/*--------------------------------------------------------------------------- * * Common routines for Ryu floating-point output. * * Portions Copyright (c) 2018-2021, PostgreSQL Global Development Group * * IDENTIFICATION * src/common/ryu_common.h * * This is a modification of code taken from github.com/ulfjack/ryu under the * terms of the Boost license (not the Apache license). The original copyright * notice follows: * * Copyright 2018 Ulf Adams * * The contents of this file may be used under the terms of the Apache * License, Version 2.0. * * (See accompanying file LICENSE-Apache or copy at * http://www.apache.org/licenses/LICENSE-2.0) * * Alternatively, the contents of this file may be used under the terms of the * Boost Software License, Version 1.0. * * (See accompanying file LICENSE-Boost or copy at * https://www.boost.org/LICENSE_1_0.txt) * * Unless required by applicable law or agreed to in writing, this software is * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. * *--------------------------------------------------------------------------- */ #ifndef RYU_COMMON_H #define RYU_COMMON_H /* * Upstream Ryu's output is always the shortest possible. But we adjust that * slightly to improve portability: we avoid outputting the exact midpoint * value between two representable floats, since that relies on the reader * getting the round-to-even rule correct, which seems to be the common * failure mode. * * Defining this to 1 would restore the upstream behavior. */ #define STRICTLY_SHORTEST 0 #if SIZEOF_SIZE_T < 8 #define RYU_32_BIT_PLATFORM #endif /* Returns e == 0 ? 1 : ceil(log_2(5^e)). */ static inline uint32 pow5bits(const int32 e) { /* * This approximation works up to the point that the multiplication * overflows at e = 3529. * * If the multiplication were done in 64 bits, it would fail at 5^4004 * which is just greater than 2^9297. */ Assert(e >= 0); Assert(e <= 3528); return ((((uint32) e) * 1217359) >> 19) + 1; } /* Returns floor(log_10(2^e)). */ static inline int32 log10Pow2(const int32 e) { /* * The first value this approximation fails for is 2^1651 which is just * greater than 10^297. */ Assert(e >= 0); Assert(e <= 1650); return (int32) ((((uint32) e) * 78913) >> 18); } /* Returns floor(log_10(5^e)). */ static inline int32 log10Pow5(const int32 e) { /* * The first value this approximation fails for is 5^2621 which is just * greater than 10^1832. */ Assert(e >= 0); Assert(e <= 2620); return (int32) ((((uint32) e) * 732923) >> 20); } static inline int copy_special_str(char *const result, const bool sign, const bool exponent, const bool mantissa) { if (mantissa) { memcpy(result, "NaN", 3); return 3; } if (sign) { result[0] = '-'; } if (exponent) { memcpy(result + sign, "Infinity", 8); return sign + 8; } result[sign] = '0'; return sign + 1; } static inline uint32 float_to_bits(const float f) { uint32 bits = 0; memcpy(&bits, &f, sizeof(float)); return bits; } static inline uint64 double_to_bits(const double d) { uint64 bits = 0; memcpy(&bits, &d, sizeof(double)); return bits; } #endif /* RYU_COMMON_H */