summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/html/xfunc-c.html
blob: b28a3be5b72ab5acf7d15932ea8901bcb8ece2b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>38.10. C-Language Functions</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="xfunc-internal.html" title="38.9. Internal Functions" /><link rel="next" href="xfunc-optimization.html" title="38.11. Function Optimization Information" /></head><body id="docContent" class="container-fluid col-10"><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">38.10. C-Language Functions</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="xfunc-internal.html" title="38.9. Internal Functions">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="extend.html" title="Chapter 38. Extending SQL">Up</a></td><th width="60%" align="center">Chapter 38. Extending <acronym xmlns="http://www.w3.org/1999/xhtml" class="acronym">SQL</acronym></th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 14.5 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="xfunc-optimization.html" title="38.11. Function Optimization Information">Next</a></td></tr></table><hr></hr></div><div class="sect1" id="XFUNC-C"><div class="titlepage"><div><div><h2 class="title" style="clear: both">38.10. C-Language Functions</h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="xfunc-c.html#XFUNC-C-DYNLOAD">38.10.1. Dynamic Loading</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#XFUNC-C-BASETYPE">38.10.2. Base Types in C-Language Functions</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#id-1.8.3.13.7">38.10.3. Version 1 Calling Conventions</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#id-1.8.3.13.8">38.10.4. Writing Code</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#DFUNC">38.10.5. Compiling and Linking Dynamically-Loaded Functions</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#id-1.8.3.13.10">38.10.6. Composite-Type Arguments</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#id-1.8.3.13.11">38.10.7. Returning Rows (Composite Types)</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#XFUNC-C-RETURN-SET">38.10.8. Returning Sets</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#id-1.8.3.13.13">38.10.9. Polymorphic Arguments and Return Types</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#XFUNC-SHARED-ADDIN">38.10.10. Shared Memory and LWLocks</a></span></dt><dt><span class="sect2"><a href="xfunc-c.html#EXTEND-CPP">38.10.11. Using C++ for Extensibility</a></span></dt></dl></div><a id="id-1.8.3.13.2" class="indexterm"></a><p>
    User-defined functions can be written in C (or a language that can
    be made compatible with C, such as C++).  Such functions are
    compiled into dynamically loadable objects (also called shared
    libraries) and are loaded by the server on demand.  The dynamic
    loading feature is what distinguishes <span class="quote"><span class="quote">C language</span></span> functions
    from <span class="quote"><span class="quote">internal</span></span> functions — the actual coding conventions
    are essentially the same for both.  (Hence, the standard internal
    function library is a rich source of coding examples for user-defined
    C functions.)
   </p><p>
    Currently only one calling convention is used for C functions
    (<span class="quote"><span class="quote">version 1</span></span>). Support for that calling convention is
    indicated by writing a <code class="literal">PG_FUNCTION_INFO_V1()</code> macro
    call for the function, as illustrated below.
   </p><div class="sect2" id="XFUNC-C-DYNLOAD"><div class="titlepage"><div><div><h3 class="title">38.10.1. Dynamic Loading</h3></div></div></div><a id="id-1.8.3.13.5.2" class="indexterm"></a><p>
    The first time a user-defined function in a particular
    loadable object file is called in a session,
    the dynamic loader loads that object file into memory so that the
    function can be called.  The <code class="command">CREATE FUNCTION</code>
    for a user-defined C function must therefore specify two pieces of
    information for the function: the name of the loadable
    object file, and the C name (link symbol) of the specific function to call
    within that object file.  If the C name is not explicitly specified then
    it is assumed to be the same as the SQL function name.
   </p><p>
    The following algorithm is used to locate the shared object file
    based on the name given in the <code class="command">CREATE FUNCTION</code>
    command:

    </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
       If the name is an absolute path, the given file is loaded.
      </p></li><li class="listitem"><p>
       If the name starts with the string <code class="literal">$libdir</code>,
       that part is replaced by the <span class="productname">PostgreSQL</span> package
        library directory
       name, which is determined at build time.<a id="id-1.8.3.13.5.4.2.2.1.3" class="indexterm"></a>
      </p></li><li class="listitem"><p>
       If the name does not contain a directory part, the file is
       searched for in the path specified by the configuration variable
       <a class="xref" href="runtime-config-client.html#GUC-DYNAMIC-LIBRARY-PATH">dynamic_library_path</a>.<a id="id-1.8.3.13.5.4.2.3.1.2" class="indexterm"></a>
      </p></li><li class="listitem"><p>
       Otherwise (the file was not found in the path, or it contains a
       non-absolute directory part), the dynamic loader will try to
       take the name as given, which will most likely fail.  (It is
       unreliable to depend on the current working directory.)
      </p></li></ol></div><p>

    If this sequence does not work, the platform-specific shared
    library file name extension (often <code class="filename">.so</code>) is
    appended to the given name and this sequence is tried again.  If
    that fails as well, the load will fail.
   </p><p>
    It is recommended to locate shared libraries either relative to
    <code class="literal">$libdir</code> or through the dynamic library path.
    This simplifies version upgrades if the new installation is at a
    different location.  The actual directory that
    <code class="literal">$libdir</code> stands for can be found out with the
    command <code class="literal">pg_config --pkglibdir</code>.
   </p><p>
    The user ID the <span class="productname">PostgreSQL</span> server runs
    as must be able to traverse the path to the file you intend to
    load.  Making the file or a higher-level directory not readable
    and/or not executable by the <span class="systemitem">postgres</span>
    user is a common mistake.
   </p><p>
    In any case, the file name that is given in the
    <code class="command">CREATE FUNCTION</code> command is recorded literally
    in the system catalogs, so if the file needs to be loaded again
    the same procedure is applied.
   </p><div class="note"><h3 class="title">Note</h3><p>
     <span class="productname">PostgreSQL</span> will not compile a C function
     automatically.  The object file must be compiled before it is referenced
     in a <code class="command">CREATE
     FUNCTION</code> command.  See <a class="xref" href="xfunc-c.html#DFUNC" title="38.10.5. Compiling and Linking Dynamically-Loaded Functions">Section 38.10.5</a> for additional
     information.
    </p></div><a id="id-1.8.3.13.5.9" class="indexterm"></a><p>
    To ensure that a dynamically loaded object file is not loaded into an
    incompatible server, <span class="productname">PostgreSQL</span> checks that the
    file contains a <span class="quote"><span class="quote">magic block</span></span> with the appropriate contents.
    This allows the server to detect obvious incompatibilities, such as code
    compiled for a different major version of
    <span class="productname">PostgreSQL</span>. To include a magic block,
    write this in one (and only one) of the module source files, after having
    included the header <code class="filename">fmgr.h</code>:

</p><pre class="programlisting">
PG_MODULE_MAGIC;
</pre><p>
   </p><p>
    After it is used for the first time, a dynamically loaded object
    file is retained in memory.  Future calls in the same session to
    the function(s) in that file will only incur the small overhead of
    a symbol table lookup.  If you need to force a reload of an object
    file, for example after recompiling it, begin a fresh session.
   </p><a id="id-1.8.3.13.5.12" class="indexterm"></a><a id="id-1.8.3.13.5.13" class="indexterm"></a><a id="id-1.8.3.13.5.14" class="indexterm"></a><a id="id-1.8.3.13.5.15" class="indexterm"></a><p>
    Optionally, a dynamically loaded file can contain initialization and
    finalization functions.  If the file includes a function named
    <code class="function">_PG_init</code>, that function will be called immediately after
    loading the file.  The function receives no parameters and should
    return void.  If the file includes a function named
    <code class="function">_PG_fini</code>, that function will be called immediately before
    unloading the file.  Likewise, the function receives no parameters and
    should return void.  Note that <code class="function">_PG_fini</code> will only be called
    during an unload of the file, not during process termination.
    (Presently, unloads are disabled and will never occur, but this may
    change in the future.)
   </p></div><div class="sect2" id="XFUNC-C-BASETYPE"><div class="titlepage"><div><div><h3 class="title">38.10.2. Base Types in C-Language Functions</h3></div></div></div><a id="id-1.8.3.13.6.2" class="indexterm"></a><p>
     To know how to write C-language functions, you need to know how
     <span class="productname">PostgreSQL</span> internally represents base
     data types and how they can be passed to and from functions.
     Internally, <span class="productname">PostgreSQL</span> regards a base
     type as a <span class="quote"><span class="quote">blob of memory</span></span>.  The user-defined
     functions that you define over a type in turn define the way that
     <span class="productname">PostgreSQL</span> can operate on it.  That
     is, <span class="productname">PostgreSQL</span> will only store and
     retrieve the data from disk and use your user-defined functions
     to input, process, and output the data.
    </p><p>
     Base types can have one of three internal formats:

     </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
        pass by value, fixed-length
       </p></li><li class="listitem"><p>
        pass by reference, fixed-length
       </p></li><li class="listitem"><p>
        pass by reference, variable-length
       </p></li></ul></div><p>
    </p><p>
     By-value  types  can  only be 1, 2, or 4 bytes in length
     (also 8 bytes, if <code class="literal">sizeof(Datum)</code> is 8 on your machine).
     You should be careful to define your types such that they will be the
     same size (in bytes) on all architectures.  For example, the
     <code class="literal">long</code> type is dangerous because it is 4 bytes on some
     machines and 8 bytes on others, whereas <code class="type">int</code> type is 4 bytes
     on most Unix machines.  A reasonable implementation of the
     <code class="type">int4</code> type on Unix machines might be:

</p><pre class="programlisting">
/* 4-byte integer, passed by value */
typedef int int4;
</pre><p>

     (The actual PostgreSQL C code calls this type <code class="type">int32</code>, because
     it is a convention in C that <code class="type">int<em class="replaceable"><code>XX</code></em></code>
     means <em class="replaceable"><code>XX</code></em> <span class="emphasis"><em>bits</em></span>.  Note
     therefore also that the C type <code class="type">int8</code> is 1 byte in size.  The
     SQL type <code class="type">int8</code> is called <code class="type">int64</code> in C.  See also
     <a class="xref" href="xfunc-c.html#XFUNC-C-TYPE-TABLE" title="Table 38.2. Equivalent C Types for Built-in SQL Types">Table 38.2</a>.)
    </p><p>
     On  the  other hand, fixed-length types of any size can
     be passed by-reference.  For example, here is a  sample
     implementation of a <span class="productname">PostgreSQL</span> type:

</p><pre class="programlisting">
/* 16-byte structure, passed by reference */
typedef struct
{
    double  x, y;
} Point;
</pre><p>

     Only  pointers  to  such types can be used when passing
     them in and out of <span class="productname">PostgreSQL</span> functions.
     To return a value of such a type, allocate the right amount of
     memory with <code class="literal">palloc</code>, fill in the allocated memory,
     and return a pointer to it.  (Also, if you just want to return the
     same value as one of your input arguments that's of the same data type,
     you can skip the extra <code class="literal">palloc</code> and just return the
     pointer to the input value.)
    </p><p>
     Finally, all variable-length types must also be  passed
     by  reference.   All  variable-length  types must begin
     with an opaque length field of exactly 4 bytes, which will be set
     by <code class="symbol">SET_VARSIZE</code>; never set this field directly! All data to
     be  stored within that type must be located in the memory
     immediately  following  that  length  field.   The
     length field contains the total length of the structure,
     that is,  it  includes  the  size  of  the  length  field
     itself.
    </p><p>
     Another important point is to avoid leaving any uninitialized bits
     within data type values; for example, take care to zero out any
     alignment padding bytes that might be present in structs.  Without
     this, logically-equivalent constants of your data type might be
     seen as unequal by the planner, leading to inefficient (though not
     incorrect) plans.
    </p><div class="warning"><h3 class="title">Warning</h3><p>
      <span class="emphasis"><em>Never</em></span> modify the contents of a pass-by-reference input
      value.  If you do so you are likely to corrupt on-disk data, since
      the pointer you are given might point directly into a disk buffer.
      The sole exception to this rule is explained in
      <a class="xref" href="xaggr.html" title="38.12. User-Defined Aggregates">Section 38.12</a>.
     </p></div><p>
     As an example, we can define the type <code class="type">text</code> as
     follows:

</p><pre class="programlisting">
typedef struct {
    int32 length;
    char data[FLEXIBLE_ARRAY_MEMBER];
} text;
</pre><p>

     The <code class="literal">[FLEXIBLE_ARRAY_MEMBER]</code> notation means that the actual
     length of the data part is not specified by this declaration.
    </p><p>
     When manipulating
     variable-length types, we must  be  careful  to  allocate
     the  correct amount  of memory and set the length field correctly.
     For example, if we wanted to  store  40  bytes  in  a <code class="structname">text</code>
     structure, we might use a code fragment like this:

</p><pre class="programlisting">
#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
SET_VARSIZE(destination, VARHDRSZ + 40);
memcpy(destination-&gt;data, buffer, 40);
...

</pre><p>

     <code class="literal">VARHDRSZ</code> is the same as <code class="literal">sizeof(int32)</code>, but
     it's considered good style to use the macro <code class="literal">VARHDRSZ</code>
     to refer to the size of the overhead for a variable-length type.
     Also, the length field <span class="emphasis"><em>must</em></span> be set using the
     <code class="literal">SET_VARSIZE</code> macro, not by simple assignment.
    </p><p>
     <a class="xref" href="xfunc-c.html#XFUNC-C-TYPE-TABLE" title="Table 38.2. Equivalent C Types for Built-in SQL Types">Table 38.2</a> shows the C types
     corresponding to many of the built-in SQL data types
     of <span class="productname">PostgreSQL</span>.
     The <span class="quote"><span class="quote">Defined In</span></span> column gives the header file that
     needs to be included to get the type definition.  (The actual
     definition might be in a different file that is included by the
     listed file.  It is recommended that users stick to the defined
     interface.)  Note that you should always include
     <code class="filename">postgres.h</code> first in any source file of server
     code, because it declares a number of things that you will need
     anyway, and because including other headers first can cause
     portability issues.
    </p><div class="table" id="XFUNC-C-TYPE-TABLE"><p class="title"><strong>Table 38.2. Equivalent C Types for Built-in SQL Types</strong></p><div class="table-contents"><table class="table" summary="Equivalent C Types for Built-in SQL Types" border="1"><colgroup><col class="col1" /><col class="col2" /><col class="col3" /></colgroup><thead><tr><th>
          SQL Type
         </th><th>
          C Type
         </th><th>
          Defined In
         </th></tr></thead><tbody><tr><td><code class="type">boolean</code></td><td><code class="type">bool</code></td><td><code class="filename">postgres.h</code> (maybe compiler built-in)</td></tr><tr><td><code class="type">box</code></td><td><code class="type">BOX*</code></td><td><code class="filename">utils/geo_decls.h</code></td></tr><tr><td><code class="type">bytea</code></td><td><code class="type">bytea*</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">"char"</code></td><td><code class="type">char</code></td><td>(compiler built-in)</td></tr><tr><td><code class="type">character</code></td><td><code class="type">BpChar*</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">cid</code></td><td><code class="type">CommandId</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">date</code></td><td><code class="type">DateADT</code></td><td><code class="filename">utils/date.h</code></td></tr><tr><td><code class="type">float4</code> (<code class="type">real</code>)</td><td><code class="type">float4</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">float8</code> (<code class="type">double precision</code>)</td><td><code class="type">float8</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">int2</code> (<code class="type">smallint</code>)</td><td><code class="type">int16</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">int4</code> (<code class="type">integer</code>)</td><td><code class="type">int32</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">int8</code> (<code class="type">bigint</code>)</td><td><code class="type">int64</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">interval</code></td><td><code class="type">Interval*</code></td><td><code class="filename">datatype/timestamp.h</code></td></tr><tr><td><code class="type">lseg</code></td><td><code class="type">LSEG*</code></td><td><code class="filename">utils/geo_decls.h</code></td></tr><tr><td><code class="type">name</code></td><td><code class="type">Name</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">numeric</code></td><td><code class="type">Numeric</code></td><td><code class="filename">utils/numeric.h</code></td></tr><tr><td><code class="type">oid</code></td><td><code class="type">Oid</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">oidvector</code></td><td><code class="type">oidvector*</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">path</code></td><td><code class="type">PATH*</code></td><td><code class="filename">utils/geo_decls.h</code></td></tr><tr><td><code class="type">point</code></td><td><code class="type">POINT*</code></td><td><code class="filename">utils/geo_decls.h</code></td></tr><tr><td><code class="type">regproc</code></td><td><code class="type">RegProcedure</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">text</code></td><td><code class="type">text*</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">tid</code></td><td><code class="type">ItemPointer</code></td><td><code class="filename">storage/itemptr.h</code></td></tr><tr><td><code class="type">time</code></td><td><code class="type">TimeADT</code></td><td><code class="filename">utils/date.h</code></td></tr><tr><td><code class="type">time with time zone</code></td><td><code class="type">TimeTzADT</code></td><td><code class="filename">utils/date.h</code></td></tr><tr><td><code class="type">timestamp</code></td><td><code class="type">Timestamp</code></td><td><code class="filename">datatype/timestamp.h</code></td></tr><tr><td><code class="type">timestamp with time zone</code></td><td><code class="type">TimestampTz</code></td><td><code class="filename">datatype/timestamp.h</code></td></tr><tr><td><code class="type">varchar</code></td><td><code class="type">VarChar*</code></td><td><code class="filename">postgres.h</code></td></tr><tr><td><code class="type">xid</code></td><td><code class="type">TransactionId</code></td><td><code class="filename">postgres.h</code></td></tr></tbody></table></div></div><br class="table-break" /><p>
     Now that we've gone over all of the possible structures
     for base types, we can show some examples of real functions.
    </p></div><div class="sect2" id="id-1.8.3.13.7"><div class="titlepage"><div><div><h3 class="title">38.10.3. Version 1 Calling Conventions</h3></div></div></div><p>
     The version-1 calling convention relies on macros to suppress most
     of the complexity of passing arguments and results.  The C declaration
     of a version-1 function is always:
</p><pre class="programlisting">
Datum funcname(PG_FUNCTION_ARGS)
</pre><p>
     In addition, the macro call:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(funcname);
</pre><p>
     must appear in the same source file.  (Conventionally, it's
     written just before the function itself.)  This macro call is not
     needed for <code class="literal">internal</code>-language functions, since
     <span class="productname">PostgreSQL</span> assumes that all internal functions
     use the version-1 convention.  It is, however, required for
     dynamically-loaded functions.
    </p><p>
     In a version-1 function, each actual argument is fetched using a
     <code class="function">PG_GETARG_<em class="replaceable"><code>xxx</code></em>()</code>
     macro that corresponds to the argument's data type.  (In non-strict
     functions there needs to be a previous check about argument null-ness
     using <code class="function">PG_ARGISNULL()</code>; see below.)
     The result is returned using a
     <code class="function">PG_RETURN_<em class="replaceable"><code>xxx</code></em>()</code>
     macro for the return type.
     <code class="function">PG_GETARG_<em class="replaceable"><code>xxx</code></em>()</code>
     takes as its argument the number of the function argument to
     fetch, where the count starts at 0.
     <code class="function">PG_RETURN_<em class="replaceable"><code>xxx</code></em>()</code>
     takes as its argument the actual value to return.
    </p><p>
     Here are some examples using the version-1 calling convention:
    </p><pre class="programlisting">
#include "postgres.h"
#include &lt;string.h&gt;
#include "fmgr.h"
#include "utils/geo_decls.h"

