-- -- AGGREGATES -- -- avoid bit-exact output here because operations may not be bit-exact. SET extra_float_digits = 0; SELECT avg(four) AS avg_1 FROM onek; SELECT avg(a) AS avg_32 FROM aggtest WHERE a < 100; -- In 7.1, avg(float4) is computed using float8 arithmetic. -- Round the result to 3 digits to avoid platform-specific results. SELECT avg(b)::numeric(10,3) AS avg_107_943 FROM aggtest; SELECT avg(gpa) AS avg_3_4 FROM ONLY student; SELECT sum(four) AS sum_1500 FROM onek; SELECT sum(a) AS sum_198 FROM aggtest; SELECT sum(b) AS avg_431_773 FROM aggtest; SELECT sum(gpa) AS avg_6_8 FROM ONLY student; SELECT max(four) AS max_3 FROM onek; SELECT max(a) AS max_100 FROM aggtest; SELECT max(aggtest.b) AS max_324_78 FROM aggtest; SELECT max(student.gpa) AS max_3_7 FROM student; SELECT stddev_pop(b) FROM aggtest; SELECT stddev_samp(b) FROM aggtest; SELECT var_pop(b) FROM aggtest; SELECT var_samp(b) FROM aggtest; SELECT stddev_pop(b::numeric) FROM aggtest; SELECT stddev_samp(b::numeric) FROM aggtest; SELECT var_pop(b::numeric) FROM aggtest; SELECT var_samp(b::numeric) FROM aggtest; -- population variance is defined for a single tuple, sample variance -- is not SELECT var_pop(1.0::float8), var_samp(2.0::float8); SELECT stddev_pop(3.0::float8), stddev_samp(4.0::float8); SELECT var_pop('inf'::float8), var_samp('inf'::float8); SELECT stddev_pop('inf'::float8), stddev_samp('inf'::float8); SELECT var_pop('nan'::float8), var_samp('nan'::float8); SELECT stddev_pop('nan'::float8), stddev_samp('nan'::float8); SELECT var_pop(1.0::float4), var_samp(2.0::float4); SELECT stddev_pop(3.0::float4), stddev_samp(4.0::float4); SELECT var_pop('inf'::float4), var_samp('inf'::float4); SELECT stddev_pop('inf'::float4), stddev_samp('inf'::float4); SELECT var_pop('nan'::float4), var_samp('nan'::float4); SELECT stddev_pop('nan'::float4), stddev_samp('nan'::float4); SELECT var_pop(1.0::numeric), var_samp(2.0::numeric); SELECT stddev_pop(3.0::numeric), stddev_samp(4.0::numeric); SELECT var_pop('inf'::numeric), var_samp('inf'::numeric); SELECT stddev_pop('inf'::numeric), stddev_samp('inf'::numeric); SELECT var_pop('nan'::numeric), var_samp('nan'::numeric); SELECT stddev_pop('nan'::numeric), stddev_samp('nan'::numeric); -- verify correct results for null and NaN inputs select sum(null::int4) from generate_series(1,3); select sum(null::int8) from generate_series(1,3); select sum(null::numeric) from generate_series(1,3); select sum(null::float8) from generate_series(1,3); select avg(null::int4) from generate_series(1,3); select avg(null::int8) from generate_series(1,3); select avg(null::numeric) from generate_series(1,3); select avg(null::float8) from generate_series(1,3); select sum('NaN'::numeric) from generate_series(1,3); select avg('NaN'::numeric) from generate_series(1,3); -- verify correct results for infinite inputs SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('1'), ('infinity')) v(x); SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('infinity'), ('1')) v(x); SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('infinity'), ('infinity')) v(x); SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('-infinity'), ('infinity')) v(x); SELECT sum(x::float8), avg(x::float8), var_pop(x::float8) FROM (VALUES ('-infinity'), ('-infinity')) v(x); SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('1'), ('infinity')) v(x); SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('infinity'), ('1')) v(x); SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('infinity'), ('infinity')) v(x); SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('-infinity'), ('infinity')) v(x); SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric) FROM (VALUES ('-infinity'), ('-infinity')) v(x); -- test accuracy with a large input offset SELECT avg(x::float8), var_pop(x::float8) FROM (VALUES (100000003), (100000004), (100000006), (100000007)) v(x); SELECT avg(x::float8), var_pop(x::float8) FROM (VALUES (7000000000005), (7000000000007)) v(x); -- SQL2003 binary aggregates SELECT regr_count(b, a) FROM aggtest; SELECT regr_sxx(b, a) FROM aggtest; SELECT regr_syy(b, a) FROM aggtest; SELECT regr_sxy(b, a) FROM aggtest; SELECT regr_avgx(b, a), regr_avgy(b, a) FROM aggtest; SELECT regr_r2(b, a) FROM aggtest; SELECT regr_slope(b, a), regr_intercept(b, a) FROM aggtest; SELECT covar_pop(b, a), covar_samp(b, a) FROM aggtest; SELECT corr(b, a) FROM aggtest; -- check single-tuple behavior SELECT covar_pop(1::float8,2::float8), covar_samp(3::float8,4::float8); SELECT covar_pop(1::float8,'inf'::float8), covar_samp(3::float8,'inf'::float8); SELECT covar_pop(1::float8,'nan'::float8), covar_samp(3::float8,'nan'::float8); -- test accum and combine functions