/*------------------------------------------------------------------------- * * timestamp.c * Functions for the built-in SQL types "timestamp" and "interval". * * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/utils/adt/timestamp.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include #include #include "access/xact.h" #include "catalog/pg_type.h" #include "common/int.h" #include "common/int128.h" #include "funcapi.h" #include "libpq/pqformat.h" #include "miscadmin.h" #include "nodes/makefuncs.h" #include "nodes/nodeFuncs.h" #include "nodes/supportnodes.h" #include "parser/scansup.h" #include "utils/array.h" #include "utils/builtins.h" #include "utils/date.h" #include "utils/datetime.h" #include "utils/float.h" #include "utils/numeric.h" /* * gcc's -ffast-math switch breaks routines that expect exact results from * expressions like timeval / SECS_PER_HOUR, where timeval is double. */ #ifdef __FAST_MATH__ #error -ffast-math is known to break this code #endif #define SAMESIGN(a,b) (((a) < 0) == ((b) < 0)) /* Set at postmaster start */ TimestampTz PgStartTime; /* Set at configuration reload */ TimestampTz PgReloadTime; typedef struct { Timestamp current; Timestamp finish; Interval step; int step_sign; } generate_series_timestamp_fctx; typedef struct { TimestampTz current; TimestampTz finish; Interval step; int step_sign; } generate_series_timestamptz_fctx; static TimeOffset time2t(const int hour, const int min, const int sec, const fsec_t fsec); static Timestamp dt2local(Timestamp dt, int timezone); static void AdjustIntervalForTypmod(Interval *interval, int32 typmod); static TimestampTz timestamp2timestamptz(Timestamp timestamp); static Timestamp timestamptz2timestamp(TimestampTz timestamp); /* common code for timestamptypmodin and timestamptztypmodin */ static int32 anytimestamp_typmodin(bool istz, ArrayType *ta) { int32 *tl; int n; tl = ArrayGetIntegerTypmods(ta, &n); /* * we're not too tense about good error message here because grammar * shouldn't allow wrong number of modifiers for TIMESTAMP */ if (n != 1) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid type modifier"))); return anytimestamp_typmod_check(istz, tl[0]); } /* exported so parse_expr.c can use it */ int32 anytimestamp_typmod_check(bool istz, int32 typmod) { if (typmod < 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("TIMESTAMP(%d)%s precision must not be negative", typmod, (istz ? " WITH TIME ZONE" : "")))); if (typmod > MAX_TIMESTAMP_PRECISION) { ereport(WARNING, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("TIMESTAMP(%d)%s precision reduced to maximum allowed, %d", typmod, (istz ? " WITH TIME ZONE" : ""), MAX_TIMESTAMP_PRECISION))); typmod = MAX_TIMESTAMP_PRECISION; } return typmod; } /* common code for timestamptypmodout and timestamptztypmodout */ static char * anytimestamp_typmodout(bool istz, int32 typmod) { const char *tz = istz ? " with time zone" : " without time zone"; if (typmod >= 0) return psprintf("(%d)%s", (int) typmod, tz); else return psprintf("%s", tz); } /***************************************************************************** * USER I/O ROUTINES * *****************************************************************************/ /* timestamp_in() * Convert a string to internal form. */ Datum timestamp_in(PG_FUNCTION_ARGS) { char *str = PG_GETARG_CSTRING(0); #ifdef NOT_USED Oid typelem = PG_GETARG_OID(1); #endif int32 typmod = PG_GETARG_INT32(2); Timestamp result; fsec_t fsec; struct pg_tm tt, *tm = &tt; int tz; int dtype; int nf; int dterr; char *field[MAXDATEFIELDS]; int ftype[MAXDATEFIELDS]; char workbuf[MAXDATELEN + MAXDATEFIELDS]; dterr = ParseDateTime(str, workbuf, sizeof(workbuf), field, ftype, MAXDATEFIELDS, &nf); if (dterr == 0) dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz); if (dterr != 0) DateTimeParseError(dterr, str, "timestamp"); switch (dtype) { case DTK_DATE: if (tm2timestamp(tm, fsec, NULL, &result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: \"%s\"", str))); break; case DTK_EPOCH: result = SetEpochTimestamp(); break; case DTK_LATE: TIMESTAMP_NOEND(result); break; case DTK_EARLY: TIMESTAMP_NOBEGIN(result); break; default: elog(ERROR, "unexpected dtype %d while parsing timestamp \"%s\"", dtype, str); TIMESTAMP_NOEND(result); } AdjustTimestampForTypmod(&result, typmod); PG_RETURN_TIMESTAMP(result); } /* timestamp_out() * Convert a timestamp to external form. */ Datum timestamp_out(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); char *result; struct pg_tm tt, *tm = &tt; fsec_t fsec; char buf[MAXDATELEN + 1]; if (TIMESTAMP_NOT_FINITE(timestamp)) EncodeSpecialTimestamp(timestamp, buf); else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) == 0) EncodeDateTime(tm, fsec, false, 0, NULL, DateStyle, buf); else ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); result = pstrdup(buf); PG_RETURN_CSTRING(result); } /* * timestamp_recv - converts external binary format to timestamp */ Datum timestamp_recv(PG_FUNCTION_ARGS) { StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); #ifdef NOT_USED Oid typelem = PG_GETARG_OID(1); #endif int32 typmod = PG_GETARG_INT32(2); Timestamp timestamp; struct pg_tm tt, *tm = &tt; fsec_t fsec; timestamp = (Timestamp) pq_getmsgint64(buf); /* range check: see if timestamp_out would like it */ if (TIMESTAMP_NOT_FINITE(timestamp)) /* ok */ ; else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0 || !IS_VALID_TIMESTAMP(timestamp)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); AdjustTimestampForTypmod(×tamp, typmod); PG_RETURN_TIMESTAMP(timestamp); } /* * timestamp_send - converts timestamp to binary format */ Datum timestamp_send(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); StringInfoData buf; pq_begintypsend(&buf); pq_sendint64(&buf, timestamp); PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); } Datum timestamptypmodin(PG_FUNCTION_ARGS) { ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0); PG_RETURN_INT32(anytimestamp_typmodin(false, ta)); } Datum timestamptypmodout(PG_FUNCTION_ARGS) { int32 typmod = PG_GETARG_INT32(0); PG_RETURN_CSTRING(anytimestamp_typmodout(false, typmod)); } /* * timestamp_support() * * Planner support function for the timestamp_scale() and timestamptz_scale() * length coercion functions (we need not distinguish them here). */ Datum timestamp_support(PG_FUNCTION_ARGS) { Node *rawreq = (Node *) PG_GETARG_POINTER(0); Node *ret = NULL; if (IsA(rawreq, SupportRequestSimplify)) { SupportRequestSimplify *req = (SupportRequestSimplify *) rawreq; ret = TemporalSimplify(MAX_TIMESTAMP_PRECISION, (Node *) req->fcall); } PG_RETURN_POINTER(ret); } /* timestamp_scale() * Adjust time type for specified scale factor. * Used by PostgreSQL type system to stuff columns. */ Datum timestamp_scale(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); int32 typmod = PG_GETARG_INT32(1); Timestamp result; result = timestamp; AdjustTimestampForTypmod(&result, typmod); PG_RETURN_TIMESTAMP(result); } /* * AdjustTimestampForTypmodError --- round off a timestamp to suit given typmod * Works for either timestamp or timestamptz. */ bool AdjustTimestampForTypmodError(Timestamp *time, int32 typmod, bool *error) { static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = { INT64CONST(1000000), INT64CONST(100000), INT64CONST(10000), INT64CONST(1000), INT64CONST(100), INT64CONST(10), INT64CONST(1) }; static const int64 TimestampOffsets[MAX_TIMESTAMP_PRECISION + 1] = { INT64CONST(500000), INT64CONST(50000), INT64CONST(5000), INT64CONST(500), INT64CONST(50), INT64CONST(5), INT64CONST(0) }; if (!TIMESTAMP_NOT_FINITE(*time) && (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION)) { if (typmod < 0 || typmod > MAX_TIMESTAMP_PRECISION) { if (error) { *error = true; return false; } ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("timestamp(%d) precision must be between %d and %d", typmod, 0, MAX_TIMESTAMP_PRECISION))); } if (*time >= INT64CONST(0)) { *time = ((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) * TimestampScales[typmod]; } else { *time = -((((-*time) + TimestampOffsets[typmod]) / TimestampScales[typmod]) * TimestampScales[typmod]); } } return true; } void AdjustTimestampForTypmod(Timestamp *time, int32 typmod) { (void) AdjustTimestampForTypmodError(time, typmod, NULL); } /* timestamptz_in() * Convert a string to internal form. */ Datum timestamptz_in(PG_FUNCTION_ARGS) { char *str = PG_GETARG_CSTRING(0); #ifdef NOT_USED Oid typelem = PG_GETARG_OID(1); #endif int32 typmod = PG_GETARG_INT32(2); TimestampTz result; fsec_t fsec; struct pg_tm tt, *tm = &tt; int tz; int dtype; int nf; int dterr; char *field[MAXDATEFIELDS]; int ftype[MAXDATEFIELDS]; char workbuf[MAXDATELEN + MAXDATEFIELDS]; dterr = ParseDateTime(str, workbuf, sizeof(workbuf), field, ftype, MAXDATEFIELDS, &nf); if (dterr == 0) dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz); if (dterr != 0) DateTimeParseError(dterr, str, "timestamp with time zone"); switch (dtype) { case DTK_DATE: if (tm2timestamp(tm, fsec, &tz, &result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: \"%s\"", str))); break; case DTK_EPOCH: result = SetEpochTimestamp(); break; case DTK_LATE: TIMESTAMP_NOEND(result); break; case DTK_EARLY: TIMESTAMP_NOBEGIN(result); break; default: elog(ERROR, "unexpected dtype %d while parsing timestamptz \"%s\"", dtype, str); TIMESTAMP_NOEND(result); } AdjustTimestampForTypmod(&result, typmod); PG_RETURN_TIMESTAMPTZ(result); } /* * Try to parse a timezone specification, and return its timezone offset value * if it's acceptable. Otherwise, an error is thrown. * * Note: some code paths update tm->tm_isdst, and some don't; current callers * don't care, so we don't bother being consistent. */ static int parse_sane_timezone(struct pg_tm *tm, text *zone) { char tzname[TZ_STRLEN_MAX + 1]; int rt; int tz; text_to_cstring_buffer(zone, tzname, sizeof(tzname)); /* * Look up the requested timezone. First we try to interpret it as a * numeric timezone specification; if DecodeTimezone decides it doesn't * like the format, we look in the timezone abbreviation table (to handle * cases like "EST"), and if that also fails, we look in the timezone * database (to handle cases like "America/New_York"). (This matches the * order in which timestamp input checks the cases; it's important because * the timezone database unwisely uses a few zone names that are identical * to offset abbreviations.) * * Note pg_tzset happily parses numeric input that DecodeTimezone would * reject. To avoid having it accept input that would otherwise be seen * as invalid, it's enough to disallow having a digit in the first * position of our input string. */ if (isdigit((unsigned char) *tzname)) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid input syntax for type %s: \"%s\"", "numeric time zone", tzname), errhint("Numeric time zones must have \"-\" or \"+\" as first character."))); rt = DecodeTimezone(tzname, &tz); if (rt != 0) { char *lowzone; int type, val; pg_tz *tzp; if (rt == DTERR_TZDISP_OVERFLOW) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("numeric time zone \"%s\" out of range", tzname))); else if (rt != DTERR_BAD_FORMAT) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("time zone \"%s\" not recognized", tzname))); /* DecodeTimezoneAbbrev requires lowercase input */ lowzone = downcase_truncate_identifier(tzname, strlen(tzname), false); type = DecodeTimezoneAbbrev(0, lowzone, &val, &tzp); if (type == TZ || type == DTZ) { /* fixed-offset abbreviation */ tz = -val; } else if (type == DYNTZ) { /* dynamic-offset abbreviation, resolve using specified time */ tz = DetermineTimeZoneAbbrevOffset(tm, tzname, tzp); } else { /* try it as a full zone name */ tzp = pg_tzset(tzname); if (tzp) tz = DetermineTimeZoneOffset(tm, tzp); else ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("time zone \"%s\" not recognized", tzname))); } } return tz; } /* * make_timestamp_internal * workhorse for make_timestamp and make_timestamptz */ static Timestamp make_timestamp_internal(int year, int month, int day, int hour, int min, double sec) { struct pg_tm tm; TimeOffset date; TimeOffset time; int dterr; bool bc = false; Timestamp result; tm.tm_year = year; tm.tm_mon = month; tm.tm_mday = day; /* Handle negative years as BC */ if (tm.tm_year < 0) { bc = true; tm.tm_year = -tm.tm_year; } dterr = ValidateDate(DTK_DATE_M, false, false, bc, &tm); if (dterr != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW), errmsg("date field value out of range: %d-%02d-%02d", year, month, day))); if (!IS_VALID_JULIAN(tm.tm_year, tm.tm_mon, tm.tm_mday)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("date out of range: %d-%02d-%02d", year, month, day))); date = date2j(tm.tm_year, tm.tm_mon, tm.tm_mday) - POSTGRES_EPOCH_JDATE; /* Check for time overflow */ if (float_time_overflows(hour, min, sec)) ereport(ERROR, (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW), errmsg("time field value out of range: %d:%02d:%02g", hour, min, sec))); /* This should match tm2time */ time = (((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE) * USECS_PER_SEC) + (int64) rint(sec * USECS_PER_SEC); result = date * USECS_PER_DAY + time; /* check for major overflow */ if ((result - time) / USECS_PER_DAY != date) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g", year, month, day, hour, min, sec))); /* check for just-barely overflow (okay except time-of-day wraps) */ /* caution: we want to allow 1999-12-31 24:00:00 */ if ((result < 0 && date > 0) || (result > 0 && date < -1)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g", year, month, day, hour, min, sec))); /* final range check catches just-out-of-range timestamps */ if (!IS_VALID_TIMESTAMP(result)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g", year, month, day, hour, min, sec))); return result; } /* * make_timestamp() - timestamp constructor */ Datum make_timestamp(PG_FUNCTION_ARGS) { int32 year = PG_GETARG_INT32(0); int32 month = PG_GETARG_INT32(1); int32 mday = PG_GETARG_INT32(2); int32 hour = PG_GETARG_INT32(3); int32 min = PG_GETARG_INT32(4); float8 sec = PG_GETARG_FLOAT8(5); Timestamp result; result = make_timestamp_internal(year, month, mday, hour, min, sec); PG_RETURN_TIMESTAMP(result); } /* * make_timestamptz() - timestamp with time zone constructor */ Datum make_timestamptz(PG_FUNCTION_ARGS) { int32 year = PG_GETARG_INT32(0); int32 month = PG_GETARG_INT32(1); int32 mday = PG_GETARG_INT32(2); int32 hour = PG_GETARG_INT32(3); int32 min = PG_GETARG_INT32(4); float8 sec = PG_GETARG_FLOAT8(5); Timestamp result; result = make_timestamp_internal(year, month, mday, hour, min, sec); PG_RETURN_TIMESTAMPTZ(timestamp2timestamptz(result)); } /* * Construct a timestamp with time zone. * As above, but the time zone is specified as seventh argument. */ Datum make_timestamptz_at_timezone(PG_FUNCTION_ARGS) { int32 year = PG_GETARG_INT32(0); int32 month = PG_GETARG_INT32(1); int32 mday = PG_GETARG_INT32(2); int32 hour = PG_GETARG_INT32(3); int32 min = PG_GETARG_INT32(4); float8 sec = PG_GETARG_FLOAT8(5); text *zone = PG_GETARG_TEXT_PP(6); TimestampTz result; Timestamp timestamp; struct pg_tm tt; int tz; fsec_t fsec; timestamp = make_timestamp_internal(year, month, mday, hour, min, sec); if (timestamp2tm(timestamp, NULL, &tt, &fsec, NULL, NULL) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); tz = parse_sane_timezone(&tt, zone); result = dt2local(timestamp, -tz); if (!IS_VALID_TIMESTAMP(result)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); PG_RETURN_TIMESTAMPTZ(result); } /* * to_timestamp(double precision) * Convert UNIX epoch to timestamptz. */ Datum float8_timestamptz(PG_FUNCTION_ARGS) { float8 seconds = PG_GETARG_FLOAT8(0); TimestampTz result; /* Deal with NaN and infinite inputs ... */ if (isnan(seconds)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp cannot be NaN"))); if (isinf(seconds)) { if (seconds < 0) TIMESTAMP_NOBEGIN(result); else TIMESTAMP_NOEND(result); } else { /* Out of range? */ if (seconds < (float8) SECS_PER_DAY * (DATETIME_MIN_JULIAN - UNIX_EPOCH_JDATE) || seconds >= (float8) SECS_PER_DAY * (TIMESTAMP_END_JULIAN - UNIX_EPOCH_JDATE)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: \"%g\"", seconds))); /* Convert UNIX epoch to Postgres epoch */ seconds -= ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY); seconds = rint(seconds * USECS_PER_SEC); result = (int64) seconds; /* Recheck in case roundoff produces something just out of range */ if (!IS_VALID_TIMESTAMP(result)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: \"%g\"", PG_GETARG_FLOAT8(0)))); } PG_RETURN_TIMESTAMP(result); } /* timestamptz_out() * Convert a timestamp to external form. */ Datum timestamptz_out(PG_FUNCTION_ARGS) { TimestampTz dt = PG_GETARG_TIMESTAMPTZ(0); char *result; int tz; struct pg_tm tt, *tm = &tt; fsec_t fsec; const char *tzn; char buf[MAXDATELEN + 1]; if (TIMESTAMP_NOT_FINITE(dt)) EncodeSpecialTimestamp(dt, buf); else if (timestamp2tm(dt, &tz, tm, &fsec, &tzn, NULL) == 0) EncodeDateTime(tm, fsec, true, tz, tzn, DateStyle, buf); else ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); result = pstrdup(buf); PG_RETURN_CSTRING(result); } /* * timestamptz_recv - converts external binary format to timestamptz */ Datum timestamptz_recv(PG_FUNCTION_ARGS) { StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); #ifdef NOT_USED Oid typelem = PG_GETARG_OID(1); #endif int32 typmod = PG_GETARG_INT32(2); TimestampTz timestamp; int tz; struct pg_tm tt, *tm = &tt; fsec_t fsec; timestamp = (TimestampTz) pq_getmsgint64(buf); /* range check: see if timestamptz_out would like it */ if (TIMESTAMP_NOT_FINITE(timestamp)) /* ok */ ; else if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0 || !IS_VALID_TIMESTAMP(timestamp)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); AdjustTimestampForTypmod(×tamp, typmod); PG_RETURN_TIMESTAMPTZ(timestamp); } /* * timestamptz_send - converts timestamptz to binary format */ Datum timestamptz_send(PG_FUNCTION_ARGS) { TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0); StringInfoData buf; pq_begintypsend(&buf); pq_sendint64(&buf, timestamp); PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); } Datum timestamptztypmodin(PG_FUNCTION_ARGS) { ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0); PG_RETURN_INT32(anytimestamp_typmodin(true, ta)); } Datum timestamptztypmodout(PG_FUNCTION_ARGS) { int32 typmod = PG_GETARG_INT32(0); PG_RETURN_CSTRING(anytimestamp_typmodout(true, typmod)); } /* timestamptz_scale() * Adjust time type for specified scale factor. * Used by PostgreSQL type system to stuff columns. */ Datum timestamptz_scale(PG_FUNCTION_ARGS) { TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0); int32 typmod = PG_GETARG_INT32(1); TimestampTz result; result = timestamp; AdjustTimestampForTypmod(&result, typmod); PG_RETURN_TIMESTAMPTZ(result); } /* interval_in() * Convert a string to internal form. * * External format(s): * Uses the generic date/time parsing and decoding routines. */ Datum interval_in(PG_FUNCTION_ARGS) { char *str = PG_GETARG_CSTRING(0); #ifdef NOT_USED Oid typelem = PG_GETARG_OID(1); #endif int32 typmod = PG_GETARG_INT32(2); Interval *result; fsec_t fsec; struct pg_tm tt, *tm = &tt; int dtype; int nf; int range; int dterr; char *field[MAXDATEFIELDS]; int ftype[MAXDATEFIELDS]; char workbuf[256]; tm->tm_year = 0; tm->tm_mon = 0; tm->tm_mday = 0; tm->tm_hour = 0; tm->tm_min = 0; tm->tm_sec = 0; fsec = 0; if (typmod >= 0) range = INTERVAL_RANGE(typmod); else range = INTERVAL_FULL_RANGE; dterr = ParseDateTime(str, workbuf, sizeof(workbuf), field, ftype, MAXDATEFIELDS, &nf); if (dterr == 0) dterr = DecodeInterval(field, ftype, nf, range, &dtype, tm, &fsec); /* if those functions think it's a bad format, try ISO8601 style */ if (dterr == DTERR_BAD_FORMAT) dterr = DecodeISO8601Interval(str, &dtype, tm, &fsec); if (dterr != 0) { if (dterr == DTERR_FIELD_OVERFLOW) dterr = DTERR_INTERVAL_OVERFLOW; DateTimeParseError(dterr, str, "interval"); } result = (Interval *) palloc(sizeof(Interval)); switch (dtype) { case DTK_DELTA: if (tm2interval(tm, fsec, result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); break; default: elog(ERROR, "unexpected dtype %d while parsing interval \"%s\"", dtype, str); } AdjustIntervalForTypmod(result, typmod); PG_RETURN_INTERVAL_P(result); } /* interval_out() * Convert a time span to external form. */ Datum interval_out(PG_FUNCTION_ARGS) { Interval *span = PG_GETARG_INTERVAL_P(0); char *result; struct pg_tm tt, *tm = &tt; fsec_t fsec; char buf[MAXDATELEN + 1]; if (interval2tm(*span, tm, &fsec) != 0) elog(ERROR, "could not convert interval to tm"); EncodeInterval(tm, fsec, IntervalStyle, buf); result = pstrdup(buf); PG_RETURN_CSTRING(result); } /* * interval_recv - converts external binary format to interval */ Datum interval_recv(PG_FUNCTION_ARGS) { StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); #ifdef NOT_USED Oid typelem = PG_GETARG_OID(1); #endif int32 typmod = PG_GETARG_INT32(2); Interval *interval; interval = (Interval *) palloc(sizeof(Interval)); interval->time = pq_getmsgint64(buf); interval->day = pq_getmsgint(buf, sizeof(interval->day)); interval->month = pq_getmsgint(buf, sizeof(interval->month)); AdjustIntervalForTypmod(interval, typmod); PG_RETURN_INTERVAL_P(interval); } /* * interval_send - converts interval to binary format */ Datum interval_send(PG_FUNCTION_ARGS) { Interval *interval = PG_GETARG_INTERVAL_P(0); StringInfoData buf; pq_begintypsend(&buf); pq_sendint64(&buf, interval->time); pq_sendint32(&buf, interval->day); pq_sendint32(&buf, interval->month); PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); } /* * The interval typmod stores a "range" in its high 16 bits and a "precision" * in its low 16 bits. Both contribute to defining the resolution of the * type. Range addresses resolution granules larger than one second, and * precision specifies resolution below one second. This representation can * express all SQL standard resolutions, but we implement them all in terms of * truncating rightward from some position. Range is a bitmap of permitted * fields, but only the temporally-smallest such field is significant to our * calculations. Precision is a count of sub-second decimal places to retain. * Setting all bits (INTERVAL_FULL_PRECISION) gives the same truncation * semantics as choosing MAX_INTERVAL_PRECISION. */ Datum intervaltypmodin(PG_FUNCTION_ARGS) { ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0); int32 *tl; int n; int32 typmod; tl = ArrayGetIntegerTypmods(ta, &n); /* * tl[0] - interval range (fields bitmask) tl[1] - precision (optional) * * Note we must validate tl[0] even though it's normally guaranteed * correct by the grammar --- consider SELECT 'foo'::"interval"(1000). */ if (n > 0) { switch (tl[0]) { case INTERVAL_MASK(YEAR): case INTERVAL_MASK(MONTH): case INTERVAL_MASK(DAY): case INTERVAL_MASK(HOUR): case INTERVAL_MASK(MINUTE): case INTERVAL_MASK(SECOND): case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH): case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR): case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): case INTERVAL_FULL_RANGE: /* all OK */ break; default: ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid INTERVAL type modifier"))); } } if (n == 1) { if (tl[0] != INTERVAL_FULL_RANGE) typmod = INTERVAL_TYPMOD(INTERVAL_FULL_PRECISION, tl[0]); else typmod = -1; } else if (n == 2) { if (tl[1] < 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("INTERVAL(%d) precision must not be negative", tl[1]))); if (tl[1] > MAX_INTERVAL_PRECISION) { ereport(WARNING, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("INTERVAL(%d) precision reduced to maximum allowed, %d", tl[1], MAX_INTERVAL_PRECISION))); typmod = INTERVAL_TYPMOD(MAX_INTERVAL_PRECISION, tl[0]); } else typmod = INTERVAL_TYPMOD(tl[1], tl[0]); } else { ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid INTERVAL type modifier"))); typmod = 0; /* keep compiler quiet */ } PG_RETURN_INT32(typmod); } Datum intervaltypmodout(PG_FUNCTION_ARGS) { int32 typmod = PG_GETARG_INT32(0); char *res = (char *) palloc(64); int fields; int precision; const char *fieldstr; if (typmod < 0) { *res = '\0'; PG_RETURN_CSTRING(res); } fields = INTERVAL_RANGE(typmod); precision = INTERVAL_PRECISION(typmod); switch (fields) { case INTERVAL_MASK(YEAR): fieldstr = " year"; break; case INTERVAL_MASK(MONTH): fieldstr = " month"; break; case INTERVAL_MASK(DAY): fieldstr = " day"; break; case INTERVAL_MASK(HOUR): fieldstr = " hour"; break; case INTERVAL_MASK(MINUTE): fieldstr = " minute"; break; case INTERVAL_MASK(SECOND): fieldstr = " second"; break; case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH): fieldstr = " year to month"; break; case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR): fieldstr = " day to hour"; break; case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): fieldstr = " day to minute"; break; case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): fieldstr = " day to second"; break; case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): fieldstr = " hour to minute"; break; case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): fieldstr = " hour to second"; break; case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): fieldstr = " minute to second"; break; case INTERVAL_FULL_RANGE: fieldstr = ""; break; default: elog(ERROR, "invalid INTERVAL typmod: 0x%x", typmod); fieldstr = ""; break; } if (precision != INTERVAL_FULL_PRECISION) snprintf(res, 64, "%s(%d)", fieldstr, precision); else snprintf(res, 64, "%s", fieldstr); PG_RETURN_CSTRING(res); } /* * Given an interval typmod value, return a code for the least-significant * field that the typmod allows to be nonzero, for instance given * INTERVAL DAY TO HOUR we want to identify "hour". * * The results should be ordered by field significance, which means * we can't use the dt.h macros YEAR etc, because for some odd reason * they aren't ordered that way. Instead, arbitrarily represent * SECOND = 0, MINUTE = 1, HOUR = 2, DAY = 3, MONTH = 4, YEAR = 5. */ static int intervaltypmodleastfield(int32 typmod) { if (typmod < 0) return 0; /* SECOND */ switch (INTERVAL_RANGE(typmod)) { case INTERVAL_MASK(YEAR): return 5; /* YEAR */ case INTERVAL_MASK(MONTH): return 4; /* MONTH */ case INTERVAL_MASK(DAY): return 3; /* DAY */ case INTERVAL_MASK(HOUR): return 2; /* HOUR */ case INTERVAL_MASK(MINUTE): return 1; /* MINUTE */ case INTERVAL_MASK(SECOND): return 0; /* SECOND */ case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH): return 4; /* MONTH */ case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR): return 2; /* HOUR */ case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): return 1; /* MINUTE */ case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): return 0; /* SECOND */ case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): return 1; /* MINUTE */ case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): return 0; /* SECOND */ case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): return 0; /* SECOND */ case INTERVAL_FULL_RANGE: return 0; /* SECOND */ default: elog(ERROR, "invalid INTERVAL typmod: 0x%x", typmod); break; } return 0; /* can't get here, but keep compiler quiet */ } /* * interval_support() * * Planner support function for interval_scale(). * * Flatten superfluous calls to interval_scale(). The interval typmod is * complex to permit accepting and regurgitating all SQL standard variations. * For truncation purposes, it boils down to a single, simple granularity. */ Datum interval_support(PG_FUNCTION_ARGS) { Node *rawreq = (Node *) PG_GETARG_POINTER(0); Node *ret = NULL; if (IsA(rawreq, SupportRequestSimplify)) { SupportRequestSimplify *req = (SupportRequestSimplify *) rawreq; FuncExpr *expr = req->fcall; Node *typmod; Assert(list_length(expr->args) >= 2); typmod = (Node *) lsecond(expr->args); if (IsA(typmod, Const) && !((Const *) typmod)->constisnull) { Node *source = (Node *) linitial(expr->args); int32 new_typmod = DatumGetInt32(((Const *) typmod)->constvalue); bool noop; if (new_typmod < 0) noop = true; else { int32 old_typmod = exprTypmod(source); int old_least_field; int new_least_field; int old_precis; int new_precis; old_least_field = intervaltypmodleastfield(old_typmod); new_least_field = intervaltypmodleastfield(new_typmod); if (old_typmod < 0) old_precis = INTERVAL_FULL_PRECISION; else old_precis = INTERVAL_PRECISION(old_typmod); new_precis = INTERVAL_PRECISION(new_typmod); /* * Cast is a no-op if least field stays the same or decreases * while precision stays the same or increases. But * precision, which is to say, sub-second precision, only * affects ranges that include SECOND. */ noop = (new_least_field <= old_least_field) && (old_least_field > 0 /* SECOND */ || new_precis >= MAX_INTERVAL_PRECISION || new_precis >= old_precis); } if (noop) ret = relabel_to_typmod(source, new_typmod); } } PG_RETURN_POINTER(ret); } /* interval_scale() * Adjust interval type for specified fields. * Used by PostgreSQL type system to stuff columns. */ Datum interval_scale(PG_FUNCTION_ARGS) { Interval *interval = PG_GETARG_INTERVAL_P(0); int32 typmod = PG_GETARG_INT32(1); Interval *result; result = palloc(sizeof(Interval)); *result = *interval; AdjustIntervalForTypmod(result, typmod); PG_RETURN_INTERVAL_P(result); } /* * Adjust interval for specified precision, in both YEAR to SECOND * range and sub-second precision. */ static void AdjustIntervalForTypmod(Interval *interval, int32 typmod) { static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = { INT64CONST(1000000), INT64CONST(100000), INT64CONST(10000), INT64CONST(1000), INT64CONST(100), INT64CONST(10), INT64CONST(1) }; static const int64 IntervalOffsets[MAX_INTERVAL_PRECISION + 1] = { INT64CONST(500000), INT64CONST(50000), INT64CONST(5000), INT64CONST(500), INT64CONST(50), INT64CONST(5), INT64CONST(0) }; /* * Unspecified range and precision? Then not necessary to adjust. Setting * typmod to -1 is the convention for all data types. */ if (typmod >= 0) { int range = INTERVAL_RANGE(typmod); int precision = INTERVAL_PRECISION(typmod); /* * Our interpretation of intervals with a limited set of fields is * that fields to the right of the last one specified are zeroed out, * but those to the left of it remain valid. Thus for example there * is no operational difference between INTERVAL YEAR TO MONTH and * INTERVAL MONTH. In some cases we could meaningfully enforce that * higher-order fields are zero; for example INTERVAL DAY could reject * nonzero "month" field. However that seems a bit pointless when we * can't do it consistently. (We cannot enforce a range limit on the * highest expected field, since we do not have any equivalent of * SQL's .) If we ever decide to * revisit this, interval_support will likely require adjusting. * * Note: before PG 8.4 we interpreted a limited set of fields as * actually causing a "modulo" operation on a given value, potentially * losing high-order as well as low-order information. But there is * no support for such behavior in the standard, and it seems fairly * undesirable on data consistency grounds anyway. Now we only * perform truncation or rounding of low-order fields. */ if (range == INTERVAL_FULL_RANGE) { /* Do nothing... */ } else if (range == INTERVAL_MASK(YEAR)) { interval->month = (interval->month / MONTHS_PER_YEAR) * MONTHS_PER_YEAR; interval->day = 0; interval->time = 0; } else if (range == INTERVAL_MASK(MONTH)) { interval->day = 0; interval->time = 0; } /* YEAR TO MONTH */ else if (range == (INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH))) { interval->day = 0; interval->time = 0; } else if (range == INTERVAL_MASK(DAY)) { interval->time = 0; } else if (range == INTERVAL_MASK(HOUR)) { interval->time = (interval->time / USECS_PER_HOUR) * USECS_PER_HOUR; } else if (range == INTERVAL_MASK(MINUTE)) { interval->time = (interval->time / USECS_PER_MINUTE) * USECS_PER_MINUTE; } else if (range == INTERVAL_MASK(SECOND)) { /* fractional-second rounding will be dealt with below */ } /* DAY TO HOUR */ else if (range == (INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR))) { interval->time = (interval->time / USECS_PER_HOUR) * USECS_PER_HOUR; } /* DAY TO MINUTE */ else if (range == (INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE))) { interval->time = (interval->time / USECS_PER_MINUTE) * USECS_PER_MINUTE; } /* DAY TO SECOND */ else if (range == (INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) { /* fractional-second rounding will be dealt with below */ } /* HOUR TO MINUTE */ else if (range == (INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE))) { interval->time = (interval->time / USECS_PER_MINUTE) * USECS_PER_MINUTE; } /* HOUR TO SECOND */ else if (range == (INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) { /* fractional-second rounding will be dealt with below */ } /* MINUTE TO SECOND */ else if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) { /* fractional-second rounding will be dealt with below */ } else elog(ERROR, "unrecognized interval typmod: %d", typmod); /* Need to adjust sub-second precision? */ if (precision != INTERVAL_FULL_PRECISION) { if (precision < 0 || precision > MAX_INTERVAL_PRECISION) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("interval(%d) precision must be between %d and %d", precision, 0, MAX_INTERVAL_PRECISION))); if (interval->time >= INT64CONST(0)) { interval->time = ((interval->time + IntervalOffsets[precision]) / IntervalScales[precision]) * IntervalScales[precision]; } else { interval->time = -(((-interval->time + IntervalOffsets[precision]) / IntervalScales[precision]) * IntervalScales[precision]); } } } } /* * make_interval - numeric Interval constructor */ Datum make_interval(PG_FUNCTION_ARGS) { int32 years = PG_GETARG_INT32(0); int32 months = PG_GETARG_INT32(1); int32 weeks = PG_GETARG_INT32(2); int32 days = PG_GETARG_INT32(3); int32 hours = PG_GETARG_INT32(4); int32 mins = PG_GETARG_INT32(5); double secs = PG_GETARG_FLOAT8(6); Interval *result; /* * Reject out-of-range inputs. We really ought to check the integer * inputs as well, but it's not entirely clear what limits to apply. */ if (isinf(secs) || isnan(secs)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result = (Interval *) palloc(sizeof(Interval)); result->month = years * MONTHS_PER_YEAR + months; result->day = weeks * 7 + days; secs = rint(secs * USECS_PER_SEC); result->time = hours * ((int64) SECS_PER_HOUR * USECS_PER_SEC) + mins * ((int64) SECS_PER_MINUTE * USECS_PER_SEC) + (int64) secs; PG_RETURN_INTERVAL_P(result); } /* EncodeSpecialTimestamp() * Convert reserved timestamp data type to string. */ void EncodeSpecialTimestamp(Timestamp dt, char *str) { if (TIMESTAMP_IS_NOBEGIN(dt)) strcpy(str, EARLY); else if (TIMESTAMP_IS_NOEND(dt)) strcpy(str, LATE); else /* shouldn't happen */ elog(ERROR, "invalid argument for EncodeSpecialTimestamp"); } Datum now(PG_FUNCTION_ARGS) { PG_RETURN_TIMESTAMPTZ(GetCurrentTransactionStartTimestamp()); } Datum statement_timestamp(PG_FUNCTION_ARGS) { PG_RETURN_TIMESTAMPTZ(GetCurrentStatementStartTimestamp()); } Datum clock_timestamp(PG_FUNCTION_ARGS) { PG_RETURN_TIMESTAMPTZ(GetCurrentTimestamp()); } Datum pg_postmaster_start_time(PG_FUNCTION_ARGS) { PG_RETURN_TIMESTAMPTZ(PgStartTime); } Datum pg_conf_load_time(PG_FUNCTION_ARGS) { PG_RETURN_TIMESTAMPTZ(PgReloadTime); } /* * GetCurrentTimestamp -- get the current operating system time * * Result is in the form of a TimestampTz value, and is expressed to the * full precision of the gettimeofday() syscall */ TimestampTz GetCurrentTimestamp(void) { TimestampTz result; struct timeval tp; gettimeofday(&tp, NULL); result = (TimestampTz) tp.tv_sec - ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY); result = (result * USECS_PER_SEC) + tp.tv_usec; return result; } /* * GetSQLCurrentTimestamp -- implements CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(n) */ TimestampTz GetSQLCurrentTimestamp(int32 typmod) { TimestampTz ts; ts = GetCurrentTransactionStartTimestamp(); if (typmod >= 0) AdjustTimestampForTypmod(&ts, typmod); return ts; } /* * GetSQLLocalTimestamp -- implements LOCALTIMESTAMP, LOCALTIMESTAMP(n) */ Timestamp GetSQLLocalTimestamp(int32 typmod) { Timestamp ts; ts = timestamptz2timestamp(GetCurrentTransactionStartTimestamp()); if (typmod >= 0) AdjustTimestampForTypmod(&ts, typmod); return ts; } /* * timeofday(*) -- returns the current time as a text. */ Datum timeofday(PG_FUNCTION_ARGS) { struct timeval tp; char templ[128]; char buf[128]; pg_time_t tt; gettimeofday(&tp, NULL); tt = (pg_time_t) tp.tv_sec; pg_strftime(templ, sizeof(templ), "%a %b %d %H:%M:%S.%%06d %Y %Z", pg_localtime(&tt, session_timezone)); snprintf(buf, sizeof(buf), templ, tp.tv_usec); PG_RETURN_TEXT_P(cstring_to_text(buf)); } /* * TimestampDifference -- convert the difference between two timestamps * into integer seconds and microseconds * * This is typically used to calculate a wait timeout for select(2), * which explains the otherwise-odd choice of output format. * * Both inputs must be ordinary finite timestamps (in current usage, * they'll be results from GetCurrentTimestamp()). * * We expect start_time <= stop_time. If not, we return zeros, * since then we're already past the previously determined stop_time. */ void TimestampDifference(TimestampTz start_time, TimestampTz stop_time, long *secs, int *microsecs) { TimestampTz diff = stop_time - start_time; if (diff <= 0) { *secs = 0; *microsecs = 0; } else { *secs = (long) (diff / USECS_PER_SEC); *microsecs = (int) (diff % USECS_PER_SEC); } } /* * TimestampDifferenceMilliseconds -- convert the difference between two * timestamps into integer milliseconds * * This is typically used to calculate a wait timeout for WaitLatch() * or a related function. The choice of "long" as the result type * is to harmonize with that. It is caller's responsibility that the * input timestamps not be so far apart as to risk overflow of "long" * (which'd happen at about 25 days on machines with 32-bit "long"). * * Both inputs must be ordinary finite timestamps (in current usage, * they'll be results from GetCurrentTimestamp()). * * We expect start_time <= stop_time. If not, we return zero, * since then we're already past the previously determined stop_time. * * Note we round up any fractional millisecond, since waiting for just * less than the intended timeout is undesirable. */ long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time) { TimestampTz diff = stop_time - start_time; if (diff <= 0) return 0; else return (long) ((diff + 999) / 1000); } /* * TimestampDifferenceExceeds -- report whether the difference between two * timestamps is >= a threshold (expressed in milliseconds) * * Both inputs must be ordinary finite timestamps (in current usage, * they'll be results from GetCurrentTimestamp()). */ bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec) { TimestampTz diff = stop_time - start_time; return (diff >= msec * INT64CONST(1000)); } /* * Convert a time_t to TimestampTz. * * We do not use time_t internally in Postgres, but this is provided for use * by functions that need to interpret, say, a stat(2) result. * * To avoid having the function's ABI vary depending on the width of time_t, * we declare the argument as pg_time_t, which is cast-compatible with * time_t but always 64 bits wide (unless the platform has no 64-bit type). * This detail should be invisible to callers, at least at source code level. */ TimestampTz time_t_to_timestamptz(pg_time_t tm) { TimestampTz result; result = (TimestampTz) tm - ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY); result *= USECS_PER_SEC; return result; } /* * Convert a TimestampTz to time_t. * * This too is just marginally useful, but some places need it. * * To avoid having the function's ABI vary depending on the width of time_t, * we declare the result as pg_time_t, which is cast-compatible with * time_t but always 64 bits wide (unless the platform has no 64-bit type). * This detail should be invisible to callers, at least at source code level. */ pg_time_t timestamptz_to_time_t(TimestampTz t) { pg_time_t result; result = (pg_time_t) (t / USECS_PER_SEC + ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY)); return result; } /* * Produce a C-string representation of a TimestampTz. * * This is mostly for use in emitting messages. The primary difference * from timestamptz_out is that we force the output format to ISO. Note * also that the result is in a static buffer, not pstrdup'd. * * See also pg_strftime. */ const char * timestamptz_to_str(TimestampTz t) { static char buf[MAXDATELEN + 1]; int tz; struct pg_tm tt, *tm = &tt; fsec_t fsec; const char *tzn; if (TIMESTAMP_NOT_FINITE(t)) EncodeSpecialTimestamp(t, buf); else if (timestamp2tm(t, &tz, tm, &fsec, &tzn, NULL) == 0) EncodeDateTime(tm, fsec, true, tz, tzn, USE_ISO_DATES, buf); else strlcpy(buf, "(timestamp out of range)", sizeof(buf)); return buf; } void dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec) { TimeOffset time; time = jd; *hour = time / USECS_PER_HOUR; time -= (*hour) * USECS_PER_HOUR; *min = time / USECS_PER_MINUTE; time -= (*min) * USECS_PER_MINUTE; *sec = time / USECS_PER_SEC; *fsec = time - (*sec * USECS_PER_SEC); } /* dt2time() */ /* * timestamp2tm() - Convert timestamp data type to POSIX time structure. * * Note that year is _not_ 1900-based, but is an explicit full value. * Also, month is one-based, _not_ zero-based. * Returns: * 0 on success * -1 on out of range * * If attimezone is NULL, the global timezone setting will be used. */ int timestamp2tm(Timestamp dt, int *tzp, struct pg_tm *tm, fsec_t *fsec, const char **tzn, pg_tz *attimezone) { Timestamp date; Timestamp time; pg_time_t utime; /* Use session timezone if caller asks for default */ if (attimezone == NULL) attimezone = session_timezone; time = dt; TMODULO(time, date, USECS_PER_DAY); if (time < INT64CONST(0)) { time += USECS_PER_DAY; date -= 1; } /* add offset to go from J2000 back to standard Julian date */ date += POSTGRES_EPOCH_JDATE; /* Julian day routine does not work for negative Julian days */ if (date < 0 || date > (Timestamp) INT_MAX) return -1; j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec); /* Done if no TZ conversion wanted */ if (tzp == NULL) { tm->tm_isdst = -1; tm->tm_gmtoff = 0; tm->tm_zone = NULL; if (tzn != NULL) *tzn = NULL; return 0; } /* * If the time falls within the range of pg_time_t, use pg_localtime() to * rotate to the local time zone. * * First, convert to an integral timestamp, avoiding possibly * platform-specific roundoff-in-wrong-direction errors, and adjust to * Unix epoch. Then see if we can convert to pg_time_t without loss. This * coding avoids hardwiring any assumptions about the width of pg_time_t, * so it should behave sanely on machines without int64. */ dt = (dt - *fsec) / USECS_PER_SEC + (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY; utime = (pg_time_t) dt; if ((Timestamp) utime == dt) { struct pg_tm *tx = pg_localtime(&utime, attimezone); tm->tm_year = tx->tm_year + 1900; tm->tm_mon = tx->tm_mon + 1; tm->tm_mday = tx->tm_mday; tm->tm_hour = tx->tm_hour; tm->tm_min = tx->tm_min; tm->tm_sec = tx->tm_sec; tm->tm_isdst = tx->tm_isdst; tm->tm_gmtoff = tx->tm_gmtoff; tm->tm_zone = tx->tm_zone; *tzp = -tm->tm_gmtoff; if (tzn != NULL) *tzn = tm->tm_zone; } else { /* * When out of range of pg_time_t, treat as GMT */ *tzp = 0; /* Mark this as *no* time zone available */ tm->tm_isdst = -1; tm->tm_gmtoff = 0; tm->tm_zone = NULL; if (tzn != NULL) *tzn = NULL; } return 0; } /* tm2timestamp() * Convert a tm structure to a timestamp data type. * Note that year is _not_ 1900-based, but is an explicit full value. * Also, month is one-based, _not_ zero-based. * * Returns -1 on failure (value out of range). */ int tm2timestamp(struct pg_tm *tm, fsec_t fsec, int *tzp, Timestamp *result) { TimeOffset date; TimeOffset time; /* Prevent overflow in Julian-day routines */ if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday)) { *result = 0; /* keep compiler quiet */ return -1; } date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE; time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec); *result = date * USECS_PER_DAY + time; /* check for major overflow */ if ((*result - time) / USECS_PER_DAY != date) { *result = 0; /* keep compiler quiet */ return -1; } /* check for just-barely overflow (okay except time-of-day wraps) */ /* caution: we want to allow 1999-12-31 24:00:00 */ if ((*result < 0 && date > 0) || (*result > 0 && date < -1)) { *result = 0; /* keep compiler quiet */ return -1; } if (tzp != NULL) *result = dt2local(*result, -(*tzp)); /* final range check catches just-out-of-range timestamps */ if (!IS_VALID_TIMESTAMP(*result)) { *result = 0; /* keep compiler quiet */ return -1; } return 0; } /* interval2tm() * Convert an interval data type to a tm structure. */ int interval2tm(Interval span, struct pg_tm *tm, fsec_t *fsec) { TimeOffset time; TimeOffset tfrac; tm->tm_year = span.month / MONTHS_PER_YEAR; tm->tm_mon = span.month % MONTHS_PER_YEAR; tm->tm_mday = span.day; time = span.time; tfrac = time / USECS_PER_HOUR; time -= tfrac * USECS_PER_HOUR; tm->tm_hour = tfrac; if (!SAMESIGN(tm->tm_hour, tfrac)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); tfrac = time / USECS_PER_MINUTE; time -= tfrac * USECS_PER_MINUTE; tm->tm_min = tfrac; tfrac = time / USECS_PER_SEC; *fsec = time - (tfrac * USECS_PER_SEC); tm->tm_sec = tfrac; return 0; } int tm2interval(struct pg_tm *tm, fsec_t fsec, Interval *span) { double total_months = (double) tm->tm_year * MONTHS_PER_YEAR + tm->tm_mon; if (total_months > INT_MAX || total_months < INT_MIN) return -1; span->month = total_months; span->day = tm->tm_mday; span->time = (((((tm->tm_hour * INT64CONST(60)) + tm->tm_min) * INT64CONST(60)) + tm->tm_sec) * USECS_PER_SEC) + fsec; return 0; } static TimeOffset time2t(const int hour, const int min, const int sec, const fsec_t fsec) { return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec; } static Timestamp dt2local(Timestamp dt, int tz) { dt -= (tz * USECS_PER_SEC); return dt; } /***************************************************************************** * PUBLIC ROUTINES * *****************************************************************************/ Datum timestamp_finite(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); PG_RETURN_BOOL(!TIMESTAMP_NOT_FINITE(timestamp)); } Datum interval_finite(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(true); } /*---------------------------------------------------------- * Relational operators for timestamp. *---------------------------------------------------------*/ void GetEpochTime(struct pg_tm *tm) { struct pg_tm *t0; pg_time_t epoch = 0; t0 = pg_gmtime(&epoch); if (t0 == NULL) elog(ERROR, "could not convert epoch to timestamp: %m"); tm->tm_year = t0->tm_year; tm->tm_mon = t0->tm_mon; tm->tm_mday = t0->tm_mday; tm->tm_hour = t0->tm_hour; tm->tm_min = t0->tm_min; tm->tm_sec = t0->tm_sec; tm->tm_year += 1900; tm->tm_mon++; } Timestamp SetEpochTimestamp(void) { Timestamp dt; struct pg_tm tt, *tm = &tt; GetEpochTime(tm); /* we don't bother to test for failure ... */ tm2timestamp(tm, 0, NULL, &dt); return dt; } /* SetEpochTimestamp() */ /* * We are currently sharing some code between timestamp and timestamptz. * The comparison functions are among them. - thomas 2001-09-25 * * timestamp_relop - is timestamp1 relop timestamp2 */ int timestamp_cmp_internal(Timestamp dt1, Timestamp dt2) { return (dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0); } Datum timestamp_eq(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0); } Datum timestamp_ne(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0); } Datum timestamp_lt(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0); } Datum timestamp_gt(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0); } Datum timestamp_le(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0); } Datum timestamp_ge(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0); } Datum timestamp_cmp(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2)); } /* note: this is used for timestamptz also */ static int timestamp_fastcmp(Datum