1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
|
<!-- doc/src/sgml/maintenance.sgml -->
<chapter id="maintenance">
<title>Routine Database Maintenance Tasks</title>
<indexterm zone="maintenance">
<primary>maintenance</primary>
</indexterm>
<indexterm zone="maintenance">
<primary>routine maintenance</primary>
</indexterm>
<para>
<productname>PostgreSQL</productname>, like any database software, requires that certain tasks
be performed regularly to achieve optimum performance. The tasks
discussed here are <emphasis>required</emphasis>, but they
are repetitive in nature and can easily be automated using standard
tools such as <application>cron</application> scripts or
Windows' <application>Task Scheduler</application>. It is the database
administrator's responsibility to set up appropriate scripts, and to
check that they execute successfully.
</para>
<para>
One obvious maintenance task is the creation of backup copies of the data on a
regular schedule. Without a recent backup, you have no chance of recovery
after a catastrophe (disk failure, fire, mistakenly dropping a critical
table, etc.). The backup and recovery mechanisms available in
<productname>PostgreSQL</productname> are discussed at length in
<xref linkend="backup"/>.
</para>
<para>
The other main category of maintenance task is periodic <quote>vacuuming</quote>
of the database. This activity is discussed in
<xref linkend="routine-vacuuming"/>. Closely related to this is updating
the statistics that will be used by the query planner, as discussed in
<xref linkend="vacuum-for-statistics"/>.
</para>
<para>
Another task that might need periodic attention is log file management.
This is discussed in <xref linkend="logfile-maintenance"/>.
</para>
<para>
<ulink
url="https://bucardo.org/check_postgres/"><application>check_postgres</application></ulink>
is available for monitoring database health and reporting unusual
conditions. <application>check_postgres</application> integrates with
Nagios and MRTG, but can be run standalone too.
</para>
<para>
<productname>PostgreSQL</productname> is low-maintenance compared
to some other database management systems. Nonetheless,
appropriate attention to these tasks will go far towards ensuring a
pleasant and productive experience with the system.
</para>
<sect1 id="routine-vacuuming">
<title>Routine Vacuuming</title>
<indexterm zone="routine-vacuuming">
<primary>vacuum</primary>
</indexterm>
<para>
<productname>PostgreSQL</productname> databases require periodic
maintenance known as <firstterm>vacuuming</firstterm>. For many installations, it
is sufficient to let vacuuming be performed by the <firstterm>autovacuum
daemon</firstterm>, which is described in <xref linkend="autovacuum"/>. You might
need to adjust the autovacuuming parameters described there to obtain best
results for your situation. Some database administrators will want to
supplement or replace the daemon's activities with manually-managed
<command>VACUUM</command> commands, which typically are executed according to a
schedule by <application>cron</application> or <application>Task
Scheduler</application> scripts. To set up manually-managed vacuuming properly,
it is essential to understand the issues discussed in the next few
subsections. Administrators who rely on autovacuuming may still wish
to skim this material to help them understand and adjust autovacuuming.
</para>
<sect2 id="vacuum-basics">
<title>Vacuuming Basics</title>
<para>
<productname>PostgreSQL</productname>'s
<link linkend="sql-vacuum"><command>VACUUM</command></link> command has to
process each table on a regular basis for several reasons:
<orderedlist>
<listitem>
<simpara>To recover or reuse disk space occupied by updated or deleted
rows.</simpara>
</listitem>
<listitem>
<simpara>To update data statistics used by the
<productname>PostgreSQL</productname> query planner.</simpara>
</listitem>
<listitem>
<simpara>To update the visibility map, which speeds
up <link linkend="indexes-index-only-scans">index-only
scans</link>.</simpara>
</listitem>
<listitem>
<simpara>To protect against loss of very old data due to
<firstterm>transaction ID wraparound</firstterm> or
<firstterm>multixact ID wraparound</firstterm>.</simpara>
</listitem>
</orderedlist>
Each of these reasons dictates performing <command>VACUUM</command> operations
of varying frequency and scope, as explained in the following subsections.
</para>
<para>
There are two variants of <command>VACUUM</command>: standard <command>VACUUM</command>
and <command>VACUUM FULL</command>. <command>VACUUM FULL</command> can reclaim more
disk space but runs much more slowly. Also,
the standard form of <command>VACUUM</command> can run in parallel with production
database operations. (Commands such as <command>SELECT</command>,
<command>INSERT</command>, <command>UPDATE</command>, and
<command>DELETE</command> will continue to function normally, though you
will not be able to modify the definition of a table with commands such as
<command>ALTER TABLE</command> while it is being vacuumed.)
<command>VACUUM FULL</command> requires an
<literal>ACCESS EXCLUSIVE</literal> lock on the table it is
working on, and therefore cannot be done in parallel with other use
of the table. Generally, therefore,
administrators should strive to use standard <command>VACUUM</command> and
avoid <command>VACUUM FULL</command>.
</para>
<para>
<command>VACUUM</command> creates a substantial amount of I/O
traffic, which can cause poor performance for other active sessions.
There are configuration parameters that can be adjusted to reduce the
performance impact of background vacuuming — see
<xref linkend="runtime-config-resource-vacuum-cost"/>.
</para>
</sect2>
<sect2 id="vacuum-for-space-recovery">
<title>Recovering Disk Space</title>
<indexterm zone="vacuum-for-space-recovery">
<primary>disk space</primary>
</indexterm>
<para>
In <productname>PostgreSQL</productname>, an
<command>UPDATE</command> or <command>DELETE</command> of a row does not
immediately remove the old version of the row.
