/*--------------------------------------------------------------------------- * * Ryu floating-point output for double precision. * * Portions Copyright (c) 2018-2021, PostgreSQL Global Development Group * * IDENTIFICATION * src/common/d2s.c * * This is a modification of code taken from github.com/ulfjack/ryu under the * terms of the Boost license (not the Apache license). The original copyright * notice follows: * * Copyright 2018 Ulf Adams * * The contents of this file may be used under the terms of the Apache * License, Version 2.0. * * (See accompanying file LICENSE-Apache or copy at * http://www.apache.org/licenses/LICENSE-2.0) * * Alternatively, the contents of this file may be used under the terms of the * Boost Software License, Version 1.0. * * (See accompanying file LICENSE-Boost or copy at * https://www.boost.org/LICENSE_1_0.txt) * * Unless required by applicable law or agreed to in writing, this software is * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. * *--------------------------------------------------------------------------- */ /* * Runtime compiler options: * * -DRYU_ONLY_64_BIT_OPS Avoid using uint128 or 64-bit intrinsics. Slower, * depending on your compiler. */ #ifndef FRONTEND #include "postgres.h" #else #include "postgres_fe.h" #endif #include "common/shortest_dec.h" /* * For consistency, we use 128-bit types if and only if the rest of PG also * does, even though we could use them here without worrying about the * alignment concerns that apply elsewhere. */ #if !defined(HAVE_INT128) && defined(_MSC_VER) \ && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64) #define HAS_64_BIT_INTRINSICS #endif #include "ryu_common.h" #include "digit_table.h" #include "d2s_full_table.h" #include "d2s_intrinsics.h" #define DOUBLE_MANTISSA_BITS 52 #define DOUBLE_EXPONENT_BITS 11 #define DOUBLE_BIAS 1023 #define DOUBLE_POW5_INV_BITCOUNT 122 #define DOUBLE_POW5_BITCOUNT 121 static inline uint32 pow5Factor(uint64 value) { uint32 count = 0; for (;;) { Assert(value != 0); const uint64 q = div5(value); const uint32 r = (uint32) (value - 5 * q); if (r != 0) break; value = q; ++count; } return count; } /* Returns true if value is divisible by 5^p. */ static inline bool multipleOfPowerOf5(const uint64 value, const uint32 p) { /* * I tried a case distinction on p, but there was no performance * difference. */ return pow5Factor(value) >= p; } /* Returns true if value is divisible by 2^p. */ static inline bool multipleOfPowerOf2(const uint64 value, const uint32 p) { /* return __builtin_ctzll(value) >= p; */ return (value & ((UINT64CONST(1) << p) - 1)) == 0; } /* * We need a 64x128-bit multiplication and a subsequent 128-bit shift. * * Multiplication: * * The 64-bit factor is variable and passed in, the 128-bit factor comes * from a lookup table. We know that the 64-bit factor only has 55 * significant bits (i.e., the 9 topmost bits are zeros). The 128-bit * factor only has 124 significant bits (i.e., the 4 topmost bits are * zeros). * * Shift: * * In principle, the multiplication result requires 55 + 124 = 179 bits to * represent. However, we then shift this value to the right by j, which is * at least j >= 115, so the result is guaranteed to fit into 179 - 115 = * 64 bits. This means that we only need the topmost 64 significant bits of * the 64x128-bit multiplication. * * There are several ways to do this: * * 1. Best case: the compiler exposes a 128-bit type. * We perform two 64x64-bit multiplications, add the higher 64 bits of the * lower result to the higher result, and shift by j - 64 bits. * * We explicitly cast from 64-bit to 128-bit, so the compiler can tell * that these are only 64-bit inputs, and can map these to the best * possible sequence of assembly instructions. x86-64 machines happen to * have matching assembly instructions for 64x64-bit multiplications and * 128-bit shifts. * * 2. Second best case: the compiler exposes intrinsics for the x86-64 * assembly instructions mentioned in 1. * * 3. We only have 64x64 bit instructions that return the lower 