x, Datum y, SortSupport ssup) { Timestamp a = DatumGetTimestamp(x); Timestamp b = DatumGetTimestamp(y); return timestamp_cmp_internal(a, b); } Datum timestamp_sortsupport(PG_FUNCTION_ARGS) { SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); ssup->comparator = timestamp_fastcmp; PG_RETURN_VOID(); } Datum timestamp_hash(PG_FUNCTION_ARGS) { return hashint8(fcinfo); } Datum timestamp_hash_extended(PG_FUNCTION_ARGS) { return hashint8extended(fcinfo); } /* * Cross-type comparison functions for timestamp vs timestamptz */ int32 timestamp_cmp_timestamptz_internal(Timestamp timestampVal, TimestampTz dt2) { TimestampTz dt1; int overflow; dt1 = timestamp2timestamptz_opt_overflow(timestampVal, &overflow); if (overflow > 0) { /* dt1 is larger than any finite timestamp, but less than infinity */ return TIMESTAMP_IS_NOEND(dt2) ? -1 : +1; } if (overflow < 0) { /* dt1 is less than any finite timestamp, but more than -infinity */ return TIMESTAMP_IS_NOBEGIN(dt2) ? +1 : -1; } return timestamptz_cmp_internal(dt1, dt2); } Datum timestamp_eq_timestamptz(PG_FUNCTION_ARGS) { Timestamp timestampVal = PG_GETARG_TIMESTAMP(0); TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) == 0); } Datum timestamp_ne_timestamptz(PG_FUNCTION_ARGS) { Timestamp timestampVal = PG_GETARG_TIMESTAMP(0); TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) != 0); } Datum timestamp_lt_timestamptz(PG_FUNCTION_ARGS) { Timestamp timestampVal = PG_GETARG_TIMESTAMP(0); TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) < 0); } Datum timestamp_gt_timestamptz(PG_FUNCTION_ARGS) { Timestamp timestampVal = PG_GETARG_TIMESTAMP(0); TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) > 0); } Datum timestamp_le_timestamptz(PG_FUNCTION_ARGS) { Timestamp timestampVal = PG_GETARG_TIMESTAMP(0); TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) <= 0); } Datum timestamp_ge_timestamptz(PG_FUNCTION_ARGS) { Timestamp timestampVal = PG_GETARG_TIMESTAMP(0); TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) >= 0); } Datum timestamp_cmp_timestamptz(PG_FUNCTION_ARGS) { Timestamp timestampVal = PG_GETARG_TIMESTAMP(0); TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1); PG_RETURN_INT32(timestamp_cmp_timestamptz_internal(timestampVal, dt2)); } Datum timestamptz_eq_timestamp(PG_FUNCTION_ARGS) { TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0); Timestamp timestampVal = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) == 0); } Datum timestamptz_ne_timestamp(PG_FUNCTION_ARGS) { TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0); Timestamp timestampVal = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) != 0); } Datum timestamptz_lt_timestamp(PG_FUNCTION_ARGS) { TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0); Timestamp timestampVal = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) > 0); } Datum timestamptz_gt_timestamp(PG_FUNCTION_ARGS) { TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0); Timestamp timestampVal = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) < 0); } Datum timestamptz_le_timestamp(PG_FUNCTION_ARGS) { TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0); Timestamp timestampVal = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) >= 0); } Datum timestamptz_ge_timestamp(PG_FUNCTION_ARGS) { TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0); Timestamp timestampVal = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) <= 0); } Datum timestamptz_cmp_timestamp(PG_FUNCTION_ARGS) { TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0); Timestamp timestampVal = PG_GETARG_TIMESTAMP(1); PG_RETURN_INT32(-timestamp_cmp_timestamptz_internal(timestampVal, dt1)); } /* * interval_relop - is interval1 relop interval2 * * Interval comparison is based on converting interval values to a linear * representation expressed in the units of the time field (microseconds, * in the case of integer timestamps) with days assumed to be always 24 hours * and months assumed to be always 30 days. To avoid overflow, we need a * wider-than-int64 datatype for the linear representation, so use INT128. */ static inline INT128 interval_cmp_value(const Interval *interval) { INT128 span; int64 dayfraction; int64 days; /* * Separate time field into days and dayfraction, then add the month and * day fields to the days part. We cannot overflow int64 days here. */ dayfraction = interval->time % USECS_PER_DAY; days = interval->time / USECS_PER_DAY; days += interval->month * INT64CONST(30); days += interval->day; /* Widen dayfraction to 128 bits */ span = int64_to_int128(dayfraction); /* Scale up days to microseconds, forming a 128-bit product */ int128_add_int64_mul_int64(&span, days, USECS_PER_DAY); return span; } static int interval_cmp_internal(Interval *interval1, Interval *interval2) { INT128 span1 = interval_cmp_value(interval1); INT128 span2 = interval_cmp_value(interval2); return int128_compare(span1, span2); } Datum interval_eq(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) == 0); } Datum interval_ne(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) != 0); } Datum interval_lt(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) < 0); } Datum interval_gt(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) > 0); } Datum interval_le(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) <= 0); } Datum interval_ge(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) >= 0); } Datum interval_cmp(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_INT32(interval_cmp_internal(interval1, interval2)); } /* * Hashing for intervals * * We must produce equal hashvals for values that interval_cmp_internal() * considers equal. So, compute the net span the same way it does, * and then hash that. */ Datum interval_hash(PG_FUNCTION_ARGS) { Interval *interval = PG_GETARG_INTERVAL_P(0); INT128 span = interval_cmp_value(interval); int64 span64; /* * Use only the least significant 64 bits for hashing. The upper 64 bits * seldom add any useful information, and besides we must do it like this * for compatibility with hashes calculated before use of INT128 was * introduced. */ span64 = int128_to_int64(span); return DirectFunctionCall1(hashint8, Int64GetDatumFast(span64)); } Datum interval_hash_extended(PG_FUNCTION_ARGS) { Interval *interval = PG_GETARG_INTERVAL_P(0); INT128 span = interval_cmp_value(interval); int64 span64; /* Same approach as interval_hash */ span64 = int128_to_int64(span); return DirectFunctionCall2(hashint8extended, Int64GetDatumFast(span64), PG_GETARG_DATUM(1)); } /* overlaps_timestamp() --- implements the SQL OVERLAPS operator. * * Algorithm is per SQL spec. This is much harder than you'd think * because the spec requires us to deliver a non-null answer in some cases * where some of the inputs are null. */ Datum overlaps_timestamp(PG_FUNCTION_ARGS) { /* * The arguments are Timestamps, but we leave them as generic Datums to * avoid unnecessary conversions between value and reference forms --- not * to mention possible dereferences of null pointers. */ Datum ts1 = PG_GETARG_DATUM(0); Datum te1 = PG_GETARG_DATUM(1); Datum ts2 = PG_GETARG_DATUM(2); Datum te2 = PG_GETARG_DATUM(3); bool ts1IsNull = PG_ARGISNULL(0); bool te1IsNull = PG_ARGISNULL(1); bool ts2IsNull = PG_ARGISNULL(2); bool te2IsNull = PG_ARGISNULL(3); #define TIMESTAMP_GT(t1,t2) \ DatumGetBool(DirectFunctionCall2(timestamp_gt,t1,t2)) #define TIMESTAMP_LT(t1,t2) \ DatumGetBool(DirectFunctionCall2(timestamp_lt,t1,t2)) /* * If both endpoints of interval 1 are null, the result is null (unknown). * If just one endpoint is null, take ts1 as the non-null one. Otherwise, * take ts1 as the lesser endpoint. */ if (ts1IsNull) { if (te1IsNull) PG_RETURN_NULL(); /* swap null for non-null */ ts1 = te1; te1IsNull = true; } else if (!te1IsNull) { if (TIMESTAMP_GT(ts1, te1)) { Datum tt = ts1; ts1 = te1; te1 = tt; } } /* Likewise for interval 2. */ if (ts2IsNull) { if (te2IsNull) PG_RETURN_NULL(); /* swap null for non-null */ ts2 = te2; te2IsNull = true; } else if (!te2IsNull) { if (TIMESTAMP_GT(ts2, te2)) { Datum tt = ts2; ts2 = te2; te2 = tt; } } /* * At this point neither ts1 nor ts2 is null, so we can consider three * cases: ts1 > ts2, ts1 < ts2, ts1 = ts2 */ if (TIMESTAMP_GT(ts1, ts2)) { /* * This case is ts1 < te2 OR te1 < te2, which may look redundant but * in the presence of nulls it's not quite completely so. */ if (te2IsNull) PG_RETURN_NULL(); if (TIMESTAMP_LT(ts1, te2)) PG_RETURN_BOOL(true); if (te1IsNull) PG_RETURN_NULL(); /* * If te1 is not null then we had ts1 <= te1 above, and we just found * ts1 >= te2, hence te1 >= te2. */ PG_RETURN_BOOL(false); } else if (TIMESTAMP_LT(ts1, ts2)) { /* This case is ts2 < te1 OR te2 < te1 */ if (te1IsNull) PG_RETURN_NULL(); if (TIMESTAMP_LT(ts2, te1)) PG_RETURN_BOOL(true); if (te2IsNull) PG_RETURN_NULL(); /* * If te2 is not null then we had ts2 <= te2 above, and we just found * ts2 >= te1, hence te2 >= te1. */ PG_RETURN_BOOL(false); } else { /* * For ts1 = ts2 the spec says te1 <> te2 OR te1 = te2, which is a * rather silly way of saying "true if both are non-null, else null". */ if (te1IsNull || te2IsNull) PG_RETURN_NULL(); PG_RETURN_BOOL(true); } #undef TIMESTAMP_GT #undef TIMESTAMP_LT } /*---------------------------------------------------------- * "Arithmetic" operators on date/times. *---------------------------------------------------------*/ Datum timestamp_smaller(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); Timestamp result; /* use timestamp_cmp_internal to be sure this agrees with comparisons */ if (timestamp_cmp_internal(dt1, dt2) < 0) result = dt1; else result = dt2; PG_RETURN_TIMESTAMP(result); } Datum timestamp_larger(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); Timestamp result; if (timestamp_cmp_internal(dt1, dt2) > 0) result = dt1; else result = dt2; PG_RETURN_TIMESTAMP(result); } Datum timestamp_mi(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); Interval *result; result = (Interval *) palloc(sizeof(Interval)); if (TIMESTAMP_NOT_FINITE(dt1) || TIMESTAMP_NOT_FINITE(dt2)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("cannot subtract infinite timestamps"))); result->time = dt1 - dt2; result->month = 0; result->day = 0; /*---------- * This is wrong, but removing it breaks a lot of regression tests. * For example: * * test=> SET timezone = 'EST5EDT'; * test=> SELECT * test-> ('2005-10-30 13:22:00-05'::timestamptz - * test(> '2005-10-29 13:22:00-04'::timestamptz); * ?column? * ---------------- * 1 day 01:00:00 * (1 row) * * so adding that to the first timestamp gets: * * test=> SELECT * test-> ('2005-10-29 13:22:00-04'::timestamptz + * test(> ('2005-10-30 13:22:00-05'::timestamptz - * test(> '2005-10-29 13:22:00-04'::timestamptz)) at time zone 'EST'; * timezone * -------------------- * 2005-10-30 14:22:00 * (1 row) *---------- */ result = DatumGetIntervalP(DirectFunctionCall1(interval_justify_hours, IntervalPGetDatum(result))); PG_RETURN_INTERVAL_P(result); } /* * interval_justify_interval() * * Adjust interval so 'month', 'day', and 'time' portions are within * customary bounds. Specifically: * * 0 <= abs(time) < 24 hours * 0 <= abs(day) < 30 days * * Also, the sign bit on all three fields is made equal, so either * all three fields are negative or all are positive. */ Datum interval_justify_interval(PG_FUNCTION_ARGS) { Interval *span = PG_GETARG_INTERVAL_P(0); Interval *result; TimeOffset wholeday; int32 wholemonth; result = (Interval *) palloc(sizeof(Interval)); result->month = span->month; result->day = span->day; result->time = span->time; TMODULO(result->time, wholeday, USECS_PER_DAY); result->day += wholeday; /* could overflow... */ wholemonth = result->day / DAYS_PER_MONTH; result->day -= wholemonth * DAYS_PER_MONTH; result->month += wholemonth; if (result->month > 0 && (result->day < 0 || (result->day == 0 && result->time < 0))) { result->day += DAYS_PER_MONTH; result->month--; } else if (result->month < 0 && (result->day > 0 || (result->day == 0 && result->time > 0))) { result->day -= DAYS_PER_MONTH; result->month++; } if (result->day > 0 && result->time < 0) { result->time += USECS_PER_DAY; result->day--; } else if (result->day < 0 && result->time > 0) { result->time -= USECS_PER_DAY; result->day++; } PG_RETURN_INTERVAL_P(result); } /* * interval_justify_hours() * * Adjust interval so 'time' contains less than a whole day, adding * the excess to 'day'. This is useful for * situations (such as non-TZ) where '1 day' = '24 hours' is valid, * e.g. interval subtraction and division. */ Datum interval_justify_hours(PG_FUNCTION_ARGS) { Interval *span = PG_GETARG_INTERVAL_P(0); Interval *result; TimeOffset wholeday; result = (Interval *) palloc(sizeof(Interval)); result->month = span->month; result->day = span->day; result->time = span->time; TMODULO(result->time, wholeday, USECS_PER_DAY); result->day += wholeday; /* could overflow... */ if (result->day > 0 && result->time < 0) { result->time += USECS_PER_DAY; result->day--; } else if (result->day < 0 && result->time > 0) { result->time -= USECS_PER_DAY; result->day++; } PG_RETURN_INTERVAL_P(result); } /* * interval_justify_days() * * Adjust interval so 'day' contains less than 30 days, adding * the excess to 'month'. */ Datum interval_justify_days(PG_FUNCTION_ARGS) { Interval *span = PG_GETARG_INTERVAL_P(0); Interval *result; int32 wholemonth; result = (Interval *) palloc(sizeof(Interval)); result->month = span->month; result->day = span->day; result->time = span->time; wholemonth = result->day / DAYS_PER_MONTH; result->day -= wholemonth * DAYS_PER_MONTH; result->month += wholemonth; if (result->month > 0 && result->day < 0) { result->day += DAYS_PER_MONTH; result->month--; } else if (result->month < 0 && result->day > 0) { result->day -= DAYS_PER_MONTH; result->month++; } PG_RETURN_INTERVAL_P(result); } /* timestamp_pl_interval() * Add an interval to a timestamp data type. * Note that interval has provisions for qualitative year/month and day * units, so try to do the right thing with them. * To add a month, increment the month, and use the same day of month. * Then, if the next month has fewer days, set the day of month * to the last day of month. * To add a day, increment the mday, and use the same time of day. * Lastly, add in the "quantitative time". */ Datum timestamp_pl_interval(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); Interval *span = PG_GETARG_INTERVAL_P(1); Timestamp result; if (TIMESTAMP_NOT_FINITE(timestamp)) result = timestamp; else { if (span->month != 0) { struct pg_tm tt, *tm = &tt; fsec_t fsec; if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); tm->tm_mon += span->month; if (tm->tm_mon > MONTHS_PER_YEAR) { tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR; tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1; } else if (tm->tm_mon < 1) { tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1; tm->tm_mon = tm->tm_mon % MONTHS_PER_YEAR + MONTHS_PER_YEAR; } /* adjust for end of month boundary problems... */ if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]) tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]); if (tm2timestamp(tm, fsec, NULL, ×tamp) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); } if (span->day != 0) { struct pg_tm tt, *tm = &tt; fsec_t fsec; int julian; if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); /* Add days by converting to and from Julian */ julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + span->day; j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); if (tm2timestamp(tm, fsec, NULL, ×tamp) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); } timestamp += span->time; if (!IS_VALID_TIMESTAMP(timestamp)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); result = timestamp; } PG_RETURN_TIMESTAMP(result); } Datum timestamp_mi_interval(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); Interval *span = PG_GETARG_INTERVAL_P(1); Interval tspan; tspan.month = -span->month; tspan.day = -span->day; tspan.time = -span->time; return DirectFunctionCall2(timestamp_pl_interval, TimestampGetDatum(timestamp), PointerGetDatum(&tspan)); } /* timestamptz_pl_interval() * Add