-- -- AGGREGATES -- -- avoid bit-exact output here because operations may not be bit-exact. SET extra_float_digits = 0; SELECT avg(four) AS avg_1 FROM onek; avg_1 -------------------- 1.5000000000000000 (1 row) SELECT avg(a) AS avg_32 FROM aggtest WHERE a < 100; avg_32 --------------------- 32.6666666666666667 (1 row) -- In 7.1, avg(float4) is computed using float8 arithmetic. -- Round the result to 3 digits to avoid platform-specific results. SELECT avg(b)::numeric(10,3) AS avg_107_943 FROM aggtest; avg_107_943 ------------- 107.943 (1 row) SELECT avg(gpa) AS avg_3_4 FROM ONLY student; avg_3_4 --------- 3.4 (1 row) SELECT sum(four) AS sum_1500 FROM onek; sum_1500 ---------- 1500 (1 row) SELECT sum(a) AS sum_198 FROM aggtest; sum_198 --------- 198 (1 row) SELECT sum(b) AS avg_431_773 FROM aggtest; avg_431_773 ------------- 431.773 (1 row) SELECT sum(gpa) AS avg_6_8 FROM ONLY student; avg_6_8 --------- 6.8 (1 row) SELECT max(four) AS max_3 FROM onek; max_3 ------- 3 (1 row) SELECT max(a) AS max_100 FROM aggtest; max_100 --------- 100 (1 row) SELECT max(aggtest.b) AS max_324_78 FROM aggtest; max_324_78 ------------ 324.78 (1 row) SELECT max(student.gpa) AS max_3_7 FROM student; max_3_7 --------- 3.7 (1 row) SELECT stddev_pop(b) FROM aggtest; stddev_pop ----------------- 131.10703231895 (1 row) SELECT stddev_samp(b) FROM aggtest; stddev_samp ------------------ 151.389360803998 (1 row) SELECT var_pop(b) FROM aggtest; var_pop ------------------ 17189.0539234823 (1 row) SELECT var_samp(b) FROM aggtest; var_samp ------------------ 22918.7385646431 (1 row) SELECT stddev_pop(b::numeric) FROM aggtest; stddev_pop ------------------ 131.107032862199 (1 row) SELECT stddev_samp(b::numeric) FROM aggtest; stddev_samp ------------------ 151.389361431288 (1 row) SELECT var_pop(b::numeric) FROM aggtest; var_pop -------------------- 17189.054065929769 (1 row) SELECT var_samp(b::numeric) FROM aggtest; var_samp -------------------- 22918.738754573025 (1 row) -- population variance is defined for a single tuple, sample variance -- is not SELECT var_pop(1.0::float8), var_samp(2.0::float8); var_pop | var_samp ---------+---------- 0 | (1 row) SELECT stddev_pop(3.0::float8), stddev_samp(4.0::float8); stddev_pop | stddev_samp ------------+------------- 0 | (1 row) SELECT var_pop('inf'::float8), var_samp('inf'::float8); var_pop | var_samp ---------+---------- NaN | (1 row) SELECT stddev_pop('inf'::float8), stddev_samp('inf'::float8); stddev_pop | stddev_samp ------------+------------- NaN | (1 row) SELECT var_pop('nan'::float8), var_samp('nan'::float8); var_pop | var_samp ---------+---------- NaN | (1 row) SELECT stddev_pop('nan'::float8), stddev_samp('nan'::float8); stddev_pop | stddev_samp ------------+------------- NaN | (1 row) SELECT var_pop(1.0::float4), var_samp(2.0::float4); var_pop | var_samp ---------+---------- 0 | (1 row) SELECT stddev_pop(3.0::float4), stddev_samp(4.0::float4); stddev_pop | stddev_samp ------------+------------- 0 | (1 row) SELECT var_pop('inf'::float4), var_samp('inf'::float4); var_pop | var_samp ---------+---------- NaN | (1 row) SELECT stddev_pop('inf'::float4), stddev_samp('inf'::float4); stddev_pop | stddev_samp ------------+------------- NaN | (1 row) SELECT var_pop('nan'::float4), var_samp('nan'::float4); var_pop | var_samp ---------+---------- NaN | (1 row) SELECT stddev_pop('nan'::float4), stddev_samp('nan'::float4); stddev_pop | stddev_samp ------------+------------- NaN | (1 row) SELECT var_pop(1.0::numeric), var_samp(2.0::numeric); var_pop | var_samp ---------+---------- 0 | (1 row) SELECT stddev_pop(3.0::numeric), stddev_samp(4.0::numeric); stddev_pop | stddev_samp ------------+------------- 0 | (1 row) SELECT var_pop('inf'::numeric), var_samp('inf'::numeric); var_pop | var_samp ---------+---------- NaN | (1 row) SELECT stddev_pop('inf'::numeric), stddev_samp('inf'::numeric); stddev_pop | stddev_samp ------------+------------- NaN | (1 row) SELECT var_pop('nan'::numeric), var_samp('nan'::numeric); var_pop | var_samp ---------+---------- NaN | (1 row) SELECT stddev_pop('nan'::numeric), stddev_samp('nan'::numeric); stddev_pop | stddev_samp ------------+------------- NaN | (1 row) -- verify correct results for null and NaN inputs select sum(null::int4) from generate_series(1,3); sum ----- (1 row) select sum(null::int8) from generate_series(1,3); sum ----- (1 row) select sum(null::numeric) from generate_series(1,3); sum ----- (1 row) select sum(null::float8) from generate_series(1,3); sum ----- (1 row) select avg(null::int4) from generate_series(1,3); avg ----- (1 row) select avg(null::int8) from generate_series(1,3); avg ----- (1 row) select avg(null::numeric) from generate_series(1,3); avg ----- (1 row) select avg(null::float8) from generate_series(1,3); avg ----- (1 row) select sum('NaN'::numeric) from generate_series(1,3); sum ----- NaN (1 row) select avg('NaN'::numeric) from generate_series(1,3); avg ----- NaN (1 row) -- verify correct results for infinite inputs SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('1'), ('infinity')) v(x); sum | avg | var_pop ----------+----------+--------- Infinity | Infinity | NaN (1 row) SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('infinity'), ('1')) v(x); sum | avg | var_pop ----------+----------+--------- Infinity | Infinity | NaN (1 row) SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('infinity'), ('infinity')) v(x); sum | avg | var_pop ----------+----------+--------- Infinity | Infinity | NaN (1 row) SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('-infinity'), ('infinity')) v(x); sum | avg | var_pop -----+-----+--------- NaN | NaN | NaN (1 row) SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('-infinity'), ('-infinity')) v(x); sum | avg | var_pop -----------+-----------+--------- -Infinity | -Infinity | NaN (1 row) SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('1'), ('infinity')) v(x); sum | avg | var_pop ----------+----------+--------- Infinity | Infinity | NaN (1 row) SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('infinity'), ('1')) v(x); sum | avg | var_pop ----------+----------+--------- Infinity | Infinity | NaN (1 row) SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('infinity'), ('infinity')) v(x); sum | avg | var_pop ----------+----------+--------- Infinity | Infinity | NaN (1 row) SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('-infinity'), ('infinity')) v(x); sum | avg | var_pop -----+-----+--------- NaN | NaN | NaN (1 row) SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('-infinity'), ('-infinity')) v(x); sum | avg | var_pop -----------+-----------+--------- -Infinity | -Infinity | NaN (1 row) -- test accuracy with a large input offset SELECT avg(x::float8), var_pop(x::float8) FROM (VALUES (100000003), (100000004), (100000006), (100000007)) v(x); avg | var_pop -----------+--------- 100000005 | 2.5 (1 row) SELECT avg(x::float8), var_pop(x::float8) FROM (VALUES (7000000000005), (7000000000007)) v(x); avg | var_pop ---------------+--------- 7000000000006 | 1 (1 row) -- SQL2003 binary aggregates SELECT regr_count(b, a) FROM aggtest; regr_count ------------ 4 (1 row) SELECT regr_sxx(b, a) FROM aggtest; regr_sxx ---------- 5099 (1 row) SELECT regr_syy(b, a) FROM aggtest; regr_syy ------------------ 68756.2156939293 (1 row) SELECT regr_sxy(b, a) FROM aggtest; regr_sxy ------------------ 2614.51582155004 (1 row) SELECT regr_avgx(b, a), regr_avgy(b, a) FROM aggtest; regr_avgx | regr_avgy -----------+------------------ 49.5 | 107.943152273074 (1 row) SELECT regr_r2(b, a) FROM aggtest; regr_r2 -------------------- 0.0194977982031803 (1 row) SELECT regr_slope(b, a), regr_intercept(b, a) FROM aggtest; regr_slope | regr_intercept -------------------+------------------ 0.512750700441271 | 82.5619926012309 (1 row) SELECT covar_pop(b, a), covar_samp(b, a) FROM aggtest; covar_pop | covar_samp -----------------+------------------ 653.62895538751 | 871.505273850014 (1 row) SELECT corr(b, a) FROM aggtest; corr ------------------- 0.139634516517873 (1 row) -- check single-tuple behavior SELECT covar_pop(1::float8,2::float8), covar_samp(3::float8,4::float8); covar_pop | covar_samp -----------+------------ 0 | (1 row) SELECT covar_pop(1::float8,'inf'::float8), covar_samp(3::float8,'inf'::float8); covar_pop | covar_samp -----------+------------ NaN | (1 row) SELECT covar_pop(1::float8,'nan'::float8), covar_samp(3::float8,'nan'::float8); covar_pop | covar_samp -----------+------------ NaN | (1 row) -- test accum and combine functions directly CREATE TABLE regr_test (x float8, y float8); INSERT