/*------------------------------------------------------------------------- * * pg_bswap.h * Byte swapping. * * Macros for reversing the byte order of 16, 32 and 64-bit unsigned integers. * For example, 0xAABBCCDD becomes 0xDDCCBBAA. These are just wrappers for * built-in functions provided by the compiler where support exists. * * Note that all of these functions accept unsigned integers as arguments and * return the same. Use caution when using these wrapper macros with signed * integers. * * Copyright (c) 2015-2021, PostgreSQL Global Development Group * * src/include/port/pg_bswap.h * *------------------------------------------------------------------------- */ #ifndef PG_BSWAP_H #define PG_BSWAP_H /* * In all supported versions msvc provides _byteswap_* functions in stdlib.h, * already included by c.h. */ /* implementation of uint16 pg_bswap16(uint16) */ #if defined(HAVE__BUILTIN_BSWAP16) #define pg_bswap16(x) __builtin_bswap16(x) #elif defined(_MSC_VER) #define pg_bswap16(x) _byteswap_ushort(x) #else static inline uint16 pg_bswap16(uint16 x) { return ((x << 8) & 0xff00) | ((x >> 8) & 0x00ff); } #endif /* HAVE__BUILTIN_BSWAP16 */ /* implementation of uint32 pg_bswap32(uint32) */ #if defined(HAVE__BUILTIN_BSWAP32) #define pg_bswap32(x) __builtin_bswap32(x) #elif defined(_MSC_VER) #define pg_bswap32(x) _byteswap_ulong(x) #else static inline uint32 pg_bswap32(uint32 x) { return ((x << 24) & 0xff000000) | ((x << 8) & 0x00ff0000) | ((x >> 8) & 0x0000ff00) | ((x >> 24) & 0x000000ff); } #endif /* HAVE__BUILTIN_BSWAP32 */ /* implementation of uint64 pg_bswap64(uint64) */ #if defined(HAVE__BUILTIN_BSWAP64) #define pg_bswap64(x) __builtin_bswap64(x) #elif defined(_MSC_VER) #define pg_bswap64(x) _byteswap_uint64(x) #else static inline uint64 pg_bswap64(uint64 x) { return ((x << 56) & UINT64CONST(0xff00000000000000)) | ((x << 40) & UINT64CONST(0x00ff000000000000)) | ((x << 24) & UINT64CONST(0x0000ff0000000000)) | ((x << 8) & UINT64CONST(0x000000ff00000000)) | ((x >> 8) & UINT64CONST(0x00000000ff000000)) | ((x >> 24) & UINT64CONST(0x0000000000ff0000)) | ((x >> 40) & UINT64CONST(0x000000000000ff00)) | ((x >> 56) & UINT64CONST(0x00000000000000ff)); } #endif /* HAVE__BUILTIN_BSWAP64 */ /* * Portable and fast equivalents for ntohs, ntohl, htons, htonl, * additionally extended to 64 bits. */ #ifdef WORDS_BIGENDIAN #define pg_hton16(x) (x) #define pg_hton32(x) (x) #define pg_hton64(x) (x) #define pg_ntoh16(x) (x) #define pg_ntoh32(x) (x) #define pg_ntoh64(x) (x) #else #define pg_hton16(x) pg_bswap16(x) #define pg_hton32(x) pg_bswap32(x) #define pg_hton64(x) pg_bswap64(x) #define pg_ntoh16(x) pg_bswap16(x) #define pg_ntoh32(x) pg_bswap32(x) #define pg_ntoh64(x) pg_bswap64(x) #endif /* WORDS_BIGENDIAN */ /* * Rearrange the bytes of a Datum from big-endian order into the native byte * order. On big-endian machines, this does nothing at all. Note that the C * type Datum is an unsigned integer type on all platforms. * * One possible application of the DatumBigEndianToNative() macro is to make * bitwise comparisons cheaper. A simple 3-way comparison of Datums * transformed by the macro (based on native, unsigned comparisons) will return * the same result as a memcmp() of the corresponding original Datums, but can * be much cheaper. It's generally safe to do this on big-endian systems * without any special transformation occurring first. * * If SIZEOF_DATUM is not defined, then postgres.h wasn't included and these * macros probably shouldn't be used, so we define nothing. Note that * SIZEOF_DATUM == 8 would evaluate as 0 == 8 in that case, potentially * leading to the wrong implementation being selected and confusing errors, so * defining nothing is safest. */ #ifdef SIZEOF_DATUM #ifdef WORDS_BIGENDIAN #define DatumBigEndianToNative(x) (x) #else /* !WORDS_BIGENDIAN */ #if SIZEOF_DATUM == 8 #define DatumBigEndianToNative(x) pg_bswap64(x) #else /* SIZEOF_DATUM != 8 */ #define DatumBigEndianToNative(x) pg_bswap32(x) #endif /* SIZEOF_DATUM == 8 */ #endif /* WORDS_BIGENDIAN */ #endif /* SIZEOF_DATUM */ #endif /* PG_BSWAP_H */