/*------------------------------------------------------------------------- * * ts_typanalyze.c * functions for gathering statistics from tsvector columns * * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group * * * IDENTIFICATION * src/backend/tsearch/ts_typanalyze.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "catalog/pg_collation.h" #include "catalog/pg_operator.h" #include "commands/vacuum.h" #include "common/hashfn.h" #include "tsearch/ts_type.h" #include "utils/builtins.h" /* A hash key for lexemes */ typedef struct { char *lexeme; /* lexeme (not NULL terminated!) */ int length; /* its length in bytes */ } LexemeHashKey; /* A hash table entry for the Lossy Counting algorithm */ typedef struct { LexemeHashKey key; /* This is 'e' from the LC algorithm. */ int frequency; /* This is 'f'. */ int delta; /* And this is 'delta'. */ } TrackItem; static void compute_tsvector_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows); static void prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current); static uint32 lexeme_hash(const void *key, Size keysize); static int lexeme_match(const void *key1, const void *key2, Size keysize); static int lexeme_compare(const void *key1, const void *key2); static int trackitem_compare_frequencies_desc(const void *e1, const void *e2, void *arg); static int trackitem_compare_lexemes(const void *e1, const void *e2, void *arg); /* * ts_typanalyze -- a custom typanalyze function for tsvector columns */ Datum ts_typanalyze(PG_FUNCTION_ARGS) { VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0); Form_pg_attribute attr = stats->attr; /* If the attstattarget column is negative, use the default value */ /* NB: it is okay to scribble on stats->attr since it's a copy */ if (attr->attstattarget < 0) attr->attstattarget = default_statistics_target; stats->compute_stats = compute_tsvector_stats; /* see comment about the choice of minrows in commands/analyze.c */ stats->minrows = 300 * attr->attstattarget; PG_RETURN_BOOL(true); } /* * compute_tsvector_stats() -- compute statistics for a tsvector column * * This functions computes statistics that are useful for determining @@ * operations' selectivity, along with the fraction of non-null rows and * average width. * * Instead of finding the most common values, as we do for most datatypes, * we're looking for the most common lexemes. This is more useful, because * there most probably won't be any two rows with the same tsvector and thus * the notion of a MCV is a bit bogus with this datatype. With a list of the * most common lexemes we can do a better job at figuring out @@ selectivity. * * For the same reasons we assume that tsvector columns are unique when * determining the number of distinct values. * * The algorithm used is Lossy Counting, as proposed in the paper "Approximate * frequency counts over data streams" by G. S. Manku and R. Motwani, in * Proceedings of the 28th International Conference on Very Large Data Bases, * Hong Kong, China, August 2002, section 4.2. The paper is available at * http://www.vldb.org/conf/2002/S10P03.pdf * * The Lossy Counting (aka LC) algorithm goes like this: * Let s be the threshold frequency for an item (the minimum frequency we * are interested in) and epsilon the error margin for the frequency. Let D * be a set of triples (e, f, delta), where e is an element value, f is that * element's frequency (actually, its current occurrence count) and delta is * the maximum error in f. We start with D empty and process the elements in * batches of size w. (The batch size is also known as "bucket size" and is * equal to 1/epsilon.) Let the current batch number be b_current, starting * with 1. For each element e we either increment its f count, if it's * already in D, or insert a new triple into D with values (e, 1, b_current * - 1). After processing each batch we prune D, by removing from it all * elements with f + delta <= b_current. After the algorithm finishes we * suppress all elements from D that do not satisfy f >= (s - epsilon) * N, * where N is the total number of elements in the input. We emit the * remaining elements with estimated frequency f/N. The