INTO regr_test VALUES (10,150),(20,250),(30,350),(80,540),(100,200); SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x) FROM regr_test WHERE x IN (10,20,30,80); count | sum | regr_sxx | sum | regr_syy | regr_sxy -------+-----+----------+------+----------+---------- 4 | 140 | 2900 | 1290 | 83075 | 15050 (1 row) SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x) FROM regr_test; count | sum | regr_sxx | sum | regr_syy | regr_sxy -------+-----+----------+------+----------+---------- 5 | 240 | 6280 | 1490 | 95080 | 8680 (1 row) SELECT float8_accum('{4,140,2900}'::float8[], 100); float8_accum -------------- {5,240,6280} (1 row) SELECT float8_regr_accum('{4,140,2900,1290,83075,15050}'::float8[], 200, 100); float8_regr_accum ------------------------------ {5,240,6280,1490,95080,8680} (1 row) SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x) FROM regr_test WHERE x IN (10,20,30); count | sum | regr_sxx | sum | regr_syy | regr_sxy -------+-----+----------+-----+----------+---------- 3 | 60 | 200 | 750 | 20000 | 2000 (1 row) SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x) FROM regr_test WHERE x IN (80,100); count | sum | regr_sxx | sum | regr_syy | regr_sxy -------+-----+----------+-----+----------+---------- 2 | 180 | 200 | 740 | 57800 | -3400 (1 row) SELECT float8_combine('{3,60,200}'::float8[], '{0,0,0}'::float8[]); float8_combine ---------------- {3,60,200} (1 row) SELECT float8_combine('{0,0,0}'::float8[], '{2,180,200}'::float8[]); float8_combine ---------------- {2,180,200} (1 row) SELECT float8_combine('{3,60,200}'::float8[], '{2,180,200}'::float8[]); float8_combine ---------------- {5,240,6280} (1 row) SELECT float8_regr_combine('{3,60,200,750,20000,2000}'::float8[], '{0,0,0,0,0,0}'::float8[]); float8_regr_combine --------------------------- {3,60,200,750,20000,2000} (1 row) SELECT float8_regr_combine('{0,0,0,0,0,0}'::float8[], '{2,180,200,740,57800,-3400}'::float8[]); float8_regr_combine ----------------------------- {2,180,200,740,57800,-3400} (1 row) SELECT float8_regr_combine('{3,60,200,750,20000,2000}'::float8[], '{2,180,200,740,57800,-3400}'::float8[]); float8_regr_combine ------------------------------ {5,240,6280,1490,95080,8680} (1 row) DROP TABLE regr_test; -- test count, distinct SELECT count(four) AS cnt_1000 FROM onek; cnt_1000 ---------- 1000 (1 row) SELECT count(DISTINCT four) AS cnt_4 FROM onek; cnt_4 ------- 4 (1 row) select ten, count(*), sum(four) from onek group by ten order by ten; ten | count | sum -----+-------+----- 0 | 100 | 100 1 | 100 | 200 2 | 100 | 100 3 | 100 | 200 4 | 100 | 100 5 | 100 | 200 6 | 100 | 100 7 | 100 | 200 8 | 100 | 100 9 | 100 | 200 (10 rows) select ten, count(four), sum(DISTINCT four) from onek group by ten order by ten; ten | count | sum -----+-------+----- 0 | 100 | 2 1 | 100 | 4 2 | 100 | 2 3 | 100 | 4 4 | 100 | 2 5 | 100 | 4 6 | 100 | 2 7 | 100 | 4 8 | 100 | 2 9 | 100 | 4 (10 rows) -- user-defined aggregates SELECT newavg(four) AS avg_1 FROM onek; avg_1 -------------------- 1.5000000000000000 (1 row) SELECT newsum(four) AS sum_1500 FROM onek; sum_1500 ---------- 1500 (1 row) SELECT newcnt(four) AS cnt_1000 FROM onek; cnt_1000 ---------- 1000 (1 row) SELECT newcnt(*) AS cnt_1000 FROM onek; cnt_1000 ---------- 1000 (1 row) SELECT oldcnt(*) AS cnt_1000 FROM onek; cnt_1000 ---------- 1000 (1 row) SELECT sum2(q1,q2) FROM int8_tbl; sum2 ------------------- 18271560493827981 (1 row) -- test for outer-level aggregates -- this should work select ten, sum(distinct four) from onek a group by ten having exists (select 1 from onek b where sum(distinct a.four) = b.four); ten | sum -----+----- 0 | 2 2 | 2 4 | 2 6 | 2 8 | 2 (5 rows) -- this should fail because subquery has an agg of its own in WHERE select ten, sum(distinct four) from onek a group by ten having exists (select 1 from onek b where sum(distinct a.four + b.four) = b.four); ERROR: aggregate functions are not allowed in WHERE LINE 4: where sum(distinct a.four + b.four) = b.four)... ^ -- Test handling of sublinks within outer-level aggregates. -- Per bug report from Daniel Grace. select (select max((select i.unique2 from tenk1 i where i.unique1 = o.unique1))) from tenk1 o; max ------ 9999 (1 row) -- Test handling of Params within aggregate arguments in hashed aggregation. -- Per bug report from Jeevan Chalke. explain (verbose, costs off) select s1, s2, sm from generate_series(1, 3) s1, lateral (select s2, sum(s1 + s2) sm from generate_series(1, 3) s2 group by s2) ss order by 1, 2; QUERY PLAN ------------------------------------------------------------------ Sort Output: s1.s1, s2.s2, (sum((s1.s1 + s2.s2))) Sort Key: s1.s1, s2.s2 -> Nested Loop Output: s1.s1, s2.s2, (sum((s1.s1 + s2.s2))) -> Function Scan on pg_catalog.generate_series s1 Output: s1.s1 Function Call: generate_series(1, 3) -> HashAggregate Output: s2.s2, sum((s1.s1 + s2.s2)) Group Key: s2.s2 -> Function Scan on pg_catalog.generate_series s2 Output: s2.s2 Function Call: generate_series(1, 3) (14 rows) select s1, s2, sm from generate_series(1, 3) s1, lateral (select s2, sum(s1 + s2) sm from generate_series(1, 3) s2 group by s2) ss order by 1, 2; s1 | s2 | sm ----+----+---- 1 | 1 | 2 1 | 2 | 3 1 | 3 | 4 2 | 1 | 3 2 | 2 | 4 2 | 3 | 5 3 | 1 | 4 3 | 2 | 5 3 | 3 | 6 (9 rows) explain (verbose, costs off) select array(select sum(x+y) s from generate_series(1,3) y group by y order by s) from generate_series(1,3) x; QUERY PLAN ------------------------------------------------------------------- Function Scan on pg_catalog.generate_series x Output: (SubPlan 1) Function Call: generate_series(1, 3) SubPlan 1 -> Sort Output: (sum((x.x + y.y))), y.y Sort Key: (sum((x.x + y.y))) -> HashAggregate Output: sum((x.x + y.y)), y.y Group Key: y.y -> Function Scan on pg_catalog.generate_series y Output: y.y Function Call: generate_series(1, 3) (13 rows) select array(select sum(x+y) s from generate_series(1,3) y group by y order by s) from generate_series(1,3) x; array --------- {2,3,4} {3,4,5} {4,5,6} (3 rows) -- -- test for bitwise integer aggregates -- CREATE TEMPORARY TABLE bitwise_test( i2 INT2, i4 INT4, i8 INT8, i INTEGER, x INT2, y BIT(4) ); -- empty case SELECT BIT_AND(i2) AS "?", BIT_OR(i4) AS "?", BIT_XOR(i8) AS "?" FROM bitwise_test; ? | ? | ? ---+---+--- | | (1 row) COPY bitwise_test FROM STDIN NULL 'null'; SELECT BIT_AND(i2) AS "1", BIT_AND(i4) AS "1", BIT_AND(i8) AS "1", BIT_AND(i) AS "?", BIT_AND(x) AS "0", BIT_AND(y) AS "0100", BIT_OR(i2) AS "7", BIT_OR(i4) AS "7", BIT_OR(i8) AS "7", BIT_OR(i) AS "?", BIT_OR(x) AS "7", BIT_OR(y) AS "1101", BIT_XOR(i2) AS "5", BIT_XOR(i4) AS "5", BIT_XOR(i8) AS "5", BIT_XOR(i) AS "?", BIT_XOR(x) AS "7", BIT_XOR(y) AS "1101" FROM bitwise_test; 1 | 1 | 1 | ? | 0 | 0100 | 7 | 7 | 7 | ? | 7 | 1101 | 5 | 5 | 5 | ? | 7 | 1101 ---+---+---+---+---+------+---+---+---+---+---+------+---+---+---+---+---+------ 1 | 1 | 1 | 1 | 0 | 0100 | 7 | 7 | 7 | 3 | 7 | 1101 | 5 | 5 | 5 | 2 | 7 | 1101 (1 row) -- -- test boolean aggregates -- -- first test all possible transition and final states SELECT -- boolean and transitions -- null because strict booland_statefunc(NULL, NULL) IS NULL AS "t", booland_statefunc(TRUE, NULL) IS NULL AS "t", booland_statefunc(FALSE, NULL) IS NULL AS "t", booland_statefunc(NULL, TRUE) IS NULL AS "t", booland_statefunc(NULL, FALSE) IS NULL AS "t", -- and actual computations booland_statefunc(TRUE, TRUE) AS "t", NOT booland_statefunc(TRUE, FALSE) AS "t", NOT booland_statefunc(FALSE, TRUE) AS "t", NOT booland_statefunc(FALSE, FALSE) AS "t"; t | t | t | t | t | t | t | t | t ---+---+---+---+---+---+---+---+--- t | t | t | t | t | t | t | t | t (1 row) SELECT -- boolean or transitions -- null because strict boolor_statefunc(NULL, NULL) IS NULL AS "t", boolor_statefunc(TRUE, NULL) IS NULL AS "t", boolor_statefunc(FALSE, NULL) IS NULL AS "t", boolor_statefunc(NULL, TRUE) IS NULL AS "t", boolor_statefunc(NULL, FALSE) IS NULL AS "t", -- actual computations boolor_statefunc(TRUE, TRUE) AS "t", boolor_statefunc(TRUE, FALSE) AS "t", boolor_statefunc(FALSE, TRUE) AS "t", NOT boolor_statefunc(FALSE, FALSE) AS "t"; t | t | t | t | t | t | t | t | t ---+---+---+---+---+---+---+---+--- t | t | t | t | t | t | t | t | t (1 row) CREATE TEMPORARY TABLE bool_test( b1 BOOL, b2 BOOL, b3 BOOL, b4 BOOL); -- empty case SELECT BOOL_AND(b1) AS "n", BOOL_OR(b3) AS "n" FROM bool_test; n | n ---+--- | (1 row) COPY bool_test FROM STDIN NULL 'null'; SELECT BOOL_AND(b1) AS "f", BOOL_AND(b2) AS "t", BOOL_AND(b3) AS "f", BOOL_AND(b4) AS "n", BOOL_AND(NOT b2) AS "f", BOOL_AND(NOT b3) AS "t" FROM bool_test; f | t | f | n | f | t ---+---+---+---+---+--- f | t | f | | f | t (1 row) SELECT EVERY(b1) AS "f", EVERY(b2) AS "t", EVERY(b3) AS "f", EVERY(b4) AS "n", EVERY(NOT b2) AS "f", EVERY(NOT b3) AS "t" FROM bool_test; f | t | f | n | f | t ---+---+---+---+---+--- f | t | f | | f | t (1 row) SELECT BOOL_OR(b1) AS "t", BOOL_OR(b2) AS "t", BOOL_OR(b3) AS "f", BOOL_OR(b4) AS "n", BOOL_OR(NOT b2) AS "f", BOOL_OR(NOT b3) AS "t" FROM bool_test; t | t | f | n | f | t ---+---+---+---+---+--- t | t | f | | f | t (1 row) -- -- Test cases that should be optimized into indexscans instead of -- the generic aggregate implementation. -- -- Basic cases explain (costs off) select min(unique1) from tenk1; QUERY PLAN ------------------------------------------------------------ Result InitPlan 1 (returns $0) -> Limit -> Index Only Scan using tenk1_unique1 on tenk1 Index Cond: (unique1 IS NOT NULL) (5 rows) select min(unique1) from tenk1; min ----- 0 (1 row) explain (costs off) select max(unique1) from tenk1; QUERY PLAN --------------------------------------------------------------------- Result InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_unique1 on tenk1 Index Cond: (unique1 IS NOT NULL) (5 rows) select max(unique1) from tenk1; max ------ 9999 (1 row) explain (costs off) select max(unique1) from tenk1 where unique1 < 42; QUERY PLAN ------------------------------------------------------------------------ Result InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_unique1 on tenk1 Index Cond: ((unique1 IS NOT NULL) AND (unique1 < 42)) (5 rows) select max(unique1) from tenk1 where unique1 < 42; max ----- 41 (1 row) explain (costs off) select max(unique1) from tenk1 where unique1 > 42; QUERY PLAN ------------------------------------------------------------------------ Result InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_unique1 on tenk1 Index Cond: ((unique1 IS NOT NULL) AND (unique1 > 42)) (5 rows) select max(unique1) from tenk1 where unique1 > 42; max ------ 9999 (1 row) -- the planner may choose a generic aggregate here if parallel query is -- enabled, since that plan will be parallel safe and the "optimized" -- plan, which has almost identical cost, will not be. we want to test -- the optimized plan, so temporarily disable parallel query. begin; set local max_parallel_workers_per_gather = 0; explain (costs off) select max(unique1) from tenk1 where unique1 > 42000; QUERY PLAN --------------------------------------------------------------------------- Result InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_unique1 on tenk1 Index Cond: ((unique1 IS NOT NULL) AND (unique1 > 42000)) (5 rows) select max(unique1) from tenk1 where unique1 > 42000; max ----- (1 row) rollback; -- multi-column index (uses tenk1_thous_tenthous) explain (costs off) select max(tenthous) from tenk1 where thousand = 33; QUERY PLAN ---------------------------------------------------------------------------- Result InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_thous_tenthous on tenk1 Index Cond: ((thousand = 33) AND (tenthous IS NOT NULL)) (5 rows) select max(tenthous) from tenk1 where thousand = 33; max ------ 9033 (1 row) explain (costs off) select min(tenthous) from tenk1 where thousand = 33; QUERY PLAN -------------------------------------------------------------------------- Result InitPlan 1 (returns $0) -> Limit -> Index Only Scan using tenk1_thous_tenthous on tenk1 Index Cond: ((thousand = 33) AND (tenthous IS NOT NULL)) (5 rows) select min(tenthous) from tenk1 where thousand = 33; min ----- 33 (1 row) -- check parameter propagation into an indexscan subquery explain (costs off) select f1, (select min(unique1) from tenk1 where unique1 > f1) AS gt from int4_tbl; QUERY PLAN ----------------------------------------------------------------------------------------- Seq Scan on int4_tbl SubPlan 2 -> Result InitPlan 1 (returns $1) -> Limit -> Index Only Scan using tenk1_unique1 on tenk1 Index Cond: ((unique1 IS NOT NULL) AND (unique1 > int4_tbl.f1)) (7 rows) select f1, (select min(unique1) from tenk1 where unique1 > f1) AS gt from int4_tbl; f1 | gt -------------+---- 0 | 1 123456 | -123456 | 0 2147483647 | -2147483647 | 0 (5 rows) -- check some cases that were handled incorrectly in 8.3.0 explain (costs off) select distinct max(unique2) from tenk1; QUERY PLAN --------------------------------------------------------------------- HashAggregate Group Key: $0 InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_unique2 on tenk1 Index Cond: (unique2 IS NOT NULL) -> Result (7 rows) select distinct max(unique2) from tenk1; max ------ 9999 (1 row) explain (costs off) select max(unique2) from tenk1 order by 1; QUERY PLAN --------------------------------------------------------------------- Sort Sort Key: ($0) InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_unique2 on tenk1 Index Cond: (unique2 IS NOT NULL) -> Result (7 rows) select max(unique2) from tenk1 order by 1; max ------ 9999 (1 row) explain (costs off) select max(unique2) from tenk1 order by max(unique2); QUERY PLAN --------------------------------------------------------------------- Sort Sort Key: ($0) InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_unique2 on tenk1 Index Cond: (unique2 IS NOT NULL) -> Result (7 rows) select max(unique2) from tenk1 order by max(unique2); max ------ 9999 (1 row) explain (costs off) select max(unique2) from tenk1 order by max(unique2)+1; QUERY PLAN --------------------------------------------------------------------- Sort Sort Key: (($0 + 1)) InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_unique2 on tenk1 Index Cond: (unique2 IS NOT NULL) -> Result (7 rows) select max(unique2) from tenk1 order by max(unique2)+1; max ------ 9999 (1 row) explain (costs off) select max(unique2), generate_series(1,3) as g from tenk1 order by g desc; QUERY PLAN --------------------------------------------------------------------- Sort Sort Key: (generate_series(1, 3)) DESC InitPlan 1 (returns $0) -> Limit -> Index Only Scan Backward using tenk1_unique2 on tenk1 Index Cond: (unique2 IS NOT NULL) -> ProjectSet -> Result (8 rows) select max(unique2), generate_series(1,3) as g from tenk1 order by g desc; max | g ------+--- 9999 | 3 9999 | 2 9999 | 1 (3 rows) -- interesting corner case: constant gets optimized into a seqscan explain (costs off) select max(100) from tenk1; QUERY PLAN ---------------------------------------------------- Result InitPlan 1 (returns $0) -> Limit -> Result One-Time Filter: (100 IS NOT NULL) -> Seq Scan on tenk1 (6 rows) select max(100) from tenk1; max ----- 100 (1 row) -- try it on an inheritance tree create table minmaxtest(f1 int); create table minmaxtest1() inherits (minmaxtest); create table minmaxtest2() inherits (minmaxtest); create table minmaxtest3() inherits (minmaxtest); create index minmaxtesti on minmaxtest(f1); create index minmaxtest1i on minmaxtest1(f1); create index minmaxtest2i on minmaxtest2(f1 desc); create index minmaxtest3i on minmaxtest3(f1) where f1 is not null; insert into minmaxtest values(11), (12); insert into minmaxtest1 values(13), (14); insert into minmaxtest2 values(15), (16); insert into minmaxtest3 values(17), (18); explain (costs off) select min(f1), max(f1) from minmaxtest; QUERY PLAN --------------------------------------------------------------------------------------------- Result InitPlan 1 (returns $0) -> Limit -> Merge Append Sort Key: minmaxtest.f1 -> Index Only Scan using minmaxtesti on minmaxtest minmaxtest_1 Index Cond: (f1 IS NOT NULL) -> Index Only Scan using minmaxtest1i on minmaxtest1 minmaxtest_2 Index Cond: (f1 IS NOT NULL) -> Index Only Scan Backward using minmaxtest2i on minmaxtest2 minmaxtest_3 Index Cond: (f1 IS NOT NULL) -> Index Only Scan using minmaxtest3i on minmaxtest3 minmaxtest_4 InitPlan 2 (returns $1) -> Limit -> Merge Append Sort Key: minmaxtest_5.f1 DESC -> Index Only Scan Backward using minmaxtesti on minmaxtest minmaxtest_6 Index Cond: (f1 IS NOT NULL) -> Index Only Scan Backward using minmaxtest1i on minmaxtest1 minmaxtest_7 Index Cond: (f1 IS NOT NULL) -> Index Only Scan using minmaxtest2i on minmaxtest2 minmaxtest_8 Index Cond: (f1 IS NOT NULL) -> Index Only Scan Backward using minmaxtest3i on minmaxtest3 minmaxtest_9 (23 rows) select min(f1), max(f1) from minmaxtest; min | max -----+----- 11 | 18 (1 row) -- DISTINCT doesn't do anything useful here, but it shouldn't fail explain (costs off) select distinct min(f1), max(f1) from minmaxtest; QUERY PLAN --------------------------------------------------------------------------------------------- Unique InitPlan 1 (returns $0) -> Limit -> Merge Append Sort Key: minmaxtest.f1 -> Index Only Scan using minmaxtesti on minmaxtest minmaxtest_1 Index Cond: (f1 IS NOT NULL) -> Index Only Scan using minmaxtest1i on minmaxtest1 minmaxtest_2 Index Cond: (f1 IS NOT NULL) -> Index Only Scan Backward using minmaxtest2i on minmaxtest2 minmaxtest_3 Index Cond: (f1 IS NOT NULL) -> Index Only Scan using minmaxtest3i on minmaxtest3 minmaxtest_4 InitPlan 2 (returns $1) -> Limit -> Merge Append Sort Key: minmaxtest_5.f1 DESC -> Index Only Scan Backward using minmaxtesti on minmaxtest minmaxtest_6 Index Cond: (f1 IS NOT NULL) -> Index Only Scan Backward using minmaxtest1i on minmaxtest1 minmaxtest_7 Index Cond: (f1 IS NOT NULL) -> Index Only Scan using minmaxtest2i on minmaxtest2 minmaxtest_8 Index Cond: (f1 IS NOT NULL) -> Index Only Scan Backward using minmaxtest3i on minmaxtest3 minmaxtest_9 -> Sort Sort Key: ($0), ($1) -> Result (26 rows) select distinct min(f1), max(f1) from minmaxtest; min | max -----+----- 11 | 18 (1 row) drop table minmaxtest cascade; NOTICE: drop cascades to 3 other objects DETAIL: drop cascades to table minmaxtest1 drop cascades to table minmaxtest2 drop cascades to table minmaxtest3 -- check for correct detection of nested-aggregate errors select max(min(unique1)) from tenk1; ERROR: aggregate function calls cannot be nested LINE 1: select max(min(unique1)) from tenk1; ^ select (select max(min(unique1)) from int8_tbl) from tenk1; ERROR: aggregate function calls cannot be nested LINE 1: select (select max(min(unique1)) from int8_tbl) from tenk1; ^ -- -- Test removal of redundant GROUP BY columns -- create temp table t1 (a int, b int, c int, d int, primary key (a, b)); create temp table t2 (x int, y int, z int, primary key (x, y)); create temp table t3 (a int, b int, c int, primary key(a, b) deferrable); -- Non-primary-key columns can be removed from GROUP BY explain (costs off) select * from t1 group by a,b,c,d; QUERY PLAN ---------------------- HashAggregate Group Key: a, b -> Seq Scan on t1 (3 rows) -- No removal can happen if the complete PK is not present in GROUP BY explain (costs off) select a,c from t1 group by a,c,d; QUERY PLAN ---------------------- HashAggregate Group Key: a, c, d -> Seq Scan on t1 (3 rows) -- Test removal across multiple relations explain (costs off) select * from t1 inner join t2 on t1.a = t2.x and t1.b = t2.y group by t1.a,t1.b,t1.c,t1.d,t2.x,t2.y,t2.z; QUERY PLAN ------------------------------------------------------ HashAggregate Group Key: t1.a, t1.b, t2.x, t2.y -> Hash Join Hash Cond: ((t2.x = t1.a) AND (t2.y = t1.b)) -> Seq Scan on t2 -> Hash -> Seq Scan on t1 (7 rows) -- Test case where t1 can be optimized but not t2 explain (costs off) select t1.*,t2.x,t2.z from t1 inner join t2 on t1.a = t2.x and t1.b = t2.y group by t1.a,t1.b,t1.c,t1.d,t2.x,t2.z; QUERY PLAN ------------------------------------------------------ HashAggregate Group Key: t1.a, t1.b, t2.x, t2.z -> Hash Join Hash Cond: ((t2.x = t1.a) AND (t2.y = t1.b)) -> Seq Scan on t2 -> Hash -> Seq Scan on t1 (7 rows) -- Cannot optimize when PK is deferrable explain (costs off) select * from t3 group by a,b,c; QUERY PLAN ---------------------- HashAggregate Group Key: a, b, c -> Seq Scan on t3 (3 rows) create temp table t1c () inherits (t1); -- Ensure we don't remove any columns when t1 has a child table explain (costs off) select * from t1 group by a,b,c,d; QUERY PLAN ------------------------------------- HashAggregate Group Key: t1.a, t1.b, t1.c, t1.d -> Append -> Seq Scan on t1 t1_1 -> Seq Scan on t1c t1_2 (5 rows) -- Okay to remove columns if we're only querying the parent. explain (costs off) select * from only t1 group by a,b,c,d; QUERY PLAN ---------------------- HashAggregate Group Key: a, b -> Seq Scan on t1 (3 rows) create temp table p_t1 ( a int, b int, c int, d int, primary key(a,b) ) partition by list(a); create temp table p_t1_1 partition of p_t1 for values in(1); create temp table p_t1_2 partition of p_t1 for values in(2); -- Ensure we can remove non-PK columns for partitioned tables. explain (costs off) select * from p_t1 group by a,b,c,d; QUERY PLAN -------------------------------- HashAggregate Group Key: p_t1.a, p_t1.b -> Append -> Seq Scan on p_t1_1 -> Seq Scan on p_t1_2 (5 rows) drop table t1 cascade; NOTICE: drop cascades to table t1c drop table t2; drop table t3; drop table p_t1; -- -- Test GROUP BY matching of join columns that are type-coerced due to USING -- create temp table t1(f1 int, f2 bigint); create temp table t2(f1 bigint, f22 bigint); select f1 from t1 left join t2 using (f1) group by f1; f1 ---- (0 rows) select f1 from t1 left join t2 using (f1) group by t1.f1; f1 ---- (0 rows) select t1.f1 from t1 left join t2 using (f1) group by t1.f1; f1 ---- (0 rows) -- only this one should fail: select t1.f1 from t1 left join t2 using (f1) group by f1; ERROR: column "t1.f1" must appear in the GROUP BY clause or be used in an aggregate function LINE 1: select t1.f1 from t1 left join t2 using (f1) group by f1; ^ drop table t1, t2; -- -- Test combinations of DISTINCT and/or ORDER BY -- select array_agg(a order by b) from (values (1,4),(2,3),(3,1),(4,2)) v(a,b); array_agg ----------- {3,4,2,1} (1 row) select array_agg(a order by a) from (values (1,4),(2,3),(3,1),(4,2)) v(a,b); array_agg ----------- {1,2,3,4} (1 row) select array_agg(a order by a desc) from (values (1,4),(2,3),(3,1),(4,2)) v(a,b); array_agg ----------- {4,3,2,1} (1 row) select array_agg(b order by a desc) from (values (1,4),(2,3),(3,1),(4,2)) v(a,b); array_agg ----------- {2,1,3,4} (1 row) select array_agg(distinct a) from (values (1),(2),(1),(3),(null),(2)) v(a); array_agg -------------- {1,2,3,NULL} (1 row) select array_agg(distinct a order by a) from (values (1),(2),(1),(3),(null),(2)) v(a); array_agg -------------- {1,2,3,NULL} (1 row) select array_agg(distinct a order by a desc) from (values (1),(2),(1),(3),(null),(2)) v(a); array_agg -------------- {NULL,3,2,1} (1 row) select array_agg(distinct a order by a desc nulls last) from (values (1),(2),(1),(3),(null),(2)) v(a); array_agg -------------- {3,2,1,NULL} (1 row) -- multi-arg aggs, strict/nonstrict, distinct/order by select aggfstr(a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); aggfstr --------------------------------------- {"(1,3,foo)","(2,2,bar)","(3,1,baz)"} (1 row) select aggfns(a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); aggfns ----------------------------------------------- {"(1,3,foo)","(0,,)","(2,2,bar)","(3,1,baz)"} (1 row) select aggfstr(distinct a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; aggfstr --------------------------------------- {"(1,3,foo)","(2,2,bar)","(3,1,baz)"} (1 row) select aggfns(distinct a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; aggfns ----------------------------------------------- {"(0,,)","(1,3,foo)","(2,2,bar)","(3,1,baz)"} (1 row) select aggfstr(distinct a,b,c order by b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; aggfstr --------------------------------------- {"(3,1,baz)","(2,2,bar)","(1,3,foo)"} (1 row) select aggfns(distinct a,b,c order by b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; aggfns ----------------------------------------------- {"(3,1,baz)","(2,2,bar)","(1,3,foo)","(0,,)"} (1 row) -- test specific code paths select aggfns(distinct a,a,c order by c using ~<~,a) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; aggfns ------------------------------------------------ {"(2,2,bar)","(3,3,baz)","(1,1,foo)","(0,0,)"} (1 row) select aggfns(distinct a,a,c order by c using ~<~) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; aggfns ------------------------------------------------ {"(2,2,bar)","(3,3,baz)","(1,1,foo)","(0,0,)"} (1 row) select aggfns(distinct a,a,c order by a) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; aggfns ------------------------------------------------ {"(0,0,)","(1,1,foo)","(2,2,bar)","(3,3,baz)"} (1 row) select aggfns(distinct a,b,c order by a,c using ~<~,b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; aggfns ----------------------------------------------- {"(0,,)","(1,3,foo)","(2,2,bar)","(3,1,baz)"} (1 row) -- check node I/O via view creation and usage, also deparsing logic create view agg_view1 as select aggfns(a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select * from agg_view1; aggfns ----------------------------------------------- {"(1,3,foo)","(0,,)","(2,2,bar)","(3,1,baz)"} (1 row) select pg_get_viewdef('agg_view1'::regclass); pg_get_viewdef --------------------------------------------------------------------------------------------------------------------- SELECT