summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/html/sql-expressions.html
blob: ef343b949c8adfacea0b15c91a17864ecb59f469 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>4.2. Value Expressions</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="sql-syntax-lexical.html" title="4.1. Lexical Structure" /><link rel="next" href="sql-syntax-calling-funcs.html" title="4.3. Calling Functions" /></head><body id="docContent" class="container-fluid col-10"><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">4.2. Value Expressions</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="sql-syntax-lexical.html" title="4.1. Lexical Structure">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="sql-syntax.html" title="Chapter 4. SQL Syntax">Up</a></td><th width="60%" align="center">Chapter 4. SQL Syntax</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 14.5 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="sql-syntax-calling-funcs.html" title="4.3. Calling Functions">Next</a></td></tr></table><hr></hr></div><div class="sect1" id="SQL-EXPRESSIONS"><div class="titlepage"><div><div><h2 class="title" style="clear: both">4.2. Value Expressions</h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="sql-expressions.html#SQL-EXPRESSIONS-COLUMN-REFS">4.2.1. Column References</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SQL-EXPRESSIONS-PARAMETERS-POSITIONAL">4.2.2. Positional Parameters</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SQL-EXPRESSIONS-SUBSCRIPTS">4.2.3. Subscripts</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#FIELD-SELECTION">4.2.4. Field Selection</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SQL-EXPRESSIONS-OPERATOR-CALLS">4.2.5. Operator Invocations</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SQL-EXPRESSIONS-FUNCTION-CALLS">4.2.6. Function Calls</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SYNTAX-AGGREGATES">4.2.7. Aggregate Expressions</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS">4.2.8. Window Function Calls</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SQL-SYNTAX-TYPE-CASTS">4.2.9. Type Casts</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SQL-SYNTAX-COLLATE-EXPRS">4.2.10. Collation Expressions</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SQL-SYNTAX-SCALAR-SUBQUERIES">4.2.11. Scalar Subqueries</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SQL-SYNTAX-ARRAY-CONSTRUCTORS">4.2.12. Array Constructors</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SQL-SYNTAX-ROW-CONSTRUCTORS">4.2.13. Row Constructors</a></span></dt><dt><span class="sect2"><a href="sql-expressions.html#SYNTAX-EXPRESS-EVAL">4.2.14. Expression Evaluation Rules</a></span></dt></dl></div><a id="id-1.5.3.6.2" class="indexterm"></a><a id="id-1.5.3.6.3" class="indexterm"></a><a id="id-1.5.3.6.4" class="indexterm"></a><p>
   Value expressions are used in a variety of contexts, such
   as in the target list of the <code class="command">SELECT</code> command, as
   new column values in <code class="command">INSERT</code> or
   <code class="command">UPDATE</code>, or in search conditions in a number of
   commands.  The result of a value expression is sometimes called a
   <em class="firstterm">scalar</em>, to distinguish it from the result of
   a table expression (which is a table).  Value expressions are
   therefore also called <em class="firstterm">scalar expressions</em> (or
   even simply <em class="firstterm">expressions</em>).  The expression
   syntax allows the calculation of values from primitive parts using
   arithmetic, logical, set, and other operations.
  </p><p>
   A value expression is one of the following:

   </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
      A constant or literal value
     </p></li><li class="listitem"><p>
      A column reference
     </p></li><li class="listitem"><p>
      A positional parameter reference, in the body of a function definition
      or prepared statement
     </p></li><li class="listitem"><p>
      A subscripted expression
     </p></li><li class="listitem"><p>
      A field selection expression
     </p></li><li class="listitem"><p>
      An operator invocation
     </p></li><li class="listitem"><p>
      A function call
     </p></li><li class="listitem"><p>
      An aggregate expression
     </p></li><li class="listitem"><p>
      A window function call
     </p></li><li class="listitem"><p>
      A type cast
     </p></li><li class="listitem"><p>
      A collation expression
     </p></li><li class="listitem"><p>
      A scalar subquery
     </p></li><li class="listitem"><p>
      An array constructor
     </p></li><li class="listitem"><p>
      A row constructor
     </p></li><li class="listitem"><p>
      Another value expression in parentheses (used to group
      subexpressions and override
      precedence<a id="id-1.5.3.6.6.1.15.1.1" class="indexterm"></a>)
     </p></li></ul></div><p>
  </p><p>
   In addition to this list, there are a number of constructs that can
   be classified as an expression but do not follow any general syntax
   rules.  These generally have the semantics of a function or
   operator and are explained in the appropriate location in <a class="xref" href="functions.html" title="Chapter 9. Functions and Operators">Chapter 9</a>.  An example is the <code class="literal">IS NULL</code>
   clause.
  </p><p>
   We have already discussed constants in <a class="xref" href="sql-syntax-lexical.html#SQL-SYNTAX-CONSTANTS" title="4.1.2. Constants">Section 4.1.2</a>.  The following sections discuss
   the remaining options.
  </p><div class="sect2" id="SQL-EXPRESSIONS-COLUMN-REFS"><div class="titlepage"><div><div><h3 class="title">4.2.1. Column References</h3></div></div></div><a id="id-1.5.3.6.9.2" class="indexterm"></a><p>
    A column can be referenced in the form:
</p><pre class="synopsis">
<em class="replaceable"><code>correlation</code></em>.<em class="replaceable"><code>columnname</code></em>
</pre><p>
   </p><p>
    <em class="replaceable"><code>correlation</code></em> is the name of a
    table (possibly qualified with a schema name), or an alias for a table
    defined by means of a <code class="literal">FROM</code> clause.
    The correlation name and separating dot can be omitted if the column name
    is unique across all the tables being used in the current query.  (See also <a class="xref" href="queries.html" title="Chapter 7. Queries">Chapter 7</a>.)
   </p></div><div class="sect2" id="SQL-EXPRESSIONS-PARAMETERS-POSITIONAL"><div class="titlepage"><div><div><h3 class="title">4.2.2. Positional Parameters</h3></div></div></div><a id="id-1.5.3.6.10.2" class="indexterm"></a><a id="id-1.5.3.6.10.3" class="indexterm"></a><p>
    A positional parameter reference is used to indicate a value
    that is supplied externally to an SQL statement.  Parameters are
    used in SQL function definitions and in prepared queries.  Some
    client libraries also support specifying data values separately
    from the SQL command string, in which case parameters are used to
    refer to the out-of-line data values.
    The form of a parameter reference is:
</p><pre class="synopsis">
$<em class="replaceable"><code>number</code></em>
</pre><p>
   </p><p>
    For example, consider the definition of a function,
    <code class="function">dept</code>, as:

</p><pre class="programlisting">
CREATE FUNCTION dept(text) RETURNS dept
    AS $$ SELECT * FROM dept WHERE name = $1 $$
    LANGUAGE SQL;
</pre><p>