directly CREATE TABLE regr_test (x float8, y float8); INSERT INTO regr_test VALUES (10,150),(20,250),(30,350),(80,540),(100,200); SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x) FROM regr_test WHERE x IN (10,20,30,80); SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x) FROM regr_test; SELECT float8_accum('{4,140,2900}'::float8[], 100); SELECT float8_regr_accum('{4,140,2900,1290,83075,15050}'::float8[], 200, 100); SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x) FROM regr_test WHERE x IN (10,20,30); SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x) FROM regr_test WHERE x IN (80,100); SELECT float8_combine('{3,60,200}'::float8[], '{0,0,0}'::float8[]); SELECT float8_combine('{0,0,0}'::float8[], '{2,180,200}'::float8[]); SELECT float8_combine('{3,60,200}'::float8[], '{2,180,200}'::float8[]); SELECT float8_regr_combine('{3,60,200,750,20000,2000}'::float8[], '{0,0,0,0,0,0}'::float8[]); SELECT float8_regr_combine('{0,0,0,0,0,0}'::float8[], '{2,180,200,740,57800,-3400}'::float8[]); SELECT float8_regr_combine('{3,60,200,750,20000,2000}'::float8[], '{2,180,200,740,57800,-3400}'::float8[]); DROP TABLE regr_test; -- test count, distinct SELECT count(four) AS cnt_1000 FROM onek; SELECT count(DISTINCT four) AS cnt_4 FROM onek; select ten, count(*), sum(four) from onek group by ten order by ten; select ten, count(four), sum(DISTINCT four) from onek group by ten order by ten; -- user-defined aggregates SELECT newavg(four) AS avg_1 FROM onek; SELECT newsum(four) AS sum_1500 FROM onek; SELECT newcnt(four) AS cnt_1000 FROM onek; SELECT newcnt(*) AS cnt_1000 FROM onek; SELECT oldcnt(*) AS cnt_1000 FROM onek; SELECT sum2(q1,q2) FROM int8_tbl; -- test for outer-level aggregates -- this should work select ten, sum(distinct four) from onek a group by ten having exists (select 1 from onek b where sum(distinct a.four) = b.four); -- this should fail because subquery has an agg of its own in WHERE select ten, sum(distinct four) from onek a group by ten having exists (select 1 from onek b where sum(distinct a.four + b.four) = b.four); -- Test handling of sublinks within outer-level aggregates. -- Per bug report from Daniel Grace. select (select max((select i.unique2 from tenk1 i where i.unique1 = o.unique1))) from tenk1 o; -- Test handling of Params within aggregate arguments in hashed aggregation. -- Per bug report from Jeevan Chalke. explain (verbose, costs off) select s1, s2, sm from generate_series(1, 3) s1, lateral (select s2, sum(s1 + s2) sm from generate_series(1, 3) s2 group by s2) ss order by 1, 2; select s1, s2, sm from generate_series(1, 3) s1, lateral (select s2, sum(s1 + s2) sm from generate_series(1, 3) s2 group by s2) ss order by 1, 2; explain (verbose, costs off) select array(select sum(x+y) s from generate_series(1,3) y group by y order by s) from generate_series(1,3) x; select array(select sum(x+y) s from generate_series(1,3) y group by y order by s) from generate_series(1,3) x; -- -- test for bitwise integer aggregates -- CREATE TEMPORARY TABLE bitwise_test( i2 INT2, i4 INT4, i8 INT8, i INTEGER, x INT2, y BIT(4) ); -- empty case SELECT BIT_AND(i2) AS "?", BIT_OR(i4) AS "?", BIT_XOR(i8) AS "?" FROM bitwise_test; COPY bitwise_test FROM STDIN NULL 'null'; 1 1 1 1 1 B0101 3 3 3 null 2 B0100 7 7 7 3 4 B1100 \. SELECT BIT_AND(i2) AS "1", BIT_AND(i4) AS "1", BIT_AND(i8) AS "1", BIT_AND(i) AS "?", BIT_AND(x) AS "0", BIT_AND(y) AS "0100", BIT_OR(i2) AS "7", BIT_OR(i4) AS "7", BIT_OR(i8) AS "7", BIT_OR(i) AS "?", BIT_OR(x) AS "7", BIT_OR(y) AS "1101", BIT_XOR(i2) AS "5", BIT_XOR(i4) AS "5", BIT_XOR(i8) AS "5", BIT_XOR(i) AS "?", BIT_XOR(x) AS "7", BIT_XOR(y) AS "1101" FROM bitwise_test; -- -- test boolean aggregates -- -- first test all possible transition and final states SELECT -- boolean and transitions -- null because strict booland_statefunc(NULL, NULL) IS NULL AS "t", booland_statefunc(TRUE, NULL) IS NULL AS "t", booland_statefunc(FALSE, NULL) IS NULL AS "t", booland_statefunc(NULL, TRUE) IS NULL AS "t", booland_statefunc(NULL, FALSE) IS NULL AS "t", -- and actual computations booland_statefunc(TRUE, TRUE) AS "t", NOT booland_statefunc(TRUE, FALSE) AS "t", NOT booland_statefunc(FALSE, TRUE) AS "t", NOT booland_statefunc(FALSE, FALSE) AS "t"; SELECT -- boolean or transitions -- null because strict boolor_statefunc(NULL, NULL) IS NULL AS "t", boolor_statefunc(TRUE, NULL) IS NULL AS "t", boolor_statefunc(FALSE, NULL) IS NULL AS "t", boolor_statefunc(NULL, TRUE) IS NULL AS "t", boolor_statefunc(NULL, FALSE) IS NULL AS "t", -- actual computations boolor_statefunc(TRUE, TRUE) AS "t", boolor_statefunc(TRUE, FALSE) AS "t", boolor_statefunc(FALSE, TRUE) AS "t", NOT boolor_statefunc(FALSE, FALSE) AS "t"; CREATE TEMPORARY TABLE bool_test( b1 BOOL, b2 BOOL, b3 BOOL, b4 BOOL); -- empty case SELECT BOOL_AND(b1) AS "n", BOOL_OR(b3) AS "n" FROM bool_test; COPY bool_test FROM STDIN NULL 'null'; TRUE null FALSE null FALSE TRUE null null null TRUE FALSE null \. SELECT BOOL_AND(b1) AS "f", BOOL_AND(b2) AS "t", BOOL_AND(b3) AS "f", BOOL_AND(b4) AS "n", BOOL_AND(NOT b2) AS "f", BOOL_AND(NOT b3) AS "t" FROM bool_test; SELECT EVERY(b1) AS "f", EVERY(b2) AS "t", EVERY(b3) AS "f", EVERY(b4) AS "n", EVERY(NOT b2) AS "f", EVERY(NOT b3) AS "t" FROM bool_test; SELECT BOOL_OR(b1) AS "t", BOOL_OR(b2) AS "t", BOOL_OR(b3) AS "f", BOOL_OR(b4) AS "n", BOOL_OR(NOT b2) AS "f", BOOL_OR(NOT b3) AS "t" FROM bool_test; -- -- Test cases that should be optimized into indexscans instead of -- the generic aggregate implementation. -- -- Basic cases explain (costs off) select min(unique1) from tenk1; select min(unique1) from tenk1; explain (costs off) select max(unique1) from tenk1; select max(unique1) from tenk1; explain (costs off) select max(unique1) from tenk1 where unique1 < 42; select max(unique1) from tenk1 where unique1 < 42; explain (costs off) select max(unique1) from tenk1 where unique1 > 42; select max(unique1) from tenk1 where unique1 > 42; -- the planner may choose a generic aggregate here if parallel query is -- enabled, since that plan will be parallel safe and the "optimized" -- plan, which has almost identical cost, will not be. we want to test -- the optimized plan, so temporarily disable parallel query. begin; set local max_parallel_workers_per_gather = 0; explain (costs off) select max(unique1) from tenk1 where unique1 > 42000; select max(unique1) from tenk1 where unique1 > 42000; rollback; -- multi-column index (uses tenk1_thous_tenthous) explain (costs off) select max(tenthous) from tenk1 where thousand = 33; select max(tenthous) from tenk1 where thousand = 33; explain (costs off) select min(tenthous) from tenk1 where thousand = 33; select min(tenthous) from tenk1 where thousand = 33; -- check parameter propagation into an indexscan subquery explain (costs off) select f1, (select min(unique1) from tenk1 where unique1 > f1) AS gt from int4_tbl; select f1, (select min(unique1) from tenk1 where unique1 > f1) AS gt from int4_tbl; -- check some cases that were handled incorrectly in 8.3.0 explain (costs off) select distinct max(unique2) from tenk1; select distinct max(unique2) from tenk1; explain (costs off) select max(unique2) from tenk1 order by 1; select max(unique2) from tenk1 order by 1; explain (costs off) select max(unique2) from tenk1 order by max(unique2); select max(unique2) from tenk1 order by max(unique2); explain (costs off) select max(unique2) from tenk1 order by max(unique2)+1; select max(unique2) from tenk1 order by max(unique2)+1; explain (costs off) select max(unique2), generate_series(1,3) as g from tenk1 order by g desc; select max(unique2), generate_series(1,3) as g from tenk1 order by g desc; -- interesting corner case: constant gets optimized into a seqscan explain (costs off) select max(100) from tenk1; select max(100) from tenk1; -- try it on an inheritance tree create table minmaxtest(f1 int); create table minmaxtest1() inherits (minmaxtest); create table minmaxtest2() inherits (minmaxtest); create table minmaxtest3() inherits (minmaxtest); create index minmaxtesti on minmaxtest(f1); create index minmaxtest1i on minmaxtest1(f1); create index minmaxtest2i on minmaxtest2(f1 desc); create index minmaxtest3i on minmaxtest3(f1) where f1 is not null; insert into minmaxtest values(11), (12); insert into minmaxtest1 values(13), (14); insert into minmaxtest2 values(15), (16); insert into minmaxtest3 values(17), (18); explain (costs off) select min(f1), max(f1) from minmaxtest; select min(f1), max(f1) from minmaxtest; -- DISTINCT doesn't do anything useful here, but it shouldn't fail explain (costs off) select distinct min(f1), max(f1) from minmaxtest; select distinct min(f1), max(f1) from minmaxtest; drop table minmaxtest cascade; -- check for correct detection of nested-aggregate errors select max(min(unique1)) from tenk1; select (select max(min(unique1)) from int8_tbl) from tenk1; -- -- Test removal of redundant GROUP BY columns -- create temp table t1 (a int, b int, c int, d int, primary key (a, b)); create temp table t2 (x int, y int, z int, primary key (x, y)); create temp table t3 (a int, b int, c int, primary key(a, b) deferrable); -- Non-primary-key columns can be removed from GROUP BY explain (costs off) select * from t1 group by a,b,c,d; -- No removal can happen if the complete PK is not present in GROUP BY explain (costs off) select a,c from t1 group by a,c,d; -- Test removal across multiple relations explain (costs off) select * from t1 inner join t2 on t1.a = t2.x and t1.b = t2.y group by t1.a,t1.b,t1.c,t1.d,t2.x,t2.y,t2.z; -- Test case where t1 can be optimized but not t2 explain (costs off) select t1.