This approach is necessary to gain the benefits of multiversion
concurrency control (<acronym>MVCC</acronym>, see <xref linkend="mvcc"/>): the row version
must not be deleted while it is still potentially visible to other
transactions. But eventually, an outdated or deleted row version is no
longer of interest to any transaction. The space it occupies must then be
reclaimed for reuse by new rows, to avoid unbounded growth of disk
space requirements. This is done by running <command>VACUUM</command>.
</para>
<para>
The standard form of <command>VACUUM</command> removes dead row
versions in tables and indexes and marks the space available for
future reuse. However, it will not return the space to the operating
system, except in the special case where one or more pages at the
end of a table become entirely free and an exclusive table lock can be
easily obtained. In contrast, <command>VACUUM FULL</command> actively compacts
tables by writing a complete new version of the table file with no dead
space. This minimizes the size of the table, but can take a long time.
It also requires extra disk space for the new copy of the table, until
the operation completes.
</para>
<para>
The usual goal of routine vacuuming is to do standard <command>VACUUM</command>s
often enough to avoid needing <command>VACUUM FULL</command>. The
autovacuum daemon attempts to work this way, and in fact will
never issue <command>VACUUM FULL</command>. In this approach, the idea
is not to keep tables at their minimum size, but to maintain steady-state
usage of disk space: each table occupies space equivalent to its
minimum size plus however much space gets used up between vacuum runs.
Although <command>VACUUM FULL</command> can be used to shrink a table back
to its minimum size and return the disk space to the operating system,
there is not much point in this if the table will just grow again in the
future. Thus, moderately-frequent standard <command>VACUUM</command> runs are a
better approach than infrequent <command>VACUUM FULL</command> runs for
maintaining heavily-updated tables.
</para>
<para>
Some administrators prefer to schedule vacuuming themselves, for example
doing all the work at night when load is low.
The difficulty with doing vacuuming according to a fixed schedule
is that if a table has an unexpected spike in update activity, it may
get bloated to the point that <command>VACUUM FULL</command> is really necessary
to reclaim space. Using the autovacuum daemon alleviates this problem,
since the daemon schedules vacuuming dynamically in response to update
activity. It is unwise to disable the daemon completely unless you
have an extremely predictable workload. One possible compromise is
to set the daemon's parameters so that it will only react to unusually
heavy update activity, thus keeping things from getting out of hand,
while scheduled <command>VACUUM</command>s are expected to do the bulk of the
work when the load is typical.
</para>
<para>
For those not using autovacuum, a typical approach is to schedule a
database-wide <command>VACUUM</command> once a day during a low-usage period,
supplemented by more frequent vacuuming of heavily-updated tables as
necessary. (Some installations with extremely high update rates vacuum
their busiest tables as often as once every few minutes.) If you have
multiple databases in a cluster, don't forget to
<command>VACUUM</command> each one; the program <xref
linkend="app-vacuumdb"/> might be helpful.
</para>
<tip>
<para>
Plain <command>VACUUM</command> may not be satisfactory when
a table contains large numbers of dead row versions as a result of
massive update or delete activity. If you have such a table and
you need to reclaim the excess disk space it occupies, you will need
to use <command>VACUUM FULL</command>, or alternatively
<link linkend="sql-cluster"><command>CLUSTER</command></link>
or one of the table-rewriting variants of
<link linkend="sql-altertable"><command>ALTER TABLE</command></link>.
These commands rewrite an entire new copy of the table and build
new indexes for it. All these options require an
<literal>ACCESS EXCLUSIVE</literal> lock. Note that
they also temporarily use extra disk space approximately equal to the size
of the table, since the old copies of the table and indexes can't be
released until the new ones are complete.
</para>
</tip>
<tip>
<para>
If you have a table whose entire contents are deleted on a periodic
basis, consider doing it with
<link linkend="sql-truncate"><command>TRUNCATE</command></link> rather
than using <command>DELETE</command> followed by
<command>VACUUM</command>. <command>TRUNCATE</command> removes the
entire content of the table immediately, without requiring a
subsequent <command>VACUUM</command> or <command>VACUUM
FULL</command> to reclaim the now-unused disk space.
The disadvantage is that strict MVCC semantics are violated.
</para>
</tip>
</sect2>
<sect2 id="vacuum-for-statistics">
<title>Updating Planner Statistics</title>
<indexterm zone="vacuum-for-statistics">
<primary>statistics</primary>
<secondary>of the planner</secondary>
</indexterm>
<indexterm zone="vacuum-for-statistics">
<primary>ANALYZE</primary>
</indexterm>
<para>
The <productname>PostgreSQL</productname> query planner relies on
statistical information about the contents of tables in order to
generate good plans for queries. These statistics are gathered by
the <link linkend="sql-analyze"><command>ANALYZE</command></link> command,
which can be invoked by itself or
as an optional step in <command>VACUUM</command>. It is important to have
reasonably accurate statistics, otherwise poor choices of plans might
degrade database performance.
</para>
<para>
The autovacuum daemon, if enabled, will automatically issue
<command>ANALYZE</command> commands whenever the content of a table has
changed sufficiently. However, administrators might prefer to rely
on manually-scheduled <command>ANALYZE</command> operations, particularly
if it is known that update activity on a table will not affect the
statistics of <quote>interesting</quote> columns. The daemon schedules
<command>ANALYZE</command> strictly as a function of the number of rows
inserted or updated; it has no knowledge of whether that will lead
to meaningful statistical changes.