64 bits of * the result, i.e., we have to use plain C. * * Our inputs are less than the full width, so we have three options: * a. Ignore this fact and just implement the intrinsics manually. * b. Split both into 31-bit pieces, which guarantees no internal * overflow, but requires extra work upfront (unless we change the * lookup table). * c. Split only the first factor into 31-bit pieces, which also * guarantees no internal overflow, but requires extra work since the * intermediate results are not perfectly aligned. */ #if defined(HAVE_INT128) /* Best case: use 128-bit type. */ static inline uint64 mulShift(const uint64 m, const uint64 *const mul, const int32 j) { const uint128 b0 = ((uint128) m) * mul[0]; const uint128 b2 = ((uint128) m) * mul[1]; return (uint64) (((b0 >> 64) + b2) >> (j - 64)); } static inline uint64 mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j, uint64 *const vp, uint64 *const vm, const uint32 mmShift) { *vp = mulShift(4 * m + 2, mul, j); *vm = mulShift(4 * m - 1 - mmShift, mul, j); return mulShift(4 * m, mul, j); } #elif defined(HAS_64_BIT_INTRINSICS) static inline uint64 mulShift(const uint64 m, const uint64 *const mul, const int32 j) { /* m is maximum 55 bits */ uint64 high1; /* 128 */ const uint64 low1 = umul128(m, mul[1], &high1); /* 64 */ uint64 high0; uint64 sum; /* 64 */ umul128(m, mul[0], &high0); /* 0 */ sum = high0 + low1; if (sum < high0) { ++high1; /* overflow into high1 */ } return shiftright128(sum, high1, j - 64); } static inline uint64 mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j, uint64 *const vp, uint64 *const vm, const uint32 mmShift) { *vp = mulShift(4 * m + 2, mul, j); *vm = mulShift(4 * m - 1 - mmShift, mul, j); return mulShift(4 * m, mul, j); } #else /* // !defined(HAVE_INT128) && * !defined(HAS_64_BIT_INTRINSICS) */ static inline uint64 mulShiftAll(uint64 m, const uint64 *const mul, const int32 j, uint64 *const vp, uint64 *const vm, const uint32 mmShift) { m <<= 1; /* m is maximum 55 bits */ uint64 tmp; const uint64 lo = umul128(m, mul[0], &tmp); uint64 hi; const uint64 mid = tmp + umul128(m, mul[1], &hi); hi += mid < tmp; /* overflow into hi */ const uint64 lo2 = lo + mul[0]; const uint64 mid2 = mid + mul[1] + (lo2 < lo); const uint64 hi2 = hi + (mid2 < mid); *vp = shiftright128(mid2, hi2, j - 64 - 1); if (mmShift == 1) { const uint64 lo3 = lo - mul[0]; const uint64 mid3 = mid - mul[1] - (lo3 > lo); const uint64 hi3 = hi - (mid3 > mid); *vm = shiftright128(mid3, hi3, j - 64 - 1); } else { const uint64 lo3 = lo + lo; const uint64 mid3 = mid + mid + (lo3 < lo); const uint64 hi3 = hi + hi + (mid3 < mid); const uint64 lo4 = lo3 - mul[0]; const uint64 mid4 = mid3 - mul[1] - (lo4 > lo3); const uint64 hi4 = hi3 - (mid4 > mid3); *vm = shiftright128(mid4, hi4, j - 64); } return shiftright128(mid, hi, j - 64 - 1); } #endif /* // HAS_64_BIT_INTRINSICS */ static inline uint32 decimalLength(const uint64 v) { /* This is slightly faster than a loop. */ /* The average output length is 16.38 digits, so we check high-to-low. */ /* Function precondition: v is not an 18, 19, or 20-digit number. */ /* (17 digits are sufficient for round-tripping.) */ Assert(v < 100000000000000000L); if (v >= 10000000000000000L) { return 17; } if (v >= 1000000000000000L) { return 16; } if (v >= 100000000000000L) { return 15; } if (v >= 10000000000000L) { return 14; } if (v >= 1000000000000L) { return 13; } if (v >= 100000000000L) { return 12; } if (v >= 10000000000L) { return 11; } if (v >= 1000000000L) { return 10; } if (v >= 100000000L) { return 9; } if (v >= 10000000L) { return 8; } if (v >= 1000000L) { return 7; } if (v >= 100000L) { return 6; } if (v >= 10000L) { return 5; } if (v >= 1000L) { return 4; } if (v >= 100L) { return 3; } if (v >= 10L) { return 2; } return 1; } /* A floating decimal representing m * 10^e. */ typedef struct floating_decimal_64 { uint64 mantissa; int32 exponent; } floating_decimal_64; static inline floating_decimal_64 d2d(const uint64 ieeeMantissa, const uint32 ieeeExponent) { int32 e2; uint64 m2; if (ieeeExponent == 0) { /* We subtract 2 so that the bounds computation has 2 additional bits. */ e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; m2 = ieeeMantissa; } else { e2 = ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa; } #if STRICTLY_SHORTEST const bool even = (m2 & 1) == 0; const bool acceptBounds = even; #else const bool acceptBounds = false; #endif /* Step 2: Determine the interval of legal decimal representations. */ const uint64 mv = 4 * m2; /* Implicit bool -> int conversion. True is 1, false is 0. */ const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1; /* We would compute mp and mm like this: */ /* uint64 mp = 4 * m2 + 2; */ /* uint64 mm = mv - 1 - mmShift; */ /* Step 3: Convert to a decimal power base using 128-bit arithmetic. */ uint64 vr, vp, vm; int32 e10; bool vmIsTrailingZeros = false; bool vrIsTrailingZeros = false; if (e2 >= 0) { /* * I tried special-casing q == 0, but there was no effect on * performance. * * This expr is slightly faster than max(0, log10Pow2(e2) - 1). */ const uint32 q = log10Pow2(e2) - (e2 > 3); const int32 k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q) - 1; const int32 i = -e2 + q + k; e10 = q; vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift); if (q <= 21) { /* * This should use q <= 22, but I think 21 is also safe. Smaller * values may still be safe, but it's more difficult to reason * about them. * * Only one of mp, mv, and mm can be a multiple of 5, if any. */ const uint32 mvMod5 = (uint32) (mv - 5 * div5(mv)); if (mvMod5 == 0) { vrIsTrailingZeros = multipleOfPowerOf5(mv, q); } else if (acceptBounds) { /*---- * Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q * <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q * <=> true && pow5Factor(mm) >= q, since e2 >= q. *---- */ vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q); } else { /* Same as min(e2 + 1, pow5Factor(mp)) >= q. */ vp -= multipleOfPowerOf5(mv + 2, q); } } } else { /* * This expression is slightly faster than max(0, log10Pow5(-e2) - 1). */ const uint32 q = log10Pow5(-e2) - (-e2 > 1); const int32 i = -e2 - q; const int32 k = pow5bits(i) - DOUBLE_POW5_BITCOUNT; const int32 j = q - k; e10 = q + e2; vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift); if (q <= 1) { /* * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q * trailing 0 bits. */ /* mv = 4 * m2, so it always has at least two trailing 0 bits. */ vrIsTrailingZeros = true; if (acceptBounds) { /* * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff * mmShift == 1. */ vmIsTrailingZeros = mmShift == 1; } else { /* * mp = mv + 2, so it always has at least one trailing 0 bit. */ --vp; } } else if (q < 63) { /* TODO(ulfjack):Use a tighter bound here. */ /* * We need to compute min(ntz(mv), pow5Factor(mv) - e2) >= q - 1 */ /* <=> ntz(mv) >= q - 1 && pow5Factor(mv) - e2 >= q - 1 */ /* <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) */ /* <=> (mv & ((1 << (q - 1)) - 1)) == 0 */ /* * We also need to make sure that the left shift does not * overflow. */ vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1); } } /* * Step 4: Find the shortest decimal representation in the interval of * legal representations. */ uint32 removed = 0; uint8 lastRemovedDigit = 0; uint64 output; /* On average, we remove ~2 digits. */ if (vmIsTrailingZeros || vrIsTrailingZeros) { /* General case, which happens rarely (~0.7%). */ for (;;) { const uint64 vpDiv10 = div10(vp); const uint64 vmDiv10 = div10(vm); if (vpDiv10 <= vmDiv10) break; const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10); const uint64 vrDiv10 = div10(vr); const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10); vmIsTrailingZeros &= vmMod10 == 0; vrIsTrailingZeros &= lastRemovedDigit == 0; lastRemovedDigit = (uint8) vrMod10; vr = vrDiv10; vp = vpDiv10; vm = vmDiv10; ++removed; } if (vmIsTrailingZeros) { for (;;) { const uint64 vmDiv10 = div10(vm); const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10); if (vmMod10 != 0) break; const uint64 vpDiv10 = div10(vp); const uint64 vrDiv10 = div10(vr); const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10); vrIsTrailingZeros &= lastRemovedDigit == 0; lastRemovedDigit = (uint8) vrMod10; vr = vrDiv10; vp = vpDiv10; vm = vmDiv10; ++removed; } } if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) { /* Round even if the exact number is .....50..0. */ lastRemovedDigit = 4; } /* * We need to take vr + 1 if vr is outside bounds or we need to round * up. */ output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5); } else { /* * Specialized for the common case (~99.3%). Percentages below are * relative to this. */ bool roundUp = false; const uint64 vpDiv100 = div100(vp); const uint64 vmDiv100 = div100(vm); if (vpDiv100 > vmDiv100) { /* Optimization:remove two digits at a time(~86.2 %). */ const uint64 vrDiv100 = div100(vr); const uint32 vrMod100 = (uint32) (vr - 100 * vrDiv100); roundUp = vrMod100 >= 50; vr = vrDiv100; vp = vpDiv100; vm = vmDiv100; removed += 2; } /*---- * Loop iterations below (approximately), without optimization * above: * * 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, * 6+: 0.02% * * Loop iterations below (approximately), with optimization * above: * * 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% *---- */ for (;;) { const uint64 vpDiv10 = div10(vp); const uint64 vmDiv10 = div10(vm); if (vpDiv10 <= vmDiv10) break; const uint64 vrDiv10 = div10(vr); const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10); roundUp = vrMod10 >= 5; vr = vrDiv10; vp = vpDiv10; vm = vmDiv10; ++removed; } /* * We need to take vr + 1 if vr is outside bounds or we need to round * up. */ output = vr + (vr == vm || roundUp); } const int32 exp = e10 + removed; floating_decimal_64 fd; fd.exponent = exp; fd.mantissa = output; return fd; } static inline int to_chars_df(const floating_decimal_64 v, const uint32 olength, char *const result) { /* Step 5: Print the decimal representation. */ int index = 0; uint64 output = v.mantissa; int32 exp = v.exponent; /*---- * On entry, mantissa * 10^exp is the result to be output. * Caller has already done the - sign if needed. * * We want to insert the point somewhere depending on the output length * and exponent, which might mean adding zeros: * * exp | format * 1+ | ddddddddd000000 * 0 | ddddddddd * -1 .. -len+1 | dddddddd.d to d.ddddddddd * -len ... | 0.ddddddddd to 0.000dddddd */ uint32 i = 0; int32 nexp = exp + olength; if (nexp <= 0) { /* -nexp is number of 0s to add after '.' */ Assert(nexp >= -3); /* 0.000ddddd */ index = 2 - nexp; /* won't need more than this many 0s */ memcpy(result, "0.000000", 8); } else if (exp < 0) { /* * dddd.dddd; leave space at the start and move the '.' in after */ index = 1; } else { /* * We can save some code later by pre-filling with zeros. We know that * there can be no more than 16 output digits in this form, otherwise * we would not choose fixed-point output. */ Assert(exp < 16 && exp + olength <= 16); memset(result, '0', 16); } /* * We prefer 32-bit operations, even on 64-bit platforms. We have at most * 17 digits, and uint32 can store 9 digits. If output doesn't fit into * uint32, we cut off 8 digits, so the rest will fit into uint32. */ if ((output >> 32) != 0) { /* Expensive 64-bit division. */ const uint64 q = div1e8(output); uint32 output2 = (uint32) (output - 100000000 * q); const uint32 c = output2 % 10000; output = q; output2 /= 10000; const uint32 d = output2 % 10000; const uint32 c0 = (c % 100) << 1; const uint32 c1 = (c / 100) << 1; const uint32 d0 = (d % 100) << 1; const uint32 d1 = (d / 100) << 1; memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2); memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2); memcpy(result + index + olength - i - 6, DIGIT_TABLE + d0, 2); memcpy(result + index + olength - i - 8, DIGIT_TABLE + d1, 2); i += 8; } uint32 output2 = (uint32) output; while (output2 >= 10000) { const uint32 c = output2 - 10000 * (output2 / 10000); const uint32 c0 = (c % 100) << 1; const uint32 c1 = (c / 100) << 1; output2 /= 