LC paper proves * that this algorithm finds all elements with true frequency at least s, * and that no frequency is overestimated or is underestimated by more than * epsilon. Furthermore, given reasonable assumptions about the input * distribution, the required table size is no more than about 7 times w. * * We set s to be the estimated frequency of the K'th word in a natural * language's frequency table, where K is the target number of entries in * the MCELEM array plus an arbitrary constant, meant to reflect the fact * that the most common words in any language would usually be stopwords * so we will not actually see them in the input. We assume that the * distribution of word frequencies (including the stopwords) follows Zipf's * law with an exponent of 1. * * Assuming Zipfian distribution, the frequency of the K'th word is equal * to 1/(K * H(W)) where H(n) is 1/2 + 1/3 + ... + 1/n and W is the number of * words in the language. Putting W as one million, we get roughly 0.07/K. * Assuming top 10 words are stopwords gives s = 0.07/(K + 10). We set * epsilon = s/10, which gives bucket width w = (K + 10)/0.007 and * maximum expected hashtable size of about 1000 * (K + 10). * * Note: in the above discussion, s, epsilon, and f/N are in terms of a * lexeme's frequency as a fraction of all lexemes seen in the input. * However, what we actually want to store in the finished pg_statistic * entry is each lexeme's frequency as a fraction of all rows that it occurs * in. Assuming that the input tsvectors are correctly constructed, no * lexeme occurs more than once per tsvector, so the final count f is a * correct estimate of the number of input tsvectors it occurs in, and we * need only change the divisor from N to nonnull_cnt to get the number we * want. */ static void compute_tsvector_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows) { int num_mcelem; int null_cnt = 0; double total_width = 0; /* This is D from the LC algorithm. */ HTAB *lexemes_tab; HASHCTL hash_ctl; HASH_SEQ_STATUS scan_status; /* This is the current bucket number from the LC algorithm */ int b_current; /* This is 'w' from the LC algorithm */ int bucket_width; int vector_no, lexeme_no; LexemeHashKey hash_key; TrackItem *item; /* * We want statistics_target * 10 lexemes in the MCELEM array. This * multiplier is pretty arbitrary, but is meant to reflect the fact that * the number of individual lexeme values tracked in pg_statistic ought to * be more than the number of values for a simple scalar column. */ num_mcelem = stats->attr->attstattarget * 10; /* * We set bucket width equal to (num_mcelem + 10) / 0.007 as per the * comment above. */ bucket_width = (num_mcelem + 10) * 1000 / 7; /* * Create the hashtable. It will be in local memory, so we don't need to * worry about overflowing the initial size. Also we don't need to pay any * attention to locking and memory management. */ hash_ctl.keysize = sizeof(LexemeHashKey); hash_ctl.entrysize = sizeof(TrackItem); hash_ctl.hash = lexeme_hash; hash_ctl.match = lexeme_match; hash_ctl.hcxt = CurrentMemoryContext; lexemes_tab = hash_create("Analyzed lexemes table", num_mcelem, &hash_ctl, HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT); /* Initialize counters. */ b_current = 1; lexeme_no = 0; /* Loop over the tsvectors. */ for (vector_no = 0; vector_no < samplerows; vector_no++) { Datum value; bool isnull; TSVector vector; WordEntry *curentryptr; char *lexemesptr; int j; vacuum_delay_point(); value = fetchfunc(stats, vector_no, &isnull); /* * Check for null/nonnull. */ if (isnull) { null_cnt++; continue; } /* * Add up widths for average-width calculation. Since it's a * tsvector, we know it's varlena. As in the regular * compute_minimal_stats function, we use the toasted width for this * calculation. */ total_width += VARSIZE_ANY(DatumGetPointer(value)); /* * Now detoast the tsvector if needed. */ vector = DatumGetTSVector(value); /* * We loop through the lexemes in the tsvector and add them to our * tracking hashtable. */ lexemesptr = STRPTR(vector); curentryptr = ARRPTR(vector); for (j = 0; j < vector->size; j++) { bool found; /* * Construct a hash key. The key