</para>
<para>
Tuples changed in partitions and inheritance children do not trigger
analyze on the parent table. If the parent table is empty or rarely
changed, it may never be processed by autovacuum, and the statistics for
the inheritance tree as a whole won't be collected. It is necessary to
run <command>ANALYZE</command> on the parent table manually in order to
keep the statistics up to date.
</para>
<para>
As with vacuuming for space recovery, frequent updates of statistics
are more useful for heavily-updated tables than for seldom-updated
ones. But even for a heavily-updated table, there might be no need for
statistics updates if the statistical distribution of the data is
not changing much. A simple rule of thumb is to think about how much
the minimum and maximum values of the columns in the table change.
For example, a <type>timestamp</type> column that contains the time
of row update will have a constantly-increasing maximum value as
rows are added and updated; such a column will probably need more
frequent statistics updates than, say, a column containing URLs for
pages accessed on a website. The URL column might receive changes just
as often, but the statistical distribution of its values probably
changes relatively slowly.
</para>
<para>
It is possible to run <command>ANALYZE</command> on specific tables and even
just specific columns of a table, so the flexibility exists to update some
statistics more frequently than others if your application requires it.
In practice, however, it is usually best to just analyze the entire
database, because it is a fast operation. <command>ANALYZE</command> uses a
statistically random sampling of the rows of a table rather than reading
every single row.
</para>
<tip>
<para>
Although per-column tweaking of <command>ANALYZE</command> frequency might not be
very productive, you might find it worthwhile to do per-column
adjustment of the level of detail of the statistics collected by
<command>ANALYZE</command>. Columns that are heavily used in <literal>WHERE</literal>
clauses and have highly irregular data distributions might require a
finer-grain data histogram than other columns. See <command>ALTER TABLE
SET STATISTICS</command>, or change the database-wide default using the <xref
linkend="guc-default-statistics-target"/> configuration parameter.
</para>
<para>
Also, by default there is limited information available about
the selectivity of functions. However, if you create a statistics
object or an expression
index that uses a function call, useful statistics will be
gathered about the function, which can greatly improve query
plans that use the expression index.
</para>
</tip>
<tip>
<para>
The autovacuum daemon does not issue <command>ANALYZE</command> commands for
foreign tables, since it has no means of determining how often that
might be useful. If your queries require statistics on foreign tables
for proper planning, it's a good idea to run manually-managed
<command>ANALYZE</command> commands on those tables on a suitable schedule.
</para>
</tip>
<tip>
<para>
The autovacuum daemon does not issue <command>ANALYZE</command> commands
for partitioned tables. Inheritance parents will only be analyzed if the
parent itself is changed - changes to child tables do not trigger
autoanalyze on the parent table. If your queries require statistics on
parent tables for proper planning, it is necessary to periodically run
a manual <command>ANALYZE</command> on those tables to keep the statistics
up to date.
</para>
</tip>
</sect2>
<sect2 id="vacuum-for-visibility-map">
<title>Updating the Visibility Map</title>
<para>
Vacuum maintains a <link linkend="storage-vm">visibility map</link> for each
table to keep track of which pages contain only tuples that are known to be
visible to all active transactions (and all future transactions, until the
page is again modified). This has two purposes. First, vacuum
itself can skip such pages on the next run, since there is nothing to
clean up.
</para>
<para>
Second, it allows <productname>PostgreSQL</productname> to answer some
queries using only the index, without reference to the underlying table.
Since <productname>PostgreSQL</productname> indexes don't contain tuple
visibility information, a normal index scan fetches the heap tuple for each
matching index entry, to check whether it should be seen by the current
transaction.
An <link linkend="indexes-index-only-scans"><firstterm>index-only
scan</firstterm></link>, on the other hand, checks the visibility map first.
If it's known that all tuples on the page are
visible, the heap fetch can be skipped. This is most useful on
large data sets where the visibility map can prevent disk accesses.
The visibility map is vastly smaller than the heap, so it can easily be
cached even when the heap is very large.
</para>
</sect2>
<sect2 id="vacuum-for-wraparound">
<title>Preventing Transaction ID Wraparound Failures</title>
<indexterm zone="vacuum-for-wraparound">
<primary>transaction ID</primary>
<secondary>wraparound</secondary>
</indexterm>
<indexterm>
<primary>wraparound</primary>
<secondary>of transaction IDs</secondary>
</indexterm>
<para>
<productname>PostgreSQL</productname>'s
<link linkend="mvcc-intro">MVCC</link> transaction semantics
depend on being able to compare transaction ID (<acronym>XID</acronym>)
numbers: a row version with an insertion XID greater than the current
transaction's XID is <quote>in the future</quote> and should not be visible
to the current transaction. But since transaction IDs have limited size
(32 bits) a cluster that runs for a long time (more
than 4 billion transactions) would suffer <firstterm>transaction ID
wraparound</firstterm>: the XID counter wraps around to zero, and all of a sudden
transactions that were in the past appear to be in the future — which
means their output become invisible. In short, catastrophic data loss.
(Actually the data is still there, but that's cold comfort if you cannot
get at it.) To avoid this, it is necessary to vacuum every table
in every database at least once every two billion transactions.