*,t2.x,t2.z from t1 inner join t2 on t1.a = t2.x and t1.b = t2.y group by t1.a,t1.b,t1.c,t1.d,t2.x,t2.z; -- Cannot optimize when PK is deferrable explain (costs off) select * from t3 group by a,b,c; create temp table t1c () inherits (t1); -- Ensure we don't remove any columns when t1 has a child table explain (costs off) select * from t1 group by a,b,c,d; -- Okay to remove columns if we're only querying the parent. explain (costs off) select * from only t1 group by a,b,c,d; create temp table p_t1 ( a int, b int, c int, d int, primary key(a,b) ) partition by list(a); create temp table p_t1_1 partition of p_t1 for values in(1); create temp table p_t1_2 partition of p_t1 for values in(2); -- Ensure we can remove non-PK columns for partitioned tables. explain (costs off) select * from p_t1 group by a,b,c,d; drop table t1 cascade; drop table t2; drop table t3; drop table p_t1; -- -- Test GROUP BY matching of join columns that are type-coerced due to USING -- create temp table t1(f1 int, f2 bigint); create temp table t2(f1 bigint, f22 bigint); select f1 from t1 left join t2 using (f1) group by f1; select f1 from t1 left join t2 using (f1) group by t1.f1; select t1.f1 from t1 left join t2 using (f1) group by t1.f1; -- only this one should fail: select t1.f1 from t1 left join t2 using (f1) group by f1; drop table t1, t2; -- -- Test combinations of DISTINCT and/or ORDER BY -- select array_agg(a order by b) from (values (1,4),(2,3),(3,1),(4,2)) v(a,b); select array_agg(a order by a) from (values (1,4),(2,3),(3,1),(4,2)) v(a,b); select array_agg(a order by a desc) from (values (1,4),(2,3),(3,1),(4,2)) v(a,b); select array_agg(b order by a desc) from (values (1,4),(2,3),(3,1),(4,2)) v(a,b); select array_agg(distinct a) from (values (1),(2),(1),(3),(null),(2)) v(a); select array_agg(distinct a order by a) from (values (1),(2),(1),(3),(null),(2)) v(a); select array_agg(distinct a order by a desc) from (values (1),(2),(1),(3),(null),(2)) v(a); select array_agg(distinct a order by a desc nulls last) from (values (1),(2),(1),(3),(null),(2)) v(a); -- multi-arg aggs, strict/nonstrict, distinct/order by select aggfstr(a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select aggfns(a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select aggfstr(distinct a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; select aggfns(distinct a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; select aggfstr(distinct a,b,c order by b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; select aggfns(distinct a,b,c order by b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; -- test specific code paths select aggfns(distinct a,a,c order by c using ~<~,a) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; select aggfns(distinct a,a,c order by c using ~<~) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; select aggfns(distinct a,a,c order by a) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; select aggfns(distinct a,b,c order by a,c using ~<~,b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; -- check node I/O via view creation and usage, also deparsing logic create view agg_view1 as select aggfns(a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select * from agg_view1; select pg_get_viewdef('agg_view1'::regclass); create or replace view agg_view1 as select aggfns(distinct a,b,c) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; select * from agg_view1; select pg_get_viewdef('agg_view1'::regclass); create or replace view agg_view1 as select aggfns(distinct a,b,c order by b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,3) i; select * from agg_view1; select pg_get_viewdef('agg_view1'::regclass); create or replace view agg_view1 as select aggfns(a,b,c order by b+1) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select * from agg_view1; select pg_get_viewdef('agg_view1'::regclass); create or replace view agg_view1 as select aggfns(a,a,c order by b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select * from agg_view1; select pg_get_viewdef('agg_view1'::regclass); create or replace view agg_view1 as select aggfns(a,b,c order by c using ~<~) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c); select * from agg_view1; select pg_get_viewdef('agg_view1'::regclass); create or replace view agg_view1 as select aggfns(distinct a,b,c order by a,c using ~<~,b) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; select * from agg_view1; select pg_get_viewdef('agg_view1'::regclass); drop