PG_MODULE_MAGIC;

/* by value */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{
    int32   arg = PG_GETARG_INT32(0);

    PG_RETURN_INT32(arg + 1);
}

/* by reference, fixed length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{
    /* The macros for FLOAT8 hide its pass-by-reference nature. */
    float8   arg = PG_GETARG_FLOAT8(0);

    PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{
    /* Here, the pass-by-reference nature of Point is not hidden. */
    Point     *pointx = PG_GETARG_POINT_P(0);
    Point     *pointy = PG_GETARG_POINT_P(1);
    Point     *new_point = (Point *) palloc(sizeof(Point));

    new_point-&gt;x = pointx-&gt;x;
    new_point-&gt;y = pointy-&gt;y;

    PG_RETURN_POINT_P(new_point);
}

/* by reference, variable length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{
    text     *t = PG_GETARG_TEXT_PP(0);

    /*
     * VARSIZE_ANY_EXHDR is the size of the struct in bytes, minus the
     * VARHDRSZ or VARHDRSZ_SHORT of its header.  Construct the copy with a
     * full-length header.
     */
    text     *new_t = (text *) palloc(VARSIZE_ANY_EXHDR(t) + VARHDRSZ);
    SET_VARSIZE(new_t, VARSIZE_ANY_EXHDR(t) + VARHDRSZ);

    /*
     * VARDATA is a pointer to the data region of the new struct.  The source
     * could be a short datum, so retrieve its data through VARDATA_ANY.
     */
    memcpy((void *) VARDATA(new_t), /* destination */
           (void *) VARDATA_ANY(t), /* source */
           VARSIZE_ANY_EXHDR(t));   /* how many bytes */
    PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{
    text  *arg1 = PG_GETARG_TEXT_PP(0);
    text  *arg2 = PG_GETARG_TEXT_PP(1);
    int32 arg1_size = VARSIZE_ANY_EXHDR(arg1);
    int32 arg2_size = VARSIZE_ANY_EXHDR(arg2);
    int32 new_text_size = arg1_size + arg2_size + VARHDRSZ;
    text *new_text = (text *) palloc(new_text_size);

    SET_VARSIZE(new_text, new_text_size);
    memcpy(VARDATA(new_text), VARDATA_ANY(arg1), arg1_size);
    memcpy(VARDATA(new_text) + arg1_size, VARDATA_ANY(arg2), arg2_size);
    PG_RETURN_TEXT_P(new_text);
}

</pre><p>
     Supposing that the above code has been prepared in file
     <code class="filename">funcs.c</code> and compiled into a shared object,
     we could define the functions to <span class="productname">PostgreSQL</span>
     with commands like this:
    </p><pre class="programlisting">
CREATE FUNCTION add_one(integer) RETURNS integer
     AS '<em class="replaceable"><code>DIRECTORY</code></em>/funcs', 'add_one'
     LANGUAGE C STRICT;

-- note overloading of SQL function name "add_one"
CREATE FUNCTION add_one(double precision) RETURNS double precision
     AS '<em class="replaceable"><code>DIRECTORY</code></em>/funcs', 'add_one_float8'
     LANGUAGE C STRICT;

CREATE FUNCTION makepoint(point, point) RETURNS point
     AS '<em class="replaceable"><code>DIRECTORY</code></em>/funcs', 'makepoint'
     LANGUAGE C STRICT;

CREATE FUNCTION copytext(text) RETURNS text
     AS '<em class="replaceable"><code>DIRECTORY</code></em>/funcs', 'copytext'
     LANGUAGE C STRICT;