</para>
<para>
The reason that periodic vacuuming solves the problem is that
<command>VACUUM</command> will mark rows as <emphasis>frozen</emphasis>, indicating that
they were inserted by a transaction that committed sufficiently far in
the past that the effects of the inserting transaction are certain to be
visible to all current and future transactions.
Normal XIDs are
compared using modulo-2<superscript>32</superscript> arithmetic. This means
that for every normal XID, there are two billion XIDs that are
<quote>older</quote> and two billion that are <quote>newer</quote>; another
way to say it is that the normal XID space is circular with no
endpoint. Therefore, once a row version has been created with a particular
normal XID, the row version will appear to be <quote>in the past</quote> for
the next two billion transactions, no matter which normal XID we are
talking about. If the row version still exists after more than two billion
transactions, it will suddenly appear to be in the future. To
prevent this, <productname>PostgreSQL</productname> reserves a special XID,
<literal>FrozenTransactionId</literal>, which does not follow the normal XID
comparison rules and is always considered older
than every normal XID.
Frozen row versions are treated as if the inserting XID were
<literal>FrozenTransactionId</literal>, so that they will appear to be
<quote>in the past</quote> to all normal transactions regardless of wraparound
issues, and so such row versions will be valid until deleted, no matter
how long that is.
</para>
<note>
<para>
In <productname>PostgreSQL</productname> versions before 9.4, freezing was
implemented by actually replacing a row's insertion XID
with <literal>FrozenTransactionId</literal>, which was visible in the
row's <structname>xmin</structname> system column. Newer versions just set a flag
bit, preserving the row's original <structname>xmin</structname> for possible
forensic use. However, rows with <structname>xmin</structname> equal
to <literal>FrozenTransactionId</literal> (2) may still be found
in databases <application>pg_upgrade</application>'d from pre-9.4 versions.
</para>
<para>
Also, system catalogs may contain rows with <structname>xmin</structname> equal
to <literal>BootstrapTransactionId</literal> (1), indicating that they were
inserted during the first phase of <application>initdb</application>.
Like <literal>FrozenTransactionId</literal>, this special XID is treated as
older than every normal XID.
</para>
</note>
<para>
<xref linkend="guc-vacuum-freeze-min-age"/>
controls how old an XID value has to be before rows bearing that XID will be
frozen. Increasing this setting may avoid unnecessary work if the
rows that would otherwise be frozen will soon be modified again,
but decreasing this setting increases
the number of transactions that can elapse before the table must be
vacuumed again.
</para>
<para>
<command>VACUUM</command> uses the <link linkend="storage-vm">visibility map</link>
to determine which pages of a table must be scanned. Normally, it
will skip pages that don't have any dead row versions even if those pages
might still have row versions with old XID values. Therefore, normal
<command>VACUUM</command>s won't always freeze every old row version in the table.
Periodically, <command>VACUUM</command> will perform an <firstterm>aggressive
vacuum</firstterm>, skipping only those pages which contain neither dead rows nor
any unfrozen XID or MXID values.
<xref linkend="guc-vacuum-freeze-table-age"/>
controls when <command>VACUUM</command> does that: all-visible but not all-frozen
pages are scanned if the number of transactions that have passed since the
last such scan is greater than <varname>vacuum_freeze_table_age</varname> minus
<varname>vacuum_freeze_min_age</varname>. Setting
<varname>vacuum_freeze_table_age</varname> to 0 forces <command>VACUUM</command> to
use this more aggressive strategy for all scans.
</para>
<para>
The maximum time that a table can go unvacuumed is two billion
transactions minus the <varname>vacuum_freeze_min_age</varname> value at
the time of the last aggressive vacuum. If it were to go
unvacuumed for longer than
that, data loss could result. To ensure that this does not happen,
autovacuum is invoked on any table that might contain unfrozen rows with
XIDs older than the age specified by the configuration parameter <xref
linkend="guc-autovacuum-freeze-max-age"/>. (This will happen even if
autovacuum is disabled.)
</para>
<para>
This implies that if a table is not otherwise vacuumed,
autovacuum will be invoked on it approximately once every
<varname>autovacuum_freeze_max_age</varname> minus
<varname>vacuum_freeze_min_age</varname> transactions.
For tables that are regularly vacuumed for space reclamation purposes,
this is of little importance. However, for static tables
(including tables that receive inserts, but no updates or deletes),
there is no need to vacuum for space reclamation, so it can
be useful to try to maximize the interval between forced autovacuums
on very large static tables. Obviously one can do this either by
increasing <varname>autovacuum_freeze_max_age</varname> or decreasing
<varname>vacuum_freeze_min_age</varname>.
</para>
<para>
The effective maximum for <varname>vacuum_freeze_table_age</varname> is 0.95 *
<varname>autovacuum_freeze_max_age</varname>; a setting higher than that will be
capped to the maximum. A value higher than
<varname>autovacuum_freeze_max_age</varname> wouldn't make sense because an
anti-wraparound autovacuum would be triggered at that point anyway, and
the 0.95 multiplier leaves some breathing room to run a manual
<command>VACUUM</command> before that happens. As a rule of thumb,
<command>vacuum_freeze_table_age</command> should be set to a value somewhat
below <varname>autovacuum_freeze_max_age</varname>, leaving enough gap so that
a regularly scheduled <command>VACUUM</command> or an autovacuum triggered by
normal delete and update activity is run in that window. Setting it too
close could lead to anti-wraparound autovacuums, even though the table
was recently vacuumed to reclaim space, whereas lower values lead to more
frequent aggressive vacuuming.