view agg_view1; -- incorrect DISTINCT usage errors select aggfns(distinct a,b,c order by i) from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i; select aggfns(distinct a,b,c order by a,b+1) from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i; select aggfns(distinct a,b,c order by a,b,i,c) from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i; select aggfns(distinct a,a,c order by a,b) from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i; -- string_agg tests select string_agg(a,',') from (values('aaaa'),('bbbb'),('cccc')) g(a); select string_agg(a,',') from (values('aaaa'),(null),('bbbb'),('cccc')) g(a); select string_agg(a,'AB') from (values(null),(null),('bbbb'),('cccc')) g(a); select string_agg(a,',') from (values(null),(null)) g(a); -- check some implicit casting cases, as per bug #5564 select string_agg(distinct f1, ',' order by f1) from varchar_tbl; -- ok select string_agg(distinct f1::text, ',' order by f1) from varchar_tbl; -- not ok select string_agg(distinct f1, ',' order by f1::text) from varchar_tbl; -- not ok select string_agg(distinct f1::text, ',' order by f1::text) from varchar_tbl; -- ok -- string_agg bytea tests create table bytea_test_table(v bytea); select string_agg(v, '') from bytea_test_table; insert into bytea_test_table values(decode('ff','hex')); select string_agg(v, '') from bytea_test_table; insert into bytea_test_table values(decode('aa','hex')); select string_agg(v, '') from bytea_test_table; select string_agg(v, NULL) from bytea_test_table; select string_agg(v, decode('ee', 'hex')) from bytea_test_table; drop table bytea_test_table; -- FILTER tests select min(unique1) filter (where unique1 > 100) from tenk1; select sum(1/ten) filter (where ten > 0) from tenk1; select ten, sum(distinct four) filter (where four::text ~ '123') from onek a group by ten; select ten, sum(distinct four) filter (where four > 10) from onek a group by ten having exists (select 1 from onek b where sum(distinct a.four) = b.four); select max(foo COLLATE "C") filter (where (bar collate "POSIX") > '0') from (values ('a', 'b')) AS v(foo,bar); -- outer reference in FILTER (PostgreSQL extension) select (select count(*) from (values (1)) t0(inner_c)) from (values (2),(3)) t1(outer_c); -- inner query is aggregation query select (select count(*) filter (where outer_c <> 0) from (values (1)) t0(inner_c)) from (values (2),(3)) t1(outer_c); -- outer query is aggregation query select (select count(inner_c) filter (where outer_c <> 0) from (values (1)) t0(inner_c)) from (values (2),(3)) t1(outer_c); -- inner query is aggregation query select (select max((select i.unique2 from tenk1 i where i.unique1 = o.unique1)) filter (where o.unique1 < 10)) from tenk1 o; -- outer query is aggregation query -- subquery in FILTER clause (PostgreSQL extension) select sum(unique1) FILTER (WHERE unique1 IN (SELECT unique1 FROM onek where unique1 < 100)) FROM tenk1; -- exercise lots of aggregate parts with FILTER select aggfns(distinct a,b,c order by a,c using ~<~,b) filter (where a > 1) from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c), generate_series(1,2) i; -- check handling of bare boolean Var in FILTER select max(0) filter (where b1) from bool_test; select (select max(0) filter (where b1)) from bool_test; -- check for correct detection of nested-aggregate errors in FILTER select max(unique1) filter (where sum(ten) > 0) from tenk1; select (select max(unique1) filter (where sum(ten) > 0) from int8_tbl) from tenk1; select max(unique1) filter (where bool_or(ten > 0)) from tenk1; select (select max(unique1) filter (where bool_or(ten > 0)) from int8_tbl) from tenk1; -- ordered-set aggregates select p, percentile_cont(p) within group (order by x::float8) from generate_series(1,5) x, (values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p) group by p order by p; select p, percentile_cont(p order by p) within group (order by x) -- error from generate_series(1,5) x, (values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p) group by p order by p; select p, sum() within group (order by x::float8) -- error from generate_series(1,5) x, (values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p) group by p order by p; select p, percentile_cont(p,p) -- error from generate_series(1,5) x, (values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p) group by p order by p; select percentile_cont(0.5) within group (order by b) from aggtest; select percentile_cont(0.5) within group (order by b), sum(b) from aggtest; select percentile_cont(0.5) within group (order by thousand) from tenk1; select percentile_disc(0.5) within group (order by thousand) from tenk1; select