuildTupleHashTableExt), allowing JIT would lead to the generated * functions to a) live longer than the query b) be re-generated each time * the table is being reset. Therefore prevent JIT from being used in that * case, by not providing a parent node (which prevents accessing the * JitContext in the EState). */ allow_jit = metacxt != tablecxt; /* build comparator for all columns */ /* XXX: should we support non-minimal tuples for the inputslot? */ hashtable->tab_eq_func = ExecBuildGroupingEqual(inputDesc, inputDesc, &TTSOpsMinimalTuple, &TTSOpsMinimalTuple, numCols, keyColIdx, eqfuncoids, collations, allow_jit ? parent : NULL); /* * While not pretty, it's ok to not shut down this context, but instead * rely on the containing memory context being reset, as * ExecBuildGroupingEqual() only builds a very simple expression calling * functions (i.e. nothing that'd employ RegisterExprContextCallback()). */ hashtable->exprcontext = CreateStandaloneExprContext(); MemoryContextSwitchTo(oldcontext); return hashtable; } /* * BuildTupleHashTable is a backwards-compatibilty wrapper for * BuildTupleHashTableExt(), that allocates the hashtable's metadata in * tablecxt. Note that hashtables created this way cannot be reset leak-free * with ResetTupleHashTable(). */ TupleHashTable BuildTupleHashTable(PlanState *parent, TupleDesc inputDesc, int numCols, AttrNumber *keyColIdx, const Oid *eqfuncoids, FmgrInfo *hashfunctions, Oid *collations, long nbuckets, Size additionalsize, MemoryContext tablecxt, MemoryContext tempcxt, bool use_variable_hash_iv) { return BuildTupleHashTableExt(parent, inputDesc, numCols, keyColIdx, eqfuncoids, hashfunctions, collations, nbuckets, additionalsize, tablecxt, tablecxt, tempcxt, use_variable_hash_iv); } /* * Reset contents of the hashtable to be empty, preserving all the non-content * state. Note that the tablecxt passed to BuildTupleHashTableExt() should * also be reset, otherwise there will be leaks. */ void ResetTupleHashTable(TupleHashTable hashtable) { tuplehash_reset(hashtable->hashtab); } /* * Find or create a hashtable entry for the tuple group containing the * given tuple. The tuple must be the same type as the hashtable entries. * * If isnew is NULL, we do not create new entries; we return NULL if no * match is found. * * If hash is not NULL, we set it to the calculated hash value. This allows * callers access to the hash value even if no entry is returned. * * If isnew isn't NULL, then a new entry is created if no existing entry * matches. On return, *isnew is true if the entry is newly created, * false if it existed already. ->additional_data in the new entry has * been zeroed. */ TupleHashEntry LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot, bool *isnew, uint32 *hash) { TupleHashEntry entry; MemoryContext oldContext; uint32 local_hash; /* Need to run the hash functions in short-lived context */ oldContext = MemoryContextSwitchTo(hashtable->tempcxt); /* set up data needed by hash and match functions */ hashtable->inputslot = slot; hashtable->in_hash_funcs = hashtable->tab_hash_funcs; hashtable->cur_eq_func = hashtable->tab_eq_func; local_hash = TupleHashTableHash_internal(hashtable->hashtab, NULL); entry = LookupTupleHashEntry_internal(hashtable, slot, isnew, local_hash); if (hash != NULL) *hash = local_hash; Assert(entry == NULL || entry->hash == local_hash); MemoryContextSwitchTo(oldContext); return entry; } /* * Compute the hash value for a tuple */ uint32 TupleHashTableHash(TupleHashTable hashtable, TupleTableSlot *slot) { MemoryContext oldContext; uint32 hash; hashtable->inputslot = slot; hashtable->in_hash_funcs = hashtable->tab_hash_funcs; /* Need to run the hash functions in short-lived context */ oldContext = MemoryContextSwitchTo(hashtable->tempcxt); hash = TupleHashTableHash_internal(hashtable->hashtab, NULL); MemoryContextSwitchTo(oldContext); return hash; } /* * A variant of LookupTupleHashEntry for callers that have already computed * the hash value. */ TupleHashEntry LookupTupleHashEntryHash(TupleHashTable hashtable, TupleTableSlot *slot, bool *isnew, uint32 hash) { TupleHashEntry entry; MemoryContext oldContext; /* Need to run the hash functions in short-lived context */ oldContext = MemoryContextSwitchTo(hashtable->tempcxt); /* set up data needed by hash and match functions */ hashtable->inputslot = slot; hashtable->in_hash_funcs = hashtable->tab_hash_funcs; hashtable->cur_eq_func = hashtable->tab_eq_func; entry = LookupTupleHashEntry_internal(hashtable, slot, isnew, hash); Assert(entry == NULL || entry->hash == hash); MemoryContextSwitchTo(oldContext); return entry; } /* * Search for a hashtable entry matching the given tuple. No entry is * created if there's not a match. This is similar to the non-creating * case of LookupTupleHashEntry, except that it supports cross-type * comparisons, in which the given tuple is not of the same type as the * table entries. The caller must provide the hash functions to use for * the input tuple, as well as the equality functions, since these may be * different from the table's internal functions. */ TupleHashEntry FindTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot, ExprState *eqcomp, FmgrInfo *hashfunctions) { TupleHashEntry entry; MemoryContext oldContext; MinimalTuple key; /* Need to run the hash functions in short-lived context */ oldContext = MemoryContextSwitchTo(hashtable->tempcxt); /* Set up data needed by hash and match functions */ hashtable->inputslot = slot; hashtable->in_hash_funcs = hashfunctions; hashtable->cur_eq_func = eqcomp; /* Search the hash table */ key = NULL; /* flag to reference inputslot */ entry = tuplehash_lookup(hashtable->hashtab, key); MemoryContextSwitchTo(oldContext); return entry; } /* * If tuple is NULL, use the input slot instead. This convention avoids the * need to materialize virtual input tuples unless they actually need to get * copied into the table. * * Also, the caller must select an appropriate memory context for running * the hash functions. (dynahash.c doesn't change CurrentMemoryContext.) */ static uint32 TupleHashTableHash_internal(struct tuplehash_hash *tb, const MinimalTuple tuple) { TupleHashTable hashtable = (TupleHashTable) tb->private_data; int numCols = hashtable->numCols; AttrNumber *keyColIdx = hashtable->keyColIdx; uint32 hashkey = hashtable->hash_iv; TupleTableSlot *slot; FmgrInfo *hashfunctions; int i; if (tuple == NULL) { /* Process the current input tuple for the table */ slot = hashtable->inputslot; hashfunctions = hashtable->in_hash_funcs; } else { /* * Process a tuple already stored in the table. * * (this case never actually occurs due to the way simplehash.h is * used, as the hash-value is stored in the entries) */ slot = hashtable->tableslot; ExecStoreMinimalTuple(tuple, slot, false); hashfunctions = hashtable->tab_hash_funcs; } for (i = 0; i < numCols; i++) { AttrNumber att = keyColIdx[i]; Datum attr; bool isNull; /* rotate hashkey left 1 bit at each step */ hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0); attr = slot_getattr(slot, att, &isNull); if (!isNull) /* treat nulls as having hash key 0 */ { uint32 hkey; hkey = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[i], hashtable->tab_collations[i], attr)); hashkey ^= hkey; } } /* * The way hashes are combined above, among each other and with the IV, * doesn't lead to good bit perturbation. As the IV's goal is to lead to * achieve that, perform a round of hashing of the combined hash - * resulting in near perfect perturbation. */ return murmurhash32(hashkey); } /* * Does the work of LookupTupleHashEntry and LookupTupleHashEntryHash. Useful * so that we can avoid switching the memory context multiple times for * LookupTupleHashEntry. * * NB: This function may or may not change the memory context. Caller is * expected to change it back. */ static inline TupleHashEntry LookupTupleHashEntry_internal(TupleHashTable hashtable, TupleTableSlot *slot, bool *isnew, uint32 hash) { TupleHashEntryData *entry; bool found; MinimalTuple key; key = NULL; /* flag to reference inputslot */ if (isnew) { entry = tuplehash_insert_hash(hashtable->hashtab, key, hash, &found); if (found) { /* found pre-existing entry */ *isnew = false; } else { /* created new entry */ *isnew = true; /* zero caller data */ entry->additional = NULL; MemoryContextSwitchTo(hashtable->tablecxt); /* Copy the first tuple into the table context */ entry->firstTuple = ExecCopySlotMinimalTuple(slot); } } else { entry = tuplehash_lookup_hash(hashtable->hashtab, key, hash); } return entry; } /* * See whether two tuples (presumably of the same hash value) match */ static int TupleHashTableMatch(struct tuplehash_hash *tb, const MinimalTuple tuple1, const MinimalTuple tuple2) { TupleTableSlot *slot1; TupleTableSlot *slot2; TupleHashTable hashtable = (TupleHashTable) tb->private_data; ExprContext *econtext = hashtable->exprcontext; /* * We assume that simplehash.h will only ever call us with the first * argument being an actual table entry, and the second argument being * LookupTupleHashEntry's dummy TupleHashEntryData. The other direction * could be supported too, but is not currently required. */ Assert(tuple1 != NULL); slot1 = hashtable->tableslot; ExecStoreMinimalTuple(tuple1, slot1, false); Assert(tuple2 == NULL); slot2 = hashtable->inputslot; /* For crosstype comparisons, the inputslot must be first */ econtext->ecxt_innertuple = slot2; econtext->ecxt_outertuple = slot1; return !ExecQualAndReset(hashtable->cur_eq_func, econtext); }