CREATE FUNCTION concat_text(text, text) RETURNS text
     AS '<em class="replaceable"><code>DIRECTORY</code></em>/funcs', 'concat_text'
     LANGUAGE C STRICT;
</pre><p>
     Here, <em class="replaceable"><code>DIRECTORY</code></em> stands for the
     directory of the shared library file (for instance the
     <span class="productname">PostgreSQL</span> tutorial directory, which
     contains the code for the examples used in this section).
     (Better style would be to use just <code class="literal">'funcs'</code> in the
     <code class="literal">AS</code> clause, after having added
     <em class="replaceable"><code>DIRECTORY</code></em> to the search path.  In any
     case, we can omit the system-specific extension for a shared
     library, commonly <code class="literal">.so</code>.)
    </p><p>
     Notice that we have specified the functions as <span class="quote"><span class="quote">strict</span></span>,
     meaning that
     the system should automatically assume a null result if any input
     value is null.  By doing this, we avoid having to check for null inputs
     in the function code.  Without this, we'd have to check for null values
     explicitly, using <code class="function">PG_ARGISNULL()</code>.
    </p><p>
     The macro <code class="function">PG_ARGISNULL(<em class="replaceable"><code>n</code></em>)</code>
     allows a function to test whether each input is null.  (Of course, doing
     this is only necessary in functions not declared <span class="quote"><span class="quote">strict</span></span>.)
     As with the
     <code class="function">PG_GETARG_<em class="replaceable"><code>xxx</code></em>()</code> macros,
     the input arguments are counted beginning at zero.  Note that one
     should refrain from executing
     <code class="function">PG_GETARG_<em class="replaceable"><code>xxx</code></em>()</code> until
     one has verified that the argument isn't null.
     To return a null result, execute <code class="function">PG_RETURN_NULL()</code>;
     this works in both strict and nonstrict functions.
    </p><p>
     At first glance, the version-1 coding conventions might appear
     to be just pointless obscurantism, compared to using
     plain <code class="literal">C</code> calling conventions.  They do however allow
     us to deal with <code class="literal">NULL</code>able arguments/return values,
     and <span class="quote"><span class="quote">toasted</span></span> (compressed or out-of-line) values.
    </p><p>
     Other options provided by the version-1 interface are two
     variants of the
     <code class="function">PG_GETARG_<em class="replaceable"><code>xxx</code></em>()</code>
     macros. The first of these,
     <code class="function">PG_GETARG_<em class="replaceable"><code>xxx</code></em>_COPY()</code>,
     guarantees to return a copy of the specified argument that is
     safe for writing into. (The normal macros will sometimes return a
     pointer to a value that is physically stored in a table, which
     must not be written to. Using the
     <code class="function">PG_GETARG_<em class="replaceable"><code>xxx</code></em>_COPY()</code>
     macros guarantees a writable result.)
    The second variant consists of the
    <code class="function">PG_GETARG_<em class="replaceable"><code>xxx</code></em>_SLICE()</code>
    macros which take three arguments. The first is the number of the
    function argument (as above). The second and third are the offset and
    length of the segment to be returned. Offsets are counted from
    zero, and a negative length requests that the remainder of the
    value be returned. These macros provide more efficient access to
    parts of large values in the case where they have storage type
    <span class="quote"><span class="quote">external</span></span>. (The storage type of a column can be specified using
    <code class="literal">ALTER TABLE <em class="replaceable"><code>tablename</code></em> ALTER
    COLUMN <em class="replaceable"><code>colname</code></em> SET STORAGE
    <em class="replaceable"><code>storagetype</code></em></code>. <em class="replaceable"><code>storagetype</code></em> is one of
    <code class="literal">plain</code>, <code class="literal">external</code>, <code class="literal">extended</code>,
     or <code class="literal">main</code>.)
    </p><p>
     Finally, the version-1 function call conventions make it possible
     to return set results (<a class="xref" href="xfunc-c.html#XFUNC-C-RETURN-SET" title="38.10.8. Returning Sets">Section 38.10.8</a>) and
     implement trigger functions (<a class="xref" href="triggers.html" title="Chapter 39. Triggers">Chapter 39</a>) and
     procedural-language call handlers (<a class="xref" href="plhandler.html" title="Chapter 56. Writing a Procedural Language Handler">Chapter 56</a>).  For more details
     see <code class="filename">src/backend/utils/fmgr/README</code> in the
     source distribution.
    </p></div><div class="sect2" id="id-1.8.3.13.8"><div class="titlepage"><div><div><h3 class="title">38.10.4. Writing Code</h3></div></div></div><p>
     Before we turn to the more advanced topics, we should discuss
     some coding rules for <span class="productname">PostgreSQL</span>
     C-language functions.  While it might be possible to load functions
     written in languages other than C into
     <span class="productname">PostgreSQL</span>, this is usually difficult
     (when it is possible at all) because other languages, such as
     C++, FORTRAN, or Pascal often do not follow the same calling
     convention as C.  That is, other languages do not pass argument
     and return values between functions in the same way.  For this
     reason, we will assume that your C-language functions are
     actually written in C.
    </p><p>
     The basic rules for writing and building C functions are as follows:

     </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
        Use <code class="literal">pg_config
        --includedir-server</code><a id="id-1.8.3.13.8.3.1.1.1.2" class="indexterm"></a>
        to find out where the <span class="productname">PostgreSQL</span> server header
        files are installed on your system (or the system that your
        users will be running on).
       </p></li><li class="listitem"><p>
        Compiling and linking your code so that it can be dynamically
        loaded into <span class="productname">PostgreSQL</span> always
        requires special flags.  See <a class="xref" href="xfunc-c.html#DFUNC" title="38.10.5. Compiling and Linking Dynamically-Loaded Functions">Section 38.10.5</a> for a
        detailed explanation of how to do it for your particular
        operating system.
       </p></li><li class="listitem"><p>
        Remember to define a <span class="quote"><span class="quote">magic block</span></span> for your shared library,
        as described in <a class="xref" href="xfunc-c.html#XFUNC-C-DYNLOAD" title="38.10.1. Dynamic Loading">Section 38.10.1</a>.
       </p></li><li class="listitem"><p>
        When allocating memory, use the
        <span class="productname">PostgreSQL</span> functions
        <code class="function">palloc</code><a id="id-1.8.3.13.8.3.1.4.1.3" class="indexterm"></a> and <code class="function">pfree</code><a id="id-1.8.3.13.8.3.1.4.1.5" class="indexterm"></a>
        instead of the corresponding C library functions
        <code class="function">malloc</code> and <code class="function">free</code>.
        The memory allocated by <code class="function">palloc</code> will be
        freed automatically at the end of each transaction, preventing
        memory leaks.
       </p></li><li class="listitem"><p>
        Always zero the bytes of your structures using <code class="function">memset</code>
        (or allocate them with <code class="function">palloc0</code> in the first place).
        Even if you assign to each field of your structure, there might be
        alignment padding (holes in the structure) that contain
        garbage values.  Without this, it's difficult to
        support hash indexes or hash joins, as you must pick out only
        the significant bits of your data structure to compute a hash.
        The planner also sometimes relies on comparing constants via
        bitwise equality, so you can get undesirable planning results if
        logically-equivalent values aren't bitwise equal.
       </p></li><li class="listitem"><p>
        Most of the internal <span class="productname">PostgreSQL</span>
        types are declared in <code class="filename">postgres.h</code>, while
        the function manager interfaces
        (<code class="symbol">PG_FUNCTION_ARGS</code>, etc.)  are in
        <code class="filename">fmgr.h</code>, so you will need to include at
        least these two files.  For portability reasons it's best to
        include <code class="filename">postgres.h</code> <span class="emphasis"><em>first</em></span>,
        before any other system or user header files.  Including
        <code class="filename">postgres.h</code> will also include
        <code class="filename">elog.h</code> and <code class="filename">palloc.h</code>
        for you.
       </p></li><li class="listitem"><p>
        Symbol names defined within object files must not conflict
        with each other or with symbols defined in the
        <span class="productname">PostgreSQL</span> server executable.  You
        will have to rename your functions or variables if you get
        error messages to this effect.
       </p></li></ul></div><p>
    </p></div><div class="sect2" id="DFUNC"><div class="titlepage"><div><div><h3 class="title">38.10.5. Compiling and Linking Dynamically-Loaded Functions</h3></div></div></div><p>
  Before you are able to use your
  <span class="productname">PostgreSQL</span> extension functions written in
  C, they must be compiled and linked in a special way to produce a
  file that can be dynamically loaded by the server.  To be precise, a
  <em class="firstterm">shared library</em> needs to be
  created.<a id="id-1.8.3.13.9.2.3" class="indexterm"></a>