    Here the <code class="literal">$1</code> references the value of the first
    function argument whenever the function is invoked.
   </p></div><div class="sect2" id="SQL-EXPRESSIONS-SUBSCRIPTS"><div class="titlepage"><div><div><h3 class="title">4.2.3. Subscripts</h3></div></div></div><a id="id-1.5.3.6.11.2" class="indexterm"></a><p>
    If an expression yields a value of an array type, then a specific
    element of the array value can be extracted by writing
</p><pre class="synopsis">
<em class="replaceable"><code>expression</code></em>[<em class="replaceable"><code>subscript</code></em>]
</pre><p>
    or multiple adjacent elements (an <span class="quote"><span class="quote">array slice</span></span>) can be extracted
    by writing
</p><pre class="synopsis">
<em class="replaceable"><code>expression</code></em>[<em class="replaceable"><code>lower_subscript</code></em>:<em class="replaceable"><code>upper_subscript</code></em>]
</pre><p>
    (Here, the brackets <code class="literal">[ ]</code> are meant to appear literally.)
    Each <em class="replaceable"><code>subscript</code></em> is itself an expression,
    which will be rounded to the nearest integer value.
   </p><p>
    In general the array <em class="replaceable"><code>expression</code></em> must be
    parenthesized, but the parentheses can be omitted when the expression
    to be subscripted is just a column reference or positional parameter.
    Also, multiple subscripts can be concatenated when the original array
    is multidimensional.
    For example:

</p><pre class="programlisting">
mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]
</pre><p>

    The parentheses in the last example are required.
    See <a class="xref" href="arrays.html" title="8.15. Arrays">Section 8.15</a> for more about arrays.
   </p></div><div class="sect2" id="FIELD-SELECTION"><div class="titlepage"><div><div><h3 class="title">4.2.4. Field Selection</h3></div></div></div><a id="id-1.5.3.6.12.2" class="indexterm"></a><p>
    If an expression yields a value of a composite type (row type), then a
    specific field of the row can be extracted by writing
</p><pre class="synopsis">
<em class="replaceable"><code>expression</code></em>.<em class="replaceable"><code>fieldname</code></em>
</pre><p>
   </p><p>
    In general the row <em class="replaceable"><code>expression</code></em> must be
    parenthesized, but the parentheses can be omitted when the expression
    to be selected from is just a table reference or positional parameter.
    For example:

</p><pre class="programlisting">
mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3
</pre><p>

    (Thus, a qualified column reference is actually just a special case
    of the field selection syntax.)  An important special case is
    extracting a field from a table column that is of a composite type:

</p><pre class="programlisting">
(compositecol).somefield
(mytable.compositecol).somefield
</pre><p>

    The parentheses are required here to show that
    <code class="structfield">compositecol</code> is a column name not a table name,
    or that <code class="structname">mytable</code> is a table name not a schema name
    in the second case.
   </p><p>
    You can ask for all fields of a composite value by
    writing <code class="literal">.*</code>:
</p><pre class="programlisting">
(compositecol).*
</pre><p>
    This notation behaves differently depending on context;
    see <a class="xref" href="rowtypes.html#ROWTYPES-USAGE" title="8.16.5. Using Composite Types in Queries">Section 8.16.5</a> for details.
   </p></div><div class="sect2" id="SQL-EXPRESSIONS-OPERATOR-CALLS"><div class="titlepage"><div><div><h3 class="title">4.2.5. Operator Invocations</h3></div></div></div><a id="id-1.5.3.6.13.2" class="indexterm"></a><p>
    There are two possible syntaxes for an operator invocation:
    </p><table border="0" summary="Simple list" class="simplelist"><tr><td><em class="replaceable"><code>expression</code></em> <em class="replaceable"><code>operator</code></em> <em class="replaceable"><code>expression</code></em> (binary infix operator)</td></tr><tr><td><em class="replaceable"><code>operator</code></em> <em class="replaceable"><code>expression</code></em> (unary prefix operator)</td></tr></table><p>
    where the <em class="replaceable"><code>operator</code></em> token follows the syntax
    rules of <a class="xref" href="sql-syntax-lexical.html#SQL-SYNTAX-OPERATORS" title="4.1.3. Operators">Section 4.1.3</a>, or is one of the
    key words <code class="token">AND</code>, <code class="token">OR</code>, and
    <code class="token">NOT</code>, or is a qualified operator name in the form:
</p><pre class="synopsis">
<code class="literal">OPERATOR(</code><em class="replaceable"><code>schema</code></em><code class="literal">.</code><em class="replaceable"><code>operatorname</code></em><code class="literal">)</code>
</pre><p>
    Which particular operators exist and whether
    they are unary or binary depends on what operators have been
    defined by the system or the user.  <a class="xref" href="functions.html" title="Chapter 9. Functions and Operators">Chapter 9</a>
    describes the built-in operators.
   </p></div><div class="sect2" id="SQL-EXPRESSIONS-FUNCTION-CALLS"><div class="titlepage"><div><div><h3 class="title">4.2.6. Function Calls</h3></div></div></div><a id="id-1.5.3.6.14.2" class="indexterm"></a><p>
    The syntax for a function call is the name of a function
    (possibly qualified with a schema name), followed by its argument list
    enclosed in parentheses:

</p><pre class="synopsis">
<em class="replaceable"><code>function_name</code></em> ([<span class="optional"><em class="replaceable"><code>expression</code></em> [<span class="optional">, <em class="replaceable"><code>expression</code></em> ... </span>]</span>] )
</pre><p>
   </p><p>
    For example, the following computes the square root of 2:
</p><pre class="programlisting">
sqrt(2)
</pre><p>
   </p><p>
    The list of built-in functions is in <a class="xref" href="functions.html" title="Chapter 9. Functions and Operators">Chapter 9</a>.
    Other functions can be added by the user.
   </p><p>
    When issuing queries in a database where some users mistrust other users,
    observe security precautions from <a class="xref" href="typeconv-func.html" title="10.3. Functions">Section 10.3</a> when
    writing function calls.
   </p><p>
    The arguments can optionally have names attached.
    See <a class="xref" href="sql-syntax-calling-funcs.html" title="4.3. Calling Functions">Section 4.3</a> for details.
   </p><div class="note"><h3 class="title">Note</h3><p>
     A function that takes a single argument of composite type can
     optionally be called using field-selection syntax, and conversely
     field selection can be written in functional style.  That is, the
     notations <code class="literal">col(table)</code> and <code class="literal">table.col</code> are
     interchangeable.  This behavior is not SQL-standard but is provided
     in <span class="productname">PostgreSQL</span> because it allows use of functions to
     emulate <span class="quote"><span class="quote">computed fields</span></span>.  For more information see
     <a class="xref" href="rowtypes.html#ROWTYPES-USAGE" title="8.16.5. Using Composite Types in Queries">Section 8.16.5</a>.
    </p></div></div><div class="sect2" id="SYNTAX-AGGREGATES"><div class="titlepage"><div><div><h3 class="title">4.2.7. Aggregate Expressions</h3></div></div></div><a id="id-1.5.3.6.15.2" class="indexterm"></a><a id="id-1.5.3.6.15.3" class="indexterm"></a><a id="id-1.5.3.6.15.4" class="indexterm"></a><a id="id-1.5.3.6.15.5" class="indexterm"></a><p>
    An <em class="firstterm">aggregate expression</em> represents the
    application of an aggregate function across the rows selected by a
    query.  An aggregate function reduces multiple inputs to a single
    output value, such as the sum or average of the inputs.  The
    syntax of an aggregate expression is one of the following:

</p><pre class="synopsis">
<em class="replaceable"><code>aggregate_name</code></em> (<em class="replaceable"><code>expression</code></em> [ , ... ] [ <em class="replaceable"><code>order_by_clause</code></em> ] ) [ FILTER ( WHERE <em class="replaceable"><code>filter_clause</code></em> ) ]
<em class="replaceable"><code>aggregate_name</code></em> (ALL <em class="replaceable"><code>expression</code></em> [ , ... ] [ <em class="replaceable"><code>order_by_clause</code></em> ] ) [ FILTER ( WHERE <em class="replaceable"><code>filter_clause</code></em> ) ]
<em class="replaceable"><code>aggregate_name</code></em> (DISTINCT <em class="replaceable"><code>expression</code></em> [ , ... ] [ <em class="replaceable"><code>order_by_clause</code></em> ] ) [ FILTER ( WHERE <em class="replaceable"><code>filter_clause</code></em> ) ]
<em class="replaceable"><code>aggregate_name</code></em> ( * ) [ FILTER ( WHERE <em class="replaceable"><code>filter_clause</code></em> ) ]
<em class="replaceable"><code>aggregate_name</code></em> ( [ <em class="replaceable"><code>expression</code></em> [ , ... ] ] ) WITHIN GROUP ( <em class="replaceable"><code>order_by_clause</code></em> ) [ FILTER ( WHERE <em class="replaceable"><code>filter_clause</code></em> ) ]
</pre><p>

    where <em class="replaceable"><code>aggregate_name</code></em> is a previously
    defined aggregate (possibly qualified with a schema name) and
    <em class="replaceable"><code>expression</code></em> is
    any value expression that does not itself contain an aggregate
    expression or a window function call.  The optional
    <em class="replaceable"><code>order_by_clause</code></em> and
    <em class="replaceable"><code>filter_clause</code></em> are described below.
   </p><p>
    The first form of aggregate expression invokes the aggregate
    once for each input row.
    The second form is the same as the first, since
    <code class="literal">ALL</code> is the default.
    The third form invokes the aggregate once for each distinct value
    of the expression (or distinct set of values, for multiple expressions)
    found in the input rows.
    The fourth form invokes the aggregate once for each input row; since no
    particular input value is specified, it is generally only useful
    for the <code class="function">count(*)</code> aggregate function.
    The last form is used with <em class="firstterm">ordered-set</em> aggregate
    functions, which are described below.
   </p><p>
    Most aggregate functions ignore null inputs, so that rows in which
    one or more of the expression(s) yield null are discarded.  This
    can be assumed to be true, unless otherwise specified, for all
    built-in aggregates.
   </p><p>
    For example, <code class="literal">count(*)</code> yields the total number
    of input rows; <code class="literal">count(f1)</code> yields the number of
    input rows in which <code class="literal">f1</code> is non-null, since
    <code class="function">count</code> ignores nulls; and
    <code class="literal">count(distinct f1)</code> yields the number of
    distinct non-null values of <code class="literal">f1</code>.
   </p><p>
    Ordinarily, the input rows are fed to the aggregate function in an
    unspecified order.  In many cases this does not matter; for example,
    <code class="function">min</code> produces the same result no matter what order it
    receives the inputs in.  However, some aggregate functions
    (such as <code class="function">array_agg</code> and <code class="function">string_agg</code>) produce
    results that depend on the ordering of the input rows.  When using
    such an aggregate, the optional <em class="replaceable"><code>order_by_clause</code></em> can be
    used to specify the desired ordering.  The <em class="replaceable"><code>order_by_clause</code></em>
    has the same syntax as for a query-level <code class="literal">ORDER BY</code> clause, as
    described in <a class="xref" href="queries-order.html" title="7.5. Sorting Rows (ORDER BY)">Section 7.5</a>, except that its expressions
    are always just expressions and cannot be output-column names or numbers.
    For example:
</p><pre class="programlisting">
SELECT array_agg(a ORDER BY b DESC) FROM table;
</pre><p>
   </p><p>
    When dealing with multiple-argument aggregate functions, note that the
    <code class="literal">ORDER BY</code> clause goes after all the aggregate arguments.
    For example, write this:
</p><pre class="programlisting">
SELECT string_agg(a, ',' ORDER BY a) FROM table;
</pre><p>
    not this:
</p><pre class="programlisting">
SELECT string_agg(a ORDER BY a, ',') FROM table;  -- incorrect
</pre><p>
    The latter is syntactically valid, but it represents a call of a
    single-argument aggregate function with two <code class="literal">ORDER BY</code> keys
    (the second one being rather useless since it's a constant).
   </p><p>
    If <code class="literal">DISTINCT</code> is specified in addition to an
    <em class="replaceable"><code>order_by_clause</code></em>, then all the <code class="literal">ORDER BY</code>
    expressions must match regular arguments of the aggregate; that is,
    you cannot sort on an expression that is not included in the
    <code class="literal">DISTINCT</code> list.
   </p><div class="note"><h3 class="title">Note</h3><p>
     The ability to specify both <code class="literal">DISTINCT</code> and <code class="literal">ORDER BY</code>
     in an aggregate function is a <span class="productname">PostgreSQL</span> extension.
    </p></div><p>
    Placing <code class="literal">ORDER BY</code> within the aggregate's regular argument
    list, as described so far, is used when ordering the input rows for
    general-purpose and statistical aggregates, for which ordering is
    optional.  There is a
    subclass of aggregate functions called <em class="firstterm">ordered-set
    aggregates</em> for which an <em class="replaceable"><code>order_by_clause</code></em>
    is <span class="emphasis"><em>required</em></span>, usually because the aggregate's computation is
    only sensible in terms of a specific ordering of its input rows.
    Typical examples of ordered-set aggregates include rank and percentile
    calculations.  For an ordered-set aggregate,
    the <em class="replaceable"><code>order_by_clause</code></em> is written
    inside <code class="literal">WITHIN GROUP (...)</code>, as shown in the final syntax
    alternative above.  The expressions in
    the <em class="replaceable"><code>order_by_clause</code></em> are evaluated once per
    input row just like regular aggregate arguments, sorted as per
    the <em class="replaceable"><code>order_by_clause</code></em>'s requirements, and fed
    to the aggregate function as input arguments.  (This is unlike the case
    for a non-<code class="literal">WITHIN GROUP</code> <em class="replaceable"><code>order_by_clause</code></em>,
    which is not treated as argument(s) to the aggregate function.)  The
    argument expressions preceding <code class="literal">WITHIN GROUP</code>, if any, are
    called <em class="firstterm">direct arguments</em> to distinguish them from
    the <em class="firstterm">aggregated arguments</em> listed in
    the <em class="replaceable"><code>order_by_clause</code></em>.  Unlike regular aggregate
    arguments, direct arguments are evaluated only once per aggregate call,
    not once per input row.  This means that they can contain variables only
    if those variables are grouped by <code class="literal">GROUP BY</code>; this restriction
    is the same as if the direct arguments were not inside an aggregate
    expression at all.  Direct arguments are typically used for things like
    percentile fractions, which only make sense as a single value per
    aggregation calculation.  The direct argument list can be empty; in this
    case, write just <code class="literal">()</code> not <code class="literal">(*)</code>.
    (<span class="productname">PostgreSQL</span> will actually accept either spelling, but
    only the first way conforms to the SQL standard.)
   </p><p>
    <a id="id-1.5.3.6.15.15.1" class="indexterm"></a>
    An example of an ordered-set aggregate call is:

