/*------------------------------------------------------------------------- * * execPartition.c * Support routines for partitioning. * * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/backend/executor/execPartition.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/table.h" #include "access/tableam.h" #include "catalog/partition.h" #include "catalog/pg_inherits.h" #include "catalog/pg_type.h" #include "executor/execPartition.h" #include "executor/executor.h" #include "foreign/fdwapi.h" #include "mb/pg_wchar.h" #include "miscadmin.h" #include "nodes/makefuncs.h" #include "partitioning/partbounds.h" #include "partitioning/partdesc.h" #include "partitioning/partprune.h" #include "rewrite/rewriteManip.h" #include "utils/acl.h" #include "utils/lsyscache.h" #include "utils/partcache.h" #include "utils/rls.h" #include "utils/ruleutils.h" /*----------------------- * PartitionTupleRouting - Encapsulates all information required to * route a tuple inserted into a partitioned table to one of its leaf * partitions. * * partition_root * The partitioned table that's the target of the command. * * partition_dispatch_info * Array of 'max_dispatch' elements containing a pointer to a * PartitionDispatch object for every partitioned table touched by tuple * routing. The entry for the target partitioned table is *always* * present in the 0th element of this array. See comment for * PartitionDispatchData->indexes for details on how this array is * indexed. * * nonleaf_partitions * Array of 'max_dispatch' elements containing pointers to fake * ResultRelInfo objects for nonleaf partitions, useful for checking * the partition constraint. * * num_dispatch * The current number of items stored in the 'partition_dispatch_info' * array. Also serves as the index of the next free array element for * new PartitionDispatch objects that need to be stored. * * max_dispatch * The current allocated size of the 'partition_dispatch_info' array. * * partitions * Array of 'max_partitions' elements containing a pointer to a * ResultRelInfo for every leaf partition touched by tuple routing. * Some of these are pointers to ResultRelInfos which are borrowed out of * the owning ModifyTableState node. The remainder have been built * especially for tuple routing. See comment for * PartitionDispatchData->indexes for details on how this array is * indexed. * * is_borrowed_rel * Array of 'max_partitions' booleans recording whether a given entry * in 'partitions' is a ResultRelInfo pointer borrowed from the owning * ModifyTableState node, rather than being built here. * * num_partitions * The current number of items stored in the 'partitions' array. Also * serves as the index of the next free array element for new * ResultRelInfo objects that need to be stored. * * max_partitions * The current allocated size of the 'partitions' array. * * memcxt * Memory context used to allocate subsidiary structs. *----------------------- */ struct PartitionTupleRouting { Relation partition_root; PartitionDispatch *partition_dispatch_info; ResultRelInfo **nonleaf_partitions; int num_dispatch; int max_dispatch; ResultRelInfo **partitions; bool *is_borrowed_rel; int num_partitions; int max_partitions; MemoryContext memcxt; }; /*----------------------- * PartitionDispatch - information about one partitioned table in a partition * hierarchy required to route a tuple to any of its partitions. A * PartitionDispatch is always encapsulated inside a PartitionTupleRouting * struct and stored inside its 'partition_dispatch_info' array. * * reldesc * Relation descriptor of the table * * key * Partition key information of the table * * keystate * Execution state required for expressions in the partition key * * partdesc * Partition descriptor of the table * * tupslot * A standalone TupleTableSlot initialized with this table's tuple * descriptor, or NULL if no tuple conversion between the parent is * required. * * tupmap * TupleConversionMap to convert from the parent's rowtype to this table's * rowtype (when extracting the partition key of a tuple just before * routing it through this table). A NULL value is stored if no tuple * conversion is required. * * indexes * Array of partdesc->nparts elements. For leaf partitions the index * corresponds to the partition's ResultRelInfo in the encapsulating * PartitionTupleRouting's partitions array. For partitioned partitions, * the index corresponds to the PartitionDispatch for it in its * partition_dispatch_info array. -1 indicates we've not yet allocated * anything in PartitionTupleRouting for the partition. *----------------------- */ typedef struct PartitionDispatchData { Relation reldesc; PartitionKey key; List *keystate; /* list of ExprState */ PartitionDesc partdesc; TupleTableSlot *tupslot; AttrMap *tupmap; int indexes[FLEXIBLE_ARRAY_MEMBER]; } PartitionDispatchData; static ResultRelInfo *ExecInitPartitionInfo(ModifyTableState *mtstate, EState *estate, PartitionTupleRouting *proute, PartitionDispatch dispatch, ResultRelInfo *rootResultRelInfo, int partidx); static void ExecInitRoutingInfo(ModifyTableState *mtstate, EState *estate, PartitionTupleRouting *proute, PartitionDispatch dispatch, ResultRelInfo *partRelInfo, int partidx, bool is_borrowed_rel); static PartitionDispatch ExecInitPartitionDispatchInfo(EState *estate, PartitionTupleRouting *proute, Oid partoid, PartitionDispatch parent_pd, int partidx, ResultRelInfo *rootResultRelInfo); static void FormPartitionKeyDatum(PartitionDispatch pd, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull); static int get_partition_for_tuple(PartitionDispatch pd, Datum *values, bool *isnull); static char *ExecBuildSlotPartitionKeyDescription(Relation rel, Datum *values, bool *isnull, int maxfieldlen); static List *adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri); static void ExecInitPruningContext(PartitionPruneContext *context, List *pruning_steps, PartitionDesc partdesc, PartitionKey partkey, PlanState *planstate); static void find_matching_subplans_recurse(PartitionPruningData *prunedata, PartitionedRelPruningData *pprune, bool initial_prune, Bitmapset **validsubplans); /* * ExecSetupPartitionTupleRouting - sets up information needed during * tuple routing for partitioned tables, encapsulates it in * PartitionTupleRouting, and returns it. * * Callers must use the returned PartitionTupleRouting during calls to * ExecFindPartition(). The actual ResultRelInfo for a partition is only * allocated when the partition is found for the first time. * * The current memory context is used to allocate this struct and all * subsidiary structs that will be allocated from it later on. Typically * it should be estate->es_query_cxt. */ PartitionTupleRouting * ExecSetupPartitionTupleRouting(EState *estate, Relation rel) { PartitionTupleRouting *proute; /* * Here we attempt to expend as little effort as possible in setting up * the PartitionTupleRouting. Each partition's ResultRelInfo is built on * demand, only when we actually need to route a tuple to that partition. * The reason for this is that a common case is for INSERT to insert a * single tuple into a partitioned table and this must be fast. */ proute = (PartitionTupleRouting *) palloc0(sizeof(PartitionTupleRouting)); proute->partition_root = rel; proute->memcxt = CurrentMemoryContext; /* Rest of members initialized by zeroing */ /* * Initialize this table's PartitionDispatch object. Here we pass in the * parent as NULL as we don't need to care about any parent of the target * partitioned table. */ ExecInitPartitionDispatchInfo(estate, proute, RelationGetRelid(rel), NULL, 0, NULL); return