 </p><p>
  For information beyond what is contained in this section
  you should read the documentation of your
  operating system, in particular the manual pages for the C compiler,
  <code class="command">cc</code>, and the link editor, <code class="command">ld</code>.
  In addition, the <span class="productname">PostgreSQL</span> source code
  contains several working examples in the
  <code class="filename">contrib</code> directory.  If you rely on these
  examples you will make your modules dependent on the availability
  of the <span class="productname">PostgreSQL</span> source code, however.
 </p><p>
  Creating shared libraries is generally analogous to linking
  executables: first the source files are compiled into object files,
  then the object files are linked together.  The object files need to
  be created as <em class="firstterm">position-independent code</em>
  (<acronym class="acronym">PIC</acronym>),<a id="id-1.8.3.13.9.4.3" class="indexterm"></a> which
  conceptually means that they can be placed at an arbitrary location
  in memory when they are loaded by the executable.  (Object files
  intended for executables are usually not compiled that way.)  The
  command to link a shared library contains special flags to
  distinguish it from linking an executable (at least in theory
  — on some systems the practice is much uglier).
 </p><p>
  In the following examples we assume that your source code is in a
  file <code class="filename">foo.c</code> and we will create a shared library
  <code class="filename">foo.so</code>.  The intermediate object file will be
  called <code class="filename">foo.o</code> unless otherwise noted.  A shared
  library can contain more than one object file, but we only use one
  here.
 </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
     <span class="systemitem">FreeBSD</span>
     <a id="id-1.8.3.13.9.6.1.1.2" class="indexterm"></a>
    </span></dt><dd><p>
      The compiler flag to create <acronym class="acronym">PIC</acronym> is
      <code class="option">-fPIC</code>.  To create shared libraries the compiler
      flag is <code class="option">-shared</code>.
</p><pre class="programlisting">
gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o
</pre><p>
      This is applicable as of version 3.0 of
      <span class="systemitem">FreeBSD</span>.
     </p></dd><dt><span class="term">
     <span class="systemitem">HP-UX</span>
     <a id="id-1.8.3.13.9.6.2.1.2" class="indexterm"></a>
    </span></dt><dd><p>
      The compiler flag of the system compiler to create
      <acronym class="acronym">PIC</acronym> is <code class="option">+z</code>.  When using
      <span class="application">GCC</span> it's <code class="option">-fPIC</code>. The
      linker flag for shared libraries is <code class="option">-b</code>.  So:
</p><pre class="programlisting">
cc +z -c foo.c
</pre><p>
      or:
</p><pre class="programlisting">
gcc -fPIC -c foo.c
</pre><p>
      and then:
</p><pre class="programlisting">
ld -b -o foo.sl foo.o
</pre><p>
      <span class="systemitem">HP-UX</span> uses the extension
      <code class="filename">.sl</code> for shared libraries, unlike most other
      systems.
     </p></dd><dt><span class="term">
     <span class="systemitem">Linux</span>
     <a id="id-1.8.3.13.9.6.3.1.2" class="indexterm"></a>
    </span></dt><dd><p>
      The compiler flag to create <acronym class="acronym">PIC</acronym> is
      <code class="option">-fPIC</code>.
      The compiler flag to create a shared library is
      <code class="option">-shared</code>.  A complete example looks like this:
</p><pre class="programlisting">
cc -fPIC -c foo.c
cc -shared -o foo.so foo.o
</pre><p>
     </p></dd><dt><span class="term">
     <span class="systemitem">macOS</span>
     <a id="id-1.8.3.13.9.6.4.1.2" class="indexterm"></a>
    </span></dt><dd><p>
      Here is an example.  It assumes the developer tools are installed.
</p><pre class="programlisting">
cc -c foo.c
cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o
</pre><p>
     </p></dd><dt><span class="term">
     <span class="systemitem">NetBSD</span>
     <a id="id-1.8.3.13.9.6.5.1.2" class="indexterm"></a>
    </span></dt><dd><p>
      The compiler flag to create <acronym class="acronym">PIC</acronym> is
      <code class="option">-fPIC</code>.  For <acronym class="acronym">ELF</acronym> systems, the
      compiler with the flag <code class="option">-shared</code> is used to link
      shared libraries.  On the older non-ELF systems, <code class="literal">ld
      -Bshareable</code> is used.
</p><pre class="programlisting">
gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o
</pre><p>
     </p></dd><dt><span class="term">
     <span class="systemitem">OpenBSD</span>
     <a id="id-1.8.3.13.9.6.6.1.2" class="indexterm"></a>
    </span></dt><dd><p>
      The compiler flag to create <acronym class="acronym">PIC</acronym> is
      <code class="option">-fPIC</code>.  <code class="literal">ld -Bshareable</code> is
      used to link shared libraries.
</p><pre class="programlisting">
gcc -fPIC -c foo.c
ld -Bshareable -o foo.so foo.o
</pre><p>
     </p></dd><dt><span class="term">
     <span class="systemitem">Solaris</span>
     <a id="id-1.8.3.13.9.6.7.1.2" class="indexterm"></a>
    </span></dt><dd><p>
      The compiler flag to create <acronym class="acronym">PIC</acronym> is
      <code class="option">-KPIC</code> with the Sun compiler and
      <code class="option">-fPIC</code> with <span class="application">GCC</span>.  To
      link shared libraries, the compiler option is
      <code class="option">-G</code> with either compiler or alternatively
      <code class="option">-shared</code> with <span class="application">GCC</span>.
</p><pre class="programlisting">
cc -KPIC -c foo.c
cc -G -o foo.so foo.o
</pre><p>
      or
</p><pre class="programlisting">
gcc -fPIC -c foo.c
gcc -G -o foo.so foo.o
</pre><p>
     </p></dd></dl></div><div class="tip"><h3 class="title">Tip</h3><p>
   If this is too complicated for you, you should consider using
   <a class="ulink" href="https://www.gnu.org/software/libtool/" target="_top">
   <span class="productname">GNU Libtool</span></a>,
   which hides the platform differences behind a uniform interface.
  </p></div><p>
  The resulting shared library file can then be loaded into
  <span class="productname">PostgreSQL</span>.  When specifying the file name
  to the <code class="command">CREATE FUNCTION</code> command, one must give it
  the name of the shared library file, not the intermediate object file.
  Note that the system's standard shared-library extension (usually
  <code class="literal">.so</code> or <code class="literal">.sl</code>) can be omitted from
  the <code class="command">CREATE FUNCTION</code> command, and normally should
  be omitted for best portability.
 </p><p>
  Refer back to <a class="xref" href="xfunc-c.html#XFUNC-C-DYNLOAD" title="38.10.1. Dynamic Loading">Section 38.10.1</a> about where the
  server expects to find the shared library files.
 </p></div><div class="sect2" id="id-1.8.3.13.10"><div class="titlepage"><div><div><h3 class="title">38.10.6. Composite-Type Arguments</h3></div></div></div><p>
     Composite types do not have a fixed layout like C structures.
     Instances of a composite type can contain null fields.  In
     addition, composite types that are part of an inheritance
     hierarchy can have different fields than other members of the
     same inheritance hierarchy.  Therefore,
     <span class="productname">PostgreSQL</span> provides a function
     interface for accessing fields of composite types from C.
    </p><p>
     Suppose we want to write a function to answer the query:

</p><pre class="programlisting">
SELECT name, c_overpaid(emp, 1500) AS overpaid
    FROM emp
    WHERE name = 'Bill' OR name = 'Sam';
</pre><p>

     Using the version-1 calling conventions, we can define
     <code class="function">c_overpaid</code> as:

</p><pre class="programlisting">
#include "postgres.h"
#include "executor/executor.h"  /* for GetAttributeByName() */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{
    HeapTupleHeader  t = PG_GETARG_HEAPTUPLEHEADER(0);
    int32            limit = PG_GETARG_INT32(1);
    bool isnull;
    Datum salary;

    salary = GetAttributeByName(t, "salary", &amp;isnull);
    if (isnull)
        PG_RETURN_BOOL(false);
    /* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary. */

    PG_RETURN_BOOL(DatumGetInt32(salary) &gt; limit);
}

</pre><p>
    </p><p>
     <code class="function">GetAttributeByName</code> is the
     <span class="productname">PostgreSQL</span> system function that
     returns attributes out of the specified row.  It has
     three arguments: the argument of type <code class="type">HeapTupleHeader</code> passed
     into
     the  function, the name of the desired attribute, and a
     return parameter that tells whether  the  attribute
     is  null.   <code class="function">GetAttributeByName</code> returns a <code class="type">Datum</code>
     value that you can convert to the proper data type by using the
     appropriate <code class="function">DatumGet<em class="replaceable"><code>XXX</code></em>()</code>
     macro.  Note that the return value is meaningless if the null flag is
     set; always check the null flag before trying to do anything with the
     result.
    </p><p>
     There is also <code class="function">GetAttributeByNum</code>, which selects
     the target attribute by column number instead of name.
    </p><p>
     The following command declares the function
     <code class="function">c_overpaid</code> in SQL:

</p><pre class="programlisting">
CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean
    AS '<em class="replaceable"><code>DIRECTORY</code></em>/funcs', 'c_overpaid'
    LANGUAGE C STRICT;
</pre><p>