</para>
<para>
The sole disadvantage of increasing <varname>autovacuum_freeze_max_age</varname>
(and <varname>vacuum_freeze_table_age</varname> along with it) is that
the <filename>pg_xact</filename> and <filename>pg_commit_ts</filename>
subdirectories of the database cluster will take more space, because it
must store the commit status and (if <varname>track_commit_timestamp</varname> is
enabled) timestamp of all transactions back to
the <varname>autovacuum_freeze_max_age</varname> horizon. The commit status uses
two bits per transaction, so if
<varname>autovacuum_freeze_max_age</varname> is set to its maximum allowed value
of two billion, <filename>pg_xact</filename> can be expected to grow to about half
a gigabyte and <filename>pg_commit_ts</filename> to about 20GB. If this
is trivial compared to your total database size,
setting <varname>autovacuum_freeze_max_age</varname> to its maximum allowed value
is recommended. Otherwise, set it depending on what you are willing to
allow for <filename>pg_xact</filename> and <filename>pg_commit_ts</filename> storage.
(The default, 200 million transactions, translates to about 50MB
of <filename>pg_xact</filename> storage and about 2GB of <filename>pg_commit_ts</filename>
storage.)
</para>
<para>
One disadvantage of decreasing <varname>vacuum_freeze_min_age</varname> is that
it might cause <command>VACUUM</command> to do useless work: freezing a row
version is a waste of time if the row is modified
soon thereafter (causing it to acquire a new XID). So the setting should
be large enough that rows are not frozen until they are unlikely to change
any more.
</para>
<para>
To track the age of the oldest unfrozen XIDs in a database,
<command>VACUUM</command> stores XID
statistics in the system tables <structname>pg_class</structname> and
<structname>pg_database</structname>. In particular,
the <structfield>relfrozenxid</structfield> column of a table's
<structname>pg_class</structname> row contains the freeze cutoff XID that was used
by the last aggressive <command>VACUUM</command> for that table. All rows
inserted by transactions with XIDs older than this cutoff XID are
guaranteed to have been frozen. Similarly,
the <structfield>datfrozenxid</structfield> column of a database's
<structname>pg_database</structname> row is a lower bound on the unfrozen XIDs
appearing in that database — it is just the minimum of the
per-table <structfield>relfrozenxid</structfield> values within the database.
A convenient way to
examine this information is to execute queries such as:
<programlisting>
SELECT c.oid::regclass as table_name,
greatest(age(c.relfrozenxid),age(t.relfrozenxid)) as age
FROM pg_class c
LEFT JOIN pg_class t ON c.reltoastrelid = t.oid
WHERE c.relkind IN ('r', 'm');
SELECT datname, age(datfrozenxid) FROM pg_database;
</programlisting>
The <literal>age</literal> column measures the number of transactions from the
cutoff XID to the current transaction's XID.
</para>
<para>
<command>VACUUM</command> normally only scans pages that have been modified
since the last vacuum, but <structfield>relfrozenxid</structfield> can only be
advanced when every page of the table
that might contain unfrozen XIDs is scanned. This happens when
<structfield>relfrozenxid</structfield> is more than
<varname>vacuum_freeze_table_age</varname> transactions old, when
<command>VACUUM</command>'s <literal>FREEZE</literal> option is used, or when all
pages that are not already all-frozen happen to
require vacuuming to remove dead row versions. When <command>VACUUM</command>
scans every page in the table that is not already all-frozen, it should
set <literal>age(relfrozenxid)</literal> to a value just a little more than the
<varname>vacuum_freeze_min_age</varname> setting
that was used (more by the number of transactions started since the
<command>VACUUM</command> started). If no <structfield>relfrozenxid</structfield>-advancing
<command>VACUUM</command> is issued on the table until
<varname>autovacuum_freeze_max_age</varname> is reached, an autovacuum will soon
be forced for the table.
</para>
<para>
If for some reason autovacuum fails to clear old XIDs from a table, the
system will begin to emit warning messages like this when the database's
oldest XIDs reach forty million transactions from the wraparound point:
<programlisting>
WARNING: database "mydb" must be vacuumed within 39985967 transactions
HINT: To avoid a database shutdown, execute a database-wide VACUUM in that database.
</programlisting>
(A manual <command>VACUUM</command> should fix the problem, as suggested by the
hint; but note that the <command>VACUUM</command> must be performed by a
superuser, else it will fail to process system catalogs and thus not
be able to advance the database's <structfield>datfrozenxid</structfield>.)
If these warnings are
ignored, the system will shut down and refuse to start any new
transactions once there are fewer than three million transactions left
until wraparound:
<programlisting>
ERROR: database is not accepting commands to avoid wraparound data loss in database "mydb"
HINT: Stop the postmaster and vacuum that database in single-user mode.
</programlisting>
The three-million-transaction safety margin exists to let the
administrator recover without data loss, by manually executing the
required <command>VACUUM</command> commands. However, since the system will not
execute commands once it has gone into the safety shutdown mode,
the only way to do this is to stop the server and start the server in single-user
mode to execute <command>VACUUM</command>. The shutdown mode is not enforced
in single-user mode. See the <xref linkend="app-postgres"/> reference
page for details about using single-user mode.