aggfns(v.a, v.b, v.c) AS aggfns + FROM ( VALUES (1,3,'foo'::text), (0,NULL::integer,NULL::text), (2,2,'bar'::text), (3,1,'baz'::text)) v(a, b, c); (1 row) create or replace view agg_view1 as select aggfns(distinct a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; select * from agg_view1; aggfns ----------------------------------------------- {"(0,,)","(1,3,foo)","(2,2,bar)","(3,1,baz)"} (1 row) select pg_get_viewdef('agg_view1'::regclass); pg_get_viewdef --------------------------------------------------------------------------------------------------------------------- SELECT aggfns(DISTINCT v.a, v.b, v.c) AS aggfns + FROM ( VALUES (1,3,'foo'::text), (0,NULL::integer,NULL::text), (2,2,'bar'::text), (3,1,'baz'::text)) v(a, b, c),+ generate_series(1, 3) i(i); (1 row) create or replace view agg_view1 as select aggfns(distinct a,b,c order by b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; select * from agg_view1; aggfns ----------------------------------------------- {"(3,1,baz)","(2,2,bar)","(1,3,foo)","(0,,)"} (1 row) select pg_get_viewdef('agg_view1'::regclass); pg_get_viewdef --------------------------------------------------------------------------------------------------------------------- SELECT aggfns(DISTINCT v.a, v.b, v.c ORDER BY v.b) AS aggfns + FROM ( VALUES (1,3,'foo'::text), (0,NULL::integer,NULL::text), (2,2,'bar'::text), (3,1,'baz'::text)) v(a, b, c),+ generate_series(1, 3) i(i); (1 row) create or replace view agg_view1 as select aggfns(a,b,c order by b+1) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select * from agg_view1; aggfns ----------------------------------------------- {"(3,1,baz)","(2,2,bar)","(1,3,foo)","(0,,)"} (1 row) select pg_get_viewdef('agg_view1'::regclass); pg_get_viewdef --------------------------------------------------------------------------------------------------------------------- SELECT aggfns(v.a, v.b, v.c ORDER BY (v.b + 1)) AS aggfns + FROM ( VALUES (1,3,'foo'::text), (0,NULL::integer,NULL::text), (2,2,'bar'::text), (3,1,'baz'::text)) v(a, b, c); (1 row) create or replace view agg_view1 as select aggfns(a,a,c order by b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select * from agg_view1; aggfns ------------------------------------------------ {"(3,3,baz)","(2,2,bar)","(1,1,foo)","(0,0,)"} (1 row) select pg_get_viewdef('agg_view1'::regclass); pg_get_viewdef --------------------------------------------------------------------------------------------------------------------- SELECT aggfns(v.a, v.a, v.c ORDER BY v.b) AS aggfns + FROM ( VALUES (1,3,'foo'::text), (0,NULL::integer,NULL::text), (2,2,'bar'::text), (3,1,'baz'::text)) v(a, b, c); (1 row) create or replace view agg_view1 as select aggfns(a,b,c order by c using ~<~) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select * from agg_view1; aggfns ----------------------------------------------- {"(2,2,bar)","(3,1,baz)","(1,3,foo)","(0,,)"} (1 row) select pg_get_viewdef('agg_view1'::regclass); pg_get_viewdef --------------------------------------------------------------------------------------------------------------------- SELECT aggfns(v.a, v.b, v.c ORDER BY v.c USING ~<~ NULLS LAST) AS aggfns + FROM ( VALUES (1,3,'foo'::text), (0,NULL::integer,NULL::text), (2,2,'bar'::text), (3,1,'baz'::text)) v(a, b, c); (1 row) create or replace view agg_view1 as select aggfns(distinct a,b,c order by a,c using ~<~,b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; select * from agg_view1; aggfns ----------------------------------------------- {"(0,,)","(1,3,foo)","(2,2,bar)","(3,1,baz)"} (1 row) select pg_get_viewdef('agg_view1'::regclass); pg_get_viewdef --------------------------------------------------------------------------------------------------------------------- SELECT aggfns(DISTINCT v.a, v.b, v.c ORDER BY v.a, v.c USING ~<~ NULLS LAST, v.b) AS aggfns + FROM ( VALUES (1,3,'foo'::text), (0,NULL::integer,NULL::text), (2,2,'bar'::text), (3,1,'baz'::text)) v(a, b, c),+ generate_series(1, 2) i(i); (1 row) drop view agg_view1; -- incorrect DISTINCT usage errors select aggfns(distinct a,b,c order by i) from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i; ERROR: in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list LINE 1: select aggfns(distinct a,b,c order by i) ^ select aggfns(distinct a,b,c order by a,b+1) from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i; ERROR: in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list LINE 1: select aggfns(distinct a,b,c order by a,b+1) ^ select aggfns(distinct a,b,c order by a,b,i,c) from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i; ERROR: in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list LINE 1: select aggfns(distinct a,b,c order by a,b,i,c) ^ select aggfns(distinct a,a,c order by a,b) from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i; ERROR: in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list LINE 1: select aggfns(distinct a,a,c order by a,b) ^ -- string_agg tests select string_agg(a,',') from (values('aaaa'),('bbbb'),('cccc')) g(a); string_agg ---------------- aaaa,bbbb,cccc (1 row) select string_agg(a,',') from (values('aaaa'),(null),('bbbb'),('cccc')) g(a); string_agg ---------------- aaaa,bbbb,cccc (1 row) select string_agg(a,'AB') from (values(null),(null),('bbbb'),('cccc')) g(a); string_agg ------------ bbbbABcccc (1 row) select string_agg(a,',') from (values(null),(null)) g(a); string_agg ------------ (1 row) -- check some implicit casting cases, as per bug #5564 select string_agg(distinct f1, ',' order by f1) from varchar_tbl; -- ok string_agg ------------ a,ab,abcd (1 row) select string_agg(distinct f1::text, ',' order by f1) from varchar_tbl; -- not ok ERROR: in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list LINE 1: select string_agg(distinct f1::text, ',' order by f1) from v... ^ select string_agg(distinct f1, ',' order by f1::text) from varchar_tbl; -- not ok ERROR: in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list LINE 1: select string_agg(distinct f1, ',' order by f1::text) from v... ^ select string_agg(distinct f1::text, ',' order by f1::text) from varchar_tbl; -- ok string_agg ------------ a,ab,abcd (1 row) -- string_agg bytea tests create table bytea_test_table(v bytea); select string_agg(v, '') from bytea_test_table; string_agg ------------ (1 row) insert into bytea_test_table values(decode('ff','hex')); select string_agg(v, '') from bytea_test_table; string_agg ------------ \xff (1 row) insert into bytea_test_table values(decode('aa','hex')); select string_agg(v, '') from bytea_test_table; string_agg ------------ \xffaa (1 row) select string_agg(v, NULL) from bytea_test_table; string_agg ------------ \xffaa (1 row) select string_agg(v, decode('ee', 'hex')) from bytea_test_table; string_agg ------------ \xffeeaa (1 row) drop table bytea_test_table; -- FILTER tests select min(unique1) filter (where unique1 > 100) from tenk1; min ----- 101 (1 row) select sum(1/ten) filter (where ten > 0) from tenk1; sum ------ 1000 (1 row) select ten, sum(distinct four) filter (where four::text ~ '123') from onek a group by ten; ten | sum -----+----- 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | (10 rows) select ten, sum(distinct four) filter (where four > 10) from onek a group by ten having exists (select 1 from onek b where sum(distinct a.four) = b.four); ten | sum -----+----- 0 | 2 | 4 | 6 | 8 | (5 rows) select max(foo COLLATE "C") filter (where (bar collate "POSIX") > '0') from (values ('a', 'b')) AS v(foo,bar); max ----- a (1 row) -- outer reference in FILTER (PostgreSQL extension) select (select count(*) from (values (1)) t0(inner_c)) from (values (2),(3)) t1(outer_c); -- inner query is aggregation query count ------- 1 1 (2 rows) select (select count(*) filter (where outer_c <> 0) from (values (1)) t0(inner_c)) from (values (2),(3)) t1(outer_c); -- outer query is aggregation query count ------- 2 (1 row) select (select count(inner_c) filter (where outer_c <> 0) from (values (1)) t0(inner_c)) from (values (2),(3)) t1(outer_c); -- inner query is aggregation query count ------- 1 1 (2 rows) select (select max((select i.unique2 from tenk1 i where i.unique1 = o.unique1)) filter (where o.unique1 < 10)) from tenk1 o; -- outer query is aggregation query max ------ 9998 (1 row) -- subquery in FILTER clause (PostgreSQL extension) select sum(unique1) FILTER (WHERE unique1 IN (SELECT unique1 FROM onek where unique1 < 100)) FROM tenk1; sum ------ 4950 (1 row) -- exercise lots of aggregate parts with FILTER