     Notice we have used <code class="literal">STRICT</code> so that we did not have to
     check whether the input arguments were NULL.
    </p></div><div class="sect2" id="id-1.8.3.13.11"><div class="titlepage"><div><div><h3 class="title">38.10.7. Returning Rows (Composite Types)</h3></div></div></div><p>
     To return a row or composite-type value from a C-language
     function, you can use a special API that provides macros and
     functions to hide most of the complexity of building composite
     data types.  To use this API, the source file must include:
</p><pre class="programlisting">
#include "funcapi.h"
</pre><p>
    </p><p>
     There are two ways you can build a composite data value (henceforth
     a <span class="quote"><span class="quote">tuple</span></span>): you can build it from an array of Datum values,
     or from an array of C strings that can be passed to the input
     conversion functions of the tuple's column data types.  In either
     case, you first need to obtain or construct a <code class="structname">TupleDesc</code>
     descriptor for the tuple structure.  When working with Datums, you
     pass the <code class="structname">TupleDesc</code> to <code class="function">BlessTupleDesc</code>,
     and then call <code class="function">heap_form_tuple</code> for each row.  When working
     with C strings, you pass the <code class="structname">TupleDesc</code> to
     <code class="function">TupleDescGetAttInMetadata</code>, and then call
     <code class="function">BuildTupleFromCStrings</code> for each row.  In the case of a
     function returning a set of tuples, the setup steps can all be done
     once during the first call of the function.
    </p><p>
     Several helper functions are available for setting up the needed
     <code class="structname">TupleDesc</code>.  The recommended way to do this in most
     functions returning composite values is to call:
</p><pre class="programlisting">
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo,
                                   Oid *resultTypeId,
                                   TupleDesc *resultTupleDesc)
</pre><p>
     passing the same <code class="literal">fcinfo</code> struct passed to the calling function
     itself.  (This of course requires that you use the version-1
     calling conventions.)  <code class="varname">resultTypeId</code> can be specified
     as <code class="literal">NULL</code> or as the address of a local variable to receive the
     function's result type OID.  <code class="varname">resultTupleDesc</code> should be the
     address of a local <code class="structname">TupleDesc</code> variable.  Check that the
     result is <code class="literal">TYPEFUNC_COMPOSITE</code>; if so,
     <code class="varname">resultTupleDesc</code> has been filled with the needed
     <code class="structname">TupleDesc</code>.  (If it is not, you can report an error along
     the lines of <span class="quote"><span class="quote">function returning record called in context that
     cannot accept type record</span></span>.)
    </p><div class="tip"><h3 class="title">Tip</h3><p>
      <code class="function">get_call_result_type</code> can resolve the actual type of a
      polymorphic function result; so it is useful in functions that return
      scalar polymorphic results, not only functions that return composites.
      The <code class="varname">resultTypeId</code> output is primarily useful for functions
      returning polymorphic scalars.
     </p></div><div class="note"><h3 class="title">Note</h3><p>
      <code class="function">get_call_result_type</code> has a sibling
      <code class="function">get_expr_result_type</code>, which can be used to resolve the
      expected output type for a function call represented by an expression
      tree.  This can be used when trying to determine the result type from
      outside the function itself.  There is also
      <code class="function">get_func_result_type</code>, which can be used when only the
      function's OID is available.  However these functions are not able
      to deal with functions declared to return <code class="structname">record</code>, and
      <code class="function">get_func_result_type</code> cannot resolve polymorphic types,
      so you should preferentially use <code class="function">get_call_result_type</code>.
     </p></div><p>
     Older, now-deprecated functions for obtaining
     <code class="structname">TupleDesc</code>s are:
</p><pre class="programlisting">
TupleDesc RelationNameGetTupleDesc(const char *relname)
</pre><p>
     to get a <code class="structname">TupleDesc</code> for the row type of a named relation,
     and:
</p><pre class="programlisting">
TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)
</pre><p>
     to get a <code class="structname">TupleDesc</code> based on a type OID. This can
     be used to get a <code class="structname">TupleDesc</code> for a base or
     composite type.  It will not work for a function that returns
     <code class="structname">record</code>, however, and it cannot resolve polymorphic
     types.
    </p><p>
     Once you have a <code class="structname">TupleDesc</code>, call:
</p><pre class="programlisting">
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
</pre><p>
     if you plan to work with Datums, or:
</p><pre class="programlisting">
AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)
</pre><p>
     if you plan to work with C strings.  If you are writing a function
     returning set, you can save the results of these functions in the
     <code class="structname">FuncCallContext</code> structure — use the
     <code class="structfield">tuple_desc</code> or <code class="structfield">attinmeta</code> field
     respectively.
    </p><p>
     When working with Datums, use:
</p><pre class="programlisting">
HeapTuple heap_form_tuple(TupleDesc tupdesc, Datum *values, bool *isnull)
</pre><p>
     to build a <code class="structname">HeapTuple</code> given user data in Datum form.
    </p><p>
     When working with C strings, use:
</p><pre class="programlisting">
HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
</pre><p>
     to build a <code class="structname">HeapTuple</code> given user data
     in C string form.  <em class="parameter"><code>values</code></em> is an array of C strings,
     one for each attribute of the return row. Each C string should be in
     the form expected by the input function of the attribute data
     type. In order to return a null value for one of the attributes,
     the corresponding pointer in the <em class="parameter"><code>values</code></em> array
     should be set to <code class="symbol">NULL</code>.  This function will need to
     be called again for each row you return.
    </p><p>
     Once you have built a tuple to return from your function, it
     must be converted into a <code class="type">Datum</code>. Use:
</p><pre class="programlisting">
HeapTupleGetDatum(HeapTuple tuple)
</pre><p>
     to convert a <code class="structname">HeapTuple</code> into a valid Datum.  This
     <code class="type">Datum</code> can be returned directly if you intend to return
     just a single row, or it can be used as the current return value
     in a set-returning function.
    </p><p>
     An example appears in the next section.
    </p></div><div class="sect2" id="XFUNC-C-RETURN-SET"><div class="titlepage"><div><div><h3 class="title">38.10.8. Returning Sets</h3></div></div></div><p>
     C-language functions have two options for returning sets (multiple
     rows).  In one method, called <em class="firstterm">ValuePerCall</em>
     mode, a set-returning function is called repeatedly (passing the same
     arguments each time) and it returns one new row on each call, until
     it has no more rows to return and signals that by returning NULL.
     The set-returning function (<acronym class="acronym">SRF</acronym>) must therefore
     save enough state across calls to remember what it was doing and
     return the correct next item on each call.
     In the other method, called <em class="firstterm">Materialize</em> mode,
     an SRF fills and returns a tuplestore object containing its
     entire result; then only one call occurs for the whole result, and
     no inter-call state is needed.
    </p><p>
     When using ValuePerCall mode, it is important to remember that the
     query is not guaranteed to be run to completion; that is, due to
     options such as <code class="literal">LIMIT</code>, the executor might stop
     making calls to the set-returning function before all rows have been
     fetched.  This means it is not safe to perform cleanup activities in
     the last call, because that might not ever happen.  It's recommended
     to use Materialize mode for functions that need access to external
     resources, such as file descriptors.
    </p><p>
     The remainder of this section documents a set of helper macros that
     are commonly used (though not required to be used) for SRFs using
     ValuePerCall mode.  Additional details about Materialize mode can be
     found in <code class="filename">src/backend/utils/fmgr/README</code>.  Also,
     the <code class="filename">contrib</code> modules in
     the <span class="productname">PostgreSQL</span> source distribution contain
     many examples of SRFs using both ValuePerCall and Materialize mode.
    </p><p>
     To use the ValuePerCall support macros described here,
     include <code class="filename">funcapi.h</code>.  These macros work with a
     structure <code class="structname">FuncCallContext</code> that contains the
     state that needs to be saved across calls.  Within the calling
     SRF, <code class="literal">fcinfo-&gt;flinfo-&gt;fn_extra</code> is used to
     hold a pointer to <code class="structname">FuncCallContext</code> across
     calls.  The macros automatically fill that field on first use,
     and expect to find the same pointer there on subsequent uses.
</p><pre class="programlisting">
typedef struct FuncCallContext
{
    /*
     * Number of times we've been called before
     *
     * call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and
     * incremented for you every time SRF_RETURN_NEXT() is called.
     */
    uint64 call_cntr;

    /*
     * OPTIONAL maximum number of calls
     *
     * max_calls is here for convenience only and setting it is optional.
     * If not set, you must provide alternative means to know when the
     * function is done.
     */
    uint64 max_calls;

    /*
     * OPTIONAL pointer to miscellaneous user-provided context information
     *
     * user_fctx is for use as a pointer to your own data to retain
     * arbitrary context information between calls of your function.
     */
    void *user_fctx;

    /*
     * OPTIONAL pointer to struct containing attribute type input metadata
     *
     * attinmeta is for use when returning tuples (i.e., composite data types)
     * and is not used when returning base data types. It is only needed
     * if you intend to use BuildTupleFromCStrings() to create the return
     * tuple.
     */
    AttInMetadata *attinmeta;

    /*
     * memory context used for structures that must live for multiple calls
     *
     * multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used
     * by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory
     * context for any memory that is to be reused across multiple calls
     * of the SRF.
     */
    MemoryContext multi_call_memory_ctx;

    /*
     * OPTIONAL pointer to struct containing tuple description
     *
     * tuple_desc is for use when returning tuples (i.e., composite data types)
     * and is only needed if you are going to build the tuples with
     * heap_form_tuple() rather than with BuildTupleFromCStrings().  Note that
     * the TupleDesc pointer stored here should usually have been run through
     * BlessTupleDesc() first.
     */
    TupleDesc tuple_desc;