an interval to a timestamp with time zone data type. * Note that interval has provisions for qualitative year/month * units, so try to do the right thing with them. * To add a month, increment the month, and use the same day of month. * Then, if the next month has fewer days, set the day of month * to the last day of month. * Lastly, add in the "quantitative time". */ Datum timestamptz_pl_interval(PG_FUNCTION_ARGS) { TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0); Interval *span = PG_GETARG_INTERVAL_P(1); TimestampTz result; int tz; if (TIMESTAMP_NOT_FINITE(timestamp)) result = timestamp; else { if (span->month != 0) { struct pg_tm tt, *tm = &tt; fsec_t fsec; if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); tm->tm_mon += span->month; if (tm->tm_mon > MONTHS_PER_YEAR) { tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR; tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1; } else if (tm->tm_mon < 1) { tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1; tm->tm_mon = tm->tm_mon % MONTHS_PER_YEAR + MONTHS_PER_YEAR; } /* adjust for end of month boundary problems... */ if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]) tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]); tz = DetermineTimeZoneOffset(tm, session_timezone); if (tm2timestamp(tm, fsec, &tz, ×tamp) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); } if (span->day != 0) { struct pg_tm tt, *tm = &tt; fsec_t fsec; int julian; if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); /* Add days by converting to and from Julian */ julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + span->day; j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); tz = DetermineTimeZoneOffset(tm, session_timezone); if (tm2timestamp(tm, fsec, &tz, ×tamp) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); } timestamp += span->time; if (!IS_VALID_TIMESTAMP(timestamp)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); result = timestamp; } PG_RETURN_TIMESTAMP(result); } Datum timestamptz_mi_interval(PG_FUNCTION_ARGS) { TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0); Interval *span = PG_GETARG_INTERVAL_P(1); Interval tspan; tspan.month = -span->month; tspan.day = -span->day; tspan.time = -span->time; return DirectFunctionCall2(timestamptz_pl_interval, TimestampGetDatum(timestamp), PointerGetDatum(&tspan)); } Datum interval_um(PG_FUNCTION_ARGS) { Interval *interval = PG_GETARG_INTERVAL_P(0); Interval *result; result = (Interval *) palloc(sizeof(Interval)); result->time = -interval->time; /* overflow check copied from int4um */ if (interval->time != 0 && SAMESIGN(result->time, interval->time)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result->day = -interval->day; if (interval->day != 0 && SAMESIGN(result->day, interval->day)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result->month = -interval->month; if (interval->month != 0 && SAMESIGN(result->month, interval->month)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); PG_RETURN_INTERVAL_P(result); } Datum interval_smaller(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); Interval *result; /* use interval_cmp_internal to be sure this agrees with comparisons */ if (interval_cmp_internal(interval1, interval2) < 0) result = interval1; else result = interval2; PG_RETURN_INTERVAL_P(result); } Datum interval_larger(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); Interval *result; if (interval_cmp_internal(interval1, interval2) > 0) result = interval1; else result = interval2; PG_RETURN_INTERVAL_P(result); } Datum interval_pl(PG_FUNCTION_ARGS) { Interval *span1 = PG_GETARG_INTERVAL_P(0); Interval *span2 = PG_GETARG_INTERVAL_P(1); Interval *result; result = (Interval *) palloc(sizeof(Interval)); result->month = span1->month + span2->month; /* overflow check copied from int4pl */ if (SAMESIGN(span1->month, span2->month) && !SAMESIGN(result->month, span1->month)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result->day = span1->day + span2->day; if (SAMESIGN(span1->day, span2->day) && !SAMESIGN(result->day, span1->day)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result->time = span1->time + span2->time; if (SAMESIGN(span1->time, span2->time) && !SAMESIGN(result->time, span1->time)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); PG_RETURN_INTERVAL_P(result); } Datum interval_mi(PG_FUNCTION_ARGS) { Interval *span1 = PG_GETARG_INTERVAL_P(0); Interval *span2 = PG_GETARG_INTERVAL_P(1); Interval *result; result = (Interval *) palloc(sizeof(Interval)); result->month = span1->month - span2->month; /* overflow check copied from int4mi */ if (!SAMESIGN(span1->month, span2->month) && !SAMESIGN(result->month, span1->month)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result->day = span1->day - span2->day; if (!SAMESIGN(span1->day, span2->day) && !SAMESIGN(result->day, span1->day)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result->time = span1->time - span2->time; if (!SAMESIGN(span1->time, span2->time) && !SAMESIGN(result->time, span1->time)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); PG_RETURN_INTERVAL_P(result); } /* * There is no interval_abs(): it is unclear what value to return: * http://archives.postgresql.org/pgsql-general/2009-10/msg01031.php * http://archives.postgresql.org/pgsql-general/2009-11/msg00041.php */ Datum interval_mul(PG_FUNCTION_ARGS) { Interval *span = PG_GETARG_INTERVAL_P(0); float8 factor = PG_GETARG_FLOAT8(1); double month_remainder_days, sec_remainder, result_double; int32 orig_month = span->month, orig_day = span->day; Interval *result; result = (Interval *) palloc(sizeof(Interval)); result_double = span->month * factor; if (isnan(result_double) || result_double > INT_MAX || result_double < INT_MIN) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result->month = (int32) result_double; result_double = span->day * factor; if (isnan(result_double) || result_double > INT_MAX || result_double < INT_MIN) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result->day = (int32) result_double; /* * The above correctly handles the whole-number part of the month and day * products, but we have to do something with any fractional part * resulting when the factor is non-integral. We cascade the fractions * down to lower units using the conversion factors DAYS_PER_MONTH and * SECS_PER_DAY. Note we do NOT cascade up, since we are not forced to do * so by the representation. The user can choose to cascade up later, * using justify_hours and/or justify_days. */ /* * Fractional months full days into days. * * Floating point calculation are inherently imprecise, so these * calculations are crafted to produce the most reliable result possible. * TSROUND() is needed to more accurately produce whole numbers where * appropriate. */ month_remainder_days = (orig_month * factor - result->month) * DAYS_PER_MONTH; month_remainder_days = TSROUND(month_remainder_days); sec_remainder = (orig_day * factor - result->day + month_remainder_days - (int) month_remainder_days) * SECS_PER_DAY; sec_remainder = TSROUND(sec_remainder); /* * Might have 24:00:00 hours due to rounding, or >24 hours because of time * cascade from months and days. It might still be >24 if the combination * of cascade and the seconds factor operation itself. */ if (Abs(sec_remainder) >= SECS_PER_DAY) { result->day += (int) (sec_remainder / SECS_PER_DAY); sec_remainder -= (int) (sec_remainder / SECS_PER_DAY) * SECS_PER_DAY; } /* cascade units down */ result->day += (int32) month_remainder_days; result_double = rint(span->time * factor + sec_remainder * USECS_PER_SEC); if (isnan(result_double) || !FLOAT8_FITS_IN_INT64(result_double)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); result->time = (int64) result_double; PG_RETURN_INTERVAL_P(result); } Datum mul_d_interval(PG_FUNCTION_ARGS) { /* Args are float8 and Interval *, but leave them as generic Datum */ Datum factor = PG_GETARG_DATUM(0); Datum span = PG_GETARG_DATUM(1); return DirectFunctionCall2(interval_mul, span, factor); } Datum interval_div(PG_FUNCTION_ARGS) { Interval *span = PG_GETARG_INTERVAL_P(0); float8 factor = PG_GETARG_FLOAT8(1); double month_remainder_days, sec_remainder; int32 orig_month = span->month, orig_day = span->day; Interval *result; result = (Interval *) palloc(sizeof(Interval)); if (factor == 0.0) ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero"))); result->month = (int32) (span->month / factor); result->day = (int32) (span->day / factor); /* * Fractional months full days into days. See comment in interval_mul(). */ month_remainder_days = (orig_month / factor - result->month) * DAYS_PER_MONTH; month_remainder_days = TSROUND(month_remainder_days); sec_remainder = (orig_day / factor - result->day + month_remainder_days - (int) month_remainder_days) * SECS_PER_DAY; sec_remainder = TSROUND(sec_remainder); if (Abs(sec_remainder) >= SECS_PER_DAY) { result->day += (int) (sec_remainder / SECS_PER_DAY); sec_remainder -= (int) (sec_remainder / SECS_PER_DAY) * SECS_PER_DAY; } /* cascade units down */ result->day += (int32) month_remainder_days; result->time = rint(span->time / factor + sec_remainder * USECS_PER_SEC); PG_RETURN_INTERVAL_P(result); } /* * in_range support functions for timestamps and intervals. * * Per SQL spec, we support these with interval as the offset type. * The spec's restriction that the offset not be negative is a bit hard to * decipher for intervals, but we choose to interpret it the same as our * interval comparison operators would. */ Datum in_range_timestamptz_interval(PG_FUNCTION_ARGS) { TimestampTz val = PG_GETARG_TIMESTAMPTZ(0); TimestampTz base = PG_GETARG_TIMESTAMPTZ(1); Interval *offset = PG_GETARG_INTERVAL_P(2); bool sub = PG_GETARG_BOOL(3); bool less = PG_GETARG_BOOL(4); TimestampTz sum; if (int128_compare(interval_cmp_value(offset), int64_to_int128(0)) < 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), errmsg("invalid preceding or following size in window function"))); /* We don't currently bother to avoid overflow hazards here */ if (sub) sum = DatumGetTimestampTz(DirectFunctionCall2(timestamptz_mi_interval, TimestampTzGetDatum(base), IntervalPGetDatum(offset))); else sum = DatumGetTimestampTz(DirectFunctionCall2(timestamptz_pl_interval, TimestampTzGetDatum(base), IntervalPGetDatum(offset))); if (less) PG_RETURN_BOOL(val <= sum); else PG_RETURN_BOOL(val >= sum); } Datum in_range_timestamp_interval(PG_FUNCTION_ARGS) { Timestamp val = PG_GETARG_TIMESTAMP(0); Timestamp base = PG_GETARG_TIMESTAMP(1); Interval *offset = PG_GETARG_INTERVAL_P(2); bool sub = PG_GETARG_BOOL(3); bool less = PG_GETARG_BOOL(4); Timestamp sum; if (int128_compare(interval_cmp_value(offset), int64_to_int128(0)) < 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), errmsg("invalid preceding or following size in window function"))); /* We don't currently bother to avoid overflow hazards here */ if (sub) sum = DatumGetTimestamp(DirectFunctionCall2(timestamp_mi_interval, TimestampGetDatum(base), IntervalPGetDatum(offset))); else sum = DatumGetTimestamp(DirectFunctionCall2(timestamp_pl_interval, TimestampGetDatum(base), IntervalPGetDatum(offset))); if (less) PG_RETURN_BOOL(val <= sum); else PG_RETURN_BOOL(val >= sum); } Datum in_range_interval_interval(PG_FUNCTION_ARGS) { Interval *val = PG_GETARG_INTERVAL_P(0); Interval *base = PG_GETARG_INTERVAL_P(1); Interval *offset = PG_GETARG_INTERVAL_P(2); bool sub = PG_GETARG_BOOL(3); bool less = PG_GETARG_BOOL(4); Interval *sum; if (int128_compare(interval_cmp_value(offset), int64_to_int128(0)) < 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), errmsg("invalid preceding or following size in window function"))); /* We don't currently bother to avoid overflow hazards here */ if (sub) sum = DatumGetIntervalP(DirectFunctionCall2(interval_mi, IntervalPGetDatum(base), IntervalPGetDatum(offset))); else sum = DatumGetIntervalP(DirectFunctionCall2(interval_pl, IntervalPGetDatum(base), IntervalPGetDatum(offset))); if (less) PG_RETURN_BOOL(interval_cmp_internal(val, sum) <= 0); else PG_RETURN_BOOL(interval_cmp_internal(val, sum) >= 0); } /* * interval_accum, interval_accum_inv, and interval_avg implement the * AVG(interval) aggregate. * * The transition datatype for this aggregate is a 2-element array of * intervals, where the first is the running sum and the second contains * the number of values so far in its 'time' field. This is a bit ugly * but it beats inventing a specialized datatype for the purpose. */ Datum interval_accum(PG_FUNCTION_ARGS) { ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Interval *newval = PG_GETARG_INTERVAL_P(1); Datum *transdatums; int ndatums; Interval sumX, N; Interval *newsum; ArrayType *result; deconstruct_array(transarray, INTERVALOID, sizeof(Interval), false, TYPALIGN_DOUBLE, &transdatums, NULL, &ndatums); if (ndatums != 2) elog(ERROR, "expected 2-element interval array"); sumX = *(DatumGetIntervalP(transdatums[0])); N = *(DatumGetIntervalP(transdatums[1])); newsum = DatumGetIntervalP(DirectFunctionCall2(interval_pl, IntervalPGetDatum(&sumX), IntervalPGetDatum(newval))); N.time += 1; transdatums[0] = IntervalPGetDatum(newsum); transdatums[1] = IntervalPGetDatum(&N); result = construct_array(transdatums, 2, INTERVALOID, sizeof(Interval), false, TYPALIGN_DOUBLE); PG_RETURN_ARRAYTYPE_P(result); } Datum interval_combine(PG_FUNCTION_ARGS) { ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0); ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1); Datum *transdatums1; Datum *transdatums2; int ndatums1; int ndatums2; Interval sum1, N1; Interval sum2, N2; Interval *newsum; ArrayType *result; deconstruct_array(transarray1, INTERVALOID, sizeof(Interval), false, TYPALIGN_DOUBLE, &transdatums1, NULL, &ndatums1); if (ndatums1 != 2) elog(ERROR, "expected 2-element interval array"); sum1 = *(DatumGetIntervalP(transdatums1[0])); N1 = *(DatumGetIntervalP(transdatums1[1])); deconstruct_array(transarray2, INTERVALOID, sizeof(Interval), false, TYPALIGN_DOUBLE, &transdatums2, NULL, &ndatums2); if (ndatums2 != 2) elog(ERROR, "expected 2-element interval array"); sum2 = *(DatumGetIntervalP(transdatums2[0])); N2 = *(DatumGetIntervalP(transdatums2[1])); newsum = DatumGetIntervalP(DirectFunctionCall2(interval_pl, IntervalPGetDatum(&sum1), IntervalPGetDatum(&sum2))); N1.time += N2.time; transdatums1[0] = IntervalPGetDatum(newsum); transdatums1[1] = IntervalPGetDatum(&N1); result = construct_array(transdatums1, 2, INTERVALOID, sizeof(Interval), false, TYPALIGN_DOUBLE); PG_RETURN_ARRAYTYPE_P(result); } Datum interval_accum_inv(PG_FUNCTION_ARGS) { ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Interval *newval = PG_GETARG_INTERVAL_P(1); Datum *transdatums; int ndatums; Interval sumX, N; Interval *newsum; ArrayType *result; deconstruct_array(transarray, INTERVALOID, sizeof(Interval), false, TYPALIGN_DOUBLE, &transdatums, NULL, &ndatums); if (ndatums != 2) elog(ERROR, "expected 2-element interval array"); sumX = *(DatumGetIntervalP(transdatums[0])); N = *(DatumGetIntervalP(transdatums[1])); newsum = DatumGetIntervalP(DirectFunctionCall2(interval_mi, IntervalPGetDatum(&sumX), IntervalPGetDatum(newval))); N.time -= 1; transdatums[0] = IntervalPGetDatum(newsum); transdatums[1] = IntervalPGetDatum(&N); result = construct_array(transdatums, 2, INTERVALOID, sizeof(Interval), false, TYPALIGN_DOUBLE); PG_RETURN_ARRAYTYPE_P(result); } Datum interval_avg(PG_FUNCTION_ARGS) { ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Datum *transdatums; int ndatums; Interval sumX, N; deconstruct_array(transarray, INTERVALOID, sizeof(Interval), false, TYPALIGN_DOUBLE, &transdatums, NULL, &ndatums); if (ndatums != 2) elog(ERROR, "expected 2-element interval array"); sumX = *(DatumGetIntervalP(transdatums[0])); N = *(DatumGetIntervalP(transdatums[1])); /* SQL defines AVG of no values to be NULL */ if (N.time == 0) PG_RETURN_NULL(); return DirectFunctionCall2(interval_div, IntervalPGetDatum(&sumX), Float8GetDatum((double) N.time)); } /* timestamp_age() * Calculate time difference