proute; } /* * ExecFindPartition -- Return the ResultRelInfo for the leaf partition that * the tuple contained in *slot should belong to. * * If the partition's ResultRelInfo does not yet exist in 'proute' then we set * one up or reuse one from mtstate's resultRelInfo array. When reusing a * ResultRelInfo from the mtstate we verify that the relation is a valid * target for INSERTs and initialize tuple routing information. * * rootResultRelInfo is the relation named in the query. * * estate must be non-NULL; we'll need it to compute any expressions in the * partition keys. Also, its per-tuple contexts are used as evaluation * scratch space. * * If no leaf partition is found, this routine errors out with the appropriate * error message. An error may also be raised if the found target partition * is not a valid target for an INSERT. */ ResultRelInfo * ExecFindPartition(ModifyTableState *mtstate, ResultRelInfo *rootResultRelInfo, PartitionTupleRouting *proute, TupleTableSlot *slot, EState *estate) { PartitionDispatch *pd = proute->partition_dispatch_info; Datum values[PARTITION_MAX_KEYS]; bool isnull[PARTITION_MAX_KEYS]; Relation rel; PartitionDispatch dispatch; PartitionDesc partdesc; ExprContext *ecxt = GetPerTupleExprContext(estate); TupleTableSlot *ecxt_scantuple_saved = ecxt->ecxt_scantuple; TupleTableSlot *rootslot = slot; TupleTableSlot *myslot = NULL; MemoryContext oldcxt; ResultRelInfo *rri = NULL; /* use per-tuple context here to avoid leaking memory */ oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate)); /* * First check the root table's partition constraint, if any. No point in * routing the tuple if it doesn't belong in the root table itself. */ if (rootResultRelInfo->ri_RelationDesc->rd_rel->relispartition) ExecPartitionCheck(rootResultRelInfo, slot, estate, true); /* start with the root partitioned table */ dispatch = pd[0]; while (dispatch != NULL) { int partidx = -1; bool is_leaf; CHECK_FOR_INTERRUPTS(); rel = dispatch->reldesc; partdesc = dispatch->partdesc; /* * Extract partition key from tuple. Expression evaluation machinery * that FormPartitionKeyDatum() invokes expects ecxt_scantuple to * point to the correct tuple slot. The slot might have changed from * what was used for the parent table if the table of the current * partitioning level has different tuple descriptor from the parent. * So update ecxt_scantuple accordingly. */ ecxt->ecxt_scantuple = slot; FormPartitionKeyDatum(dispatch, slot, estate, values, isnull); /* * If this partitioned table has no partitions or no partition for * these values, error out. */ if (partdesc->nparts == 0 || (partidx = get_partition_for_tuple(dispatch, values, isnull)) < 0) { char *val_desc; val_desc = ExecBuildSlotPartitionKeyDescription(rel, values, isnull, 64); Assert(OidIsValid(RelationGetRelid(rel))); ereport(ERROR, (errcode(ERRCODE_CHECK_VIOLATION), errmsg("no partition of relation \"%s\" found for row", RelationGetRelationName(rel)), val_desc ? errdetail("Partition key of the failing row contains %s.", val_desc) : 0, errtable(rel))); } is_leaf = partdesc->is_leaf[partidx]; if (is_leaf) { /* * We've reached the leaf -- hurray, we're done. Look to see if * we've already got a ResultRelInfo for this partition. */ if (likely(dispatch->indexes[partidx] >= 0)) { /* ResultRelInfo already built */ Assert(dispatch->indexes[partidx] < proute->num_partitions); rri = proute->partitions[dispatch->indexes[partidx]]; } else { /* * If the partition is known in the owning ModifyTableState * node, we can re-use that ResultRelInfo instead of creating * a new one with ExecInitPartitionInfo(). */ rri = ExecLookupResultRelByOid(mtstate, partdesc->oids[partidx], true, false); if (rri) { /* Verify this ResultRelInfo allows INSERTs */ CheckValidResultRel(rri, CMD_INSERT); /* * Initialize information needed to insert this and * subsequent tuples routed to this partition. */ ExecInitRoutingInfo(mtstate, estate, proute, dispatch, rri, partidx, true); } else { /* We need to create a new one. */ rri = ExecInitPartitionInfo(mtstate, estate, proute, dispatch, rootResultRelInfo, partidx); } } Assert(rri != NULL); /* Signal to terminate the loop */ dispatch = NULL; } else { /* * Partition is a sub-partitioned table; get the PartitionDispatch */ if (likely(dispatch->indexes[partidx] >= 0)) { /* Already built. */ Assert(dispatch->indexes[partidx] < proute->num_dispatch); rri = proute->nonleaf_partitions[dispatch->indexes[partidx]]; /* * Move down to the next partition level and search again * until we find a leaf partition that matches this tuple */ dispatch = pd[dispatch->indexes[partidx]]; } else { /* Not yet built. Do that now. */ PartitionDispatch subdispatch; /* * Create the new PartitionDispatch. We pass the current one * in as the parent PartitionDispatch */ subdispatch = ExecInitPartitionDispatchInfo(estate, proute, partdesc->oids[partidx], dispatch, partidx, mtstate->rootResultRelInfo); Assert(dispatch->indexes[partidx] >= 0 && dispatch->indexes[partidx] < proute->num_dispatch); rri = proute->nonleaf_partitions[dispatch->indexes[partidx]]; dispatch = subdispatch; } /* * Convert the tuple to the new parent's layout, if different from * the previous parent. */ if (dispatch->tupslot) { AttrMap *map = dispatch->tupmap; TupleTableSlot *tempslot = myslot; myslot = dispatch->tupslot; slot = execute_attr_map_slot(map, slot, myslot); if (tempslot != NULL) ExecClearTuple(tempslot); } } /* * If this partition is the default one, we must check its partition * constraint now, which may have changed concurrently due to * partitions being added to the parent. * * (We do this here, and do not rely on ExecInsert doing it, because * we don't want to miss doing it for non-leaf partitions.) */ if (partidx == partdesc->boundinfo->default_index) { /* * The tuple must match the partition's layout for the constraint * expression to be evaluated successfully. If the partition is * sub-partitioned, that would already be the case due to the code * above, but for a leaf partition the tuple still matches the * parent's layout. * * Note that we have a map to convert from root to current * partition, but not from immediate parent to current partition. * So if we have to convert, do it from the root slot; if not, use * the root slot as-is. */ if (is_leaf) { TupleConversionMap *map = rri->ri_RootToPartitionMap; if (map) slot = execute_attr_map_slot(map->attrMap, rootslot, rri->ri_PartitionTupleSlot); else slot = rootslot; } ExecPartitionCheck(rri, slot, estate, true); } } /* Release the tuple in the lowest parent's dedicated slot. */ if (myslot != NULL) ExecClearTuple(myslot); /* and restore ecxt's scantuple */ ecxt->ecxt_scantuple = ecxt_scantuple_saved; MemoryContextSwitchTo(oldcxt); return rri; } /* * ExecInitPartitionInfo * Lock the partition and initialize ResultRelInfo. Also setup other * information for the partition and store it in the next empty slot in * the proute->partitions array. * * Returns the ResultRelInfo */ static ResultRelInfo * ExecInitPartitionInfo(ModifyTableState *mtstate, EState *estate, PartitionTupleRouting *proute, PartitionDispatch dispatch, ResultRelInfo *rootResultRelInfo, int partidx) { ModifyTable *node = (ModifyTable *) mtstate->ps.plan; Oid partOid = dispatch->partdesc->oids[partidx]; Relation partrel; int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex; Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc; ResultRelInfo *leaf_part_rri; MemoryContext oldcxt; AttrMap *part_attmap = NULL; bool found_whole_row; oldcxt = MemoryContextSwitchTo(proute->memcxt); partrel = table_open(partOid, RowExclusiveLock); leaf_part_rri = makeNode(ResultRelInfo); InitResultRelInfo(leaf_part_rri, partrel, 0, rootResultRelInfo, estate->es_instrument); /* * Verify result relation is a valid target for an INSERT. An UPDATE of a * partition-key becomes a DELETE+INSERT operation, so this check is still * required when the operation is CMD_UPDATE. */ CheckValidResultRel(leaf_part_rri, CMD_INSERT); /* * Open partition indices. The user may have asked to check for conflicts * within this leaf partition and do "nothing" instead of throwing an * error. Be prepared in that case by initializing the index information * needed by ExecInsert() to perform speculative insertions. */ if (partrel->rd_rel->relhasindex && leaf_part_rri->ri_IndexRelationDescs == NULL) ExecOpenIndices(leaf_part_rri, (node != NULL && node->onConflictAction != ONCONFLICT_NONE)); /* * Build WITH CHECK OPTION constraints for the partition. Note that we * didn't build the withCheckOptionList for partitions within the planner, * but simple translation of varattnos will suffice. This only occurs for * the INSERT case or in the case of UPDATE tuple routing where we didn't * find a result rel to reuse. */ if (node && node->withCheckOptionLists != NIL) { List *wcoList; List *wcoExprs = NIL; ListCell *ll; /* * In the case of INSERT on a partitioned table, there is only one * plan. Likewise, there is only one WCO list, not one per partition. * For UPDATE, there are as many WCO lists as there are plans. */ Assert((node->operation == CMD_INSERT && list_length(node->withCheckOptionLists) == 1 && list_length(node->resultRelations) == 1) || (node->operation == CMD_UPDATE && list_length(node->withCheckOptionLists) == list_length(node->resultRelations))); /* * Use the WCO list of the first plan as a reference to calculate * attno's for the WCO list of this partition. In the INSERT case, * that refers to the root partitioned table, whereas in the UPDATE * tuple routing case, that refers to the first partition in the * mtstate->resultRelInfo array. In any case, both that relation and * this partition should have the same columns, so we should be able * to map attributes successfully. */ wcoList = linitial(node->withCheckOptionLists); /* * Convert Vars in it to contain this partition's attribute numbers. */ part_attmap = build_attrmap_by_name(RelationGetDescr(partrel), RelationGetDescr(firstResultRel)); wcoList = (List *) map_variable_attnos((Node *) wcoList, firstVarno, 0, part_attmap, RelationGetForm(partrel)->reltype, &found_whole_row); /* We ignore the value of found_whole_row. */ foreach(ll, wcoList) { WithCheckOption *wco = castNode(WithCheckOption, lfirst(ll)); ExprState *wcoExpr = ExecInitQual(castNode(List, wco->qual), &mtstate->ps); wcoExprs = lappend(wcoExprs, wcoExpr); } leaf_part_rri->ri_WithCheckOptions = wcoList; leaf_part_rri->ri_WithCheckOptionExprs = wcoExprs; } /* * Build the RETURNING projection for the partition. Note that we didn't * build the returningList for partitions within the planner, but simple * translation of varattnos will suffice. This only occurs for the INSERT * case or in the case of UPDATE tuple routing where we didn't find a * result rel to reuse. */ if (node && node->returningLists != NIL) { TupleTableSlot *slot; ExprContext *econtext; List *returningList; /* See the comment above for WCO lists. */ Assert((node->operation == CMD_INSERT && list_length(node->returningLists) == 1 && list_length(node->resultRelations) == 1) || (node->operation == CMD_UPDATE && list_length(node->returningLists) == list_length(node->resultRelations))); /* * Use the RETURNING list of the first plan as a reference to * calculate attno's for the RETURNING list of this partition. See * the comment above for WCO lists for more details on why this is * okay. */ returningList = linitial(node->returningLists); /* * Convert Vars in it to contain this partition's attribute numbers. */ if (part_attmap == NULL) part_attmap = build_attrmap_by_name(RelationGetDescr(partrel), RelationGetDescr(firstResultRel)); returningList = (List *) map_variable_attnos((Node *) returningList, firstVarno, 0, part_attmap, RelationGetForm(partrel)->reltype, &found_whole_row); /* We ignore the value of found_whole_row. */ leaf_part_rri->ri_returningList = returningList; /* * Initialize the projection itself. * * Use the slot and the expression context that would have been set up * in ExecInitModifyTable() for projection's output. */ Assert(mtstate->ps.ps_ResultTupleSlot != NULL); slot = mtstate->ps.ps_ResultTupleSlot; Assert(mtstate->ps.ps_ExprContext != NULL); econtext = mtstate->ps.ps_ExprContext; leaf_part_rri->ri_projectReturning = ExecBuildProjectionInfo(returningList, econtext, slot, &mtstate->ps, RelationGetDescr(partrel)); } /* Set up information needed for routing tuples to the partition. */ ExecInitRoutingInfo(mtstate, estate, proute, dispatch, leaf_part_rri, partidx, false); /* * If there is an ON CONFLICT clause, initialize state for it. */ if (node && node->onConflictAction != ONCONFLICT_NONE) { TupleDesc partrelDesc = RelationGetDescr(partrel); ExprContext *econtext = mtstate->ps.ps_ExprContext; ListCell *lc; List *arbiterIndexes = NIL; /* * If there is a list of arbiter indexes, map it to a list of indexes * in the partition. We do that by scanning the partition's index * list and searching for ancestry relationships to each index in the * ancestor table. */ if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) > 0) { List *childIdxs; childIdxs = RelationGetIndexList(leaf_part_rri->ri_RelationDesc); foreach(lc, childIdxs) { Oid childIdx = lfirst_oid(lc); List *ancestors; ListCell *lc2; ancestors = get_partition_ancestors(childIdx); foreach(lc2, rootResultRelInfo->ri_onConflictArbiterIndexes) { if (list_member_oid(ancestors, lfirst_oid(lc2))) arbiterIndexes = lappend_oid(arbiterIndexes, childIdx); } list_free(ancestors); } } /* * If the resulting lists are of inequal length, something is wrong. * (This shouldn't happen, since arbiter index selection should not * pick up an invalid index.) */ if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) != list_length(arbiterIndexes)) elog(ERROR, "invalid arbiter index list"); leaf_part_rri->ri_onConflictArbiterIndexes = arbiterIndexes; /* * In the DO UPDATE case, we have some more state to initialize. */ if (node->onConflictAction == ONCONFLICT_UPDATE) { OnConflictSetState *onconfl = makeNode(OnConflictSetState); TupleConversionMap *map; map = leaf_part_rri->ri_RootToPartitionMap; Assert(node->onConflictSet != NIL); Assert(rootResultRelInfo->ri_onConflict != NULL); leaf_part_rri->ri_onConflict = onconfl; /* * Need a separate existing slot for each partition, as the * partition could be of a different AM, even if the tuple * descriptors match. */ onconfl->oc_Existing = table_slot_create(leaf_part_rri->ri_RelationDesc, &mtstate->ps.state->es_tupleTable); /* * If the partition's tuple descriptor matches exactly the root * parent (the common case), we can re-use most of the parent's ON * CONFLICT SET state, skipping a bunch of work. Otherwise, we * need to create state specific to this partition. */ if (map == NULL) { /* * It's safe to reuse these from the partition root, as we * only process one tuple at a time (therefore we won't * overwrite needed data in slots), and the results of * projections are independent of the underlying storage. * Projections and where clauses themselves don't store state * / are independent of the underlying storage. */ onconfl->oc_ProjSlot = rootResultRelInfo->ri_onConflict->oc_ProjSlot; onconfl->oc_ProjInfo = rootResultRelInfo->ri_onConflict->oc_ProjInfo; onconfl->oc_WhereClause = rootResultRelInfo->ri_onConflict->oc_WhereClause; } else { List *onconflset; List *onconflcols; bool found_whole_row; /* * Translate expressions in onConflictSet to account for * different attribute numbers. For that, map partition * varattnos twice: first to catch the EXCLUDED * pseudo-relation (INNER_VAR), and second to handle the main * target relation (firstVarno). */ onconflset = copyObject(node->onConflictSet); if (part_attmap == NULL) part_attmap = build_attrmap_by_name(RelationGetDescr(partrel), RelationGetDescr(firstResultRel)); onconflset = (List *) map_variable_attnos((Node *) onconflset, INNER_VAR, 0, part_attmap, RelationGetForm(partrel)->reltype, &found_whole_row); /* We ignore the value of found_whole_row. */ onconflset = (List *) map_variable_attnos((Node *) onconflset, firstVarno, 0, part_attmap, RelationGetForm(partrel)->reltype, &found_whole_row); /* We ignore the value of found_whole_row. */ /* Finally, adjust the target colnos to match the partition. */ onconflcols = adjust_partition_colnos(node->onConflictCols, leaf_part_rri); /* create the tuple slot for the UPDATE SET projection */ onconfl->oc_ProjSlot = table_slot_create(partrel, &mtstate->ps.state->es_tupleTable); /* build UPDATE SET projection state */ onconfl->oc_ProjInfo = ExecBuildUpdateProjection(onconflset, true, onconflcols, partrelDesc, econtext, onconfl->oc_ProjSlot, &mtstate->ps); /* * If there is a WHERE clause, initialize state where it will * be evaluated, mapping the attribute numbers appropriately. * As with onConflictSet, we need to map partition varattnos * to the partition's tupdesc. */ if (node->onConflictWhere) { List *clause; clause = copyObject((List *) node->onConflictWhere); clause = (List *) map_variable_attnos((Node *) clause, INNER_VAR, 0, part_attmap, RelationGetForm(partrel)->reltype, &found_whole_row); /* We ignore the value of found_whole_row. */ clause = (List *) map_variable_attnos((Node *) clause, firstVarno, 0, part_attmap, RelationGetForm(partrel)->reltype, &found_whole_row); /* We ignore the value of found_whole_row. */ onconfl->oc_WhereClause = ExecInitQual((List *) clause, &mtstate->ps); } } } } /* * Since we've just initialized this ResultRelInfo, it's not in any list * attached to the estate as yet. Add it, so that it can be found later. * * Note that the entries in this list appear in no predetermined order, * because partition result rels are initialized as and when they're * needed. */ MemoryContextSwitchTo(estate->es_query_cxt); estate->es_tuple_routing_result_relations = lappend(estate->es_tuple_routing_result_relations, leaf_part_rri); MemoryContextSwitchTo(oldcxt); return leaf_part_rri; } /* * ExecInitRoutingInfo * Set up information needed for translating tuples between root * partitioned table format and partition format, and keep track of it * in PartitionTupleRouting. */ static void ExecInitRoutingInfo(ModifyTableState *mtstate, EState *estate, PartitionTupleRouting *proute, PartitionDispatch dispatch, ResultRelInfo *partRelInfo, int partidx, bool is_borrowed_rel) { ResultRelInfo *rootRelInfo = partRelInfo->ri_RootResultRelInfo; MemoryContext oldcxt; int rri_index; oldcxt = MemoryContextSwitchTo(proute->memcxt); /* * Set up a tuple conversion map to convert a tuple routed to the * partition from the parent's type to the partition's. */ partRelInfo->ri_RootToPartitionMap = convert_tuples_by_name(RelationGetDescr(rootRelInfo->ri_RelationDesc), RelationGetDescr(partRelInfo->ri_RelationDesc)); /* * If a partition has a different rowtype than the root parent, initialize * a slot dedicated to storing this partition's tuples. The slot is used * for various operations that are applied to tuples after routing, such * as checking constraints. */ if (partRelInfo->ri_RootToPartitionMap != NULL) { Relation partrel = partRelInfo->ri_RelationDesc; /* * Initialize the slot itself setting its descriptor to this * partition's TupleDesc; TupleDesc reference will be released at the * end of the command. */ partRelInfo->ri_PartitionTupleSlot = table_slot_create(partrel, &estate->es_tupleTable); } else partRelInfo->ri_PartitionTupleSlot = NULL; /* * If the partition is a foreign table, let the FDW init itself for * routing tuples to the partition. */ if (partRelInfo->ri_FdwRoutine != NULL && partRelInfo->ri_FdwRoutine->BeginForeignInsert != NULL) partRelInfo->ri_FdwRoutine->BeginForeignInsert(mtstate, partRelInfo); /* * Determine if the FDW supports batch insert and determine the batch size * (a FDW may support batching, but it may be disabled for the * server/table or for this particular query). * * If the FDW does not support batching, we set the batch size to 1. */ if (mtstate->operation == CMD_INSERT && partRelInfo->ri_FdwRoutine != NULL && partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize && partRelInfo->ri_FdwRoutine->ExecForeignBatchInsert) partRelInfo->ri_BatchSize = partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize(partRelInfo); else partRelInfo->ri_BatchSize = 1; Assert(partRelInfo->ri_BatchSize >= 1); partRelInfo->ri_CopyMultiInsertBuffer = NULL; /* * Keep track of it in the PartitionTupleRouting->partitions array. */ Assert(dispatch->indexes[partidx] == -1); rri_index = proute->num_partitions++; /* Allocate or enlarge the array, as needed */ if (proute->num_partitions >= proute->max_partitions) { if (proute->max_partitions == 0) { proute->max_partitions = 8; proute->partitions = (ResultRelInfo **) palloc(sizeof(ResultRelInfo *) * proute->max_partitions); proute->is_borrowed_rel = (bool *) palloc(sizeof(bool) * proute->max_partitions); } else { proute->max_partitions *= 2; proute->partitions = (ResultRelInfo **) repalloc(proute->partitions, sizeof(ResultRelInfo *) * proute->max_partitions); proute->is_borrowed_rel = (bool *) repalloc(proute->is_borrowed_rel, sizeof(bool) * proute->max_partitions); } } proute->partitions[rri_index] = partRelInfo; proute->is_borrowed_rel[rri_index] = is_borrowed_rel; dispatch->indexes[partidx] = rri_index; MemoryContextSwitchTo(oldcxt); } /* * ExecInitPartitionDispatchInfo * Lock the partitioned table (if not locked already) and initialize * PartitionDispatch for a partitioned table and store it in the next * available slot in the proute->partition_dispatch_info array. Also, * record the index into this array in the parent_pd->indexes[] array in * the partidx element so that we can properly retrieve the newly created * PartitionDispatch later. */ static PartitionDispatch ExecInitPartitionDispatchInfo(EState *estate, PartitionTupleRouting *proute, Oid partoid, PartitionDispatch parent_pd, int partidx, ResultRelInfo *rootResultRelInfo) { Relation rel; PartitionDesc partdesc; PartitionDispatch pd; int dispatchidx; MemoryContext oldcxt; /* * For data modification, it is better that executor does not include * partitions being detached, except when running in snapshot-isolation * mode. This means that a read-committed transaction immediately gets a * "no partition for tuple" error when a tuple is inserted into a * partition that's being detached concurrently, but a transaction in * repeatable-read mode can still use such a partition. */ if (estate->es_partition_directory == NULL) estate->es_partition_directory = CreatePartitionDirectory(estate->es_query_cxt, !IsolationUsesXactSnapshot()); oldcxt = MemoryContextSwitchTo(proute->memcxt); /* * Only sub-partitioned tables need to be locked here. The root * partitioned table will already have been locked as it's referenced in * the query's rtable. */ if (partoid != RelationGetRelid(proute->partition_root)) rel = table_open(partoid, RowExclusiveLock); else rel = proute->partition_root; partdesc = PartitionDirectoryLookup(estate->es_partition_directory, rel); pd = (PartitionDispatch) palloc(offsetof(PartitionDispatchData, indexes) + partdesc->nparts * sizeof(int)); pd->reldesc = rel; pd->key = RelationGetPartitionKey(rel); pd->keystate = NIL; pd->partdesc = partdesc; if (parent_pd != NULL) { TupleDesc tupdesc = RelationGetDescr(rel); /* * For sub-partitioned tables where the column order differs from its * direct parent partitioned table, we must store a tuple table slot * initialized with its tuple descriptor and a tuple conversion map to * convert a tuple from its parent's rowtype to its own. This is to * make sure that we are looking at the correct row using the correct * tuple descriptor when computing its partition key for tuple * routing. */ pd->tupmap = build_attrmap_by_name_if_req(RelationGetDescr(parent_pd->reldesc), tupdesc); pd->tupslot = pd->tupmap ? MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual) : NULL; } else { /* Not required for the root partitioned table */ pd->tupmap = NULL; pd->tupslot = NULL; } /* * Initialize with -1 to signify that the corresponding partition's * ResultRelInfo or PartitionDispatch has not been created yet. */ memset(pd->indexes, -1, sizeof(int) * partdesc->nparts); /* Track in PartitionTupleRouting for later use */ dispatchidx = proute->num_dispatch++; /* Allocate or enlarge the array, as needed */ if (proute->num_dispatch >= proute->max_dispatch) { if (proute->max_dispatch == 0) { proute->max_dispatch = 4; proute->partition_dispatch_info = (PartitionDispatch *) palloc(sizeof(PartitionDispatch) * proute->max_dispatch); proute->nonleaf_partitions = (ResultRelInfo **) palloc(sizeof(ResultRelInfo *) * proute->max_dispatch); } else { proute->max_dispatch *= 2; proute->partition_dispatch_info = (PartitionDispatch *) repalloc(proute->partition_dispatch_info, sizeof(PartitionDispatch) * proute->max_dispatch); proute->nonleaf_partitions = (ResultRelInfo **) repalloc(proute->nonleaf_partitions, sizeof(ResultRelInfo *) * proute->max_dispatch); } } proute->partition_dispatch_info[dispatchidx] = pd; /* * If setting up a PartitionDispatch for a sub-partitioned table, we may * also need a minimally valid ResultRelInfo for checking the partition * constraint later; set that up now. */ if (parent_pd) { ResultRelInfo *rri = makeNode(ResultRelInfo); InitResultRelInfo(rri, rel, 0, rootResultRelInfo, 0); proute->nonleaf_partitions[dispatchidx] = rri; } else proute->nonleaf_partitions[dispatchidx] = NULL; /* * Finally, if setting up a PartitionDispatch for a sub-partitioned table, * install a downlink in the parent to allow quick descent. */ if (parent_pd) { Assert(parent_pd->indexes[partidx] == -1); parent_pd->indexes[partidx] = dispatchidx; } MemoryContextSwitchTo(oldcxt); return pd; } /* * ExecCleanupTupleRouting -- Clean up objects allocated for partition tuple * routing. * * Close all the partitioned tables, leaf partitions, and their indices. */ void ExecCleanupTupleRouting(ModifyTableState *mtstate, PartitionTupleRouting *proute) { int i; /* * Remember, proute->partition_dispatch_info[0] corresponds to the root * partitioned table, which we must not try to close, because it is the * main target table of the query that will be closed by callers such as * ExecEndPlan() or DoCopy(). Also, tupslot is NULL for the root * partitioned table. */ for (i = 1; i < proute->num_dispatch; i++) { PartitionDispatch pd = proute->partition_dispatch_info[i]; table_close(pd->reldesc, NoLock); if (pd->tupslot) ExecDropSingleTupleTableSlot(pd->tupslot); } for (i = 0; i < proute->num_partitions; i++) { ResultRelInfo *resultRelInfo = proute->partitions[i]; /* Allow any FDWs to shut down */ if (resultRelInfo->ri_FdwRoutine != NULL && resultRelInfo->ri_FdwRoutine->EndForeignInsert != NULL) resultRelInfo->ri_FdwRoutine->EndForeignInsert(mtstate->ps.state, resultRelInfo); /* * Close it if it's not one of the result relations borrowed from the * owning ModifyTableState; those will be closed by ExecEndPlan(). */ if (proute->is_borrowed_rel[i]) continue; ExecCloseIndices(resultRelInfo); table_close(resultRelInfo->ri_RelationDesc, NoLock); } } /* ---------------- * FormPartitionKeyDatum * Construct values[] and isnull[] arrays for the partition key * of a tuple. * * pd Partition dispatch object of the partitioned table * slot Heap tuple from which to extract partition key * estate executor state for evaluating any partition key * expressions (must be non-NULL) * values Array of partition key Datums (output area) * isnull Array of is-null indicators (output area) * * the ecxt_scantuple slot of estate's per-tuple expr context must point to * the heap tuple passed in. * ---------------- */ static void FormPartitionKeyDatum(PartitionDispatch pd, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull) { ListCell *partexpr_item; int i; if (pd->key->partexprs != NIL && pd->keystate == NIL) { /* Check caller has set up context correctly */ Assert(estate != NULL && GetPerTupleExprContext(estate)->ecxt_scantuple == slot); /* First time through, set up expression evaluation state */ pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate); } partexpr_item = list_head(pd->keystate); for (i = 0; i < pd->key->partnatts; i++) { AttrNumber keycol = pd->key->partattrs[i]; Datum datum; bool isNull; if (keycol != 0) { /* Plain column; get the value directly from the heap tuple */ datum = slot_getattr(slot, keycol, &isNull); } else { /* Expression; need to evaluate it */ if (partexpr_item == NULL) elog(ERROR, "wrong number of partition key expressions"); datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item), GetPerTupleExprContext(estate), &isNull); partexpr_item = lnext(pd->keystate, partexpr_item); } values[i] = datum; isnull[i] = isNull; } if (partexpr_item != NULL) elog(ERROR, "wrong number of partition key expressions"); } /* * get_partition_for_tuple * Finds partition of relation which accepts the partition key specified * in values and isnull * * Return value is index of the partition (>= 0 and < partdesc->nparts) if one * found or -1 if none found. */ static int get_partition_for_tuple(PartitionDispatch pd, Datum *values, bool *isnull) { int bound_offset; int part_index = -1; PartitionKey key = pd->key; PartitionDesc partdesc = pd->partdesc; PartitionBoundInfo boundinfo = partdesc->boundinfo; /* Route as appropriate based on partitioning strategy. */ switch (key->strategy) { case PARTITION_STRATEGY_HASH: { uint64 rowHash; rowHash = compute_partition_hash_value(key->partnatts, key->partsupfunc, key->partcollation, values, isnull); part_index = boundinfo->indexes[rowHash % boundinfo->nindexes]; } break; case PARTITION_STRATEGY_LIST: if (isnull[0]) { if (partition_bound_accepts_nulls(boundinfo)) part_index = boundinfo->null_index; } else { bool equal = false; bound_offset = partition_list_bsearch(key->partsupfunc, key->partcollation, boundinfo, values[0], &equal); if (bound_offset >= 0 && equal) part_index = boundinfo->indexes[bound_offset]; } break; case PARTITION_STRATEGY_RANGE: { bool equal = false, range_partkey_has_null = false; int i; /* * No range includes NULL, so this will be accepted by the * default partition if there is one, and otherwise rejected. */ for (i = 0; i < key->partnatts; i++) { if (isnull[i]) { range_partkey_has_null = true; break; } } if (!range_partkey_has_null) { bound_offset = partition_range_datum_bsearch(key->partsupfunc, key->partcollation, boundinfo, key->partnatts, values, &equal); /* * The bound at bound_offset is less than or equal to the * tuple