select aggfns(distinct a,b,c order by a,c using ~<~,b) filter (where a > 1) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; aggfns --------------------------- {"(2,2,bar)","(3,1,baz)"} (1 row) -- check handling of bare boolean Var in FILTER select max(0) filter (where b1) from bool_test; max ----- 0 (1 row) select (select max(0) filter (where b1)) from bool_test; max ----- 0 (1 row) -- check for correct detection of nested-aggregate errors in FILTER select max(unique1) filter (where sum(ten) > 0) from tenk1; ERROR: aggregate functions are not allowed in FILTER LINE 1: select max(unique1) filter (where sum(ten) > 0) from tenk1; ^ select (select max(unique1) filter (where sum(ten) > 0) from int8_tbl) from tenk1; ERROR: aggregate function calls cannot be nested LINE 1: select (select max(unique1) filter (where sum(ten) > 0) from... ^ select max(unique1) filter (where bool_or(ten > 0)) from tenk1; ERROR: aggregate functions are not allowed in FILTER LINE 1: select max(unique1) filter (where bool_or(ten > 0)) from ten... ^ select (select max(unique1) filter (where bool_or(ten > 0)) from int8_tbl) from tenk1; ERROR: aggregate function calls cannot be nested LINE 1: select (select max(unique1) filter (where bool_or(ten > 0)) ... ^ -- ordered-set aggregates select p, percentile_cont(p) within group (order by x::float8) from generate_series(1,5) x, (values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p) group by p order by p; p | percentile_cont ------+----------------- 0 | 1 0.1 | 1.4 0.25 | 2 0.4 | 2.6 0.5 | 3 0.6 | 3.4 0.75 | 4 0.9 | 4.6 1 | 5 (9 rows) select p, percentile_cont(p order by p) within group (order by x) -- error from generate_series(1,5) x, (values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p) group by p order by p; ERROR: cannot use multiple ORDER BY clauses with WITHIN GROUP LINE 1: select p, percentile_cont(p order by p) within group (order ... ^ select p, sum() within group (order by x::float8) -- error from generate_series(1,5) x, (values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p) group by p order by p; ERROR: sum is not an ordered-set aggregate, so it cannot have WITHIN GROUP LINE 1: select p, sum() within group (order by x::float8) ^ select p, percentile_cont(p,p) -- error from generate_series(1,5) x, (values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p) group by p order by p; ERROR: WITHIN GROUP is required for ordered-set aggregate percentile_cont LINE 1: select p, percentile_cont(p,p) ^ select percentile_cont(0.5) within group (order by b) from aggtest; percentile_cont ------------------ 53.4485001564026 (1 row) select percentile_cont(0.5) within group (order by b), sum(b) from aggtest; percentile_cont | sum ------------------+--------- 53.4485001564026 | 431.773 (1 row) select percentile_cont(0.5) within group (order by thousand) from tenk1; percentile_cont ----------------- 499.5 (1 row) select percentile_disc(0.5) within group (order by thousand) from tenk1; percentile_disc ----------------- 499 (1 row) select rank(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4)) v(x); rank ------ 5 (1 row) select cume_dist(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4)) v(x); cume_dist ----------- 0.875 (1 row) select percent_rank(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4),(5)) v(x); percent_rank -------------- 0.5 (1 row) select dense_rank(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4)) v(x); dense_rank ------------ 3 (1 row) select percentile_disc(array[0,0.1,0.25,0.5,0.75,0.9,1]) within group (order by thousand) from tenk1; percentile_disc ---------------------------- {0,99,249,499,749,899,999} (1 row) select percentile_cont(array[0,0.25,0.5,0.75,1]) within group (order by thousand) from tenk1; percentile_cont ----------------------------- {0,249.75,499.5,749.25,999} (1 row) select percentile_disc(array[[null,1,0.5],[0.75,0.25,null]]) within group (order by thousand) from tenk1; percentile_disc --------------------------------- {{NULL,999,499},{749,249,NULL}} (1 row) select percentile_cont(array[0,1,0.25,0.75,0.5,1,0.3,0.32,0.35,0.38,0.4]) within group (order by x) from generate_series(1,6) x; percentile_cont ------------------------------------------ {1,6,2.25,4.75,3.5,6,2.5,2.6,2.75,2.9,3} (1 row) select ten, mode() within group (order by string4) from tenk1 group by ten; ten | mode -----+-------- 0 | HHHHxx 1 | OOOOxx 2 | VVVVxx 3 | OOOOxx 4 | HHHHxx 5 | HHHHxx 6 | OOOOxx 7 | AAAAxx 8 | VVVVxx 9 | VVVVxx (10 rows) select percentile_disc(array[0.25,0.5,0.75]) within group (order by x) from unnest('{fred,jim,fred,jack,jill,fred,jill,jim,jim,sheila,jim,sheila}'::text[]) u(x); percentile_disc ----------------- {fred,jill,jim} (1 row) -- check collation propagates up in suitable cases: select pg_collation_for(percentile_disc(1) within group (order by x collate "POSIX")) from (values ('fred'),('jim')) v(x); pg_collation_for ------------------ "POSIX" (1 row) -- ordered-set aggs created with CREATE AGGREGATE select test_rank(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4)) v(x); test_rank ----------- 5 (1 row) select test_percentile_disc(0.5) within group (order by thousand) from tenk1; test_percentile_disc ---------------------- 499 (1 row) -- ordered-set aggs can't use ungrouped vars in direct args: select rank(x) within group (order by x) from generate_series(1,5) x; ERROR: column "x.x" must appear in the GROUP BY clause or be used in an aggregate function LINE 1: select rank(x) within group (order by x) from generate_serie... ^ DETAIL: Direct arguments of an ordered-set aggregate must use only grouped columns. -- outer-level agg can't use a grouped arg of a lower level, either: select array(select percentile_disc(a) within group (order by x) from (values (0.3),(0.7)) v(a) group by a) from generate_series(1,5) g(x); ERROR: outer-level aggregate cannot contain a lower-level variable in its direct arguments LINE 1: select array(select percentile_disc(a) within group (order b... ^ -- agg in the direct args is a grouping violation, too: select rank(sum(x)) within group (order by x) from generate_series(1,5) x; ERROR: aggregate function calls cannot be nested LINE 1: select rank(sum(x)) within group (order by x) from generate_... ^ -- hypothetical-set type unification and argument-count failures: select rank(3) within group (order by x) from (values ('fred'),('jim')) v(x); ERROR: WITHIN GROUP types text and integer cannot be matched LINE 1: select rank(3) within group (order by x) from (values ('fred... ^ select rank(3) within group (order by stringu1,stringu2) from tenk1; ERROR: function rank(integer, name, name) does not exist LINE 1: select rank(3) within group (order by stringu1,stringu2) fro... ^ HINT: To use the hypothetical-set aggregate rank, the number of hypothetical direct arguments (here 1) must match the number of ordering columns (here 2). select rank('fred') within group (order by x) from generate_series(1,5) x; ERROR: invalid input syntax for type integer: "fred" LINE 1: select rank('fred') within group (order by x) from generate_... ^ select rank('adam'::text collate "C") within group (order by x collate "POSIX") from (values ('fred'),('jim')) v(x); ERROR: collation mismatch between explicit collations "C" and "POSIX" LINE 1: ...adam'::text collate "C") within group (order by x collate "P... ^ -- hypothetical-set type unification successes: select rank('adam'::varchar) within group (order by x) from (values ('fred'),('jim')) v(x); rank ------ 1 (1 row) select rank('3') within group (order by x) from generate_series(1,5) x; rank ------ 3 (1 row) -- divide by zero check select percent_rank(0) within group (order by x) from generate_series(1,0) x; percent_rank -------------- 0 (1 row) -- deparse and multiple features: create view aggordview1 as select ten, percentile_disc(0.5) within group (order by thousand) as p50, percentile_disc(0.5) within group (order by thousand) filter (where hundred=1) as px, rank(5,'AZZZZ',50) within group (order by hundred, string4 desc, hundred) from tenk1 group by ten order by ten; select pg_get_viewdef('aggordview1'); pg_get_viewdef ------------------------------------------------------------------------------------------------------------------------------- SELECT tenk1.ten, + percentile_disc((0.5)::double precision) WITHIN GROUP (ORDER BY tenk1.thousand) AS p50, + percentile_disc((0.5)::double precision) WITHIN GROUP (ORDER BY tenk1.thousand) FILTER (WHERE (tenk1.hundred = 1)) AS px,+ rank(5, 'AZZZZ'::name, 50) WITHIN GROUP (ORDER BY tenk1.hundred, tenk1.string4 