10000; memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2); memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2); i += 4; } if (output2 >= 100) { const uint32 c = (output2 % 100) << 1; output2 /= 100; memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2); i += 2; } if (output2 >= 10) { const uint32 c = output2 << 1; memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2); } else { result[index] = (char) ('0' + output2); } if (index == 1) { /* * nexp is 1..15 here, representing the number of digits before the * point. A value of 16 is not possible because we switch to * scientific notation when the display exponent reaches 15. */ Assert(nexp < 16); /* gcc only seems to want to optimize memmove for small 2^n */ if (nexp & 8) { memmove(result + index - 1, result + index, 8); index += 8; } if (nexp & 4) { memmove(result + index - 1, result + index, 4); index += 4; } if (nexp & 2) { memmove(result + index - 1, result + index, 2); index += 2; } if (nexp & 1) { result[index - 1] = result[index]; } result[nexp] = '.'; index = olength + 1; } else if (exp >= 0) { /* we supplied the trailing zeros earlier, now just set the length. */ index = olength + exp; } else { index = olength + (2 - nexp); } return index; } static inline int to_chars(floating_decimal_64 v, const bool sign, char *const result) { /* Step 5: Print the decimal representation. */ int index = 0; uint64 output = v.mantissa; uint32 olength = decimalLength(output); int32 exp = v.exponent + olength - 1; if (sign) { result[index++] = '-'; } /* * The thresholds for fixed-point output are chosen to match printf * defaults. Beware that both the code of to_chars_df and the value of * DOUBLE_SHORTEST_DECIMAL_LEN are sensitive to these thresholds. */ if (exp >= -4 && exp < 15) return to_chars_df(v, olength, result + index) + sign; /* * If v.exponent is exactly 0, we might have reached here via the small * integer fast path, in which case v.mantissa might contain trailing * (decimal) zeros. For scientific notation we need to move these zeros * into the exponent. (For fixed point this doesn't matter, which is why * we do this here rather than above.) * * Since we already calculated the display exponent (exp) above based on * the old decimal length, that value does not change here. Instead, we * just reduce the display length for each digit removed. * * If we didn't get here via the fast path, the raw exponent will not * usually be 0, and there will be no trailing zeros, so we pay no more * than one div10/multiply extra cost. We claw back half of that by * checking for divisibility by 2 before dividing by 10. */ if (v.exponent == 0) { while ((output & 1) == 0) { const uint64 q = div10(output); const uint32 r = (uint32) (output - 10 * q); if (r != 0) break; output = q; --olength; } } /*---- * Print the decimal digits. * * The following code is equivalent to: * * for (uint32 i = 0; i < olength - 1; ++i) { * const uint32 c = output % 10; output /= 10; * result[index + olength - i] = (char) ('0' + c); * } * result[index] = '0' + output % 10; *---- */ uint32 i = 0; /* * We prefer 32-bit operations, even on 64-bit platforms. We have at most * 17 digits, and uint32 can store 9 digits. If output doesn't fit into * uint32, we cut off 8 digits, so the rest will fit into uint32. */ if ((output >> 32) != 0) { /* Expensive 64-bit division. */ const uint64 q = div1e8(output); uint32 output2 = (uint32) (output - 100000000 * q); output = q; const uint32 c = output2 % 10000; output2 /= 10000; const uint32 d = output2 % 10000; const uint32 c0 = (c % 100) << 1; const uint32 c1 = (c / 100) << 1; const uint32 d0 = (d % 100) << 1; const uint32 d1 = (d / 100) << 1; memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2); memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2); i += 8; } uint32 output2 = (uint32) output; while (output2 >= 10000) { const uint32 c = output2 - 10000 * (output2 / 10000); output2 /= 10000; const uint32 c0 = (c % 100) << 1; const uint32 c1 = (c / 100) << 1; memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); i += 4; } if (output2 >= 100) { const