} FuncCallContext;
</pre><p>
    </p><p>
     The macros to be used by an <acronym class="acronym">SRF</acronym> using this
     infrastructure are:
</p><pre class="programlisting">
SRF_IS_FIRSTCALL()
</pre><p>
     Use this to determine if your function is being called for the first or a
     subsequent time. On the first call (only), call:
</p><pre class="programlisting">
SRF_FIRSTCALL_INIT()
</pre><p>
     to initialize the <code class="structname">FuncCallContext</code>. On every function call,
     including the first, call:
</p><pre class="programlisting">
SRF_PERCALL_SETUP()
</pre><p>
     to set up for using the <code class="structname">FuncCallContext</code>.
    </p><p>
     If your function has data to return in the current call, use:
</p><pre class="programlisting">
SRF_RETURN_NEXT(funcctx, result)
</pre><p>
     to return it to the caller.  (<code class="literal">result</code> must be of type
     <code class="type">Datum</code>, either a single value or a tuple prepared as
     described above.)  Finally, when your function is finished
     returning data, use:
</p><pre class="programlisting">
SRF_RETURN_DONE(funcctx)
</pre><p>
     to clean up and end the <acronym class="acronym">SRF</acronym>.
    </p><p>
     The memory context that is current when the <acronym class="acronym">SRF</acronym> is called is
     a transient context that will be cleared between calls.  This means
     that you do not need to call <code class="function">pfree</code> on everything
     you allocated using <code class="function">palloc</code>; it will go away anyway.  However, if you want to allocate
     any data structures to live across calls, you need to put them somewhere
     else.  The memory context referenced by
     <code class="structfield">multi_call_memory_ctx</code> is a suitable location for any
     data that needs to survive until the <acronym class="acronym">SRF</acronym> is finished running.  In most
     cases, this means that you should switch into
     <code class="structfield">multi_call_memory_ctx</code> while doing the
     first-call setup.
     Use <code class="literal">funcctx-&gt;user_fctx</code> to hold a pointer to
     any such cross-call data structures.
     (Data you allocate
     in <code class="structfield">multi_call_memory_ctx</code> will go away
     automatically when the query ends, so it is not necessary to free
     that data manually, either.)
    </p><div class="warning"><h3 class="title">Warning</h3><p>
      While the actual arguments to the function remain unchanged between
      calls, if you detoast the argument values (which is normally done
      transparently by the
      <code class="function">PG_GETARG_<em class="replaceable"><code>xxx</code></em></code> macro)
      in the transient context then the detoasted copies will be freed on
      each cycle. Accordingly, if you keep references to such values in
      your <code class="structfield">user_fctx</code>, you must either copy them into the
      <code class="structfield">multi_call_memory_ctx</code> after detoasting, or ensure
      that you detoast the values only in that context.
     </p></div><p>
     A complete pseudo-code example looks like the following:
</p><pre class="programlisting">
Datum
my_set_returning_function(PG_FUNCTION_ARGS)
{
    FuncCallContext  *funcctx;
    Datum             result;
    <em class="replaceable"><code>further declarations as needed</code></em>

    if (SRF_IS_FIRSTCALL())
    {
        MemoryContext oldcontext;

        funcctx = SRF_FIRSTCALL_INIT();
        oldcontext = MemoryContextSwitchTo(funcctx-&gt;multi_call_memory_ctx);
        /* One-time setup code appears here: */
        <em class="replaceable"><code>user code</code></em>
        <em class="replaceable"><code>if returning composite</code></em>
            <em class="replaceable"><code>build TupleDesc, and perhaps AttInMetadata</code></em>
        <em class="replaceable"><code>endif returning composite</code></em>
        <em class="replaceable"><code>user code</code></em>
        MemoryContextSwitchTo(oldcontext);
    }

    /* Each-time setup code appears here: */
    <em class="replaceable"><code>user code</code></em>
    funcctx = SRF_PERCALL_SETUP();
    <em class="replaceable"><code>user code</code></em>

    /* this is just one way we might test whether we are done: */
    if (funcctx-&gt;call_cntr &lt; funcctx-&gt;max_calls)
    {
        /* Here we want to return another item: */
        <em class="replaceable"><code>user code</code></em>
        <em class="replaceable"><code>obtain result Datum</code></em>
        SRF_RETURN_NEXT(funcctx, result);
    }
    else
    {
        /* Here we are done returning items, so just report that fact. */
        /* (Resist the temptation to put cleanup code here.) */
        SRF_RETURN_DONE(funcctx);
    }
}
</pre><p>
    </p><p>
     A complete example of a simple <acronym class="acronym">SRF</acronym> returning a composite type
     looks like:
</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(retcomposite);

Datum
retcomposite(PG_FUNCTION_ARGS)
{
    FuncCallContext     *funcctx;
    int                  call_cntr;
    int                  max_calls;
    TupleDesc            tupdesc;
    AttInMetadata       *attinmeta;

    /* stuff done only on the first call of the function */
    if (SRF_IS_FIRSTCALL())
    {
        MemoryContext   oldcontext;

        /* create a function context for cross-call persistence */
        funcctx = SRF_FIRSTCALL_INIT();

        /* switch to memory context appropriate for multiple function calls */
        oldcontext = MemoryContextSwitchTo(funcctx-&gt;multi_call_memory_ctx);

        /* total number of tuples to be returned */
        funcctx-&gt;max_calls = PG_GETARG_UINT32(0);

        /* Build a tuple descriptor for our result type */
        if (get_call_result_type(fcinfo, NULL, &amp;tupdesc) != TYPEFUNC_COMPOSITE)
            ereport(ERROR,
                    (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                     errmsg("function returning record called in context "
                            "that cannot accept type record")));

        /*
         * generate attribute metadata needed later to produce tuples from raw
         * C strings
         */
        attinmeta = TupleDescGetAttInMetadata(tupdesc);
        funcctx-&gt;attinmeta = attinmeta;

        MemoryContextSwitchTo(oldcontext);
    }

    /* stuff done on every call of the function */
    funcctx = SRF_PERCALL_SETUP();

    call_cntr = funcctx-&gt;call_cntr;
    max_calls = funcctx-&gt;max_calls;
    attinmeta = funcctx-&gt;attinmeta;

    if (call_cntr &lt; max_calls)    /* do when there is more left to send */
    {
        char       **values;
        HeapTuple    tuple;
        Datum        result;

        /*
         * Prepare a values array for building the returned tuple.
         * This should be an array of C strings which will
         * be processed later by the type input functions.
         */
        values = (char **) palloc(3 * sizeof(char *));
        values[0] = (char *) palloc(16 * sizeof(char));
        values[1] = (char *) palloc(16 * sizeof(char));
        values[2] = (char *) palloc(16 * sizeof(char));

        snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
        snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
        snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));

        /* build a tuple */
        tuple = BuildTupleFromCStrings(attinmeta, values);

        /* make the tuple into a datum */
        result = HeapTupleGetDatum(tuple);

        /* clean up (this is not really necessary) */
        pfree(values[0]);
        pfree(values[1]);
        pfree(values[2]);
        pfree(values);

        SRF_RETURN_NEXT(funcctx, result);
    }
    else    /* do when there is no more left */
    {
        SRF_RETURN_DONE(funcctx);
    }
}

</pre><p>

     One way to declare this function in SQL is:
</p><pre class="programlisting">
CREATE TYPE __retcomposite AS (f1 integer, f2 integer, f3 integer);