points into the (detoasted) * tsvector value at this point, but if a new entry is created, we * make a copy of it. This way we can free the tsvector value * once we've processed all its lexemes. */ hash_key.lexeme = lexemesptr + curentryptr->pos; hash_key.length = curentryptr->len; /* Lookup current lexeme in hashtable, adding it if new */ item = (TrackItem *) hash_search(lexemes_tab, (const void *) &hash_key, HASH_ENTER, &found); if (found) { /* The lexeme is already on the tracking list */ item->frequency++; } else { /* Initialize new tracking list element */ item->frequency = 1; item->delta = b_current - 1; item->key.lexeme = palloc(hash_key.length); memcpy(item->key.lexeme, hash_key.lexeme, hash_key.length); } /* lexeme_no is the number of elements processed (ie N) */ lexeme_no++; /* We prune the D structure after processing each bucket */ if (lexeme_no % bucket_width == 0) { prune_lexemes_hashtable(lexemes_tab, b_current); b_current++; } /* Advance to the next WordEntry in the tsvector */ curentryptr++; } /* If the vector was toasted, free the detoasted copy. */ if (TSVectorGetDatum(vector) != value) pfree(vector); } /* We can only compute real stats if we found some non-null values. */ if (null_cnt < samplerows) { int nonnull_cnt = samplerows - null_cnt; int i; TrackItem **sort_table; int track_len; int cutoff_freq; int minfreq, maxfreq; stats->stats_valid = true; /* Do the simple null-frac and average width stats */ stats->stanullfrac = (double) null_cnt / (double) samplerows; stats->stawidth = total_width / (double) nonnull_cnt; /* Assume it's a unique column (see notes above) */ stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac); /* * Construct an array of the interesting hashtable items, that is, * those meeting the cutoff frequency (s - epsilon)*N. Also identify * the minimum and maximum frequencies among these items. * * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff * frequency is 9*N / bucket_width. */ cutoff_freq = 9 * lexeme_no / bucket_width; i = hash_get_num_entries(lexemes_tab); /* surely enough space */ sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i); hash_seq_init(&scan_status, lexemes_tab); track_len = 0; minfreq = lexeme_no; maxfreq = 0; while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL) { if (item->frequency > cutoff_freq) { sort_table[track_len++] = item; minfreq = Min(minfreq, item->frequency); maxfreq = Max(maxfreq, item->frequency); } } Assert(track_len <= i); /* emit some statistics for debug purposes */ elog(DEBUG3, "tsvector_stats: target # mces = %d, bucket width = %d, " "# lexemes = %d, hashtable size = %d, usable entries = %d", num_mcelem, bucket_width, lexeme_no, i, track_len); /* * If we obtained more lexemes than we really want, get rid of those * with least frequencies. The easiest way is to qsort the array into * descending frequency order and truncate the array. */ if (num_mcelem < track_len) { qsort_interruptible(sort_table, track_len, sizeof(TrackItem *), trackitem_compare_frequencies_desc, NULL); /* reset minfreq to the smallest frequency we're keeping */ minfreq = sort_table[num_mcelem - 1]->frequency; } else num_mcelem = track_len; /* Generate MCELEM slot entry */ if (num_mcelem > 0) { MemoryContext old_context; Datum *mcelem_values; float4 *mcelem_freqs; /* * We want to store statistics sorted on the lexeme value using * first length, then byte-for-byte comparison. The reason for * doing length comparison first is that we don't care about the * ordering so long as it's consistent, and comparing lengths * first gives us a chance to avoid a strncmp() call. * * This is different from what we do with scalar statistics -- * they get sorted on frequencies. The rationale is that we * usually search through most common elements looking for a * specific value, so we can grab its frequency. When values are * presorted we can employ binary search for that. See * ts_selfuncs.c for a real usage scenario. */ qsort_interruptible(sort_table, num_mcelem, sizeof(TrackItem *), trackitem_compare_lexemes, NULL); /* Must copy the target values into anl_context */ old_context = MemoryContextSwitchTo(stats->anl_context); /* * We