while retaining year/month fields. * Note that this does not result in an accurate absolute time span * since year and month are out of context once the arithmetic * is done. */ Datum timestamp_age(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); Interval *result; fsec_t fsec, fsec1, fsec2; struct pg_tm tt, *tm = &tt; struct pg_tm tt1, *tm1 = &tt1; struct pg_tm tt2, *tm2 = &tt2; result = (Interval *) palloc(sizeof(Interval)); if (timestamp2tm(dt1, NULL, tm1, &fsec1, NULL, NULL) == 0 && timestamp2tm(dt2, NULL, tm2, &fsec2, NULL, NULL) == 0) { /* form the symbolic difference */ fsec = fsec1 - fsec2; tm->tm_sec = tm1->tm_sec - tm2->tm_sec; tm->tm_min = tm1->tm_min - tm2->tm_min; tm->tm_hour = tm1->tm_hour - tm2->tm_hour; tm->tm_mday = tm1->tm_mday - tm2->tm_mday; tm->tm_mon = tm1->tm_mon - tm2->tm_mon; tm->tm_year = tm1->tm_year - tm2->tm_year; /* flip sign if necessary... */ if (dt1 < dt2) { fsec = -fsec; tm->tm_sec = -tm->tm_sec; tm->tm_min = -tm->tm_min; tm->tm_hour = -tm->tm_hour; tm->tm_mday = -tm->tm_mday; tm->tm_mon = -tm->tm_mon; tm->tm_year = -tm->tm_year; } /* propagate any negative fields into the next higher field */ while (fsec < 0) { fsec += USECS_PER_SEC; tm->tm_sec--; } while (tm->tm_sec < 0) { tm->tm_sec += SECS_PER_MINUTE; tm->tm_min--; } while (tm->tm_min < 0) { tm->tm_min += MINS_PER_HOUR; tm->tm_hour--; } while (tm->tm_hour < 0) { tm->tm_hour += HOURS_PER_DAY; tm->tm_mday--; } while (tm->tm_mday < 0) { if (dt1 < dt2) { tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1]; tm->tm_mon--; } else { tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1]; tm->tm_mon--; } } while (tm->tm_mon < 0) { tm->tm_mon += MONTHS_PER_YEAR; tm->tm_year--; } /* recover sign if necessary... */ if (dt1 < dt2) { fsec = -fsec; tm->tm_sec = -tm->tm_sec; tm->tm_min = -tm->tm_min; tm->tm_hour = -tm->tm_hour; tm->tm_mday = -tm->tm_mday; tm->tm_mon = -tm->tm_mon; tm->tm_year = -tm->tm_year; } if (tm2interval(tm, fsec, result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); } else ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); PG_RETURN_INTERVAL_P(result); } /* timestamptz_age() * Calculate time difference while retaining year/month fields. * Note that this does not result in an accurate absolute time span * since year and month are out of context once the arithmetic * is done. */ Datum timestamptz_age(PG_FUNCTION_ARGS) { TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0); TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1); Interval *result; fsec_t fsec, fsec1, fsec2; struct pg_tm tt, *tm = &tt; struct pg_tm tt1, *tm1 = &tt1; struct pg_tm tt2, *tm2 = &tt2; int tz1; int tz2; result = (Interval *) palloc(sizeof(Interval)); if (timestamp2tm(dt1, &tz1, tm1, &fsec1, NULL, NULL) == 0 && timestamp2tm(dt2, &tz2, tm2, &fsec2, NULL, NULL) == 0) { /* form the symbolic difference */ fsec = fsec1 - fsec2; tm->tm_sec = tm1->tm_sec - tm2->tm_sec; tm->tm_min = tm1->tm_min - tm2->tm_min; tm->tm_hour = tm1->tm_hour - tm2->tm_hour; tm->tm_mday = tm1->tm_mday - tm2->tm_mday; tm->tm_mon = tm1->tm_mon - tm2->tm_mon; tm->tm_year = tm1->tm_year - tm2->tm_year; /* flip sign if necessary... */ if (dt1 < dt2) { fsec = -fsec; tm->tm_sec = -tm->tm_sec; tm->tm_min = -tm->tm_min; tm->tm_hour = -tm->tm_hour; tm->tm_mday = -tm->tm_mday; tm->tm_mon = -tm->tm_mon; tm->tm_year = -tm->tm_year; } /* propagate any negative fields into the next higher field */ while (fsec < 0) { fsec += USECS_PER_SEC; tm->tm_sec--; } while (tm->tm_sec < 0) { tm->tm_sec += SECS_PER_MINUTE; tm->tm_min--; } while (tm->tm_min < 0) { tm->tm_min += MINS_PER_HOUR; tm->tm_hour--; } while (tm->tm_hour < 0) { tm->tm_hour += HOURS_PER_DAY; tm->tm_mday--; } while (tm->tm_mday < 0) { if (dt1 < dt2) { tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1]; tm->tm_mon--; } else { tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1]; tm->tm_mon--; } } while (tm->tm_mon < 0) { tm->tm_mon += MONTHS_PER_YEAR; tm->tm_year--; } /* * Note: we deliberately ignore any difference between tz1 and tz2. */ /* recover sign if necessary... */ if (dt1 < dt2) { fsec = -fsec; tm->tm_sec = -tm->tm_sec; tm->tm_min = -tm->tm_min; tm->tm_hour = -tm->tm_hour; tm->tm_mday = -tm->tm_mday; tm->tm_mon = -tm->tm_mon; tm->tm_year = -tm->tm_year; } if (tm2interval(tm, fsec, result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); } else ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); PG_RETURN_INTERVAL_P(result); } /*---------------------------------------------------------- * Conversion operators. *---------------------------------------------------------*/ /* timestamp_bin() * Bin timestamp into specified interval. */ Datum timestamp_bin(PG_FUNCTION_ARGS) { Interval *stride = PG_GETARG_INTERVAL_P(0); Timestamp timestamp = PG_GETARG_TIMESTAMP(1); Timestamp origin = PG_GETARG_TIMESTAMP(2); Timestamp result, tm_diff, stride_usecs, tm_delta; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMP(timestamp); if (TIMESTAMP_NOT_FINITE(origin)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("origin out of range"))); if (stride->month != 0) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamps cannot be binned into intervals containing months or years"))); stride_usecs = stride->day * USECS_PER_DAY + stride->time; if (stride_usecs <= 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("stride must be greater than zero"))); tm_diff = timestamp - origin; tm_delta = tm_diff - tm_diff % stride_usecs; /* * Make sure the returned timestamp is at the start of the bin, even if * the origin is in the future. */ if (origin > timestamp && stride_usecs > 1) tm_delta -= stride_usecs; result = origin + tm_delta; PG_RETURN_TIMESTAMP(result); } /* timestamp_trunc() * Truncate timestamp to specified units. */ Datum timestamp_trunc(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_PP(0); Timestamp timestamp = PG_GETARG_TIMESTAMP(1); Timestamp result; int type, val; char *lowunits; fsec_t fsec; struct pg_tm tt, *tm = &tt; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMP(timestamp); lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false); type = DecodeUnits(0, lowunits, &val); if (type == UNITS) { if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); switch (val) { case DTK_WEEK: { int woy; woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday); /* * If it is week 52/53 and the month is January, then the * week must belong to the previous year. Also, some * December dates belong to the next year. */ if (woy >= 52 && tm->tm_mon == 1) --tm->tm_year; if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR) ++tm->tm_year; isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday)); tm->tm_hour = 0; tm->tm_min = 0; tm->tm_sec = 0; fsec = 0; break; } case DTK_MILLENNIUM: /* see comments in timestamptz_trunc */ if (tm->tm_year > 0) tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999; else tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1; /* FALL THRU */ case DTK_CENTURY: /* see comments in timestamptz_trunc */ if (tm->tm_year > 0) tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99; else tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1; /* FALL THRU */ case DTK_DECADE: /* see comments in timestamptz_trunc */ if (val != DTK_MILLENNIUM && val != DTK_CENTURY) { if (tm->tm_year > 0) tm->tm_year = (tm->tm_year / 10) * 10; else tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10; } /* FALL THRU */ case DTK_YEAR: tm->tm_mon = 1; /* FALL THRU */ case DTK_QUARTER: tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1; /* FALL THRU */ case DTK_MONTH: tm->tm_mday = 1; /* FALL THRU */ case DTK_DAY: tm->tm_hour = 0; /* FALL THRU */ case DTK_HOUR: tm->tm_min = 0; /* FALL THRU */ case DTK_MINUTE: tm->tm_sec = 0; /* FALL THRU */ case DTK_SECOND: fsec = 0; break; case DTK_MILLISEC: fsec = (fsec / 1000) * 1000; break; case DTK_MICROSEC: break; default: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp units \"%s\" not supported", lowunits))); result = 0; } if (tm2timestamp(tm, fsec, NULL, &result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); } else { ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("timestamp units \"%s\" not recognized", lowunits))); result = 0; } PG_RETURN_TIMESTAMP(result); } /* timestamptz_bin() * Bin timestamptz into specified interval using specified origin. */ Datum timestamptz_bin(PG_FUNCTION_ARGS) { Interval *stride = PG_GETARG_INTERVAL_P(0); TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1); TimestampTz origin = PG_GETARG_TIMESTAMPTZ(2); TimestampTz result, stride_usecs, tm_diff, tm_delta; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMPTZ(timestamp); if (TIMESTAMP_NOT_FINITE(origin)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("origin out of range"))); if (stride->month != 0) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamps cannot be binned into intervals containing months or years"))); stride_usecs = stride->day * USECS_PER_DAY + stride->time; if (stride_usecs <= 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("stride must be greater than zero"))); tm_diff = timestamp - origin; tm_delta = tm_diff - tm_diff % stride_usecs; /* * Make sure the returned timestamp is at the start of the bin, even if * the origin is in the future. */ if (origin > timestamp && stride_usecs > 1) tm_delta -= stride_usecs; result = origin + tm_delta; PG_RETURN_TIMESTAMPTZ(result); } /* * Common code for timestamptz_trunc() and timestamptz_trunc_zone(). * * tzp identifies the zone to truncate with respect to. We assume * infinite timestamps have already been rejected. */ static TimestampTz timestamptz_trunc_internal(text *units, TimestampTz timestamp, pg_tz *tzp) { TimestampTz result; int tz; int type, val; bool redotz = false; char *lowunits; fsec_t fsec; struct pg_tm tt, *tm = &tt; lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false); type = DecodeUnits(0, lowunits, &val); if (type == UNITS) { if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, tzp) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); switch (val) { case DTK_WEEK: { int woy; woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday); /* * If it is week 52/53 and the month is January, then the * week must belong to the previous year. Also, some * December dates belong to the next year. */ if (woy >= 52 && tm->tm_mon == 1) --tm->tm_year; if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR) ++tm->tm_year; isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday)); tm->tm_hour = 0; tm->tm_min = 0; tm->tm_sec = 0; fsec = 0; redotz = true; break; } /* one may consider DTK_THOUSAND and DTK_HUNDRED... */ case DTK_MILLENNIUM: /* * truncating to the millennium? what is this supposed to * mean? let us put the first year of the millennium... i.e. * -1000, 1, 1001, 2001... */ if (tm->tm_year > 0) tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999; else tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1; /* FALL THRU */ case DTK_CENTURY: /* truncating to the century? as above: -100, 1, 101... */ if (tm->tm_year > 0) tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99; else tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1; /* FALL THRU */ case DTK_DECADE: /* * truncating to the decade? first year of the decade. must * not be applied if year was truncated before! */ if (val != DTK_MILLENNIUM && val != DTK_CENTURY) { if (tm->tm_year > 0) tm->tm_year = (tm->tm_year / 10) * 10; else tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10; } /* FALL THRU */ case DTK_YEAR: tm->tm_mon = 1; /* FALL THRU */ case DTK_QUARTER: tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1; /* FALL THRU */ case DTK_MONTH: tm->tm_mday = 1; /* FALL THRU */ case DTK_DAY: tm->tm_hour = 0; redotz = true; /* for all cases >= DAY */ /* FALL THRU */ case DTK_HOUR: tm->tm_min = 0; /* FALL THRU */ case DTK_MINUTE: tm->tm_sec = 0; /* FALL THRU */ case DTK_SECOND: fsec = 0; break; case DTK_MILLISEC: fsec = (fsec / 1000) * 1000; break; case DTK_MICROSEC: break; default: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp with time zone units \"%s\" not " "supported", lowunits))); result = 0; } if (redotz) tz = DetermineTimeZoneOffset(tm, tzp); if (tm2timestamp(tm, fsec, &tz, &result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); } else { ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("timestamp with time zone units \"%s\" not recognized", lowunits))); result = 0; } return result; } /* timestamptz_trunc() * Truncate timestamptz to specified units in session timezone. */ Datum timestamptz_trunc(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_PP(0); TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1); TimestampTz result; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMPTZ(timestamp); result = timestamptz_trunc_internal(units, timestamp, session_timezone); PG_RETURN_TIMESTAMPTZ(result); } /* timestamptz_trunc_zone() * Truncate timestamptz to specified units in specified timezone. */ Datum timestamptz_trunc_zone(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_PP(0); TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1); text *zone = PG_GETARG_TEXT_PP(2); TimestampTz result; char tzname[TZ_STRLEN_MAX + 1]; char *lowzone; int type, val; pg_tz *tzp; /* * timestamptz_zone() doesn't look up the zone for infinite inputs, so we * don't do so here either. */ if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMP(timestamp); /* * Look up the requested timezone (see notes in timestamptz_zone()). */ text_to_cstring_buffer(zone, tzname, sizeof(tzname)); /* DecodeTimezoneAbbrev requires lowercase input */ lowzone = downcase_truncate_identifier(tzname, strlen(tzname), false); type = DecodeTimezoneAbbrev(0, lowzone, &val, &tzp); if (type == TZ || type == DTZ) { /* fixed-offset abbreviation, get a pg_tz descriptor for that */ tzp = pg_tzset_offset(-val); } else if (type == DYNTZ) { /* dynamic-offset abbreviation, use its referenced timezone */ } else { /* try it as a full zone name */ tzp = pg_tzset(tzname); if (!tzp) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("time zone \"%s\" not recognized", tzname))); } result = timestamptz_trunc_internal(units, timestamp, tzp); PG_RETURN_TIMESTAMPTZ(result); } /* interval_trunc() * Extract specified field from interval. */ Datum interval_trunc(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_PP(0); Interval *interval = PG_GETARG_INTERVAL_P(1); Interval *result; int type, val; char *lowunits; fsec_t fsec; struct pg_tm tt, *tm = &tt; result = (Interval *) palloc(sizeof(Interval)); lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false); type = DecodeUnits(0, lowunits, &val); if (type == UNITS) { if (interval2tm(*interval, tm, &fsec) == 0) { switch (val) { case DTK_MILLENNIUM: /* caution: C division may have negative remainder */ tm->tm_year = (tm->tm_year / 1000) * 1000; /* FALL THRU */ case DTK_CENTURY: /* caution: C division may have negative remainder */ tm->tm_year = (tm->tm_year / 100) * 100; /* FALL THRU */ case DTK_DECADE: /* caution: C division may have negative remainder */ tm->tm_year = (tm->tm_year / 10) * 10; /* FALL THRU */ case DTK_YEAR: tm->tm_mon = 0; /* FALL THRU */ case DTK_QUARTER: tm->tm_mon = 3 * (tm->tm_mon / 3); /* FALL THRU */ case DTK_MONTH: tm->tm_mday = 0; /* FALL THRU */ case DTK_DAY: tm->tm_hour = 0; /* FALL THRU */ case DTK_HOUR: tm->tm_min = 0; /* FALL THRU */ case DTK_MINUTE: tm->tm_sec = 0; /* FALL THRU */ case DTK_SECOND: fsec = 0; break; case DTK_MILLISEC: fsec = (fsec / 1000) * 1000; break; case DTK_MICROSEC: break; default: if (val == DTK_WEEK) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("interval units \"%s\" not supported " "because months usually have fractional weeks", lowunits))); else ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("interval units \"%s\" not supported", lowunits))); } if (tm2interval(tm, fsec, result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range"))); } else elog(ERROR, "could not convert interval to tm"); } else { ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("interval units \"%s\" not