CREATE OR REPLACE FUNCTION retcomposite(integer, integer)
    RETURNS SETOF __retcomposite
    AS '<em class="replaceable"><code>filename</code></em>', 'retcomposite'
    LANGUAGE C IMMUTABLE STRICT;
</pre><p>
     A different way is to use OUT parameters:
</p><pre class="programlisting">
CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer,
    OUT f1 integer, OUT f2 integer, OUT f3 integer)
    RETURNS SETOF record
    AS '<em class="replaceable"><code>filename</code></em>', 'retcomposite'
    LANGUAGE C IMMUTABLE STRICT;
</pre><p>
     Notice that in this method the output type of the function is formally
     an anonymous <code class="structname">record</code> type.
    </p></div><div class="sect2" id="id-1.8.3.13.13"><div class="titlepage"><div><div><h3 class="title">38.10.9. Polymorphic Arguments and Return Types</h3></div></div></div><p>
     C-language functions can be declared to accept and
     return the polymorphic types described in <a class="xref" href="extend-type-system.html#EXTEND-TYPES-POLYMORPHIC" title="38.2.5. Polymorphic Types">Section 38.2.5</a>.
     When a function's arguments or return types
     are defined as polymorphic types, the function author cannot know
     in advance what data type it will be called with, or
     need to return. There are two routines provided in <code class="filename">fmgr.h</code>
     to allow a version-1 C function to discover the actual data types
     of its arguments and the type it is expected to return. The routines are
     called <code class="literal">get_fn_expr_rettype(FmgrInfo *flinfo)</code> and
     <code class="literal">get_fn_expr_argtype(FmgrInfo *flinfo, int argnum)</code>.
     They return the result or argument type OID, or <code class="symbol">InvalidOid</code> if the
     information is not available.
     The structure <code class="literal">flinfo</code> is normally accessed as
     <code class="literal">fcinfo-&gt;flinfo</code>. The parameter <code class="literal">argnum</code>
     is zero based.  <code class="function">get_call_result_type</code> can also be used
     as an alternative to <code class="function">get_fn_expr_rettype</code>.
     There is also <code class="function">get_fn_expr_variadic</code>, which can be used to
     find out whether variadic arguments have been merged into an array.
     This is primarily useful for <code class="literal">VARIADIC "any"</code> functions,
     since such merging will always have occurred for variadic functions
     taking ordinary array types.
    </p><p>
     For example, suppose we want to write a function to accept a single
     element of any type, and return a one-dimensional array of that type:

</p><pre class="programlisting">
PG_FUNCTION_INFO_V1(make_array);
Datum
make_array(PG_FUNCTION_ARGS)
{
    ArrayType  *result;
    Oid         element_type = get_fn_expr_argtype(fcinfo-&gt;flinfo, 0);
    Datum       element;
    bool        isnull;
    int16       typlen;
    bool        typbyval;
    char        typalign;
    int         ndims;
    int         dims[MAXDIM];
    int         lbs[MAXDIM];

    if (!OidIsValid(element_type))
        elog(ERROR, "could not determine data type of input");

    /* get the provided element, being careful in case it's NULL */
    isnull = PG_ARGISNULL(0);
    if (isnull)
        element = (Datum) 0;
    else
        element = PG_GETARG_DATUM(0);

    /* we have one dimension */
    ndims = 1;
    /* and one element */
    dims[0] = 1;
    /* and lower bound is 1 */
    lbs[0] = 1;

    /* get required info about the element type */
    get_typlenbyvalalign(element_type, &amp;typlen, &amp;typbyval, &amp;typalign);

    /* now build the array */
    result = construct_md_array(&amp;element, &amp;isnull, ndims, dims, lbs,
                                element_type, typlen, typbyval, typalign);

    PG_RETURN_ARRAYTYPE_P(result);
}
</pre><p>
    </p><p>
     The following command declares the function
     <code class="function">make_array</code> in SQL:

</p><pre class="programlisting">
CREATE FUNCTION make_array(anyelement) RETURNS anyarray
    AS '<em class="replaceable"><code>DIRECTORY</code></em>/funcs', 'make_array'
    LANGUAGE C IMMUTABLE;
</pre><p>
    </p><p>
     There is a variant of polymorphism that is only available to C-language
     functions: they can be declared to take parameters of type
     <code class="literal">"any"</code>.  (Note that this type name must be double-quoted,
     since it's also an SQL reserved word.)  This works like
     <code class="type">anyelement</code> except that it does not constrain different
     <code class="literal">"any"</code> arguments to be the same type, nor do they help
     determine the function's result type.  A C-language function can also
     declare its final parameter to be <code class="literal">VARIADIC "any"</code>.  This will
     match one or more actual arguments of any type (not necessarily the same
     type).  These arguments will <span class="emphasis"><em>not</em></span> be gathered into an array
     as happens with normal variadic functions; they will just be passed to
     the function separately.  The <code class="function">PG_NARGS()</code> macro and the
     methods described above must be used to determine the number of actual
     arguments and their types when using this feature.  Also, users of such
     a function might wish to use the <code class="literal">VARIADIC</code> keyword in their
     function call, with the expectation that the function would treat the
     array elements as separate arguments.  The function itself must implement
     that behavior if wanted, after using <code class="function">get_fn_expr_variadic</code> to
     detect that the actual argument was marked with <code class="literal">VARIADIC</code>.
    </p></div><div class="sect2" id="XFUNC-SHARED-ADDIN"><div class="titlepage"><div><div><h3 class="title">38.10.10. Shared Memory and LWLocks</h3></div></div></div><p>
     Add-ins can reserve LWLocks and an allocation of shared memory on server
     startup.  The add-in's shared library must be preloaded by specifying
     it in
     <a class="xref" href="runtime-config-client.html#GUC-SHARED-PRELOAD-LIBRARIES">shared_preload_libraries</a><a id="id-1.8.3.13.14.2.2" class="indexterm"></a>.
     Shared memory is reserved by calling:
</p><pre class="programlisting">
void RequestAddinShmemSpace(int size)
</pre><p>
     from your <code class="function">_PG_init</code> function.
    </p><p>
     LWLocks are reserved by calling:
</p><pre class="programlisting">
void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
</pre><p>
     from <code class="function">_PG_init</code>.  This will ensure that an array of
     <code class="literal">num_lwlocks</code> LWLocks is available under the name
     <code class="literal">tranche_name</code>.  Use <code class="function">GetNamedLWLockTranche</code>
     to get a pointer to this array.
    </p><p>
     To avoid possible race-conditions, each backend should use the LWLock
     <code class="function">AddinShmemInitLock</code> when connecting to and initializing
     its allocation of shared memory, as shown here:
</p><pre class="programlisting">
static mystruct *ptr = NULL;

if (!ptr)
{
        bool    found;

        LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
        ptr = ShmemInitStruct("my struct name", size, &amp;found);
        if (!found)
        {
                initialize contents of shmem area;
                acquire any requested LWLocks using:
                ptr-&gt;locks = GetNamedLWLockTranche("my tranche name");
        }
        LWLockRelease(AddinShmemInitLock);
}
</pre><p>
    </p></div><div class="sect2" id="EXTEND-CPP"><div class="titlepage"><div><div><h3 class="title">38.10.11. Using C++ for Extensibility</h3></div></div></div><a id="id-1.8.3.13.15.2" class="indexterm"></a><p>
     Although the <span class="productname">PostgreSQL</span> backend is written in
     C, it is possible to write extensions in C++ if these guidelines are
     followed:

     </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
         All functions accessed by the backend must present a C interface
         to the backend;  these C functions can then call C++ functions.
         For example, <code class="literal">extern C</code> linkage is required for
         backend-accessed functions.  This is also necessary for any
         functions that are passed as pointers between the backend and
         C++ code.
       </p></li><li class="listitem"><p>
        Free memory using the appropriate deallocation method.  For example,
        most backend memory is allocated using <code class="function">palloc()</code>, so use
        <code class="function">pfree()</code> to free it.  Using C++
        <code class="function">delete</code> in such cases will fail.
       </p></li><li class="listitem"><p>
        Prevent exceptions from propagating into the C code (use a catch-all
        block at the top level of all <code class="literal">extern C</code> functions).  This
        is necessary even if the C++ code does not explicitly throw any
        exceptions, because events like out-of-memory can still throw
        exceptions.  Any exceptions must be caught and appropriate errors
        passed back to the C interface.  If possible, compile C++ with
        <code class="option">-fno-exceptions</code> to eliminate exceptions entirely; in such
        cases, you must check for failures in your C++ code, e.g.,  check for
        NULL returned by <code class="function">new()</code>.
       </p></li><li class="listitem"><p>
        If calling backend functions from C++ code, be sure that the
        C++ call stack contains only plain old data structures
        (<acronym class="acronym">POD</acronym>).  This is necessary because backend errors
        generate a distant <code class="function">longjmp()</code> that does not properly
        unroll a C++ call stack with non-POD objects.
       </p></li></ul></div><p>
    </p><p>
     In summary, it is best to place C++ code behind a wall of
     <code class="literal">extern C</code> functions that interface to the backend,
     and avoid exception, memory, and call stack leakage.
    </p></div></div><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navfooter"><hr></hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="xfunc-internal.html" title="38.9. Internal Functions">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="extend.html" title="Chapter 38. Extending SQL">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="xfunc-optimization.html" title="38.11. Function Optimization Information">Next</a></td></tr><tr><td width="40%" align="left" valign="top">38.9. Internal Functions </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 14.5 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 38.11. Function Optimization Information</td></tr></table></div></body></html>