</para>
<sect3 id="vacuum-for-multixact-wraparound">
<title>Multixacts and Wraparound</title>
<indexterm>
<primary>MultiXactId</primary>
</indexterm>
<indexterm>
<primary>wraparound</primary>
<secondary>of multixact IDs</secondary>
</indexterm>
<para>
<firstterm>Multixact IDs</firstterm> are used to support row locking by
multiple transactions. Since there is only limited space in a tuple
header to store lock information, that information is encoded as
a <quote>multiple transaction ID</quote>, or multixact ID for short,
whenever there is more than one transaction concurrently locking a
row. Information about which transaction IDs are included in any
particular multixact ID is stored separately in
the <filename>pg_multixact</filename> subdirectory, and only the multixact ID
appears in the <structfield>xmax</structfield> field in the tuple header.
Like transaction IDs, multixact IDs are implemented as a
32-bit counter and corresponding storage, all of which requires
careful aging management, storage cleanup, and wraparound handling.
There is a separate storage area which holds the list of members in
each multixact, which also uses a 32-bit counter and which must also
be managed.
</para>
<para>
Whenever <command>VACUUM</command> scans any part of a table, it will replace
any multixact ID it encounters which is older than
<xref linkend="guc-vacuum-multixact-freeze-min-age"/>
by a different value, which can be the zero value, a single
transaction ID, or a newer multixact ID. For each table,
<structname>pg_class</structname>.<structfield>relminmxid</structfield> stores the oldest
possible multixact ID still appearing in any tuple of that table.
If this value is older than
<xref linkend="guc-vacuum-multixact-freeze-table-age"/>, an aggressive
vacuum is forced. As discussed in the previous section, an aggressive
vacuum means that only those pages which are known to be all-frozen will
be skipped. <function>mxid_age()</function> can be used on
<structname>pg_class</structname>.<structfield>relminmxid</structfield> to find its age.
</para>
<para>
Aggressive <command>VACUUM</command> scans, regardless of
what causes them, enable advancing the value for that table.
Eventually, as all tables in all databases are scanned and their
oldest multixact values are advanced, on-disk storage for older
multixacts can be removed.
</para>
<para>
As a safety device, an aggressive vacuum scan will
occur for any table whose multixact-age is greater than <xref
linkend="guc-autovacuum-multixact-freeze-max-age"/>. Also, if the
storage occupied by multixacts members exceeds 2GB, aggressive vacuum
scans will occur more often for all tables, starting with those that
have the oldest multixact-age. Both of these kinds of aggressive
scans will occur even if autovacuum is nominally disabled.
</para>
</sect3>
</sect2>
<sect2 id="autovacuum">
<title>The Autovacuum Daemon</title>
<indexterm>
<primary>autovacuum</primary>
<secondary>general information</secondary>
</indexterm>
<para>
<productname>PostgreSQL</productname> has an optional but highly
recommended feature called <firstterm>autovacuum</firstterm>,
whose purpose is to automate the execution of
<command>VACUUM</command> and <command>ANALYZE</command> commands.
When enabled, autovacuum checks for
tables that have had a large number of inserted, updated or deleted
tuples. These checks use the statistics collection facility;
therefore, autovacuum cannot be used unless <xref
linkend="guc-track-counts"/> is set to <literal>true</literal>.
In the default configuration, autovacuuming is enabled and the related
configuration parameters are appropriately set.
</para>
<para>
The <quote>autovacuum daemon</quote> actually consists of multiple processes.
There is a persistent daemon process, called the
<firstterm>autovacuum launcher</firstterm>, which is in charge of starting
<firstterm>autovacuum worker</firstterm> processes for all databases. The
launcher will distribute the work across time, attempting to start one
worker within each database every <xref linkend="guc-autovacuum-naptime"/>
seconds. (Therefore, if the installation has <replaceable>N</replaceable> databases,
a new worker will be launched every
<varname>autovacuum_naptime</varname>/<replaceable>N</replaceable> seconds.)
A maximum of <xref linkend="guc-autovacuum-max-workers"/> worker processes
are allowed to run at the same time. If there are more than
<varname>autovacuum_max_workers</varname> databases to be processed,
the next database will be processed as soon as the first worker finishes.
Each worker process will check each table within its database and
execute <command>VACUUM</command> and/or <command>ANALYZE</command> as needed.
<xref linkend="guc-log-autovacuum-min-duration"/> can be set to monitor
autovacuum workers' activity.
</para>
<para>
If several large tables all become eligible for vacuuming in a short
amount of time, all autovacuum workers might become occupied with
vacuuming those tables for a long period. This would result
in other tables and databases not being vacuumed until a worker becomes
available. There is no limit on how many workers might be in a
single database, but workers do try to avoid repeating work that has
already been done by other workers. Note that the number of running
workers does not count towards <xref linkend="guc-max-connections"/> or
<xref linkend="guc-superuser-reserved-connections"/> limits.
</para>
<para>
Tables whose <structfield>relfrozenxid</structfield> value is more than
<xref linkend="guc-autovacuum-freeze-max-age"/> transactions old are always
vacuumed (this also applies to those tables whose freeze max age has
been modified via storage parameters; see below). Otherwise, if the
number of tuples obsoleted since the last
<command>VACUUM</command> exceeds the <quote>vacuum threshold</quote>, the
table is vacuumed. The vacuum threshold is defined as:
<programlisting>
vacuum threshold = vacuum base threshold + vacuum scale factor * number of tuples
</programlisting>
where the vacuum base threshold is
<xref linkend="guc-autovacuum-vacuum-threshold"/>,
the vacuum scale factor is
<xref linkend="guc-autovacuum-vacuum-scale-factor"/>,
and the number of tuples is
<structname>pg_class</structname>.<structfield>reltuples</structfield>.