</p><pre class="programlisting">
SELECT percentile_cont(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_cont
-----------------
           50489
</pre><p>

   which obtains the 50th percentile, or median, value of
   the <code class="structfield">income</code> column from table <code class="structname">households</code>.
   Here, <code class="literal">0.5</code> is a direct argument; it would make no sense
   for the percentile fraction to be a value varying across rows.
   </p><p>
    If <code class="literal">FILTER</code> is specified, then only the input
    rows for which the <em class="replaceable"><code>filter_clause</code></em>
    evaluates to true are fed to the aggregate function; other rows
    are discarded.  For example:
</p><pre class="programlisting">
SELECT
    count(*) AS unfiltered,
    count(*) FILTER (WHERE i &lt; 5) AS filtered
FROM generate_series(1,10) AS s(i);
 unfiltered | filtered
------------+----------
         10 |        4
(1 row)
</pre><p>
   </p><p>
    The predefined aggregate functions are described in <a class="xref" href="functions-aggregate.html" title="9.21. Aggregate Functions">Section 9.21</a>.  Other aggregate functions can be added
    by the user.
   </p><p>
    An aggregate expression can only appear in the result list or
    <code class="literal">HAVING</code> clause of a <code class="command">SELECT</code> command.
    It is forbidden in other clauses, such as <code class="literal">WHERE</code>,
    because those clauses are logically evaluated before the results
    of aggregates are formed.
   </p><p>
    When an aggregate expression appears in a subquery (see
    <a class="xref" href="sql-expressions.html#SQL-SYNTAX-SCALAR-SUBQUERIES" title="4.2.11. Scalar Subqueries">Section 4.2.11</a> and
    <a class="xref" href="functions-subquery.html" title="9.23. Subquery Expressions">Section 9.23</a>), the aggregate is normally
    evaluated over the rows of the subquery.  But an exception occurs
    if the aggregate's arguments (and <em class="replaceable"><code>filter_clause</code></em>
    if any) contain only outer-level variables:
    the aggregate then belongs to the nearest such outer level, and is
    evaluated over the rows of that query.  The aggregate expression
    as a whole is then an outer reference for the subquery it appears in,
    and acts as a constant over any one evaluation of that subquery.
    The restriction about
    appearing only in the result list or <code class="literal">HAVING</code> clause
    applies with respect to the query level that the aggregate belongs to.
   </p></div><div class="sect2" id="SYNTAX-WINDOW-FUNCTIONS"><div class="titlepage"><div><div><h3 class="title">4.2.8. Window Function Calls</h3></div></div></div><a id="id-1.5.3.6.16.2" class="indexterm"></a><a id="id-1.5.3.6.16.3" class="indexterm"></a><p>
    A <em class="firstterm">window function call</em> represents the application
    of an aggregate-like function over some portion of the rows selected
    by a query.  Unlike non-window aggregate calls, this is not tied
    to grouping of the selected rows into a single output row — each
    row remains separate in the query output.  However the window function
    has access to all the rows that would be part of the current row's
    group according to the grouping specification (<code class="literal">PARTITION BY</code>
    list) of the window function call.
    The syntax of a window function call is one of the following:

</p><pre class="synopsis">
<em class="replaceable"><code>function_name</code></em> ([<span class="optional"><em class="replaceable"><code>expression</code></em> [<span class="optional">, <em class="replaceable"><code>expression</code></em> ... </span>]</span>]) [ FILTER ( WHERE <em class="replaceable"><code>filter_clause</code></em> ) ] OVER <em class="replaceable"><code>window_name</code></em>
<em class="replaceable"><code>function_name</code></em> ([<span class="optional"><em class="replaceable"><code>expression</code></em> [<span class="optional">, <em class="replaceable"><code>expression</code></em> ... </span>]</span>]) [ FILTER ( WHERE <em class="replaceable"><code>filter_clause</code></em> ) ] OVER ( <em class="replaceable"><code>window_definition</code></em> )
<em class="replaceable"><code>function_name</code></em> ( * ) [ FILTER ( WHERE <em class="replaceable"><code>filter_clause</code></em> ) ] OVER <em class="replaceable"><code>window_name</code></em>
<em class="replaceable"><code>function_name</code></em> ( * ) [ FILTER ( WHERE <em class="replaceable"><code>filter_clause</code></em> ) ] OVER ( <em class="replaceable"><code>window_definition</code></em> )
</pre><p>
    where <em class="replaceable"><code>window_definition</code></em>
    has the syntax
</p><pre class="synopsis">
[ <em class="replaceable"><code>existing_window_name</code></em> ]
[ PARTITION BY <em class="replaceable"><code>expression</code></em> [, ...] ]
[ ORDER BY <em class="replaceable"><code>expression</code></em> [ ASC | DESC | USING <em class="replaceable"><code>operator</code></em> ] [ NULLS { FIRST | LAST } ] [, ...] ]
[ <em class="replaceable"><code>frame_clause</code></em> ]
</pre><p>
    The optional <em class="replaceable"><code>frame_clause</code></em>
    can be one of
</p><pre class="synopsis">
{ RANGE | ROWS | GROUPS } <em class="replaceable"><code>frame_start</code></em> [ <em class="replaceable"><code>frame_exclusion</code></em> ]
{ RANGE | ROWS | GROUPS } BETWEEN <em class="replaceable"><code>frame_start</code></em> AND <em class="replaceable"><code>frame_end</code></em> [ <em class="replaceable"><code>frame_exclusion</code></em> ]
</pre><p>
    where <em class="replaceable"><code>frame_start</code></em>
    and <em class="replaceable"><code>frame_end</code></em> can be one of
</p><pre class="synopsis">
UNBOUNDED PRECEDING
<em class="replaceable"><code>offset</code></em> PRECEDING
CURRENT ROW
<em class="replaceable"><code>offset</code></em> FOLLOWING
UNBOUNDED FOLLOWING
</pre><p>
    and <em class="replaceable"><code>frame_exclusion</code></em> can be one of
</p><pre class="synopsis">
EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS
</pre><p>
   </p><p>
    Here, <em class="replaceable"><code>expression</code></em> represents any value
    expression that does not itself contain window function calls.
   </p><p>
    <em class="replaceable"><code>window_name</code></em> is a reference to a named window
    specification defined in the query's <code class="literal">WINDOW</code> clause.
    Alternatively, a full <em class="replaceable"><code>window_definition</code></em> can
    be given within parentheses, using the same syntax as for defining a
    named window in the <code class="literal">WINDOW</code> clause; see the
    <a class="xref" href="sql-select.html" title="SELECT"><span class="refentrytitle">SELECT</span></a> reference page for details.  It's worth
    pointing out that <code class="literal">OVER wname</code> is not exactly equivalent to
    <code class="literal">OVER (wname ...)</code>; the latter implies copying and modifying the
    window definition, and will be rejected if the referenced window
    specification includes a frame clause.
   </p><p>
    The <code class="literal">PARTITION BY</code> clause groups the rows of the query into
    <em class="firstterm">partitions</em>, which are processed separately by the window
    function.  <code class="literal">PARTITION BY</code> works similarly to a query-level
    <code class="literal">GROUP BY</code> clause, except that its expressions are always just
    expressions and cannot be output-column names or numbers.
    Without <code class="literal">PARTITION BY</code>, all rows produced by the query are
    treated as a single partition.
    The <code class="literal">ORDER BY</code> clause determines the order in which the rows
    of a partition are processed by the window function.  It works similarly
    to a query-level <code class="literal">ORDER BY</code> clause, but likewise cannot use
    output-column names or numbers.  Without <code class="literal">ORDER BY</code>, rows are
    processed in an unspecified order.
   </p><p>
    The <em class="replaceable"><code>frame_clause</code></em> specifies
    the set of rows constituting the <em class="firstterm">window frame</em>, which is a
    subset of the current partition, for those window functions that act on
    the frame instead of the whole partition.  The set of rows in the frame
    can vary depending on which row is the current row.  The frame can be
    specified in <code class="literal">RANGE</code>, <code class="literal">ROWS</code>
    or <code class="literal">GROUPS</code> mode; in each case, it runs from
    the <em class="replaceable"><code>frame_start</code></em> to
    the <em class="replaceable"><code>frame_end</code></em>.
    If <em class="replaceable"><code>frame_end</code></em> is omitted, the end defaults
    to <code class="literal">CURRENT ROW</code>.
   </p><p>
    A <em class="replaceable"><code>frame_start</code></em> of <code class="literal">UNBOUNDED PRECEDING</code> means
    that the frame starts with the first row of the partition, and similarly
    a <em class="replaceable"><code>frame_end</code></em> of <code class="literal">UNBOUNDED FOLLOWING</code> means
    that the frame ends with the last row of the partition.
   </p><p>
    In <code class="literal">RANGE</code> or <code class="literal">GROUPS</code> mode,
    a <em class="replaceable"><code>frame_start</code></em> of
    <code class="literal">CURRENT ROW</code> means the frame starts with the current
    row's first <em class="firstterm">peer</em> row (a row that the
    window's <code class="literal">ORDER BY</code> clause sorts as equivalent to the
    current row), while a <em class="replaceable"><code>frame_end</code></em> of
    <code class="literal">CURRENT ROW</code> means the frame ends with the current
    row's last peer row.
    In <code class="literal">ROWS</code> mode, <code class="literal">CURRENT ROW</code> simply
    means the current row.
   </p><p>
    In the <em class="replaceable"><code>offset</code></em> <code class="literal">PRECEDING</code>
    and <em class="replaceable"><code>offset</code></em> <code class="literal">FOLLOWING</code> frame
    options, the <em class="replaceable"><code>offset</code></em> must be an expression not
    containing any variables, aggregate functions, or window functions.
    The meaning of the <em class="replaceable"><code>offset</code></em> depends on the
    frame mode:
    </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
       In <code class="literal">ROWS</code> mode,
       the <em class="replaceable"><code>offset</code></em> must yield a non-null,
       non-negative integer, and the option means that the frame starts or
       ends the specified number of rows before or after the current row.
      </p></li><li class="listitem"><p>
       In <code class="literal">GROUPS</code> mode,
       the <em class="replaceable"><code>offset</code></em> again must yield a non-null,
       non-negative integer, and the option means that the frame starts or
       ends the specified number of <em class="firstterm">peer groups</em>
       before or after the current row's peer group, where a peer group is a
       set of rows that are equivalent in the <code class="literal">ORDER BY</code>
       ordering.  (There must be an <code class="literal">ORDER BY</code> clause
       in the window definition to use <code class="literal">GROUPS</code> mode.)
      </p></li><li class="listitem"><p>
       In <code class="literal">RANGE</code> mode, these options require that
       the <code class="literal">ORDER BY</code> clause specify exactly one column.
       The <em class="replaceable"><code>offset</code></em> specifies the maximum
       difference between the value of that column in the current row and
       its value in preceding or following rows of the frame.  The data type
       of the <em class="replaceable"><code>offset</code></em> expression varies depending
       on the data type of the ordering column.  For numeric ordering
       columns it is typically of the same type as the ordering column,
       but for datetime ordering columns it is an <code class="type">interval</code>.
       For example, if the ordering column is of type <code class="type">date</code>
       or <code class="type">timestamp</code>, one could write <code class="literal">RANGE BETWEEN
       '1 day' PRECEDING AND '10 days' FOLLOWING</code>.
       The <em class="replaceable"><code>offset</code></em> is still required to be
       non-null and non-negative, though the meaning
       of <span class="quote"><span class="quote">non-negative</span></span> depends on its data type.
      </p></li></ul></div><p>
    In any case, the distance to the end of the frame is limited by the
    distance to the end of the partition, so that for rows near the partition
    ends the frame might contain fewer rows than elsewhere.
   </p><p>
    Notice that in both <code class="literal">ROWS</code> and <code class="literal">GROUPS</code>
    mode, <code class="literal">0 PRECEDING</code> and <code class="literal">0 FOLLOWING</code>
    are equivalent to <code class="literal">CURRENT ROW</code>.  This normally holds
    in <code class="literal">RANGE</code> mode as well, for an appropriate
    data-type-specific meaning of <span class="quote"><span class="quote">zero</span></span>.
   </p><p>
    The <em class="replaceable"><code>frame_exclusion</code></em> option allows rows around
    the current row to be excluded from the frame, even if they would be
    included according to the frame start and frame end options.
    <code class="literal">EXCLUDE CURRENT ROW</code> excludes the current row from the
    frame.
    <code class="literal">EXCLUDE GROUP</code> excludes the current row and its
    ordering peers from the frame.
    <code class="literal">EXCLUDE TIES</code> excludes any peers of the current
    row from the frame, but not the current row itself.
    <code class="literal">EXCLUDE NO OTHERS</code> simply specifies explicitly the
    default behavior of not excluding the current row or its peers.
   </p><p>
    The default framing option is <code class="literal">RANGE UNBOUNDED PRECEDING</code>,
    which is the same as <code class="literal">RANGE BETWEEN UNBOUNDED PRECEDING AND
    CURRENT ROW</code>.  With <code class="literal">ORDER BY</code>, this sets the frame to be
    all rows from the partition start up through the current row's last
    <code class="literal">ORDER BY</code> peer.  Without <code class="literal">ORDER BY</code>,
    this means all rows of the partition are included in the window frame,
    since all rows become peers of the current row.
   </p><p>
    Restrictions are that
    <em class="replaceable"><code>frame_start</code></em> cannot be <code class="literal">UNBOUNDED FOLLOWING</code>,
    <em class="replaceable"><code>frame_end</code></em> cannot be <code class="literal">UNBOUNDED PRECEDING</code>,
    and the <em class="replaceable"><code>frame_end</code></em> choice cannot appear earlier in the
    above list of <em class="replaceable"><code>frame_start</code></em>
    and <em class="replaceable"><code>frame_end</code></em> options than
    the <em class="replaceable"><code>frame_start</code></em> choice does — for example