uint32 c = (output2 % 100) << 1; output2 /= 100; memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2); i += 2; } if (output2 >= 10) { const uint32 c = output2 << 1; /* * We can't use memcpy here: the decimal dot goes between these two * digits. */ result[index + olength - i] = DIGIT_TABLE[c + 1]; result[index] = DIGIT_TABLE[c]; } else { result[index] = (char) ('0' + output2); } /* Print decimal point if needed. */ if (olength > 1) { result[index + 1] = '.'; index += olength + 1; } else { ++index; } /* Print the exponent. */ result[index++] = 'e'; if (exp < 0) { result[index++] = '-'; exp = -exp; } else result[index++] = '+'; if (exp >= 100) { const int32 c = exp % 10; memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2); result[index + 2] = (char) ('0' + c); index += 3; } else { memcpy(result + index, DIGIT_TABLE + 2 * exp, 2); index += 2; } return index; } static inline bool d2d_small_int(const uint64 ieeeMantissa, const uint32 ieeeExponent, floating_decimal_64 *v) { const int32 e2 = (int32) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; /* * Avoid using multiple "return false;" here since it tends to provoke the * compiler into inlining multiple copies of d2d, which is undesirable. */ if (e2 >= -DOUBLE_MANTISSA_BITS && e2 <= 0) { /*---- * Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: * 1 <= f = m2 / 2^-e2 < 2^53. * * Test if the lower -e2 bits of the significand are 0, i.e. whether * the fraction is 0. We can use ieeeMantissa here, since the implied * 1 bit can never be tested by this; the implied 1 can only be part * of a fraction if e2 < -DOUBLE_MANTISSA_BITS which we already * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -53) */ const uint64 mask = (UINT64CONST(1) << -e2) - 1; const uint64 fraction = ieeeMantissa & mask; if (fraction == 0) { /*---- * f is an integer in the range [1, 2^53). * Note: mantissa might contain trailing (decimal) 0's. * Note: since 2^53 < 10^16, there is no need to adjust * decimalLength(). */ const uint64 m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa; v->mantissa = m2 >> -e2; v->exponent = 0; return true; } } return false; } /* * Store the shortest decimal representation of the given double as an * UNTERMINATED string in the caller's supplied buffer (which must be at least * DOUBLE_SHORTEST_DECIMAL_LEN-1 bytes long). * * Returns the number of bytes stored. */ int double_to_shortest_decimal_bufn(double f, char *result) { /* * Step 1: Decode the floating-point number, and unify normalized and * subnormal cases. */ const uint64 bits = double_to_bits(f); /* Decode bits into sign, mantissa, and exponent. */ const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; const uint64 ieeeMantissa = bits & ((UINT64CONST(1) << DOUBLE_MANTISSA_BITS) - 1); const uint32 ieeeExponent = (uint32) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); /* Case distinction; exit early for the easy cases. */ if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) { return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0)); } floating_decimal_64 v; const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v); if (!isSmallInt) { v = d2d(ieeeMantissa, ieeeExponent); } return to_chars(v, ieeeSign, result); } /* * Store the shortest decimal representation of the given double as a * null-terminated string in the caller's supplied buffer (which must be at * least DOUBLE_SHORTEST_DECIMAL_LEN bytes long). * * Returns the string length. */ int double_to_shortest_decimal_buf(double f, char *result) { const int index = double_to_shortest_decimal_bufn(f, result); /* Terminate the string. */ Assert(index < DOUBLE_SHORTEST_DECIMAL_LEN); result[index] = '\0'; return index; } /* * Return the shortest decimal representation as a null-terminated palloc'd * string (outside the backend, uses malloc() instead). * * Caller is responsible for freeing the result. */ char * double_to_shortest_decimal(double f) { char *const result = (char *) palloc(DOUBLE_SHORTEST_DECIMAL_LEN); double_to_shortest_decimal_buf(f, result); return result; }