/*------------------------------------------------------------------------- * * sha2.c * SHA functions for SHA-224, SHA-256, SHA-384 and SHA-512. * * This includes the fallback implementation for SHA2 cryptographic * hashes. * * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/common/sha2.c * *------------------------------------------------------------------------- */ /* $OpenBSD: sha2.c,v 1.6 2004/05/03 02:57:36 millert Exp $ */ /* * FILE: sha2.c * AUTHOR: Aaron D. Gifford * * Copyright (c) 2000-2001, Aaron D. Gifford * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ */ #ifndef FRONTEND #include "postgres.h" #else #include "postgres_fe.h" #endif #include "sha2_int.h" /* * In backend, use palloc/pfree to ease the error handling. In frontend, * use malloc to be able to return a failure status back to the caller. */ #ifndef FRONTEND #define ALLOC(size) palloc(size) #define FREE(ptr) pfree(ptr) #else #define ALLOC(size) malloc(size) #define FREE(ptr) free(ptr) #endif /* * UNROLLED TRANSFORM LOOP NOTE: * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform * loop version for the hash transform rounds (defined using macros * later in this file). Either define on the command line, for example: * * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c * * or define below: * * #define SHA2_UNROLL_TRANSFORM * */ /*** SHA-256/384/512 Various Length Definitions ***********************/ #define PG_SHA256_SHORT_BLOCK_LENGTH (PG_SHA256_BLOCK_LENGTH - 8) #define PG_SHA384_SHORT_BLOCK_LENGTH (PG_SHA384_BLOCK_LENGTH - 16) #define PG_SHA512_SHORT_BLOCK_LENGTH (PG_SHA512_BLOCK_LENGTH - 16) /*** ENDIAN REVERSAL MACROS *******************************************/ #ifndef WORDS_BIGENDIAN #define REVERSE32(w,x) { \ uint32 tmp = (w); \ tmp = (tmp >> 16) | (tmp << 16); \ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ } #define REVERSE64(w,x) { \ uint64 tmp = (w); \ tmp = (tmp >> 32) | (tmp << 32); \ tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ ((tmp & 0x0000ffff0000ffffULL) << 16); \ } #endif /* not bigendian */ /* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */ #define ADDINC128(w,n) { \ (w)[0] += (uint64)(n); \ if ((w)[0] < (n)) { \ (w)[1]++; \ } \ } /*** THE SIX LOGICAL FUNCTIONS ****************************************/ /* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf) * uses this same "backwards" definition. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define R(b,x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Four of six logical functions used in SHA-256: */ #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) /* Four of six logical functions used in SHA-384 and SHA-512: */ #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) /*** INTERNAL FUNCTION PROTOTYPES *************************************/ /* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */ static void SHA512_Last(pg_sha512_ctx *context); static void SHA256_Transform(pg_sha256_ctx *context, const uint8 *data); static void SHA512_Transform(pg_sha512_ctx *context, const uint8 *data); /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ /* Hash constant words K for SHA-256: */ static const uint32 K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash value H for SHA-224: */ static const uint32 sha224_initial_hash_value[8] = { 0xc1059ed8UL, 0x367cd507UL, 0x3070dd17UL, 0xf70e5939UL, 0xffc00b31UL, 0x68581511UL, 0x64f98fa7UL, 0xbefa4fa4UL }; /* Initial hash value H for SHA-256: */ static const uint32 sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; /* Hash constant words K for SHA-384 and SHA-512: */ static const uint64 K512[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; /* Initial hash value H for SHA-384 */ static const uint64 sha384_initial_hash_value[8] = { 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL }; /* Initial hash value H for SHA-512 */ static const uint64 sha512_initial_hash_value[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; /*** SHA-256: *********************************************************/ void pg_sha256_init(pg_sha256_ctx *context) { if (context == NULL) return; memcpy(context->state, sha256_initial_hash_value, PG_SHA256_DIGEST_LENGTH); memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH); context->bitcount = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-256 round macros: */ #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ W256[j] = (uint32)data[3] | ((uint32)data[2] << 8) | \ ((uint32)data[1] << 16) | ((uint32)data[0] << 24); \ data += 4; \ T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ (d) += T1; \ (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ j++; \ } while(0) #define ROUND256(a,b,c,d,e,f,g,h) do { \ s0 = W256[(j+1)&0x0f]; \ s0 = sigma0_256(s0); \ s1 = W256[(j+14)&0x0f]; \ s1 = sigma1_256(s1); \ T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ j++; \ } while(0) static void SHA256_Transform(pg_sha256_ctx *context, const uint8 *data) { uint32 a, b, c, d, e, f, g, h, s0, s1; uint32 T1, *W256; int j; W256 = (uint32 *) context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { /* Rounds 0 to 15 (unrolled): */ ROUND256_0_TO_15(a, b, c, d, e, f, g, h); ROUND256_0_TO_15(h, a, b, c, d, e, f, g); ROUND256_0_TO_15(g, h, a, b, c, d, e, f); ROUND256_0_TO_15(f, g, h, a, b, c, d, e); ROUND256_0_TO_15(e, f, g, h, a, b, c, d); ROUND256_0_TO_15(d, e, f, g, h, a, b, c); ROUND256_0_TO_15(c, d, e, f, g, h, a, b); ROUND256_0_TO_15(b, c, d, e, f, g, h, a); } while (j < 16); /* Now for the remaining rounds to 64: */ do { ROUND256(a, b, c, d, e, f, g, h); ROUND256(h, a, b, c, d, e, f, g); ROUND256(g, h, a, b, c, d, e, f); ROUND256(f, g, h, a, b, c, d, e); ROUND256(e, f, g, h, a, b, c, d); ROUND256(d, e, f, g, h, a, b, c); ROUND256(c, d, e, f, g, h, a, b); ROUND256(b, c, d, e, f, g, h, a); } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ static void SHA256_Transform(pg_sha256_ctx *context, const uint8 *data) { uint32 a, b, c, d, e, f, g, h, s0, s1; uint32 T1, T2, *W256; int j; W256 = (uint32 *) context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) | ((uint32) data[1] << 16) | ((uint32) data[0] << 24); data += 4; /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j + 1) & 0x0f]; s0 = sigma0_256(s0); s1 = W256[(j + 14) & 0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void pg_sha256_update(pg_sha256_ctx *context, const uint8 *data, size_t len) { size_t freespace, usedspace; /* Calling with no data is valid (we do nothing) */ if (len == 0) return; usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = PG_SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, freespace); context->bitcount += freespace << 3; len -= freespace; data += freespace; SHA256_Transform(context, context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= PG_SHA256_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ SHA256_Transform(context, data); context->bitcount += PG_SHA256_BLOCK_LENGTH << 3; len -= PG_SHA256_BLOCK_LENGTH; data += PG_SHA256_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; } static void SHA256_Last(pg_sha256_ctx *context) { unsigned int usedspace; usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH; #ifndef WORDS_BIGENDIAN /* Convert FROM host byte order */ REVERSE64(context->bitcount, context->bitcount); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= PG_SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, PG_SHA256_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < PG_SHA256_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, PG_SHA256_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ SHA256_Transform(context, context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH); } } else { /* Set-up for the last transform: */ memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Set the bit count: */ *(uint64 *) &context->buffer[PG_SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; /* Final transform: */ SHA256_Transform(context, context->buffer); } void pg_sha256_final(pg_sha256_ctx *context, uint8 *digest) { /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { SHA256_Last(context); #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE32(context->state[j], context->state[j]); } } #endif memcpy(digest, context->state, PG_SHA256_DIGEST_LENGTH); } /* Clean up state data: */ memset(context, 0, sizeof(pg_sha256_ctx)); } /*** SHA-512: *********************************************************/ void pg_sha512_init(pg_sha512_ctx *context) { if (context == NULL) return; memcpy(context->state, sha512_initial_hash_value, PG_SHA512_DIGEST_LENGTH); memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-512 round macros: */ #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ W512[j] = (uint64)data[7] | ((uint64)data[6] << 8) | \ ((uint64)data[5] << 16) | ((uint64)data[4] << 24) | \ ((uint64)data[3] << 32) | ((uint64)data[2] << 40) | \ ((uint64)data[1] << 48) | ((uint64)data[0] << 56); \ data += 8; \ T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ (d) += T1; \ (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ j++; \ } while(0) #define ROUND512(a,b,c,d,e,f,g,h) do { \ s0 = W512[(j+1)&0x0f]; \ s0 = sigma0_512(s0); \ s1 = W512[(j+14)&0x0f]; \ s1 = sigma1_512(s1); \ T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ j++; \ } while(0) static void SHA512_Transform(pg_sha512_ctx *context, const uint8 *data) { uint64 a, b, c, d, e, f, g, h, s0, s1; uint64 T1, *W512 = (uint64 *) context->buffer; int j; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { ROUND512_0_TO_15(a, b, c, d, e, f, g, h); ROUND512_0_TO_15(h, a, b, c, d, e, f, g); ROUND512_0_TO_15(g, h, a, b, c, d, e, f); ROUND512_0_TO_15(f, g, h, a, b, c, d, e); ROUND512_0_TO_15(e, f, g, h, a, b, c, d); ROUND512_0_TO_15(d, e, f, g, h, a, b, c); ROUND512_0_TO_15(c, d, e, f, g, h, a, b); ROUND512_0_TO_15(b, c, d, e, f, g, h, a); } while (j < 16); /* Now for the remaining rounds up to 79: */ do { ROUND512(a, b, c, d, e, f, g, h); ROUND512(h, a, b, c, d, e, f, g); ROUND512(g, h, a, b, c, d, e, f); ROUND512(f, g, h, a, b, c, d, e); ROUND512(e, f, g, h, a, b, c, d); ROUND512(d, e, f, g, h, a, b, c); ROUND512(c, d, e, f, g, h, a, b); ROUND512(b, c, d, e, f, g, h, a); } while (j < 80); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ static void SHA512_Transform(pg_sha512_ctx *context, const uint8 *data) { uint64 a, b, c, d, e, f, g, h, s0, s1; uint64 T1, T2, *W512 = (uint64 *) context->buffer; int j; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) | ((uint64) data[5] << 16) | ((uint64) data[4] << 24) | ((uint64) data[3] << 32) | ((uint64) data[2] << 40) | ((uint64) data[1] << 48) | ((uint64) data[0] << 56); data += 8; /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W512[(j + 1) & 0x0f]; s0 = sigma0_512(s0); s1 = W512[(j + 14) & 0x0f]; s1 = sigma1_512(s1); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0); T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 80); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void pg_sha512_update(pg_sha512_ctx *context, const uint8 *data, size_t len) { size_t freespace, usedspace; /* Calling with no data is valid (we do nothing) */ if (len == 0) return; usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = PG_SHA512_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, freespace); ADDINC128(context->bitcount, freespace << 3); len -= freespace; data += freespace; SHA512_Transform(context, context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); ADDINC128(context->bitcount, len << 3); /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= PG_SHA512_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ SHA512_Transform(context, data); ADDINC128(context->bitcount, PG_SHA512_BLOCK_LENGTH << 3); len -= PG_SHA512_BLOCK_LENGTH; data += PG_SHA512_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); ADDINC128(context->bitcount, len << 3); } /* Clean up: */ usedspace = freespace = 0; } static void SHA512_Last(pg_sha512_ctx *context) { unsigned int usedspace; usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH; #ifndef WORDS_BIGENDIAN /* Convert FROM host byte order */ REVERSE64(context->bitcount[0], context->bitcount[0]); REVERSE64(context->bitcount[1], context->bitcount[1]); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= PG_SHA512_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, PG_SHA512_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < PG_SHA512_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, PG_SHA512_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ SHA512_Transform(context, context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH - 2); } } else { /* Prepare for final transform: */ memset(context->buffer, 0, PG_SHA512_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Store the length of input data (in bits): */ *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0]; /* Final transform: */ SHA512_Transform(context, context->buffer); } void pg_sha512_final(pg_sha512_ctx *context, uint8 *digest) { /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { SHA512_Last(context); /* Save the hash data for output: */ #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE64(context->state[j], context->state[j]); } } #endif memcpy(digest, context->state, PG_SHA512_DIGEST_LENGTH); } /* Zero out state data */ memset(context, 0, sizeof(pg_sha512_ctx)); } /*** SHA-384: *********************************************************/ void pg_sha384_init(pg_sha384_ctx *context) { if (context == NULL) return; memcpy(context->state, sha384_initial_hash_value, PG_SHA512_DIGEST_LENGTH); memset(context->buffer, 0, PG_SHA384_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; } void pg_sha384_update(pg_sha384_ctx *context, const uint8 *data, size_t len) { pg_sha512_update((pg_sha512_ctx *) context, data, len); } void pg_sha384_final(pg_sha384_ctx *context, uint8 *digest) { /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { SHA512_Last((pg_sha512_ctx *) context); /* Save the hash data for output: */ #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 6; j++) { REVERSE64(context->state[j], context->state[j]); } } #endif memcpy(digest, context->state, PG_SHA384_DIGEST_LENGTH); } /* Zero out state data */ memset(context, 0, sizeof(pg_sha384_ctx)); } /*** SHA-224: *********************************************************/ void pg_sha224_init(pg_sha224_ctx *context) { if (context == NULL) return; memcpy(context->state, sha224_initial_hash_value, PG_SHA256_DIGEST_LENGTH); memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH); context->bitcount = 0; } void pg_sha224_update(pg_sha224_ctx *context, const uint8 *data, size_t len) { pg_sha256_update((pg_sha256_ctx *) context, data, len); } void pg_sha224_final(pg_sha224_ctx *context, uint8 *digest) { /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { SHA256_Last(context); #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE32(context->state[j], context->state[j]); } } #endif memcpy(digest, context->state, PG_SHA224_DIGEST_LENGTH); } /* Clean up state data: */ memset(context, 0, sizeof(pg_sha224_ctx)); }