sorted statistics on the lexeme value, but we want to be * able to find out the minimal and maximal frequency without * going through all the values. We keep those two extra * frequencies in two extra cells in mcelem_freqs. * * (Note: the MCELEM statistics slot definition allows for a third * extra number containing the frequency of nulls, but we don't * create that for a tsvector column, since null elements aren't * possible.) */ mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum)); mcelem_freqs = (float4 *) palloc((num_mcelem + 2) * sizeof(float4)); /* * See comments above about use of nonnull_cnt as the divisor for * the final frequency estimates. */ for (i = 0; i < num_mcelem; i++) { TrackItem *item = sort_table[i]; mcelem_values[i] = PointerGetDatum(cstring_to_text_with_len(item->key.lexeme, item->key.length)); mcelem_freqs[i] = (double) item->frequency / (double) nonnull_cnt; } mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt; mcelem_freqs[i] = (double) maxfreq / (double) nonnull_cnt; MemoryContextSwitchTo(old_context); stats->stakind[0] = STATISTIC_KIND_MCELEM; stats->staop[0] = TextEqualOperator; stats->stacoll[0] = DEFAULT_COLLATION_OID; stats->stanumbers[0] = mcelem_freqs; /* See above comment about two extra frequency fields */ stats->numnumbers[0] = num_mcelem + 2; stats->stavalues[0] = mcelem_values; stats->numvalues[0] = num_mcelem; /* We are storing text values */ stats->statypid[0] = TEXTOID; stats->statyplen[0] = -1; /* typlen, -1 for varlena */ stats->statypbyval[0] = false; stats->statypalign[0] = 'i'; } } else { /* We found only nulls; assume the column is entirely null */ stats->stats_valid = true; stats->stanullfrac = 1.0; stats->stawidth = 0; /* "unknown" */ stats->stadistinct = 0.0; /* "unknown" */ } /* * We don't need to bother cleaning up any of our temporary palloc's. The * hashtable should also go away, as it used a child memory context. */ } /* * A function to prune the D structure from the Lossy Counting algorithm. * Consult compute_tsvector_stats() for wider explanation. */ static void prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current) { HASH_SEQ_STATUS scan_status; TrackItem *item; hash_seq_init(&scan_status, lexemes_tab); while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL) { if (item->frequency + item->delta <= b_current) { char *lexeme = item->key.lexeme; if (hash_search(lexemes_tab, (const void *) &item->key, HASH_REMOVE, NULL) == NULL) elog(ERROR, "hash table corrupted"); pfree(lexeme); } } } /* * Hash functions for lexemes. They are strings, but not NULL terminated, * so we need a special hash function. */ static uint32 lexeme_hash(const void *key, Size keysize) { const LexemeHashKey *l = (const LexemeHashKey *) key; return DatumGetUInt32(hash_any((const unsigned char *) l->lexeme, l->length)); } /* * Matching function for lexemes, to be used in hashtable lookups. */ static int lexeme_match(const void *key1, const void *key2, Size keysize) { /* The keysize parameter is superfluous, the keys store their lengths */ return lexeme_compare(key1, key2); } /* * Comparison function for lexemes. */ static int lexeme_compare(const void *key1, const void *key2) { const LexemeHashKey *d1 = (const LexemeHashKey *) key1; const LexemeHashKey *d2 = (const LexemeHashKey *) key2; /* First, compare by length */ if (d1->length > d2->length) return 1; else if (d1->length < d2->length) return -1; /* Lengths are equal, do a byte-by-byte comparison */ return strncmp(d1->lexeme, d2->lexeme, d1->length); } /* * Comparator for sorting TrackItems on frequencies (descending sort) */ static int trackitem_compare_frequencies_desc(const void *e1, const void *e2, void *arg) { const TrackItem *const *t1 = (const TrackItem *const *) e1; const TrackItem *const *t2 = (const TrackItem *const *) e2; return (*t2)->frequency - (*t1)->frequency; } /* * Comparator for sorting TrackItems on lexemes */ static int trackitem_compare_lexemes(const void *e1, const void *e2, void *arg) { const TrackItem *const *t1 = (const TrackItem *const *) e1; const TrackItem *const *t2 = (const TrackItem *const *) e2; return lexeme_compare(&(*t1)->key, &(*t2)->key); }