rank(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4)) v(x); select cume_dist(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4)) v(x); select percent_rank(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4),(5)) v(x); select dense_rank(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4)) v(x); select percentile_disc(array[0,0.1,0.25,0.5,0.75,0.9,1]) within group (order by thousand) from tenk1; select percentile_cont(array[0,0.25,0.5,0.75,1]) within group (order by thousand) from tenk1; select percentile_disc(array[[null,1,0.5],[0.75,0.25,null]]) within group (order by thousand) from tenk1; select percentile_cont(array[0,1,0.25,0.75,0.5,1,0.3,0.32,0.35,0.38,0.4]) within group (order by x) from generate_series(1,6) x; select ten, mode() within group (order by string4) from tenk1 group by ten; select percentile_disc(array[0.25,0.5,0.75]) within group (order by x) from unnest('{fred,jim,fred,jack,jill,fred,jill,jim,jim,sheila,jim,sheila}'::text[]) u(x); -- check collation propagates up in suitable cases: select pg_collation_for(percentile_disc(1) within group (order by x collate "POSIX")) from (values ('fred'),('jim')) v(x); -- ordered-set aggs created with CREATE AGGREGATE select test_rank(3) within group (order by x) from (values (1),(1),(2),(2),(3),(3),(4)) v(x); select test_percentile_disc(0.5) within group (order by thousand) from tenk1; -- ordered-set aggs can't use ungrouped vars in direct args: select rank(x) within group (order by x) from generate_series(1,5) x; -- outer-level agg can't use a grouped arg of a lower level, either: select array(select percentile_disc(a) within group (order by x) from (values (0.3),(0.7)) v(a) group by a) from generate_series(1,5) g(x); -- agg in the direct args is a grouping violation, too: select rank(sum(x)) within group (order by x) from generate_series(1,5) x; -- hypothetical-set type unification and argument-count failures: select rank(3) within group (order by x) from (values ('fred'),('jim')) v(x); select rank(3) within group (order by stringu1,stringu2) from tenk1; select rank('fred') within group (order by x) from generate_series(1,5) x; select rank('adam'::text collate "C") within group (order by x collate "POSIX") from (values ('fred'),('jim')) v(x); -- hypothetical-set type unification successes: select rank('adam'::varchar) within group (order by x) from (values ('fred'),('jim')) v(x); select rank('3') within group (order by x) from generate_series(1,5) x; -- divide by zero check select percent_rank(0) within group (order by x) from generate_series(1,0) x; -- deparse and multiple features: create view aggordview1 as select ten, percentile_disc(0.5) within group (order by thousand) as p50, percentile_disc(0.5) within group (order by thousand) filter (where hundred=1) as px, rank(5,'AZZZZ',50) within group (order by hundred, string4 desc, hundred) from tenk1 group by ten order by ten; select pg_get_viewdef('aggordview1'); select * from aggordview1 order by ten; drop view aggordview1; -- variadic aggregates select least_agg(q1,q2) from int8_tbl; select least_agg(variadic array[q1,q2]) from int8_tbl; select cleast_agg(q1,q2) from int8_tbl; select cleast_agg(4.5,f1) from int4_tbl; select cleast_agg(variadic array[4.5,f1]) from int4_tbl; select pg_typeof(cleast_agg(variadic array[4.5,f1])) from int4_tbl; -- test aggregates with common transition functions share the same states begin work; create type avg_state as (total bigint, count bigint); create or replace function avg_transfn(state avg_state, n int) returns avg_state as $$ declare new_state avg_state; begin raise notice 'avg_transfn called with %', n; if state is null then if n is not null then new_state.total := n; new_state.count := 1; return new_state; end if; return null; elsif n is not null then state.total := state.total + n; state.count := state.count + 1; return state; end if; return null; end $$ language plpgsql; create function avg_finalfn(state avg_state) returns int4 as $$ begin if state is null then return NULL; else return state.total / state.count; end if; end $$ language plpgsql; create function sum_finalfn(state avg_state) returns int4 as $$ begin if state is null then return NULL; else return state.total; end if; end $$ language plpgsql; create aggregate my_avg(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn ); create aggregate my_sum(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = sum_finalfn ); -- aggregate state should be shared as aggs are the same. select my_avg(one),my_avg(one) from (values(1),(3)) t(one); -- aggregate state should be shared as transfn is the same for both aggs. select my_avg(one),my_sum(one) from (values(1),(3)) t(one); -- same as previous one, but with