value, so the bound at offset+1 is the upper * bound of the partition we're looking for, if there * actually exists one. */ part_index = boundinfo->indexes[bound_offset + 1]; } } break; default: elog(ERROR, "unexpected partition strategy: %d", (int) key->strategy); } /* * part_index < 0 means we failed to find a partition of this parent. Use * the default partition, if there is one. */ if (part_index < 0) part_index = boundinfo->default_index; return part_index; } /* * ExecBuildSlotPartitionKeyDescription * * This works very much like BuildIndexValueDescription() and is currently * used for building error messages when ExecFindPartition() fails to find * partition for a row. */ static char * ExecBuildSlotPartitionKeyDescription(Relation rel, Datum *values, bool *isnull, int maxfieldlen) { StringInfoData buf; PartitionKey key = RelationGetPartitionKey(rel); int partnatts = get_partition_natts(key); int i; Oid relid = RelationGetRelid(rel); AclResult aclresult; if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED) return NULL; /* If the user has table-level access, just go build the description. */ aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT); if (aclresult != ACLCHECK_OK) { /* * Step through the columns of the partition key and make sure the * user has SELECT rights on all of them. */ for (i = 0; i < partnatts; i++) { AttrNumber attnum = get_partition_col_attnum(key, i); /* * If this partition key column is an expression, we return no * detail rather than try to figure out what column(s) the * expression includes and if the user has SELECT rights on them. */ if (attnum == InvalidAttrNumber || pg_attribute_aclcheck(relid, attnum, GetUserId(), ACL_SELECT) != ACLCHECK_OK) return NULL; } } initStringInfo(&buf); appendStringInfo(&buf, "(%s) = (", pg_get_partkeydef_columns(relid, true)); for (i = 0; i < partnatts; i++) { char *val; int vallen; if (isnull[i]) val = "null"; else { Oid foutoid; bool typisvarlena; getTypeOutputInfo(get_partition_col_typid(key, i), &foutoid, &typisvarlena); val = OidOutputFunctionCall(foutoid, values[i]); } if (i > 0) appendStringInfoString(&buf, ", "); /* truncate if needed */ vallen = strlen(val); if (vallen <= maxfieldlen) appendBinaryStringInfo(&buf, val, vallen); else { vallen = pg_mbcliplen(val, vallen, maxfieldlen); appendBinaryStringInfo(&buf, val, vallen); appendStringInfoString(&buf, "..."); } } appendStringInfoChar(&buf, ')'); return buf.data; } /* * adjust_partition_colnos * Adjust the list of UPDATE target column numbers to account for * attribute differences between the parent and the partition. */ static List * adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri) { List *new_colnos = NIL; TupleConversionMap *map = ExecGetChildToRootMap(leaf_part_rri); AttrMap *attrMap; ListCell *lc; Assert(map != NULL); /* else we shouldn't be here */ attrMap = map->attrMap; foreach(lc, colnos) { AttrNumber parentattrno = lfirst_int(lc); if (parentattrno <= 0 || parentattrno > attrMap->maplen || attrMap->attnums[parentattrno - 1] == 0) elog(ERROR, "unexpected attno %d in target column list", parentattrno); new_colnos = lappend_int(new_colnos, attrMap->attnums[parentattrno - 1]); } return new_colnos; } /*------------------------------------------------------------------------- * Run-Time Partition Pruning Support. * * The following series of functions exist to support the removal of unneeded * subplans for queries against partitioned tables. The supporting functions * here are designed to work with any plan type which supports an arbitrary * number of subplans, e.g. Append, MergeAppend. * * When pruning involves comparison of a partition key to a constant, it's * done by the planner. However, if we have a comparison to a non-constant * but not volatile expression, that presents an opportunity for run-time * pruning by the executor, allowing irrelevant partitions to be skipped * dynamically. * * We must distinguish expressions containing PARAM_EXEC Params from * expressions that don't contain those. Even though a PARAM_EXEC Param is * considered to be a stable expression, it can change value from one plan * node scan to the next during query execution. Stable comparison * expressions that don't involve such Params allow partition pruning to be * done once during executor startup. Expressions that do involve such Params * require us to prune separately for each scan of the parent plan node. * * Note that pruning away unneeded subplans during executor startup has the * added benefit of not having to initialize the unneeded subplans at all. * * * Functions: * * ExecCreatePartitionPruneState: * Creates the PartitionPruneState required by each of the two pruning * functions. Details stored include how to map the partition index * returned by the partition pruning code into subplan indexes. * * ExecFindInitialMatchingSubPlans: * Returns indexes of matching subplans. Partition pruning is attempted * without any evaluation of expressions containing PARAM_EXEC Params. * This function must be called during executor startup for the parent * plan before the subplans themselves are initialized. Subplans which * are found not to match by this function must be removed from the * plan's list of subplans during execution, as this function performs a * remap of the partition index to subplan index map and the newly * created map provides indexes only for subplans which remain after * calling this function. * * ExecFindMatchingSubPlans: * Returns indexes of matching subplans after evaluating all available * expressions. This function can only be called during execution and * must be called again each time the value of a Param listed in * PartitionPruneState's 'execparamids' changes. *------------------------------------------------------------------------- */ /* * ExecCreatePartitionPruneState * Build the data structure required for calling * ExecFindInitialMatchingSubPlans and ExecFindMatchingSubPlans. * * 'planstate' is the parent plan node's execution state. * * 'partitionpruneinfo' is a PartitionPruneInfo as generated by * make_partition_pruneinfo. Here we build a PartitionPruneState containing a * PartitionPruningData for each partitioning hierarchy (i.e., each sublist of * partitionpruneinfo->prune_infos), each of which contains a * PartitionedRelPruningData for each PartitionedRelPruneInfo appearing in * that sublist. This two-level system is needed to keep from confusing the * different hierarchies when a UNION ALL contains multiple partitioned tables * as children. The data stored in each PartitionedRelPruningData can be * re-used each time we re-evaluate which partitions match the pruning steps * provided in each PartitionedRelPruneInfo. */ PartitionPruneState * ExecCreatePartitionPruneState(PlanState *planstate, PartitionPruneInfo *partitionpruneinfo) { EState *estate = planstate->state; PartitionPruneState *prunestate; int n_part_hierarchies; ListCell *lc; int i; /* For data reading, executor always omits detached partitions */ if (estate->es_partition_directory == NULL) estate->es_partition_directory = CreatePartitionDirectory(estate->es_query_cxt, false); n_part_hierarchies = list_length(partitionpruneinfo->prune_infos); Assert(n_part_hierarchies > 0); /* * Allocate the data structure */ prunestate = (PartitionPruneState *) palloc(offsetof(PartitionPruneState, partprunedata) + sizeof(PartitionPruningData *) * n_part_hierarchies); prunestate->execparamids = NULL; /* other_subplans can change at runtime, so we need our own copy */ prunestate->other_subplans = bms_copy(partitionpruneinfo->other_subplans); prunestate->do_initial_prune = false; /* may be set below */ prunestate->do_exec_prune = false; /* may be set below */ prunestate->num_partprunedata = n_part_hierarchies; /* * Create a short-term memory context which we'll use when making calls to * the partition pruning functions. This avoids possible memory leaks, * since the pruning functions call comparison functions that aren't under * our control. */ prunestate->prune_context = AllocSetContextCreate(CurrentMemoryContext, "Partition Prune", ALLOCSET_DEFAULT_SIZES); i = 0; foreach(lc, partitionpruneinfo->prune_infos) { List *partrelpruneinfos = lfirst_node(List, lc); int npartrelpruneinfos = list_length(partrelpruneinfos); PartitionPruningData *prunedata; ListCell *lc2; int j; prunedata = (PartitionPruningData *) palloc(offsetof(PartitionPruningData, partrelprunedata) + npartrelpruneinfos * sizeof(PartitionedRelPruningData)); prunestate->partprunedata[i] = prunedata; prunedata->num_partrelprunedata = npartrelpruneinfos; j = 0; foreach(lc2, partrelpruneinfos) { PartitionedRelPruneInfo *pinfo = lfirst_node(PartitionedRelPruneInfo, lc2); PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j]; Relation partrel; PartitionDesc partdesc; PartitionKey partkey; /* * We can rely on the copies of the partitioned table's partition * key and partition descriptor appearing in its relcache entry, * because that entry will be held open and locked for the * duration of this executor run. */ partrel = ExecGetRangeTableRelation(estate, pinfo->rtindex); partkey = RelationGetPartitionKey(partrel); partdesc = PartitionDirectoryLookup(estate->es_partition_directory, partrel); /* * Initialize the subplan_map and subpart_map. * * Because we request detached partitions to be included, and * detaching waits for old transactions, it is safe to assume that * no partitions have disappeared since this query was planned. * * However, new partitions may have been added. */ Assert(partdesc->nparts >= pinfo->nparts); pprune->nparts = partdesc->nparts; pprune->subplan_map = palloc(sizeof(int) * partdesc->nparts); if (partdesc->nparts == pinfo->nparts) { /* * There are no new partitions, so this is simple. We can * simply point to the subpart_map from the plan, but we must * copy the subplan_map since we may change it later. */ pprune->subpart_map = pinfo->subpart_map; memcpy(pprune->subplan_map, pinfo->subplan_map, sizeof(int) * pinfo->nparts); /* * Double-check that the list of unpruned relations has not * changed. (Pruned partitions are not in relid_map[].) */ #ifdef USE_ASSERT_CHECKING for (int k = 0; k < pinfo->nparts; k++) { Assert(partdesc->oids[k] == pinfo->relid_map[k] || pinfo->subplan_map[k] == -1); } #endif } else { int pd_idx = 0; int pp_idx; /* * Some new partitions have appeared since plan time, and * those are reflected in our PartitionDesc but were not * present in the one used to construct subplan_map and * subpart_map. So we must construct new and longer arrays * where the partitions that were originally present map to * the same sub-structures, and any added partitions map to * -1, as if the new partitions had been pruned. * * Note: pinfo->relid_map[] may contain InvalidOid entries for * partitions pruned by the planner. We cannot tell exactly * which of the partdesc entries these correspond to, but we * don't have to; just skip over them. The non-pruned * relid_map entries, however, had better be a subset of the * partdesc entries and in the same order. */ pprune->subpart_map = palloc(sizeof(int) * partdesc->nparts); for (pp_idx = 0; pp_idx < partdesc->nparts; pp_idx++) { /* Skip any InvalidOid relid_map entries */ while (pd_idx < pinfo->nparts && !OidIsValid(pinfo->relid_map[pd_idx])) pd_idx++; if (pd_idx < pinfo->nparts && pinfo->relid_map[pd_idx] == partdesc->oids[pp_idx]) { /* match... */ pprune->subplan_map[pp_idx] = pinfo->subplan_map[pd_idx]; pprune->subpart_map[pp_idx] = pinfo->subpart_map[pd_idx]; pd_idx++; } else { /* this partdesc entry is not in the plan */ pprune->subplan_map[pp_idx] = -1; pprune->subpart_map[pp_idx] = -1; } } /* * It might seem that we need to skip any trailing InvalidOid * entries in pinfo->relid_map before checking that we scanned * all of the relid_map. But we will have skipped them above, * because they must correspond to some partdesc->oids * entries; we just couldn't tell which. */ if (pd_idx != pinfo->nparts) elog(ERROR, "could not match partition child tables to plan elements"); } /* present_parts is also subject to later modification */ pprune->present_parts = bms_copy(pinfo->present_parts); /* * Initialize pruning contexts as needed. */ pprune->initial_pruning_steps = pinfo->initial_pruning_steps; if (pinfo->initial_pruning_steps) { ExecInitPruningContext(&pprune->initial_context, pinfo->initial_pruning_steps, partdesc, partkey, planstate); /* Record whether initial pruning is needed at any level */ prunestate->do_initial_prune = true; } pprune->exec_pruning_steps = pinfo->exec_pruning_steps; if (pinfo->exec_pruning_steps) { ExecInitPruningContext(&pprune->exec_context, pinfo->exec_pruning_steps, partdesc, partkey, planstate); /* Record whether exec pruning is needed at any level */ prunestate->do_exec_prune = true; } /* * Accumulate the IDs of all PARAM_EXEC Params affecting the * partitioning decisions at this plan node. */ prunestate->execparamids = bms_add_members(prunestate->execparamids, pinfo->execparamids); j++; } i++; } return prunestate; } /* * Initialize a PartitionPruneContext for the given list of pruning steps. */ static void ExecInitPruningContext(PartitionPruneContext *context, List *pruning_steps, PartitionDesc partdesc, PartitionKey partkey, PlanState *planstate) { int n_steps; int partnatts; ListCell *lc; n_steps = list_length(pruning_steps); context->strategy = partkey->strategy; context->partnatts = partnatts = partkey->partnatts; context->nparts = partdesc->nparts; context->boundinfo = partdesc->boundinfo; context->partcollation = partkey->partcollation; context->partsupfunc = partkey->partsupfunc; /* We'll look up type-specific support functions as needed */ context->stepcmpfuncs = (FmgrInfo *) palloc0(sizeof(FmgrInfo) * n_steps * partnatts); context->ppccontext = CurrentMemoryContext; context->planstate = planstate; /* Initialize expression state for each expression we need */ context->exprstates = (ExprState **) palloc0(sizeof(ExprState *) * n_steps * partnatts); foreach(lc, pruning_steps) { PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc); ListCell *lc2; int keyno; /* not needed for other step kinds */ if (!IsA(step, PartitionPruneStepOp)) continue; Assert(list_length(step->exprs) <= partnatts); keyno = 0; foreach(lc2, step->exprs) { Expr *expr = (Expr *) lfirst(lc2); /* not needed for Consts */ if (!IsA(expr, Const)) { int stateidx = PruneCxtStateIdx(partnatts, step->step.step_id, keyno); context->exprstates[stateidx] = ExecInitExpr(expr, context->planstate); } keyno++; } } } /* * ExecFindInitialMatchingSubPlans * Identify the set of subplans that cannot be eliminated by initial * pruning, disregarding any pruning constraints involving PARAM_EXEC * Params. * * If additional pruning passes will be required (because of PARAM_EXEC * Params), we must also update the translation data that allows conversion * of partition indexes into subplan indexes to account for the unneeded * subplans having been removed. * * Must only be called once per 'prunestate', and only if initial pruning * is required. * * 'nsubplans' must be passed as the total number of unpruned subplans. */ Bitmapset * ExecFindInitialMatchingSubPlans(PartitionPruneState *prunestate, int nsubplans) { Bitmapset *result = NULL; MemoryContext oldcontext; int i; /* Caller error if we get here without do_initial_prune */ Assert(prunestate->do_initial_prune); /* * Switch to a temp context to avoid leaking memory in the executor's * query-lifespan memory context. */ oldcontext = MemoryContextSwitchTo(prunestate->prune_context); /* * For each hierarchy, do the pruning tests, and add nondeletable * subplans' indexes to "result". */ for (i = 0; i < prunestate->num_partprunedata; i++) { PartitionPruningData *prunedata; PartitionedRelPruningData *pprune; prunedata = prunestate->partprunedata[i]; pprune = &prunedata->partrelprunedata[0]; /* Perform pruning without using PARAM_EXEC Params */ find_matching_subplans_recurse(prunedata, pprune, true, &result); /* Expression eval may have used space in node's ps_ExprContext too */ if (pprune->initial_pruning_steps) ResetExprContext(pprune->initial_context.planstate->ps_ExprContext); } /* Add in any subplans that partition pruning didn't account for */ result = bms_add_members(result, prunestate->other_subplans); MemoryContextSwitchTo(oldcontext); /* Copy result out of the temp context before we reset it */ result = bms_copy(result); MemoryContextReset(prunestate->prune_context); /* * If exec-time pruning is required and we pruned subplans above, then we * must re-sequence the subplan indexes so that ExecFindMatchingSubPlans * properly returns the indexes from the subplans which will remain after * execution of this function. * * We can safely skip this when !do_exec_prune, even though that leaves * invalid data in prunestate, because that data won't be consulted again * (cf initial Assert in ExecFindMatchingSubPlans). */ if (prunestate->do_exec_prune && bms_num_members(result) < nsubplans) { int *new_subplan_indexes; Bitmapset *new_other_subplans; int i; int newidx; /* * First we must build a temporary array which maps old subplan * indexes to new ones. For convenience of initialization, we use * 1-based indexes in this array and leave pruned items as 0. */ new_subplan_indexes = (int *) palloc0(sizeof(int) * nsubplans); newidx = 1; i = -1; while ((i = bms_next_member(result, i)) >= 0) { Assert(i < nsubplans); new_subplan_indexes[i] = newidx++; } /* * Now we can update each PartitionedRelPruneInfo's subplan_map with * new subplan indexes. We must also recompute its present_parts * bitmap. */ for (i = 0; i < prunestate->num_partprunedata; i++) { PartitionPruningData *prunedata = prunestate->partprunedata[i]; int j; /* * Within each hierarchy, we perform this loop in back-to-front * order so that we determine present_parts for the lowest-level * partitioned tables first. This way we can tell whether a * sub-partitioned table's partitions were entirely pruned so we * can exclude it from the current level's present_parts. */ for (j = prunedata->num_partrelprunedata - 1; j >= 0; j--) { PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j]; int nparts = pprune->nparts; int k; /* We just rebuild present_parts from scratch */ bms_free(pprune->present_parts); pprune->present_parts = NULL; for (k = 0; k < nparts; k++) { int oldidx = pprune->subplan_map[k]; int subidx; /* * If this partition existed as a subplan then change the * old subplan index to the new subplan index. The new * index may become -1 if the partition was pruned above, * or it may just come earlier in the subplan list due to * some subplans being removed earlier in the list. If * it's a subpartition, add it to present_parts unless * it's entirely pruned. */ if (oldidx >= 0) { Assert(oldidx < nsubplans); pprune->subplan_map[k] = new_subplan_indexes[oldidx] - 1; if (new_subplan_indexes[oldidx] > 0) pprune->present_parts = bms_add_member(pprune->present_parts, k); } else if ((subidx = pprune->subpart_map[k]) >= 0) { PartitionedRelPruningData *subprune; subprune = &prunedata->partrelprunedata[subidx]; if (!bms_is_empty(subprune->present_parts)) pprune->present_parts = bms_add_member(pprune->present_parts, k); } } } } /* * We must also recompute the other_subplans set, since indexes in it * may change. */ new_other_subplans = NULL; i = -1; while ((i = bms_next_member(prunestate->other_subplans, i)) >= 0) new_other_subplans = bms_add_member(new_other_subplans, new_subplan_indexes[i] - 1); bms_free(prunestate->other_subplans); prunestate->other_subplans = new_other_subplans; pfree(new_subplan_indexes); } return result; } /* * ExecFindMatchingSubPlans * Determine which subplans match the pruning steps detailed in * 'prunestate' for the current comparison expression values. * * Here we assume we may evaluate PARAM_EXEC Params. */ Bitmapset * ExecFindMatchingSubPlans(PartitionPruneState *prunestate) { Bitmapset *result = NULL; MemoryContext oldcontext; int i; /* * If !do_exec_prune, we've got problems because * ExecFindInitialMatchingSubPlans will not have bothered to update * prunestate for whatever pruning it did. */ Assert(prunestate->do_exec_prune); /* * Switch to a temp context to avoid leaking memory in the executor's * query-lifespan memory context. */ oldcontext = MemoryContextSwitchTo(prunestate->prune_context); /* * For each hierarchy, do the pruning tests, and add nondeletable * subplans' indexes to "result". */ for (i = 0; i < prunestate->num_partprunedata; i++) { PartitionPruningData *prunedata; PartitionedRelPruningData *pprune; prunedata = prunestate->partprunedata[i]; pprune = &prunedata->partrelprunedata[0]; find_matching_subplans_recurse(prunedata, pprune, false, &result); /* Expression eval may have used space in node's ps_ExprContext too */ if (pprune->exec_pruning_steps) ResetExprContext(pprune->exec_context.planstate->ps_ExprContext); } /* Add in any subplans that partition pruning didn't account for */ result = bms_add_members(result, prunestate->other_subplans); MemoryContextSwitchTo(oldcontext); /* Copy result out of the temp context before we reset it */ result = bms_copy(result); MemoryContextReset(prunestate->prune_context); return result; } /* * find_matching_subplans_recurse * Recursive worker function for ExecFindMatchingSubPlans and * ExecFindInitialMatchingSubPlans * * Adds valid (non-prunable) subplan IDs to *validsubplans */ static void find_matching_subplans_recurse(PartitionPruningData *prunedata, PartitionedRelPruningData *pprune, bool initial_prune, Bitmapset **validsubplans) { Bitmapset *partset; int i; /* Guard against stack overflow due to overly deep partition hierarchy. */ check_stack_depth(); /* Only prune if pruning would be useful at this level. */ if (initial_prune && pprune->initial_pruning_steps) { partset = get_matching_partitions(&pprune->initial_context, pprune->initial_pruning_steps); } else if (!initial_prune && pprune->exec_pruning_steps) { partset = get_matching_partitions(&pprune->exec_context, pprune->exec_pruning_steps); } else { /* * If no pruning is to be done, just include all partitions at this * level. */ partset = pprune->present_parts; } /* Translate partset into subplan indexes */ i = -1; while ((i = bms_next_member(partset, i)) >= 0) { if (pprune->subplan_map[i] >= 0) *validsubplans = bms_add_member(*validsubplans, pprune->subplan_map[i]); else { int partidx = pprune->subpart_map[i]; if (partidx >= 0) find_matching_subplans_recurse(prunedata, &prunedata->partrelprunedata[partidx], initial_prune, validsubplans); else { /* * We get here if the planner already pruned all the sub- * partitions for this partition. Silently ignore this * partition in this case. The end result is the same: we * would have pruned all partitions just the same, but we * don't have any pruning steps to execute to verify this. */ } } } }