DESC, tenk1.hundred) AS rank + FROM tenk1 + GROUP BY tenk1.ten + ORDER BY tenk1.ten; (1 row) select * from aggordview1 order by ten; ten | p50 | px | rank -----+-----+-----+------ 0 | 490 | | 101 1 | 491 | 401 | 101 2 | 492 | | 101 3 | 493 | | 101 4 | 494 | | 101 5 | 495 | | 67 6 | 496 | | 1 7 | 497 | | 1 8 | 498 | | 1 9 | 499 | | 1 (10 rows) drop view aggordview1; -- variadic aggregates select least_agg(q1,q2) from int8_tbl; least_agg ------------------- -4567890123456789 (1 row) select least_agg(variadic array[q1,q2]) from int8_tbl; least_agg ------------------- -4567890123456789 (1 row) select cleast_agg(q1,q2) from int8_tbl; cleast_agg ------------------- -4567890123456789 (1 row) select cleast_agg(4.5,f1) from int4_tbl; cleast_agg ------------- -2147483647 (1 row) select cleast_agg(variadic array[4.5,f1]) from int4_tbl; cleast_agg ------------- -2147483647 (1 row) select pg_typeof(cleast_agg(variadic array[4.5,f1])) from int4_tbl; pg_typeof ----------- numeric (1 row) -- test aggregates with common transition functions share the same states begin work; create type avg_state as (total bigint, count bigint); create or replace function avg_transfn(state avg_state, n int) returns avg_state as $$ declare new_state avg_state; begin raise notice 'avg_transfn called with %', n; if state is null then if n is not null then new_state.total := n; new_state.count := 1; return new_state; end if; return null; elsif n is not null then state.total := state.total + n; state.count := state.count + 1; return state; end if; return null; end $$ language plpgsql; create function avg_finalfn(state avg_state) returns int4 as $$ begin if state is null then return NULL; else return state.total / state.count; end if; end $$ language plpgsql; create function sum_finalfn(state avg_state) returns int4 as $$ begin if state is null then return NULL; else return state.total; end if; end $$ language plpgsql; create aggregate my_avg(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn ); create aggregate my_sum(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = sum_finalfn ); -- aggregate state should be shared as aggs are the same. select my_avg(one),my_avg(one) from (values(1),(3)) t(one); NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 3 my_avg | my_avg --------+-------- 2 | 2 (1 row) -- aggregate state should be shared as transfn is the same for both aggs. select my_avg(one),my_sum(one) from (values(1),(3)) t(one); NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 3 my_avg | my_sum --------+-------- 2 | 4 (1 row) -- same as previous one, but with DISTINCT, which requires sorting the input. select my_avg(distinct one),my_sum(distinct one) from (values(1),(3),(1)) t(one); NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 3 my_avg | my_sum --------+-------- 2 | 4 (1 row) -- shouldn't share states due to the distinctness not matching. select my_avg(distinct one),my_sum(one) from (values(1),(3)) t(one); NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 3 NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 3 my_avg | my_sum --------+-------- 2 | 4 (1 row) -- shouldn't share states due to the filter clause not matching. select my_avg(one) filter (where one > 1),my_sum(one) from (values(1),(3)) t(one); NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 3 NOTICE: avg_transfn called with 3 my_avg | my_sum --------+-------- 3 | 4 (1 row) -- this should not share the state due to different input columns. select my_avg(one),my_sum(two) from (values(1,2),(3,4)) t(one,two); NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 2 NOTICE: avg_transfn called with 3 NOTICE: avg_transfn called with 4 my_avg | my_sum --------+-------- 2 | 6 (1 row) -- exercise cases where OSAs share state select percentile_cont(0.5) within group (order by a), percentile_disc(0.5) within group (order by a) from (values(1::float8),(3),(5),(7)) t(a); percentile_cont | percentile_disc -----------------+----------------- 4 | 3 (1 row) select percentile_cont(0.25) within group (order by a), percentile_disc(0.5) within group (order by a) from (values(1::float8),(3),(5),(7)) t(a); percentile_cont | percentile_disc -----------------+----------------- 2.5 | 3 (1 row) -- these can't share state currently select rank(4) within group (order by a), dense_rank(4) within group (order by a) from (values(1),(3),(5),(7)) t(a); rank | dense_rank ------+------------ 3 | 3 (1 row) -- test that aggs with the same sfunc and initcond share the same agg state create aggregate my_sum_init(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = sum_finalfn, initcond = '(10,0)' ); create aggregate my_avg_init(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn, initcond = '(10,0)' ); create aggregate my_avg_init2(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn, initcond = '(4,0)' ); -- state should be shared if INITCONDs are matching select my_sum_init(one),my_avg_init(one) from (values(1),(3)) t(one); NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 3 my_sum_init | my_avg_init -------------+------------- 14 | 7 (1 row) -- Varying INITCONDs should cause the states not to be shared. select my_sum_init(one),my_avg_init2(one) from (values(1),(3)) t(one); NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 1 NOTICE: avg_transfn called with 3 NOTICE: avg_transfn called with 3 my_sum_init | my_avg_init2 -------------+-------------- 14 | 4 (1 row) rollback; -- test aggregate state sharing to ensure it works if one aggregate has a -- finalfn and the other one has none. begin work; create or replace function sum_transfn(state int4, n int4) returns int4 as $$ declare new_state int4; begin raise notice 'sum_transfn called with %', n; if state is null then if n is not null then new_state := n; return new_state; end if; return null; elsif n is not null then state := state + n; return state; end if; return null; end $$ language plpgsql; create function halfsum_finalfn(state int4) returns int4 as $$ begin if state is null then return NULL; else return state / 2; end if; end $$ language plpgsql; create aggregate my_sum(int4) ( stype = int4, sfunc = sum_transfn ); create aggregate my_half_sum(int4) ( stype = int4, sfunc = sum_transfn, finalfunc = halfsum_finalfn ); -- Agg state should be shared even though my_sum has no finalfn select my_sum(one),my_half_sum(one) from (values(1),(2),(3),(4)) t(one); NOTICE: sum_transfn called with 1 NOTICE: sum_transfn called with 2 NOTICE: sum_transfn called with 3 NOTICE: sum_transfn called with 4 my_sum | my_half_sum --------+------------- 10 | 5 (1 row) rollback; -- test that the aggregate transition logic correctly handles -- transition / combine functions returning NULL -- First test the case of a normal transition function returning NULL BEGIN; CREATE FUNCTION balkifnull(int8, int4) RETURNS int8 STRICT LANGUAGE plpgsql AS $$ BEGIN IF $1 IS NULL THEN RAISE 'erroneously called with NULL argument'; END IF; RETURN NULL; END$$; CREATE AGGREGATE balk(int4) ( SFUNC = balkifnull(int8, int4), STYPE = int8, PARALLEL = SAFE, INITCOND = '0' ); SELECT balk(hundred) FROM tenk1; balk ------ (1 row) ROLLBACK; -- Secondly test the case of a parallel aggregate combiner function -- returning NULL. For that use normal transition function, but a -- combiner function returning NULL. BEGIN; CREATE FUNCTION balkifnull(int8, int8) RETURNS int8 PARALLEL SAFE STRICT LANGUAGE plpgsql AS $$ BEGIN IF $1 IS NULL THEN RAISE 'erroneously called with NULL argument'; END IF; RETURN NULL; END$$; CREATE AGGREGATE balk(int4) ( SFUNC = int4_sum(int8, int4), STYPE = int8, COMBINEFUNC = balkifnull(int8, int8), PARALLEL = SAFE, INITCOND = '0' ); -- force use of parallelism ALTER TABLE tenk1 set (parallel_workers = 4); SET LOCAL parallel_setup_cost=0; SET LOCAL max_parallel_workers_per_gather=4; EXPLAIN (COSTS OFF) SELECT balk(hundred) FROM tenk1; QUERY PLAN ------------------------------------------------------------------------- Finalize Aggregate -> Gather Workers Planned: 4 -> Partial Aggregate -> Parallel Index Only Scan using tenk1_hundred on tenk1 (5 rows) SELECT balk(hundred) FROM tenk1; balk ------ (1 row) ROLLBACK; -- test coverage for aggregate combine/serial/deserial functions BEGIN; SET parallel_setup_cost = 0; SET parallel_tuple_cost = 0; SET min_parallel_table_scan_size = 0; SET max_parallel_workers_per_gather = 4; SET parallel_leader_participation = off; SET enable_indexonlyscan = off; -- variance(int4) covers numeric_poly_combine -- sum(int8) covers int8_avg_combine -- regr_count(float8, float8) covers int8inc_float8_float8 and aggregates with > 1 arg