/* * pg_crc.h * * PostgreSQL CRC support * * See Ross Williams' excellent introduction * A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS, available from * http://ross.net/crc/ or several other net sites. * * We have three slightly different variants of a 32-bit CRC calculation: * CRC-32C (Castagnoli polynomial), CRC-32 (Ethernet polynomial), and a legacy * CRC-32 version that uses the lookup table in a funny way. They all consist * of four macros: * * INIT_(crc) * Initialize a CRC accumulator * * COMP_(crc, data, len) * Accumulate some (more) bytes into a CRC * * FIN_(crc) * Finish a CRC calculation * * EQ_(c1, c2) * Check for equality of two CRCs. * * The CRC-32C variant is in port/pg_crc32c.h. * * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/include/utils/pg_crc.h */ #ifndef PG_CRC_H #define PG_CRC_H typedef uint32 pg_crc32; /* * CRC-32, the same used e.g. in Ethernet. * * This is currently only used in ltree and hstore contrib modules. It uses * the same lookup table as the legacy algorithm below. New code should * use the Castagnoli version instead. */ #define INIT_TRADITIONAL_CRC32(crc) ((crc) = 0xFFFFFFFF) #define FIN_TRADITIONAL_CRC32(crc) ((crc) ^= 0xFFFFFFFF) #define COMP_TRADITIONAL_CRC32(crc, data, len) \ COMP_CRC32_NORMAL_TABLE(crc, data, len, pg_crc32_table) #define EQ_TRADITIONAL_CRC32(c1, c2) ((c1) == (c2)) /* Sarwate's algorithm, for use with a "normal" lookup table */ #define COMP_CRC32_NORMAL_TABLE(crc, data, len, table) \ do { \ const unsigned char *__data = (const unsigned char *) (data); \ uint32 __len = (len); \ \ while (__len-- > 0) \ { \ int __tab_index = ((int) (crc) ^ *__data++) & 0xFF; \ (crc) = table[__tab_index] ^ ((crc) >> 8); \ } \ } while (0) /* * The CRC algorithm used for WAL et al in pre-9.5 versions. * * This closely resembles the normal CRC-32 algorithm, but is subtly * different. Using Williams' terms, we use the "normal" table, but with * "reflected" code. That's bogus, but it was like that for years before * anyone noticed. It does not correspond to any polynomial in a normal CRC * algorithm, so it's not clear what the error-detection properties of this * algorithm actually are. * * We still need to carry this around because it is used in a few on-disk * structures that need to be pg_upgradeable. It should not be used in new * code. */ #define INIT_LEGACY_CRC32(crc) ((crc) = 0xFFFFFFFF) #define FIN_LEGACY_CRC32(crc) ((crc) ^= 0xFFFFFFFF) #define COMP_LEGACY_CRC32(crc, data, len) \ COMP_CRC32_REFLECTED_TABLE(crc, data, len, pg_crc32_table) #define EQ_LEGACY_CRC32(c1, c2) ((c1) == (c2)) /* * Sarwate's algorithm, for use with a "reflected" lookup table (but in the * legacy algorithm, we actually use it on a "normal" table, see above) */ #define COMP_CRC32_REFLECTED_TABLE(crc, data, len, table) \ do { \ const unsigned char *__data = (const unsigned char *) (data); \ uint32 __len = (len); \ \ while (__len-- > 0) \ { \ int __tab_index = ((int) ((crc) >> 24) ^ *__data++) & 0xFF; \ (crc) = table[__tab_index] ^ ((crc) << 8); \ } \ } while (0) /* * Constant table for the CRC-32 polynomials. The same table is used by both * the normal and traditional variants. */ extern PGDLLIMPORT const uint32 pg_crc32_table[256]; #endif /* PG_CRC_H */