DISTINCT, which requires sorting the input. select my_avg(distinct one),my_sum(distinct one) from (values(1),(3),(1)) t(one); -- shouldn't share states due to the distinctness not matching. select my_avg(distinct one),my_sum(one) from (values(1),(3)) t(one); -- shouldn't share states due to the filter clause not matching. select my_avg(one) filter (where one > 1),my_sum(one) from (values(1),(3)) t(one); -- this should not share the state due to different input columns. select my_avg(one),my_sum(two) from (values(1,2),(3,4)) t(one,two); -- exercise cases where OSAs share state select percentile_cont(0.5) within group (order by a), percentile_disc(0.5) within group (order by a) from (values(1::float8),(3),(5),(7)) t(a); select percentile_cont(0.25) within group (order by a), percentile_disc(0.5) within group (order by a) from (values(1::float8),(3),(5),(7)) t(a); -- these can't share state currently select rank(4) within group (order by a), dense_rank(4) within group (order by a) from (values(1),(3),(5),(7)) t(a); -- test that aggs with the same sfunc and initcond share the same agg state create aggregate my_sum_init(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = sum_finalfn, initcond = '(10,0)' ); create aggregate my_avg_init(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn, initcond = '(10,0)' ); create aggregate my_avg_init2(int4) ( stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn, initcond = '(4,0)' ); -- state should be shared if INITCONDs are matching select my_sum_init(one),my_avg_init(one) from (values(1),(3)) t(one); -- Varying INITCONDs should cause the states not to be shared. select my_sum_init(one),my_avg_init2(one) from (values(1),(3)) t(one); rollback; -- test aggregate state sharing to ensure it works if one aggregate has a -- finalfn and the other one has none. begin work; create or replace function sum_transfn(state int4, n int4) returns int4 as $$ declare new_state int4; begin raise notice 'sum_transfn called with %', n; if state is null then if n is not null then new_state := n; return new_state; end if; return null; elsif n is not null then state := state + n; return state; end if; return null; end $$ language plpgsql; create function halfsum_finalfn(state int4) returns int4 as $$ begin if state is null then return NULL; else return state / 2; end if; end $$ language plpgsql; create aggregate my_sum(int4) ( stype = int4, sfunc = sum_transfn ); create aggregate my_half_sum(int4) ( stype = int4, sfunc = sum_transfn, finalfunc = halfsum_finalfn ); -- Agg state should be shared even though my_sum has no finalfn select my_sum(one),my_half_sum(one) from (values(1),(2),(3),(4)) t(one); rollback; -- test that the aggregate transition logic correctly handles -- transition / combine functions returning NULL -- First test the case of a normal transition function returning NULL BEGIN; CREATE FUNCTION balkifnull(int8, int4) RETURNS int8 STRICT LANGUAGE plpgsql AS $$ BEGIN IF $1 IS NULL THEN RAISE 'erroneously called with NULL argument'; END IF; RETURN NULL; END$$; CREATE AGGREGATE balk(int4) ( SFUNC = balkifnull(int8, int4), STYPE = int8, PARALLEL = SAFE, INITCOND = '0' ); SELECT balk(hundred) FROM tenk1; ROLLBACK; -- Secondly test the case of a parallel aggregate combiner function -- returning NULL. For that use normal transition function, but a -- combiner function returning NULL. BEGIN; CREATE FUNCTION balkifnull(int8, int8) RETURNS int8 PARALLEL SAFE STRICT LANGUAGE plpgsql AS $$ BEGIN IF $1 IS NULL THEN RAISE 'erroneously called with NULL argument'; END IF; RETURN NULL; END$$; CREATE AGGREGATE balk(int4) ( SFUNC = int4_sum(int8, int4), STYPE = int8, COMBINEFUNC = balkifnull(int8, int8), PARALLEL = SAFE, INITCOND = '0' ); -- force use of parallelism ALTER TABLE tenk1 set (parallel_workers = 4); SET LOCAL parallel_setup_cost=0; SET LOCAL max_parallel_workers_per_gather=4; EXPLAIN (COSTS OFF) SELECT balk(hundred) FROM tenk1; SELECT balk(hundred) FROM tenk1; ROLLBACK; -- test coverage for aggregate combine/serial/deserial functions BEGIN; SET parallel_setup_cost = 0; SET parallel_tuple_cost = 0; SET min_parallel_table_scan_size = 0; SET max_parallel_workers_per_gather = 4; SET parallel_leader_participation = off; SET enable_indexonlyscan = off; -- variance(int4) covers numeric_poly_combine -- sum(int8) covers int8_avg_combine -- regr_count(float8, float8) covers int8inc_float8_float8 and aggregates with > 1 arg EXPLAIN (COSTS OFF, VERBOSE) SELECT variance(unique1::int4), sum(unique1::int8), regr_count(unique1::float8, unique1::float8) FROM (SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1) u; SELECT variance(unique1::int4), sum(unique1::int8), regr_count(unique1::float8, unique1::float8) FROM (SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1) u; -- variance(int8) covers numeric_combine -- avg(numeric) covers numeric_avg_combine EXPLAIN (COSTS OFF, VERBOSE) SELECT variance(unique1::int8), avg(unique1::numeric) FROM (SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1) u; SELECT variance(unique1::int8), avg(unique1::numeric) FROM (SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1 UNION ALL SELECT * FROM tenk1) u; ROLLBACK; -- test coverage for dense_rank SELECT dense_rank(x) WITHIN GROUP (ORDER BY x) FROM (VALUES (1),(1),(2),(2),(3),(3)) v(x) GROUP BY (x) ORDER BY 1; -- Ensure that the STRICT checks for aggregates does not take NULLness -- of ORDER BY columns into account. See bug report around -- 2a505161-2727-2473-7c46-591ed108ac52@email.cz SELECT min(x ORDER BY y) FROM (VALUES(1, NULL)) AS d(x,y); SELECT min(x ORDER BY y) FROM (VALUES(1, 2)) AS d(x,y); -- check collation-sensitive matching between grouping expressions select v||'a', case v||'a' when 'aa' then 1 else 0 end, count(*) from unnest(array['a','b']) u(v) group by v||'a' order by 1; select v||'a', case when v||'a' = 'aa' then 1 else 0 end, count(*) from unnest(array['a','b']) u(v) group by v||'a' order by 1; -- Make sure that generation of HashAggregate for uniqification purposes -- does not lead to array overflow due to unexpected duplicate hash keys -- see CAFeeJoKKu0u+A_A9R9316djW-YW3-+Gtgvy3ju655qRHR3jtdA@mail.gmail.com set enable_memoize to off; explain (costs off) select 1 from tenk1 where (hundred, thousand) in (select twothousand, twothousand from onek); reset enable_memoize; -- -- Hash Aggregation Spill tests -- set enable_sort=false; set work_mem='64kB'; select unique1, count(*), sum(twothousand) from tenk1 group by unique1 having sum(fivethous) > 4975 order by sum(twothousand); set work_mem to default; set enable_sort to default; -- -- Compare results between plans using sorting and plans using hash -- aggregation. Force spilling in both cases by setting work_mem low. -- set work_mem='64kB'; create table agg_data_2k as select g from generate_series(0, 1999) g; analyze agg_data_2k; create table agg_data_20k as select g from generate_series(0, 19999) g; analyze agg_data_20k; -- Produce results with sorting. set enable_hashagg = false; set jit_above_cost = 0; explain (costs off) select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3 from agg_data_20k group by g%10000; create table agg_group_1 as select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3 from agg_data_20k group by g%10000; create table agg_group_2 as select * from (values (100), (300), (500)) as r(a), lateral ( select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3 from agg_data_2k where g < r.a group by g/2) as s; set jit_above_cost to default; create table agg_group_3 as select (g/2)::numeric as c1, sum(7::int4) as c2, count(*) as c3 from agg_data_2k group by g/2; create table agg_group_4 as select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3 from agg_data_2k group by g/2; -- Produce results with hash aggregation set enable_hashagg = true; set enable_sort = false; set jit_above_cost = 0; explain (costs off) select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3 from agg_data_20k group by g%10000; create table agg_hash_1 as select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3 from agg_data_20k group by g%10000; create table agg_hash_2 as select * from (values (100), (300), (500)) as r(a), lateral ( select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3 from agg_data_2k where g < r.a group by g/2) as s; set jit_above_cost to default; create table agg_hash_3 as select (g/2)::numeric as c1, sum(7::int4) as c2, count(*) as c3 from agg_data_2k group by g/2; create table agg_hash_4 as select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3 from agg_data_2k group by g/2; set enable_sort = true; set work_mem to default; -- Compare group aggregation results to hash aggregation results (select * from agg_hash_1 except select * from agg_group_1) union all (select * from agg_group_1 except select * from agg_hash_1); (select * from agg_hash_2 except select * from agg_group_2) union all (select * from agg_group_2 except select * from agg_hash_2); (select * from agg_hash_3 except select * from agg_group_3) union all (select * from agg_group_3 except select * from agg_hash_3); (select * from agg_hash_4 except select * from agg_group_4) union all (select * from agg_group_4 except select * from agg_hash_4); drop table agg_group_1; drop table agg_group_2; drop table agg_group_3; drop table agg_group_4; drop table agg_hash_1; drop table agg_hash_2; drop table agg_hash_3; drop table agg_hash_4;