</para>
<para>
The table is also vacuumed if the number of tuples inserted since the last
vacuum has exceeded the defined insert threshold, which is defined as:
<programlisting>
vacuum insert threshold = vacuum base insert threshold + vacuum insert scale factor * number of tuples
</programlisting>
where the vacuum insert base threshold is
<xref linkend="guc-autovacuum-vacuum-insert-threshold"/>,
and vacuum insert scale factor is
<xref linkend="guc-autovacuum-vacuum-insert-scale-factor"/>.
Such vacuums may allow portions of the table to be marked as
<firstterm>all visible</firstterm> and also allow tuples to be frozen, which
can reduce the work required in subsequent vacuums.
For tables which receive <command>INSERT</command> operations but no or
almost no <command>UPDATE</command>/<command>DELETE</command> operations,
it may be beneficial to lower the table's
<xref linkend="reloption-autovacuum-freeze-min-age"/> as this may allow
tuples to be frozen by earlier vacuums. The number of obsolete tuples and
the number of inserted tuples are obtained from the statistics collector;
it is a semi-accurate count updated by each <command>UPDATE</command>,
<command>DELETE</command> and <command>INSERT</command> operation. (It is
only semi-accurate because some information might be lost under heavy
load.) If the <structfield>relfrozenxid</structfield> value of the table
is more than <varname>vacuum_freeze_table_age</varname> transactions old,
an aggressive vacuum is performed to freeze old tuples and advance
<structfield>relfrozenxid</structfield>; otherwise, only pages that have been modified
since the last vacuum are scanned.
</para>
<para>
For analyze, a similar condition is used: the threshold, defined as:
<programlisting>
analyze threshold = analyze base threshold + analyze scale factor * number of tuples
</programlisting>
is compared to the total number of tuples inserted, updated, or deleted
since the last <command>ANALYZE</command>.
</para>
<para>
Partitioned tables are not processed by autovacuum. Statistics
should be collected by running a manual <command>ANALYZE</command> when it is
first populated, and again whenever the distribution of data in its
partitions changes significantly.
</para>
<para>
Temporary tables cannot be accessed by autovacuum. Therefore,
appropriate vacuum and analyze operations should be performed via
session SQL commands.
</para>
<para>
The default thresholds and scale factors are taken from
<filename>postgresql.conf</filename>, but it is possible to override them
(and many other autovacuum control parameters) on a per-table basis; see
<xref linkend="sql-createtable-storage-parameters"/> for more information.
If a setting has been changed via a table's storage parameters, that value
is used when processing that table; otherwise the global settings are
used. See <xref linkend="runtime-config-autovacuum"/> for more details on
the global settings.
</para>
<para>
When multiple workers are running, the autovacuum cost delay parameters
(see <xref linkend="runtime-config-resource-vacuum-cost"/>) are
<quote>balanced</quote> among all the running workers, so that the
total I/O impact on the system is the same regardless of the number
of workers actually running. However, any workers processing tables whose
per-table <literal>autovacuum_vacuum_cost_delay</literal> or
<literal>autovacuum_vacuum_cost_limit</literal> storage parameters have been set
are not considered in the balancing algorithm.
</para>
<para>
Autovacuum workers generally don't block other commands. If a process
attempts to acquire a lock that conflicts with the
<literal>SHARE UPDATE EXCLUSIVE</literal> lock held by autovacuum, lock
acquisition will interrupt the autovacuum. For conflicting lock modes,
see <xref linkend="table-lock-compatibility"/>. However, if the autovacuum
is running to prevent transaction ID wraparound (i.e., the autovacuum query
name in the <structname>pg_stat_activity</structname> view ends with
<literal>(to prevent wraparound)</literal>), the autovacuum is not
automatically interrupted.
</para>
<warning>
<para>
Regularly running commands that acquire locks conflicting with a
<literal>SHARE UPDATE EXCLUSIVE</literal> lock (e.g., ANALYZE) can
effectively prevent autovacuums from ever completing.
</para>
</warning>
</sect2>
</sect1>
<sect1 id="routine-reindex">
<title>Routine Reindexing</title>
<indexterm zone="routine-reindex">
<primary>reindex</primary>
</indexterm>
<para>
In some situations it is worthwhile to rebuild indexes periodically
with the <xref linkend="sql-reindex"/> command or a series of individual
rebuilding steps.
</para>
<para>
B-tree index pages that have become completely empty are reclaimed for
re-use. However, there is still a possibility
of inefficient use of space: if all but a few index keys on a page have
been deleted, the page remains allocated. Therefore, a usage
pattern in which most, but not all, keys in each range are eventually
deleted will see poor use of space. For such usage patterns,
periodic reindexing is recommended.
</para>
<para>
The potential for bloat in non-B-tree indexes has not been well
researched. It is a good idea to periodically monitor the index's physical
size when using any non-B-tree index type.
</para>
<para>
Also, for B-tree indexes, a freshly-constructed index is slightly faster to
access than one that has been updated many times because logically
adjacent pages are usually also physically adjacent in a newly built index.