EXPLAIN (COSTS OFF, VERBOSE) SELECT variance(unique1::int4), sum(unique1::int8), regr_count(unique1::float8, unique1::float8) FROM (SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1) u; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Finalize Aggregate Output: variance(tenk1.unique1), sum((tenk1.unique1)::bigint), regr_count((tenk1.unique1)::double precision, (tenk1.unique1)::double precision) -> Gather Output: (PARTIAL variance(tenk1.unique1)), (PARTIAL sum((tenk1.unique1)::bigint)), (PARTIAL regr_count((tenk1.unique1)::double precision, (tenk1.unique1)::double precision)) Workers Planned: 4 -> Partial Aggregate Output: PARTIAL variance(tenk1.unique1), PARTIAL sum((tenk1.unique1)::bigint), PARTIAL regr_count((tenk1.unique1)::double precision, (tenk1.unique1)::double precision) -> Parallel Append -> Parallel Seq Scan on public.tenk1 Output: tenk1.unique1 -> Parallel Seq Scan on public.tenk1 tenk1_1 Output: tenk1_1.unique1 -> Parallel Seq Scan on public.tenk1 tenk1_2 Output: tenk1_2.unique1 -> Parallel Seq Scan on public.tenk1 tenk1_3 Output: tenk1_3.unique1 (16 rows) SELECT variance(unique1::int4), sum(unique1::int8), regr_count(unique1::float8, unique1::float8) FROM (SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1) u; variance | sum | regr_count ----------------------+-----------+------------ 8333541.588539713493 | 199980000 | 40000 (1 row) -- variance(int8) covers numeric_combine -- avg(numeric) covers numeric_avg_combine EXPLAIN (COSTS OFF, VERBOSE) SELECT variance(unique1::int8), avg(unique1::numeric) FROM (SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1) u; QUERY PLAN -------------------------------------------------------------------------------------------------------- Finalize Aggregate Output: variance((tenk1.unique1)::bigint), avg((tenk1.unique1)::numeric) -> Gather Output: (PARTIAL variance((tenk1.unique1)::bigint)), (PARTIAL avg((tenk1.unique1)::numeric)) Workers Planned: 4 -> Partial Aggregate Output: PARTIAL variance((tenk1.unique1)::bigint), PARTIAL avg((tenk1.unique1)::numeric) -> Parallel Append -> Parallel Seq Scan on public.tenk1 Output: tenk1.unique1 -> Parallel Seq Scan on public.tenk1 tenk1_1 Output: tenk1_1.unique1 -> Parallel Seq Scan on public.tenk1 tenk1_2 Output: tenk1_2.unique1 -> Parallel Seq Scan on public.tenk1 tenk1_3 Output: tenk1_3.unique1 (16 rows) SELECT variance(unique1::int8), avg(unique1::numeric) FROM (SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1) u; variance | avg ----------------------+----------------------- 8333541.588539713493 | 4999.5000000000000000 (1 row) ROLLBACK; -- test coverage for dense_rank SELECT dense_rank(x) WITHIN GROUP (ORDER BY x) FROM (VALUES (1),(1),(2),(2),(3),(3)) v(x) GROUP BY (x) ORDER BY 1; dense_rank ------------ 1 1 1 (3 rows) -- Ensure that the STRICT checks for aggregates does not take NULLness -- of ORDER BY columns into account. See bug report around -- 2a505161-2727-2473-7c46-591ed108ac52@email.cz SELECT min(x ORDER BY y) FROM (VALUES(1, NULL)) AS d(x,y); min ----- 1 (1 row) SELECT min(x ORDER BY y) FROM (VALUES(1, 2)) AS d(x,y); min ----- 1 (1 row) -- check collation-sensitive matching between grouping expressions select v||'a', case v||'a' when 'aa' then 1 else 0 end, count(*) from unnest(array['a','b']) u(v) group by v||'a' order by 1; ?column? | case | count ----------+------+------- aa | 1 | 1 ba | 0 | 1 (2 rows) select v||'a', case when v||'a' = 'aa' then 1 else 0 end, count(*) from unnest(array['a','b']) u(v) group by v||'a' order by 1; ?column? | case | count ----------+------+------- aa | 1 | 1 ba | 0 | 1 (2 rows) -- Make sure that generation of HashAggregate for uniqification purposes -- does not lead to array overflow due to unexpected duplicate hash keys -- see CAFeeJoKKu0u+A_A9R9316djW-YW3-+Gtgvy3ju655qRHR3jtdA@mail.gmail.com set enable_memoize to off; explain (costs off) select 1 from tenk1 where (hundred, thousand) in (select twothousand, twothousand from onek); QUERY PLAN ------------------------------------------------------------- Hash Join Hash Cond: (tenk1.hundred = onek.twothousand) -> Seq Scan on tenk1 Filter: (hundred = thousand) -> Hash -> HashAggregate Group Key: onek.twothousand, onek.twothousand -> Seq Scan on onek (8 rows) reset enable_memoize; -- -- Hash Aggregation Spill tests -- set enable_sort=false; set work_mem='64kB'; select unique1, count(*), sum(twothousand) from tenk1 group by unique1 having sum(fivethous) > 4975 order by sum(twothousand); unique1 | count | sum ---------+-------+------ 4976 | 1 | 976 4977 | 1 | 977 4978 | 1 | 978 4979 | 1 | 979 4980 | 1 | 980 4981 | 1 | 981 4982 | 1 | 982 4983 | 1 | 983 4984 | 1 | 984 4985 | 1 | 985 4986 | 1 | 986 4987 | 1 | 987 4988 | 1 | 988 4989 | 1 | 989 4990 | 1 | 990 4991 | 1 | 991 4992 | 1 | 992 4993 | 1 | 993 4994 | 1 | 994 4995 | 1 | 995 4996 | 1 | 996 4997 | 1 | 997 4998 | 1 | 998 4999 | 1 | 999 9976 | 1 | 1976 9977 | 1 | 1977 9978 | 1 | 1978 9979 | 1 | 1979 9980 | 1 | 1980 9981 | 1 | 1981 9982 | 1 | 1982 9983 | 1 | 1983 9984 | 1 | 1984 9985 | 1 | 1985 9986 | 1 | 1986 9987 | 1 | 1987 9988 | 1 | 1988 9989 | 1 | 1989 9990 | 1 | 1990 9991 | 1 | 1991 9992 | 1 | 1992 9993 | 1 | 1993 9994 | 1 | 1994 9995 | 1 | 1995 9996 | 1 | 1996 9997 | 1 | 1997 9998 | 1 | 1998 9999 | 1 | 1999 (48 rows) set work_mem to default; set enable_sort to default; -- -- Compare results between plans using sorting and plans using hash -- aggregation. Force spilling in both cases by setting work_mem low. -- set work_mem='64kB'; create table agg_data_2k as select g from generate_series(0, 1999) g; analyze agg_data_2k; create table agg_data_20k as select g from generate_series(0, 19999) g; analyze agg_data_20k; -- Produce results with sorting. set enable_hashagg = false; set jit_above_cost = 0; explain (costs off) select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3 from agg_data_20k group by g%10000; QUERY PLAN -------------------------------------- GroupAggregate Group Key: ((g % 10000)) -> Sort Sort Key: ((g % 10000)) -> Seq Scan on agg_data_20k (5 rows) create table agg_group_1 as select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3 from agg_data_20k group by g%10000; create table agg_group_2 as select * from (values (100), (300), (500)) as r(a), lateral ( select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3 from agg_data_2k where g < r.a group by g/2) as s; set jit_above_cost to default; create table agg_group_3 as select (g/2)::numeric as c1, sum(7::int4) as c2, count(*) as c3 from agg_data_2k group by g/2; create table agg_group_4 as select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3 from agg_data_2k group by g/2; -- Produce results with hash aggregation set enable_hashagg = true; set enable_sort = false; set jit_above_cost = 0; explain (costs off) select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3 from agg_data_20k group by g%10000; QUERY PLAN -------------------------------- HashAggregate Group Key: (g % 10000) -> Seq Scan on agg_data_20k (3 rows) create table agg_hash_1 as select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3 from agg_data_20k group by g%10000; create table agg_hash_2 as select * from (values (100), (300), (500)) as r(a), lateral ( select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3 from agg_data_2k where g < r.a group by g/2) as s; set jit_above_cost to default; create table agg_hash_3 as select (g/2)::numeric as c1, sum(7::int4) as c2, count(*) as c3 from agg_data_2k group by g/2; create table agg_hash_4 as select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3 from agg_data_2k group by g/2; set enable_sort = true; set work_mem to default; -- Compare group aggregation results to hash aggregation results (select * from agg_hash_1 except select * from agg_group_1) union all (select * from agg_group_1 except select * from agg_hash_1); c1 | c2 | c3 ----+----+---- (0 rows) (select * from agg_hash_2 except select * from agg_group_2) union all (select * from agg_group_2 except select * from agg_hash_2); a | c1 | c2 | c3 ---+----+----+---- (0 rows) (select * from agg_hash_3 except select * from agg_group_3) union all (select * from agg_group_3 except select * from agg_hash_3); c1 | c2 | c3 ----+----+---- (0 rows) (select * from agg_hash_4 except select * from agg_group_4) union all (select * from agg_group_4 except select * from agg_hash_4); c1 | c2 | c3 ----+----+---- (0 rows) drop table agg_group_1; drop table agg_group_2; drop table agg_group_3; drop table agg_group_4; drop table agg_hash_1; drop table agg_hash_2; drop table agg_hash_3; drop table agg_hash_4;