recognized", lowunits))); } PG_RETURN_INTERVAL_P(result); } /* isoweek2j() * * Return the Julian day which corresponds to the first day (Monday) of the given ISO 8601 year and week. * Julian days are used to convert between ISO week dates and Gregorian dates. */ int isoweek2j(int year, int week) { int day0, day4; /* fourth day of current year */ day4 = date2j(year, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); return ((week - 1) * 7) + (day4 - day0); } /* isoweek2date() * Convert ISO week of year number to date. * The year field must be specified with the ISO year! * karel 2000/08/07 */ void isoweek2date(int woy, int *year, int *mon, int *mday) { j2date(isoweek2j(*year, woy), year, mon, mday); } /* isoweekdate2date() * * Convert an ISO 8601 week date (ISO year, ISO week) into a Gregorian date. * Gregorian day of week sent so weekday strings can be supplied. * Populates year, mon, and mday with the correct Gregorian values. * year must be passed in as the ISO year. */ void isoweekdate2date(int isoweek, int wday, int *year, int *mon, int *mday) { int jday; jday = isoweek2j(*year, isoweek); /* convert Gregorian week start (Sunday=1) to ISO week start (Monday=1) */ if (wday > 1) jday += wday - 2; else jday += 6; j2date(jday, year, mon, mday); } /* date2isoweek() * * Returns ISO week number of year. */ int date2isoweek(int year, int mon, int mday) { float8 result; int day0, day4, dayn; /* current day */ dayn = date2j(year, mon, mday); /* fourth day of current year */ day4 = date2j(year, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); /* * We need the first week containing a Thursday, otherwise this day falls * into the previous year for purposes of counting weeks */ if (dayn < day4 - day0) { day4 = date2j(year - 1, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); } result = (dayn - (day4 - day0)) / 7 + 1; /* * Sometimes the last few days in a year will fall into the first week of * the next year, so check for this. */ if (result >= 52) { day4 = date2j(year + 1, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); if (dayn >= day4 - day0) result = (dayn - (day4 - day0)) / 7 + 1; } return (int) result; } /* date2isoyear() * * Returns ISO 8601 year number. * Note: zero or negative results follow the year-zero-exists convention. */ int date2isoyear(int year, int mon, int mday) { float8 result; int day0, day4, dayn; /* current day */ dayn = date2j(year, mon, mday); /* fourth day of current year */ day4 = date2j(year, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); /* * We need the first week containing a Thursday, otherwise this day falls * into the previous year for purposes of counting weeks */ if (dayn < day4 - day0) { day4 = date2j(year - 1, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); year--; } result = (dayn - (day4 - day0)) / 7 + 1; /* * Sometimes the last few days in a year will fall into the first week of * the next year, so check for this. */ if (result >= 52) { day4 = date2j(year + 1, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); if (dayn >= day4 - day0) year++; } return year; } /* date2isoyearday() * * Returns the ISO 8601 day-of-year, given a Gregorian year, month and day. * Possible return values are 1 through 371 (364 in non-leap years). */ int date2isoyearday(int year, int mon, int mday) { return date2j(year, mon, mday) - isoweek2j(date2isoyear(year, mon, mday), 1) + 1; } /* * NonFiniteTimestampTzPart * * Used by timestamp_part and timestamptz_part when extracting from infinite * timestamp[tz]. Returns +/-Infinity if that is the appropriate result, * otherwise returns zero (which should be taken as meaning to return NULL). * * Errors thrown here for invalid units should exactly match those that * would be thrown in the calling functions, else there will be unexpected * discrepancies between finite- and infinite-input cases. */ static float8 NonFiniteTimestampTzPart(int type, int unit, char *lowunits, bool isNegative, bool isTz) { if ((type != UNITS) && (type != RESERV)) { if (isTz) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("timestamp with time zone units \"%s\" not recognized", lowunits))); else ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("timestamp units \"%s\" not recognized", lowunits))); } switch (unit) { /* Oscillating units */ case DTK_MICROSEC: case DTK_MILLISEC: case DTK_SECOND: case DTK_MINUTE: case DTK_HOUR: case DTK_DAY: case DTK_MONTH: case DTK_QUARTER: case DTK_WEEK: case DTK_DOW: case DTK_ISODOW: case DTK_DOY: case DTK_TZ: case DTK_TZ_MINUTE: case DTK_TZ_HOUR: return 0.0; /* Monotonically-increasing units */ case DTK_YEAR: case DTK_DECADE: case DTK_CENTURY: case DTK_MILLENNIUM: case DTK_JULIAN: case DTK_ISOYEAR: case DTK_EPOCH: if (isNegative) return -get_float8_infinity(); else return get_float8_infinity(); default: if (isTz) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp with time zone units \"%s\" not supported", lowunits))); else ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp units \"%s\" not supported", lowunits))); return 0.0; /* keep compiler quiet */ } } /* timestamp_part() and extract_timestamp() * Extract specified field from timestamp. */ static Datum timestamp_part_common(PG_FUNCTION_ARGS, bool retnumeric) { text *units = PG_GETARG_TEXT_PP(0); Timestamp timestamp = PG_GETARG_TIMESTAMP(1); int64 intresult; Timestamp epoch; int type, val; char *lowunits; fsec_t fsec; struct pg_tm tt, *tm = &tt; lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false); type = DecodeUnits(0, lowunits, &val); if (type == UNKNOWN_FIELD) type = DecodeSpecial(0, lowunits, &val); if (TIMESTAMP_NOT_FINITE(timestamp)) { double r = NonFiniteTimestampTzPart(type, val, lowunits, TIMESTAMP_IS_NOBEGIN(timestamp), false); if (r) { if (retnumeric) { if (r < 0) return DirectFunctionCall3(numeric_in, CStringGetDatum("-Infinity"), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); else if (r > 0) return DirectFunctionCall3(numeric_in, CStringGetDatum("Infinity"), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); } else PG_RETURN_FLOAT8(r); } else PG_RETURN_NULL(); } if (type == UNITS) { if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); switch (val) { case DTK_MICROSEC: intresult = tm->tm_sec * INT64CONST(1000000) + fsec; break; case DTK_MILLISEC: if (retnumeric) /*--- * tm->tm_sec * 1000 + fsec / 1000 * = (tm->tm_sec * 1'000'000 + fsec) / 1000 */ PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 3)); else PG_RETURN_FLOAT8(tm->tm_sec * 1000.0 + fsec / 1000.0); break; case DTK_SECOND: if (retnumeric) /*--- * tm->tm_sec + fsec / 1'000'000 * = (tm->tm_sec * 1'000'000 + fsec) / 1'000'000 */ PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 6)); else PG_RETURN_FLOAT8(tm->tm_sec + fsec / 1000000.0); break; case DTK_MINUTE: intresult = tm->tm_min; break; case DTK_HOUR: intresult = tm->tm_hour; break; case DTK_DAY: intresult = tm->tm_mday; break; case DTK_MONTH: intresult = tm->tm_mon; break; case DTK_QUARTER: intresult = (tm->tm_mon - 1) / 3 + 1; break; case DTK_WEEK: intresult = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday); break; case DTK_YEAR: if (tm->tm_year > 0) intresult = tm->tm_year; else /* there is no year 0, just 1 BC and 1 AD */ intresult = tm->tm_year - 1; break; case DTK_DECADE: /* * what is a decade wrt dates? let us assume that decade 199 * is 1990 thru 1999... decade 0 starts on year 1 BC, and -1 * is 11 BC thru 2 BC... */ if (tm->tm_year >= 0) intresult = tm->tm_year / 10; else intresult = -((8 - (tm->tm_year - 1)) / 10); break; case DTK_CENTURY: /* ---- * centuries AD, c>0: year in [ (c-1)* 100 + 1 : c*100 ] * centuries BC, c<0: year in [ c*100 : (c+1) * 100 - 1] * there is no number 0 century. * ---- */ if (tm->tm_year > 0) intresult = (tm->tm_year + 99) / 100; else /* caution: C division may have negative remainder */ intresult = -((99 - (tm->tm_year - 1)) / 100); break; case DTK_MILLENNIUM: /* see comments above. */ if (tm->tm_year > 0) intresult = (tm->tm_year + 999) / 1000; else intresult = -((999 - (tm->tm_year - 1)) / 1000); break; case DTK_JULIAN: if (retnumeric) PG_RETURN_NUMERIC(numeric_add_opt_error(int64_to_numeric(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)), numeric_div_opt_error(int64_to_numeric(((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) * INT64CONST(1000000) + fsec), int64_to_numeric(SECS_PER_DAY * INT64CONST(1000000)), NULL), NULL)); else PG_RETURN_FLOAT8(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY); break; case DTK_ISOYEAR: intresult = date2isoyear(tm->tm_year, tm->tm_mon, tm->tm_mday); /* Adjust BC years */ if (intresult <= 0) intresult -= 1; break; case DTK_DOW: case DTK_ISODOW: intresult = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)); if (val == DTK_ISODOW && intresult == 0) intresult = 7; break; case DTK_DOY: intresult = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - date2j(tm->tm_year, 1, 1) + 1); break; case DTK_TZ: case DTK_TZ_MINUTE: case DTK_TZ_HOUR: default: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp units \"%s\" not supported", lowunits))); intresult = 0; } } else if (type == RESERV) { switch (val) { case DTK_EPOCH: epoch = SetEpochTimestamp(); /* (timestamp - epoch) / 1000000 */ if (retnumeric) { Numeric result; if (timestamp < (PG_INT64_MAX + epoch)) result = int64_div_fast_to_numeric(timestamp - epoch, 6); else { result = numeric_div_opt_error(numeric_sub_opt_error(int64_to_numeric(timestamp), int64_to_numeric(epoch), NULL), int64_to_numeric(1000000), NULL); result = DatumGetNumeric(DirectFunctionCall2(numeric_round, NumericGetDatum(result), Int32GetDatum(6))); } PG_RETURN_NUMERIC(result); } else { float8 result; /* try to avoid precision loss in subtraction */ if (timestamp < (PG_INT64_MAX + epoch)) result = (timestamp - epoch) / 1000000.0; else result = ((float8) timestamp - epoch) / 1000000.0; PG_RETURN_FLOAT8(result); } break; default: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp units \"%s\" not supported", lowunits))); intresult = 0; } } else { ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("timestamp units \"%s\" not recognized", lowunits))); intresult = 0; } if (retnumeric) PG_RETURN_NUMERIC(int64_to_numeric(intresult)); else PG_RETURN_FLOAT8(intresult); } Datum timestamp_part(PG_FUNCTION_ARGS) { return timestamp_part_common(fcinfo, false); } Datum extract_timestamp(PG_FUNCTION_ARGS) { return timestamp_part_common(fcinfo, true); } /* timestamptz_part() and extract_timestamptz() * Extract specified field from timestamp with time zone. */ static Datum timestamptz_part_common(PG_FUNCTION_ARGS, bool retnumeric) { text *units = PG_GETARG_TEXT_PP(0); TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1); int64 intresult; Timestamp epoch; int tz; int type, val; char *lowunits; fsec_t fsec; struct pg_tm tt, *tm = &tt; lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false); type = DecodeUnits(0, lowunits, &val); if (type == UNKNOWN_FIELD) type = DecodeSpecial(0, lowunits, &val); if (TIMESTAMP_NOT_FINITE(timestamp)) { double r = NonFiniteTimestampTzPart(type, val, lowunits, TIMESTAMP_IS_NOBEGIN(timestamp), true); if (r) { if (retnumeric) { if (r < 0) return DirectFunctionCall3(numeric_in, CStringGetDatum("-Infinity"), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); else if (r > 0) return DirectFunctionCall3(numeric_in, CStringGetDatum("Infinity"), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); } else PG_RETURN_FLOAT8(r); } else PG_RETURN_NULL(); } if (type == UNITS) { if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); switch (val) { case DTK_TZ: intresult = -tz; break; case DTK_TZ_MINUTE: intresult = (-tz / SECS_PER_MINUTE) % MINS_PER_HOUR; break; case DTK_TZ_HOUR: intresult = -tz / SECS_PER_HOUR; break; case DTK_MICROSEC: intresult = tm->tm_sec * INT64CONST(1000000) + fsec; break; case DTK_MILLISEC: if (retnumeric) /*--- * tm->tm_sec * 1000 + fsec / 1000 * = (tm->tm_sec * 1'000'000 + fsec) / 1000 */ PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 3)); else PG_RETURN_FLOAT8(tm->tm_sec * 1000.0 + fsec / 1000.0); break; case DTK_SECOND: if (retnumeric) /*--- * tm->tm_sec + fsec / 1'000'000 * = (tm->tm_sec * 1'000'000 + fsec) / 1'000'000 */ PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 6)); else PG_RETURN_FLOAT8(tm->tm_sec + fsec / 1000000.0); break; case DTK_MINUTE: intresult = tm->tm_min; break; case DTK_HOUR: intresult = tm->tm_hour; break; case DTK_DAY: intresult = tm->tm_mday; break; case DTK_MONTH: intresult = tm->tm_mon; break; case DTK_QUARTER: intresult = (tm->tm_mon - 1) / 3 + 1; break; case DTK_WEEK: intresult = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday); break; case DTK_YEAR: if (tm->tm_year > 0) intresult = tm->tm_year; else /* there is no year 0, just 1 BC and 1 AD */ intresult = tm->tm_year - 1; break; case DTK_DECADE: /* see comments in timestamp_part */ if (tm->tm_year > 0) intresult = tm->tm_year / 10; else intresult = -((8 - (tm->tm_year - 1)) / 10); break; case DTK_CENTURY: /* see comments in timestamp_part */ if (tm->tm_year > 0) intresult = (tm->tm_year + 99) / 100; else intresult = -((99 - (tm->tm_year - 1)) / 100); break; case DTK_MILLENNIUM: /* see comments in timestamp_part */ if (tm->tm_year > 0) intresult = (tm->tm_year + 999) / 1000; else intresult = -((999 - (tm->tm_year - 1)) / 1000); break; case DTK_JULIAN: if (retnumeric) PG_RETURN_NUMERIC(numeric_add_opt_error(int64_to_numeric(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)), numeric_div_opt_error(int64_to_numeric(((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) * INT64CONST(1000000) + fsec), int64_to_numeric(SECS_PER_DAY * INT64CONST(1000000)), NULL), NULL)); else PG_RETURN_FLOAT8(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY); break; case DTK_ISOYEAR: intresult = date2isoyear(tm->tm_year, tm->tm_mon, tm->tm_mday); /* Adjust BC years */ if (intresult <= 0) intresult -= 1; break; case DTK_DOW: case DTK_ISODOW: intresult = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)); if (val == DTK_ISODOW && intresult == 0) intresult = 7; break; case DTK_DOY: intresult = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - date2j(tm->tm_year, 1, 1) + 1); break; default: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp with time zone units \"%s\" not supported", lowunits))); intresult = 0; } } else if (type == RESERV) { switch (val) { case DTK_EPOCH: epoch = SetEpochTimestamp(); /* (timestamp - epoch) / 1000000 */ if (retnumeric) { Numeric result; if (timestamp < (PG_INT64_MAX + epoch)) result = int64_div_fast_to_numeric(timestamp - epoch, 6); else { result = numeric_div_opt_error(numeric_sub_opt_error(int64_to_numeric(timestamp), int64_to_numeric(epoch), NULL), int64_to_numeric(1000000), NULL); result = DatumGetNumeric(DirectFunctionCall2(numeric_round, NumericGetDatum(result), Int32GetDatum(6))); } PG_RETURN_NUMERIC(result); } else { float8 result; /* try to avoid precision loss in subtraction */ if (timestamp < (PG_INT64_MAX + epoch)) result = (timestamp - epoch) / 1000000.0; else result = ((float8) timestamp - epoch) / 1000000.0; PG_RETURN_FLOAT8(result); } break; default: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp with time zone units \"%s\" not supported", lowunits))); intresult = 0; } } else { ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("timestamp with time zone units \"%s\" not recognized", lowunits))); intresult = 0; } if (retnumeric) PG_RETURN_NUMERIC(int64_to_numeric(intresult)); else PG_RETURN_FLOAT8(intresult); } Datum timestamptz_part(PG_FUNCTION_ARGS) { return timestamptz_part_common(fcinfo, false); } Datum extract_timestamptz(PG_FUNCTION_ARGS) { return timestamptz_part_common(fcinfo, true); } /* interval_part() and extract_interval() * Extract specified field from interval. */ static Datum interval_part_common(PG_FUNCTION_ARGS, bool retnumeric) { text *units = PG_GETARG_TEXT_PP(0); Interval *interval = PG_GETARG_INTERVAL_P(1); int64 intresult; int type, val; char *lowunits; fsec_t fsec; struct pg_tm tt, *tm = &tt; lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false); type = DecodeUnits(0, lowunits, &val); if (type == UNKNOWN_FIELD) type = DecodeSpecial(0, lowunits, &val); if (type == UNITS) { if (interval2tm(*interval, tm, &fsec) == 0) { switch (val) { case DTK_MICROSEC: intresult = tm->tm_sec * INT64CONST(1000000) + fsec; break; case DTK_MILLISEC: if (retnumeric) /*--- * tm->tm_sec * 1000 + fsec / 1000 * = (tm->tm_sec * 1'000'000 + fsec) / 1000 */ PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 3)); else PG_RETURN_FLOAT8(tm->tm_sec * 1000.0 + fsec / 1000.0); break; case DTK_SECOND: if (retnumeric) /*--- * tm->tm_sec + fsec / 1'000'000 * = (tm->tm_sec * 1'000'000 + fsec) / 1'000'000 */ PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 6)); else PG_RETURN_FLOAT8(tm->tm_sec + fsec / 1000000.0); break; case DTK_MINUTE: intresult = tm->tm_min; break; case DTK_HOUR: intresult = tm->tm_hour; break; case DTK_DAY: intresult = tm->tm_mday; break; case DTK_MONTH: intresult = tm->tm_mon; break; case DTK_QUARTER: intresult = (tm->tm_mon / 3) + 1; break; case DTK_YEAR: intresult = tm->tm_year; break; case DTK_DECADE: /* caution: C division may have negative remainder */ intresult = tm->tm_year / 10; break; case DTK_CENTURY: /* caution: C division may have negative remainder */ intresult = tm->tm_year / 100; break; case DTK_MILLENNIUM: /* caution: C division may have negative remainder */ intresult = tm->tm_year / 1000; break; default: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("interval units \"%s\" not supported", lowunits))); intresult = 0; } } else { elog(ERROR, "could not convert interval to tm"); intresult = 0; } } else if (type == RESERV && val == DTK_EPOCH) { if (retnumeric) { Numeric result; int64 secs_from_day_month; int64 val; /* * To do this calculation in integer arithmetic even though * DAYS_PER_YEAR is fractional, multiply everything by 4 and then * divide by 4 again at the end. This relies on DAYS_PER_YEAR * being a multiple of 0.25 and on SECS_PER_DAY being a multiple * of 4. */ secs_from_day_month = ((int64) (4 * DAYS_PER_YEAR) * (interval->month / MONTHS_PER_YEAR) + (int64) (4 * DAYS_PER_MONTH) * (interval->month % MONTHS_PER_YEAR) + (int64) 4 * interval->day) * (SECS_PER_DAY / 4); /*--- * result = secs_from_day_month + interval->time / 1'000'000 * = (secs_from_day_month * 1'000'000 + interval->time) / 1'000'000 */ /* * Try the computation inside int64; if it overflows, do it in * numeric (slower). This overflow happens around 10^9 days, so * not common in practice. */ if (!pg_mul_s64_overflow(secs_from_day_month, 1000000, &val) && !pg_add_s64_overflow(val, interval->time, &val)) result = int64_div_fast_to_numeric(val, 6); else result = numeric_add_opt_error(int64_div_fast_to_numeric(interval->time, 6), int64_to_numeric(secs_from_day_month), NULL); PG_RETURN_NUMERIC(result); } else { float8 result; result = interval->time / 1000000.0; result += ((double) DAYS_PER_YEAR * SECS_PER_DAY) * (interval->month / MONTHS_PER_YEAR); result += ((double) DAYS_PER_MONTH * SECS_PER_DAY) * (interval->month % MONTHS_PER_YEAR); result += ((double) SECS_PER_DAY) * interval->day; PG_RETURN_FLOAT8(result); } } else { ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("interval units \"%s\" not recognized", lowunits))); intresult = 0; } if (retnumeric) PG_RETURN_NUMERIC(int64_to_numeric(intresult)); else PG_RETURN_FLOAT8(intresult); } Datum interval_part(PG_FUNCTION_ARGS) { return interval_part_common(fcinfo, false); } Datum extract_interval(PG_FUNCTION_ARGS) { return interval_part_common(fcinfo, true); } /* timestamp_zone() * Encode timestamp type with specified time zone. * This function is just timestamp2timestamptz() except instead of * shifting to the global timezone, we shift to the specified timezone. * This is different from the other AT TIME ZONE cases because instead * of shifting _to_ a new time zone, it sets the time to _be_ the * specified timezone. */ Datum timestamp_zone(PG_FUNCTION_ARGS) { text *zone = PG_GETARG_TEXT_PP(0); Timestamp timestamp = PG_GETARG_TIMESTAMP(1); TimestampTz result; int tz; char tzname[TZ_STRLEN_MAX + 1]; char *lowzone; int type, val; pg_tz *tzp; struct pg_tm tm; fsec_t fsec; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMPTZ(timestamp); /* * Look up the requested timezone. First we look in the timezone * abbreviation table (to handle cases like "EST"), and if that fails, we * look in the timezone database (to handle cases like * "America/New_York"). (This matches the order in which timestamp input * checks the cases; it's important because the timezone database unwisely * uses a few zone names that are identical to offset abbreviations.) */ text_to_cstring_buffer(zone, tzname, sizeof(tzname)); /* DecodeTimezoneAbbrev requires lowercase input */ lowzone = downcase_truncate_identifier(tzname, strlen(tzname), false); type = DecodeTimezoneAbbrev(0, lowzone, &val, &tzp); if (type == TZ || type == DTZ) { /* fixed-offset abbreviation */ tz = val; result = dt2local(timestamp, tz); } else if (type == DYNTZ) { /* dynamic-offset abbreviation, resolve using specified time */ if (timestamp2tm(timestamp, NULL, &tm, &fsec, NULL, tzp) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); tz = -DetermineTimeZoneAbbrevOffset(&tm, tzname, tzp); result = dt2local(timestamp, tz); } else { /* try it as a full zone name */ tzp = pg_tzset(tzname); if (tzp) { /* Apply the timezone change */ if (timestamp2tm(timestamp, NULL, &tm, &fsec, NULL, tzp) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); tz = DetermineTimeZoneOffset(&tm, tzp); if (tm2timestamp(&tm, fsec, &tz, &result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); } else { ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("time zone \"%s\" not recognized", tzname))); result = 0; /* keep compiler quiet */ } } if (!IS_VALID_TIMESTAMP(result)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); PG_RETURN_TIMESTAMPTZ(result); } /* timestamp_izone() * Encode timestamp type with specified time interval as time zone. */ Datum timestamp_izone(PG_FUNCTION_ARGS) { Interval *zone = PG_GETARG_INTERVAL_P(0); Timestamp timestamp = PG_GETARG_TIMESTAMP(1); TimestampTz result; int tz; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMPTZ(timestamp); if (zone->month != 0 || zone->day != 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("interval time zone \"%s\" must not include months or days", DatumGetCString(DirectFunctionCall1(interval_out, PointerGetDatum(zone)))))); tz = zone->time / USECS_PER_SEC; result = dt2local(timestamp, tz); if (!IS_VALID_TIMESTAMP(result)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); PG_RETURN_TIMESTAMPTZ(result); } /* timestamp_izone() */ /* TimestampTimestampTzRequiresRewrite() * * Returns false if the TimeZone GUC setting causes timestamp_timestamptz and * timestamptz_timestamp to be no-ops, where the return value has the same * bits as the argument. Since project convention is to assume a GUC changes * no more often than STABLE functions change, the answer is valid that long. */ bool TimestampTimestampTzRequiresRewrite(void) { long offset; if (pg_get_timezone_offset(session_timezone, &offset) && offset == 0) return false; return true; } /* timestamp_timestamptz() * Convert local timestamp to timestamp at GMT */ Datum timestamp_timestamptz(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); PG_RETURN_TIMESTAMPTZ(timestamp2timestamptz(timestamp)); } /* * Convert timestamp to timestamp with time zone. * * On successful conversion, *overflow is set to zero if it's not NULL. * * If the timestamp is finite but out of the valid range for timestamptz, then: * if overflow is NULL, we throw an out-of-range error. * if overflow is not NULL, we store +1 or -1 there to indicate the sign * of the overflow, and return the appropriate timestamptz infinity. */ TimestampTz timestamp2timestamptz_opt_overflow(Timestamp timestamp, int *overflow) { TimestampTz result; struct pg_tm tt, *tm = &tt; fsec_t fsec; int tz; if (overflow) *overflow = 0; if (TIMESTAMP_NOT_FINITE(timestamp)) return timestamp; /* We don't expect this to fail, but check it pro forma */ if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) == 0) { tz = DetermineTimeZoneOffset(tm, session_timezone); result = dt2local(timestamp, -tz); if (IS_VALID_TIMESTAMP(result)) { return result; } else if (overflow) { if (result < MIN_TIMESTAMP) { *overflow = -1; TIMESTAMP_NOBEGIN(result); } else { *overflow = 1; TIMESTAMP_NOEND(result); } return result; } } ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); return 0; } /* * Promote timestamp to timestamptz, throwing error for overflow. */ static TimestampTz timestamp2timestamptz(Timestamp timestamp) { return timestamp2timestamptz_opt_overflow(timestamp, NULL); } /* timestamptz_timestamp() * Convert timestamp at GMT to local timestamp */ Datum timestamptz_timestamp(PG_FUNCTION_ARGS) { TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0); PG_RETURN_TIMESTAMP(timestamptz2timestamp(timestamp)); } static Timestamp timestamptz2timestamp(TimestampTz timestamp) { Timestamp result; struct pg_tm tt, *tm = &tt; fsec_t fsec; int tz; if (TIMESTAMP_NOT_FINITE(timestamp)) result = timestamp; else { if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); if (tm2timestamp(tm, fsec, NULL, &result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); } return result; } /* timestamptz_zone() * Evaluate timestamp with time zone type at the specified time zone. * Returns a timestamp without time zone. */ Datum timestamptz_zone(PG_FUNCTION_ARGS) { text *zone = PG_GETARG_TEXT_PP(0); TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1); Timestamp result; int tz; char tzname[TZ_STRLEN_MAX + 1]; char *lowzone; int type, val; pg_tz *tzp; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMP(timestamp); /* * Look up the requested timezone. First we look in the timezone * abbreviation table (to handle cases like "EST"), and if that fails, we * look in the timezone database (to handle cases like * "America/New_York"). (This matches the order in which timestamp input * checks the cases; it's important because the timezone database unwisely * uses a few zone names that are identical to offset abbreviations.) */ text_to_cstring_buffer(zone, tzname, sizeof(tzname)); /* DecodeTimezoneAbbrev requires lowercase input */ lowzone = downcase_truncate_identifier(tzname, strlen(tzname), false); type = DecodeTimezoneAbbrev(0, lowzone, &val, &tzp); if (type == TZ || type == DTZ) { /* fixed-offset abbreviation */ tz = -val; result = dt2local(timestamp, tz); } else if (type == DYNTZ) { /* dynamic-offset abbreviation, resolve using specified time */ int isdst; tz = DetermineTimeZoneAbbrevOffsetTS(timestamp, tzname, tzp, &isdst); result = dt2local(timestamp, tz); } else { /* try it as a full zone name */ tzp = pg_tzset(tzname); if (tzp) { /* Apply the timezone change */ struct pg_tm tm; fsec_t fsec; if (timestamp2tm(timestamp, &tz, &tm, &fsec, NULL, tzp) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); if (tm2timestamp(&tm, fsec, NULL, &result) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); } else { ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("time zone \"%s\" not recognized", tzname))); result = 0; /* keep compiler quiet */ } } if (!IS_VALID_TIMESTAMP(result)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); PG_RETURN_TIMESTAMP(result); } /* timestamptz_izone() * Encode timestamp with time zone type with specified time interval as time zone. * Returns a timestamp without time zone. */ Datum timestamptz_izone(PG_FUNCTION_ARGS) { Interval *zone = PG_GETARG_INTERVAL_P(0); TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1); Timestamp result; int tz; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMP(timestamp); if (zone->month != 0 || zone->day != 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("interval time zone \"%s\" must not include months or days", DatumGetCString(DirectFunctionCall1(interval_out, PointerGetDatum(zone)))))); tz = -(zone->time / USECS_PER_SEC); result = dt2local(timestamp, tz); if (!IS_VALID_TIMESTAMP(result)) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); PG_RETURN_TIMESTAMP(result); } /* generate_series_timestamp() * Generate the set of timestamps from start to finish by step */ Datum generate_series_timestamp(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; generate_series_timestamp_fctx *fctx; Timestamp result; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { Timestamp start = PG_GETARG_TIMESTAMP(0); Timestamp finish = PG_GETARG_TIMESTAMP(1); Interval *step = PG_GETARG_INTERVAL_P(2); MemoryContext oldcontext; Interval interval_zero; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* * switch to memory context appropriate for multiple function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* allocate memory for user context */ fctx = (generate_series_timestamp_fctx *) palloc(sizeof(generate_series_timestamp_fctx)); /* * Use fctx to keep state from call to call. Seed current with the * original start value */ fctx->current = start; fctx->finish = finish; fctx->step = *step; /* Determine sign of the interval */ MemSet(&interval_zero, 0, sizeof(Interval)); fctx->step_sign = interval_cmp_internal(&fctx->step, &interval_zero); if (fctx->step_sign == 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("step size cannot equal zero"))); funcctx->user_fctx = fctx; MemoryContextSwitchTo(oldcontext); } /* stuff done on every call of the function */ funcctx = SRF_PERCALL_SETUP(); /* * get the saved state and use current as the result for this iteration */ fctx = funcctx->user_fctx; result = fctx->current; if (fctx->step_sign > 0 ? timestamp_cmp_internal(result, fctx->finish) <= 0 : timestamp_cmp_internal(result, fctx->finish) >= 0) { /* increment current in preparation for next iteration */ fctx->current = DatumGetTimestamp(DirectFunctionCall2(timestamp_pl_interval, TimestampGetDatum(fctx->current), PointerGetDatum(&fctx->step))); /* do when there is more left to send */ SRF_RETURN_NEXT(funcctx, TimestampGetDatum(result)); } else { /* do when there is no more left */ SRF_RETURN_DONE(funcctx); } } /* generate_series_timestamptz() * Generate the set of timestamps from start to finish by step */ Datum generate_series_timestamptz(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; generate_series_timestamptz_fctx *fctx; TimestampTz result; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { TimestampTz start = PG_GETARG_TIMESTAMPTZ(0); TimestampTz finish = PG_GETARG_TIMESTAMPTZ(1); Interval *step = PG_GETARG_INTERVAL_P(2); MemoryContext oldcontext; Interval interval_zero; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* * switch to memory context appropriate for multiple function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* allocate memory for user context */ fctx = (generate_series_timestamptz_fctx *) palloc(sizeof(generate_series_timestamptz_fctx)); /* * Use fctx to keep state from call to call. Seed current with the * original start value */ fctx->current = start; fctx->finish = finish; fctx->step = *step; /* Determine sign of the interval */ MemSet(&interval_zero, 0, sizeof(Interval)); fctx->step_sign = interval_cmp_internal(&fctx->step, &interval_zero); if (fctx->step_sign == 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("step size cannot equal zero"))); funcctx->user_fctx = fctx; MemoryContextSwitchTo(oldcontext); } /* stuff done on every call of the function */ funcctx = SRF_PERCALL_SETUP(); /* * get the saved state and use current as the result for this iteration */ fctx = funcctx->user_fctx; result = fctx->current; if (fctx->step_sign > 0 ? timestamp_cmp_internal(result, fctx->finish) <= 0 : timestamp_cmp_internal(result, fctx->finish) >= 0) { /* increment current in preparation for next iteration */ fctx->current = DatumGetTimestampTz(DirectFunctionCall2(timestamptz_pl_interval, TimestampTzGetDatum(fctx->current), PointerGetDatum(&fctx->step))); /* do when there is more left to send */ SRF_RETURN_NEXT(funcctx, TimestampTzGetDatum(result)); } else { /* do when there is no more left */ SRF_RETURN_DONE(funcctx); } }