    <code class="literal">RANGE BETWEEN CURRENT ROW AND <em class="replaceable"><code>offset</code></em>
    PRECEDING</code> is not allowed.
    But, for example, <code class="literal">ROWS BETWEEN 7 PRECEDING AND 8
    PRECEDING</code> is allowed, even though it would never select any
    rows.
   </p><p>
    If <code class="literal">FILTER</code> is specified, then only the input
    rows for which the <em class="replaceable"><code>filter_clause</code></em>
    evaluates to true are fed to the window function; other rows
    are discarded.  Only window functions that are aggregates accept
    a <code class="literal">FILTER</code> clause.
   </p><p>
    The built-in window functions are described in <a class="xref" href="functions-window.html#FUNCTIONS-WINDOW-TABLE" title="Table 9.62. General-Purpose Window Functions">Table 9.62</a>.  Other window functions can be added by
    the user.  Also, any built-in or user-defined general-purpose or
    statistical aggregate can be used as a window function.  (Ordered-set
    and hypothetical-set aggregates cannot presently be used as window functions.)
   </p><p>
    The syntaxes using <code class="literal">*</code> are used for calling parameter-less
    aggregate functions as window functions, for example
    <code class="literal">count(*) OVER (PARTITION BY x ORDER BY y)</code>.
    The asterisk (<code class="literal">*</code>) is customarily not used for
    window-specific functions.  Window-specific functions do not
    allow <code class="literal">DISTINCT</code> or <code class="literal">ORDER BY</code> to be used within the
    function argument list.
   </p><p>
    Window function calls are permitted only in the <code class="literal">SELECT</code>
    list and the <code class="literal">ORDER BY</code> clause of the query.
   </p><p>
    More information about window functions can be found in
    <a class="xref" href="tutorial-window.html" title="3.5. Window Functions">Section 3.5</a>,
    <a class="xref" href="functions-window.html" title="9.22. Window Functions">Section 9.22</a>, and
    <a class="xref" href="queries-table-expressions.html#QUERIES-WINDOW" title="7.2.5. Window Function Processing">Section 7.2.5</a>.
   </p></div><div class="sect2" id="SQL-SYNTAX-TYPE-CASTS"><div class="titlepage"><div><div><h3 class="title">4.2.9. Type Casts</h3></div></div></div><a id="id-1.5.3.6.17.2" class="indexterm"></a><a id="id-1.5.3.6.17.3" class="indexterm"></a><a id="id-1.5.3.6.17.4" class="indexterm"></a><p>
    A type cast specifies a conversion from one data type to another.
    <span class="productname">PostgreSQL</span> accepts two equivalent syntaxes
    for type casts:
</p><pre class="synopsis">
CAST ( <em class="replaceable"><code>expression</code></em> AS <em class="replaceable"><code>type</code></em> )
<em class="replaceable"><code>expression</code></em>::<em class="replaceable"><code>type</code></em>
</pre><p>
    The <code class="literal">CAST</code> syntax conforms to SQL; the syntax with
    <code class="literal">::</code> is historical <span class="productname">PostgreSQL</span>
    usage.
   </p><p>
    When a cast is applied to a value expression of a known type, it
    represents a run-time type conversion.  The cast will succeed only
    if a suitable type conversion operation has been defined.  Notice that this
    is subtly different from the use of casts with constants, as shown in
    <a class="xref" href="sql-syntax-lexical.html#SQL-SYNTAX-CONSTANTS-GENERIC" title="4.1.2.7. Constants of Other Types">Section 4.1.2.7</a>.  A cast applied to an
    unadorned string literal represents the initial assignment of a type
    to a literal constant value, and so it will succeed for any type
    (if the contents of the string literal are acceptable input syntax for the
    data type).
   </p><p>
    An explicit type cast can usually be omitted if there is no ambiguity as
    to the type that a value expression must produce (for example, when it is
    assigned to a table column); the system will automatically apply a
    type cast in such cases.  However, automatic casting is only done for
    casts that are marked <span class="quote"><span class="quote">OK to apply implicitly</span></span>
    in the system catalogs.  Other casts must be invoked with
    explicit casting syntax.  This restriction is intended to prevent
    surprising conversions from being applied silently.
   </p><p>
    It is also possible to specify a type cast using a function-like
    syntax:
</p><pre class="synopsis">
<em class="replaceable"><code>typename</code></em> ( <em class="replaceable"><code>expression</code></em> )
</pre><p>
    However, this only works for types whose names are also valid as
    function names.  For example, <code class="literal">double precision</code>
    cannot be used this way, but the equivalent <code class="literal">float8</code>
    can.  Also, the names <code class="literal">interval</code>, <code class="literal">time</code>, and
    <code class="literal">timestamp</code> can only be used in this fashion if they are
    double-quoted, because of syntactic conflicts.  Therefore, the use of
    the function-like cast syntax leads to inconsistencies and should
    probably be avoided.
   </p><div class="note"><h3 class="title">Note</h3><p>
     The function-like syntax is in fact just a function call.  When
     one of the two standard cast syntaxes is used to do a run-time
     conversion, it will internally invoke a registered function to
     perform the conversion.  By convention, these conversion functions
     have the same name as their output type, and thus the <span class="quote"><span class="quote">function-like
     syntax</span></span> is nothing more than a direct invocation of the underlying
     conversion function.  Obviously, this is not something that a portable
     application should rely on.  For further details see
     <a class="xref" href="sql-createcast.html" title="CREATE CAST"><span class="refentrytitle">CREATE CAST</span></a>.
    </p></div></div><div class="sect2" id="SQL-SYNTAX-COLLATE-EXPRS"><div class="titlepage"><div><div><h3 class="title">4.2.10. Collation Expressions</h3></div></div></div><a id="id-1.5.3.6.18.2" class="indexterm"></a><p>
    The <code class="literal">COLLATE</code> clause overrides the collation of
    an expression.  It is appended to the expression it applies to:
</p><pre class="synopsis">
<em class="replaceable"><code>expr</code></em> COLLATE <em class="replaceable"><code>collation</code></em>
</pre><p>
    where <em class="replaceable"><code>collation</code></em> is a possibly
    schema-qualified identifier.  The <code class="literal">COLLATE</code>
    clause binds tighter than operators; parentheses can be used when
    necessary.
   </p><p>
    If no collation is explicitly specified, the database system
    either derives a collation from the columns involved in the
    expression, or it defaults to the default collation of the
    database if no column is involved in the expression.
   </p><p>
    The two common uses of the <code class="literal">COLLATE</code> clause are
    overriding the sort order in an <code class="literal">ORDER BY</code> clause, for
    example:
</p><pre class="programlisting">
SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";
</pre><p>
    and overriding the collation of a function or operator call that
    has locale-sensitive results, for example:
</p><pre class="programlisting">
SELECT * FROM tbl WHERE a &gt; 'foo' COLLATE "C";
</pre><p>
    Note that in the latter case the <code class="literal">COLLATE</code> clause is
    attached to an input argument of the operator we wish to affect.
    It doesn't matter which argument of the operator or function call the
    <code class="literal">COLLATE</code> clause is attached to, because the collation that is
    applied by the operator or function is derived by considering all
    arguments, and an explicit <code class="literal">COLLATE</code> clause will override the
    collations of all other arguments.  (Attaching non-matching
    <code class="literal">COLLATE</code> clauses to more than one argument, however, is an
    error.  For more details see <a class="xref" href="collation.html" title="24.2. Collation Support">Section 24.2</a>.)
    Thus, this gives the same result as the previous example:
</p><pre class="programlisting">
SELECT * FROM tbl WHERE a COLLATE "C" &gt; 'foo';
</pre><p>
    But this is an error:
</p><pre class="programlisting">
SELECT * FROM tbl WHERE (a &gt; 'foo') COLLATE "C";
</pre><p>
    because it attempts to apply a collation to the result of the
    <code class="literal">&gt;</code> operator, which is of the non-collatable data type
    <code class="type">boolean</code>.
   </p></div><div class="sect2" id="SQL-SYNTAX-SCALAR-SUBQUERIES"><div class="titlepage"><div><div><h3 class="title">4.2.11. Scalar Subqueries</h3></div></div></div><a id="id-1.5.3.6.19.2" class="indexterm"></a><p>
    A scalar subquery is an ordinary
    <code class="command">SELECT</code> query in parentheses that returns exactly one
    row with one column.  (See <a class="xref" href="queries.html" title="Chapter 7. Queries">Chapter 7</a> for information about writing queries.)
    The <code class="command">SELECT</code> query is executed
    and the single returned value is used in the surrounding value expression.
    It is an error to use a query that
    returns more than one row or more than one column as a scalar subquery.
    (But if, during a particular execution, the subquery returns no rows,
    there is no error; the scalar result is taken to be null.)
    The subquery can refer to variables from the surrounding query,
    which will act as constants during any one evaluation of the subquery.
    See also <a class="xref" href="functions-subquery.html" title="9.23. Subquery Expressions">Section 9.23</a> for other expressions involving subqueries.
   </p><p>
    For example, the following finds the largest city population in each
    state:
</p><pre class="programlisting">
SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
    FROM states;
</pre><p>
   </p></div><div class="sect2" id="SQL-SYNTAX-ARRAY-CONSTRUCTORS"><div class="titlepage"><div><div><h3 class="title">4.2.12. Array Constructors</h3></div></div></div><a id="id-1.5.3.6.20.2" class="indexterm"></a><a id="id-1.5.3.6.20.3" class="indexterm"></a><p>
    An array constructor is an expression that builds an
    array value using values for its member elements.  A simple array
    constructor
    consists of the key word <code class="literal">ARRAY</code>, a left square bracket
    <code class="literal">[</code>, a list of expressions (separated by commas) for the
    array element values, and finally a right square bracket <code class="literal">]</code>.
    For example:
</p><pre class="programlisting">
SELECT ARRAY[1,2,3+4];
  array
---------
 {1,2,7}
(1 row)
</pre><p>
    By default,
    the array element type is the common type of the member expressions,
    determined using the same rules as for <code class="literal">UNION</code> or
    <code class="literal">CASE</code> constructs (see <a class="xref" href="typeconv-union-case.html" title="10.5. UNION, CASE, and Related Constructs">Section 10.5</a>).
    You can override this by explicitly casting the array constructor to the
    desired type, for example:
</p><pre class="programlisting">
SELECT ARRAY[1,2,22.7]::integer[];
  array
----------
 {1,2,23}
(1 row)
</pre><p>
    This has the same effect as casting each expression to the array
    element type individually.
    For more on casting, see <a class="xref" href="sql-expressions.html#SQL-SYNTAX-TYPE-CASTS" title="4.2.9. Type Casts">Section 4.2.9</a>.
   </p><p>
    Multidimensional array values can be built by nesting array
    constructors.
    In the inner constructors, the key word <code class="literal">ARRAY</code> can
    be omitted.  For example, these produce the same result:

</p><pre class="programlisting">
SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
     array
---------------
 {{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],[3,4]];
     array
---------------
 {{1,2},{3,4}}
(1 row)
</pre><p>

    Since multidimensional arrays must be rectangular, inner constructors
    at the same level must produce sub-arrays of identical dimensions.
    Any cast applied to the outer <code class="literal">ARRAY</code> constructor propagates
    automatically to all the inner constructors.
  </p><p>
    Multidimensional array constructor elements can be anything yielding
    an array of the proper kind, not only a sub-<code class="literal">ARRAY</code> construct.
    For example:
</p><pre class="programlisting">
CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
                     array
------------------------------------------------
 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)
</pre><p>
  </p><p>
   You can construct an empty array, but since it's impossible to have an
   array with no type, you must explicitly cast your empty array to the
   desired type.  For example:
</p><pre class="programlisting">
SELECT ARRAY[]::integer[];
 array
-------
 {}
(1 row)
</pre><p>
  </p><p>
   It is also possible to construct an array from the results of a
   subquery.  In this form, the array constructor is written with the
   key word <code class="literal">ARRAY</code> followed by a parenthesized (not
   bracketed) subquery. For example:
</p><pre class="programlisting">
SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
                              array
------------------------------------------------------------------
 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
              array
----------------------------------
 {{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)
</pre><p>
   The subquery must return a single column.
   If the subquery's output column is of a non-array type, the resulting
   one-dimensional array will have an element for each row in the
   subquery result, with an element type matching that of the
   subquery's output column.
   If the subquery's output column is of an array type, the result will be
   an array of the same type but one higher dimension; in this case all
   the subquery rows must yield arrays of identical dimensionality, else
   the result would not be rectangular.
  </p><p>
   The subscripts of an array value built with <code class="literal">ARRAY</code>
   always begin with one.  For more information about arrays, see
   <a class="xref" href="arrays.html" title="8.15. Arrays">Section 8.15</a>.
  </p></div><div class="sect2" id="SQL-SYNTAX-ROW-CONSTRUCTORS"><div class="titlepage"><div><div><h3 class="title">4.2.13. Row Constructors</h3></div></div></div><a id="id-1.5.3.6.21.2" class="indexterm"></a><a id="id-1.5.3.6.21.3" class="indexterm"></a><a id="id-1.5.3.6.21.4" class="indexterm"></a><p>
    A row constructor is an expression that builds a row value (also
    called a composite value) using values
    for its member fields.  A row constructor consists of the key word
    <code class="literal">ROW</code>, a left parenthesis, zero or more
    expressions (separated by commas) for the row field values, and finally
    a right parenthesis.  For example:
</p><pre class="programlisting">
SELECT ROW(1,2.5,'this is a test');
</pre><p>
    The key word <code class="literal">ROW</code> is optional when there is more than one
    expression in the list.
   </p><p>
    A row constructor can include the syntax
    <em class="replaceable"><code>rowvalue</code></em><code class="literal">.*</code>,
    which will be expanded to a list of the elements of the row value,
    just as occurs when the <code class="literal">.*</code> syntax is used at the top level
    of a <code class="command">SELECT</code> list (see <a class="xref" href="rowtypes.html#ROWTYPES-USAGE" title="8.16.5. Using Composite Types in Queries">Section 8.16.5</a>).
    For example, if table <code class="literal">t</code> has
    columns <code class="literal">f1</code> and <code class="literal">f2</code>, these are the same:
</p><pre class="programlisting">
SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;
</pre><p>
   </p><div class="note"><h3 class="title">Note</h3><p>
     Before <span class="productname">PostgreSQL</span> 8.2, the
     <code class="literal">.*</code> syntax was not expanded in row constructors, so
     that writing <code class="literal">ROW(t.*, 42)</code> created a two-field row whose first
     field was another row value.  The new behavior is usually more useful.
     If you need the old behavior of nested row values, write the inner
     row value without <code class="literal">.*</code>, for instance
     <code class="literal">ROW(t, 42)</code>.
    </p></div><p>
    By default, the value created by a <code class="literal">ROW</code> expression is of
    an anonymous record type.  If necessary, it can be cast to a named
    composite type — either the row type of a table, or a composite type
    created with <code class="command">CREATE TYPE AS</code>.  An explicit cast might be needed
    to avoid ambiguity.  For example:
</p><pre class="programlisting">
CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- No cast needed since only one getf1() exists
SELECT getf1(ROW(1,2.5,'this is a test'));
 getf1
-------
     1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(ROW(1,2.5,'this is a test'));
ERROR:  function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);
 getf1
-------
     1
(1 row)

SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS myrowtype));
 getf1
-------
    11
(1 row)
</pre><p>
  </p><p>
   Row constructors can be used to build composite values to be stored
   in a composite-type table column, or to be passed to a function that
   accepts a composite parameter.  Also,
   it is possible to compare two row values or test a row with
   <code class="literal">IS NULL</code> or <code class="literal">IS NOT NULL</code>, for example:
</p><pre class="programlisting">
SELECT ROW(1,2.5,'this is a test') = ROW(1, 3, 'not the same');

SELECT ROW(table.*) IS NULL FROM table;  -- detect all-null rows
</pre><p>
   For more detail see <a class="xref" href="functions-comparisons.html" title="9.24. Row and Array Comparisons">Section 9.24</a>.
   Row constructors can also be used in connection with subqueries,
   as discussed in <a class="xref" href="functions-subquery.html" title="9.23. Subquery Expressions">Section 9.23</a>.
  </p></div><div class="sect2" id="SYNTAX-EXPRESS-EVAL"><div class="titlepage"><div><div><h3 class="title">4.2.14. Expression Evaluation Rules</h3></div></div></div><a id="id-1.5.3.6.22.2" class="indexterm"></a><p>
    The order of evaluation of subexpressions is not defined.  In
    particular, the inputs of an operator or function are not necessarily
    evaluated left-to-right or in any other fixed order.
   </p><p>
    Furthermore, if the result of an expression can be determined by
    evaluating only some parts of it, then other subexpressions
    might not be evaluated at all.  For instance, if one wrote:
</p><pre class="programlisting">
SELECT true OR somefunc();
</pre><p>
    then <code class="literal">somefunc()</code> would (probably) not be called
    at all. The same would be the case if one wrote:
</p><pre class="programlisting">
SELECT somefunc() OR true;
</pre><p>
    Note that this is not the same as the left-to-right
    <span class="quote"><span class="quote">short-circuiting</span></span> of Boolean operators that is found
    in some programming languages.
   </p><p>
    As a consequence, it is unwise to use functions with side effects
    as part of complex expressions.  It is particularly dangerous to
    rely on side effects or evaluation order in <code class="literal">WHERE</code> and <code class="literal">HAVING</code> clauses,
    since those clauses are extensively reprocessed as part of
    developing an execution plan.  Boolean
    expressions (<code class="literal">AND</code>/<code class="literal">OR</code>/<code class="literal">NOT</code> combinations) in those clauses can be reorganized
    in any manner allowed by the laws of Boolean algebra.
   </p><p>
    When it is essential to force evaluation order, a <code class="literal">CASE</code>
    construct (see <a class="xref" href="functions-conditional.html" title="9.18. Conditional Expressions">Section 9.18</a>) can be
    used.  For example, this is an untrustworthy way of trying to
    avoid division by zero in a <code class="literal">WHERE</code> clause:
</p><pre class="programlisting">
SELECT ... WHERE x &gt; 0 AND y/x &gt; 1.5;
</pre><p>
    But this is safe:
</p><pre class="programlisting">
SELECT ... WHERE CASE WHEN x &gt; 0 THEN y/x &gt; 1.5 ELSE false END;
</pre><p>
    A <code class="literal">CASE</code> construct used in this fashion will defeat optimization
    attempts, so it should only be done when necessary.  (In this particular
    example, it would be better to sidestep the problem by writing
    <code class="literal">y &gt; 1.5*x</code> instead.)
   </p><p>
    <code class="literal">CASE</code> is not a cure-all for such issues, however.
    One limitation of the technique illustrated above is that it does not
    prevent early evaluation of constant subexpressions.
    As described in <a class="xref" href="xfunc-volatility.html" title="38.7. Function Volatility Categories">Section 38.7</a>, functions and
    operators marked <code class="literal">IMMUTABLE</code> can be evaluated when
    the query is planned rather than when it is executed.  Thus for example
</p><pre class="programlisting">
SELECT CASE WHEN x &gt; 0 THEN x ELSE 1/0 END FROM tab;
</pre><p>
    is likely to result in a division-by-zero failure due to the planner
    trying to simplify the constant subexpression,
    even if every row in the table has <code class="literal">x &gt; 0</code> so that the
    <code class="literal">ELSE</code> arm would never be entered at run time.
   </p><p>
    While that particular example might seem silly, related cases that don't
    obviously involve constants can occur in queries executed within
    functions, since the values of function arguments and local variables
    can be inserted into queries as constants for planning purposes.
    Within <span class="application">PL/pgSQL</span> functions, for example, using an
    <code class="literal">IF</code>-<code class="literal">THEN</code>-<code class="literal">ELSE</code> statement to protect
    a risky computation is much safer than just nesting it in a
    <code class="literal">CASE</code> expression.
   </p><p>
    Another limitation of the same kind is that a <code class="literal">CASE</code> cannot
    prevent evaluation of an aggregate expression contained within it,
    because aggregate expressions are computed before other
    expressions in a <code class="literal">SELECT</code> list or <code class="literal">HAVING</code> clause
    are considered.  For example, the following query can cause a
    division-by-zero error despite seemingly having protected against it:
</p><pre class="programlisting">
SELECT CASE WHEN min(employees) &gt; 0
            THEN avg(expenses / employees)
       END
    FROM departments;
</pre><p>
    The <code class="function">min()</code> and <code class="function">avg()</code> aggregates are computed
    concurrently over all the input rows, so if any row
    has <code class="structfield">employees</code> equal to zero, the division-by-zero error
    will occur before there is any opportunity to test the result of
    <code class="function">min()</code>.  Instead, use a <code class="literal">WHERE</code>
    or <code class="literal">FILTER</code> clause to prevent problematic input rows from
    reaching an aggregate function in the first place.
   </p></div></div><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navfooter"><hr></hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="sql-syntax-lexical.html" title="4.1. Lexical Structure">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="sql-syntax.html" title="Chapter 4. SQL Syntax">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="sql-syntax-calling-funcs.html" title="4.3. Calling Functions">Next</a></td></tr><tr><td width="40%" align="left" valign="top">4.1. Lexical Structure </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 14.5 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 4.3. Calling Functions</td></tr></table></div></body></html>