(This consideration does not apply to non-B-tree indexes.) It
might be worthwhile to reindex periodically just to improve access speed.
</para>
<para>
<xref linkend="sql-reindex"/> can be used safely and easily in all cases.
This command requires an <literal>ACCESS EXCLUSIVE</literal> lock by
default, hence it is often preferable to execute it with its
<literal>CONCURRENTLY</literal> option, which requires only a
<literal>SHARE UPDATE EXCLUSIVE</literal> lock.
</para>
</sect1>
<sect1 id="logfile-maintenance">
<title>Log File Maintenance</title>
<indexterm zone="logfile-maintenance">
<primary>server log</primary>
<secondary>log file maintenance</secondary>
</indexterm>
<para>
It is a good idea to save the database server's log output
somewhere, rather than just discarding it via <filename>/dev/null</filename>.
The log output is invaluable when diagnosing
problems. However, the log output tends to be voluminous
(especially at higher debug levels) so you won't want to save it
indefinitely. You need to <emphasis>rotate</emphasis> the log files so that
new log files are started and old ones removed after a reasonable
period of time.
</para>
<para>
If you simply direct the <systemitem>stderr</systemitem> of
<command>postgres</command> into a
file, you will have log output, but
the only way to truncate the log file is to stop and restart
the server. This might be acceptable if you are using
<productname>PostgreSQL</productname> in a development environment,
but few production servers would find this behavior acceptable.
</para>
<para>
A better approach is to send the server's
<systemitem>stderr</systemitem> output to some type of log rotation program.
There is a built-in log rotation facility, which you can use by
setting the configuration parameter <varname>logging_collector</varname> to
<literal>true</literal> in <filename>postgresql.conf</filename>. The control
parameters for this program are described in <xref
linkend="runtime-config-logging-where"/>. You can also use this approach
to capture the log data in machine readable <acronym>CSV</acronym>
(comma-separated values) format.
</para>
<para>
Alternatively, you might prefer to use an external log rotation
program if you have one that you are already using with other
server software. For example, the <application>rotatelogs</application>
tool included in the <productname>Apache</productname> distribution
can be used with <productname>PostgreSQL</productname>. One way to
do this is to pipe the server's
<systemitem>stderr</systemitem> output to the desired program.
If you start the server with
<command>pg_ctl</command>, then <systemitem>stderr</systemitem>
is already redirected to <systemitem>stdout</systemitem>, so you just need a
pipe command, for example:
<programlisting>
pg_ctl start | rotatelogs /var/log/pgsql_log 86400
</programlisting>
</para>
<para>
You can combine these approaches by setting up <application>logrotate</application>
to collect log files produced by <productname>PostgreSQL</productname> built-in
logging collector. In this case, the logging collector defines the names and
location of the log files, while <application>logrotate</application>
periodically archives these files. When initiating log rotation,
<application>logrotate</application> must ensure that the application
sends further output to the new file. This is commonly done with a
<literal>postrotate</literal> script that sends a <literal>SIGHUP</literal>
signal to the application, which then reopens the log file.
In <productname>PostgreSQL</productname>, you can run <command>pg_ctl</command>
with the <literal>logrotate</literal> option instead. When the server receives
this command, the server either switches to a new log file or reopens the
existing file, depending on the logging configuration
(see <xref linkend="runtime-config-logging-where"/>).
</para>
<note>
<para>
When using static log file names, the server might fail to reopen the log
file if the max open file limit is reached or a file table overflow occurs.
In this case, log messages are sent to the old log file until a
successful log rotation. If <application>logrotate</application> is
configured to compress the log file and delete it, the server may lose
the messages logged in this time frame. To avoid this issue, you can
configure the logging collector to dynamically assign log file names
and use a <literal>prerotate</literal> script to ignore open log files.
</para>
</note>
<para>
Another production-grade approach to managing log output is to
send it to <application>syslog</application> and let
<application>syslog</application> deal with file rotation. To do this, set the
configuration parameter <varname>log_destination</varname> to <literal>syslog</literal>
(to log to <application>syslog</application> only) in
<filename>postgresql.conf</filename>. Then you can send a <literal>SIGHUP</literal>
signal to the <application>syslog</application> daemon whenever you want to force it
to start writing a new log file. If you want to automate log
rotation, the <application>logrotate</application> program can be
configured to work with log files from
<application>syslog</application>.
</para>
<para>
On many systems, however, <application>syslog</application> is not very reliable,
particularly with large log messages; it might truncate or drop messages
just when you need them the most. Also, on <productname>Linux</productname>,
<application>syslog</application> will flush each message to disk, yielding poor
performance. (You can use a <quote><literal>-</literal></quote> at the start of the file name
in the <application>syslog</application> configuration file to disable syncing.)
</para>
<para>
Note that all the solutions described above take care of starting new
log files at configurable intervals, but they do not handle deletion
of old, no-longer-useful log files. You will probably want to set
up a batch job to periodically delete old log files. Another possibility
is to configure the rotation program so that old log files are overwritten
cyclically.
</para>
<para>
<ulink url="https://pgbadger.darold.net/"><productname>pgBadger</productname></ulink>
is an external project that does sophisticated log file analysis.
<ulink
url="https://bucardo.org/check_postgres/"><productname>check_postgres</productname></ulink>
provides Nagios alerts when important messages appear in the log
files, as well as detection of many other extraordinary conditions.
</para>
</sect1>
</chapter>
|