1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
|
'\" t
.\" Title: pgbench
.\" Author: The PostgreSQL Global Development Group
.\" Generator: DocBook XSL Stylesheets vsnapshot <http://docbook.sf.net/>
.\" Date: 2022
.\" Manual: PostgreSQL 14.5 Documentation
.\" Source: PostgreSQL 14.5
.\" Language: English
.\"
.TH "PGBENCH" "1" "2022" "PostgreSQL 14.5" "PostgreSQL 14.5 Documentation"
.\" -----------------------------------------------------------------
.\" * Define some portability stuff
.\" -----------------------------------------------------------------
.\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.\" http://bugs.debian.org/507673
.\" http://lists.gnu.org/archive/html/groff/2009-02/msg00013.html
.\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\" -----------------------------------------------------------------
.\" * set default formatting
.\" -----------------------------------------------------------------
.\" disable hyphenation
.nh
.\" disable justification (adjust text to left margin only)
.ad l
.\" -----------------------------------------------------------------
.\" * MAIN CONTENT STARTS HERE *
.\" -----------------------------------------------------------------
.SH "NAME"
pgbench \- run a benchmark test on PostgreSQL
.SH "SYNOPSIS"
.HP \w'\fBpgbench\fR\ 'u
\fBpgbench\fR \fB\-i\fR [\fIoption\fR...] [\fIdbname\fR]
.HP \w'\fBpgbench\fR\ 'u
\fBpgbench\fR [\fIoption\fR...] [\fIdbname\fR]
.SH "DESCRIPTION"
.PP
pgbench
is a simple program for running benchmark tests on
PostgreSQL\&. It runs the same sequence of SQL commands over and over, possibly in multiple concurrent database sessions, and then calculates the average transaction rate (transactions per second)\&. By default,
pgbench
tests a scenario that is loosely based on TPC\-B, involving five
\fBSELECT\fR,
\fBUPDATE\fR, and
\fBINSERT\fR
commands per transaction\&. However, it is easy to test other cases by writing your own transaction script files\&.
.PP
Typical output from
pgbench
looks like:
.sp
.if n \{\
.RS 4
.\}
.nf
transaction type: <builtin: TPC\-B (sort of)>
scaling factor: 10
query mode: simple
number of clients: 10
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
latency average = 11\&.013 ms
latency stddev = 7\&.351 ms
initial connection time = 45\&.758 ms
tps = 896\&.967014 (without initial connection time)
.fi
.if n \{\
.RE
.\}
.sp
The first six lines report some of the most important parameter settings\&. The next line reports the number of transactions completed and intended (the latter being just the product of number of clients and number of transactions per client); these will be equal unless the run failed before completion\&. (In
\fB\-T\fR
mode, only the actual number of transactions is printed\&.) The last line reports the number of transactions per second\&.
.PP
The default TPC\-B\-like transaction test requires specific tables to be set up beforehand\&.
pgbench
should be invoked with the
\fB\-i\fR
(initialize) option to create and populate these tables\&. (When you are testing a custom script, you don\*(Aqt need this step, but will instead need to do whatever setup your test needs\&.) Initialization looks like:
.sp
.if n \{\
.RS 4
.\}
.nf
pgbench \-i [ \fIother\-options\fR ] \fIdbname\fR
.fi
.if n \{\
.RE
.\}
.sp
where
\fIdbname\fR
is the name of the already\-created database to test in\&. (You may also need
\fB\-h\fR,
\fB\-p\fR, and/or
\fB\-U\fR
options to specify how to connect to the database server\&.)
.if n \{\
.sp
.\}
.RS 4
.it 1 an-trap
.nr an-no-space-flag 1
.nr an-break-flag 1
.br
.ps +1
\fBCaution\fR
.ps -1
.br
.PP
pgbench \-i
creates four tables
pgbench_accounts,
pgbench_branches,
pgbench_history, and
pgbench_tellers, destroying any existing tables of these names\&. Be very careful to use another database if you have tables having these names!
.sp .5v
.RE
.PP
At the default
\(lqscale factor\(rq
of 1, the tables initially contain this many rows:
.sp
.if n \{\
.RS 4
.\}
.nf
table # of rows
\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
pgbench_branches 1
pgbench_tellers 10
pgbench_accounts 100000
pgbench_history 0
.fi
.if n \{\
.RE
.\}
.sp
You can (and, for most purposes, probably should) increase the number of rows by using the
\fB\-s\fR
(scale factor) option\&. The
\fB\-F\fR
(fillfactor) option might also be used at this point\&.
.PP
Once you have done the necessary setup, you can run your benchmark with a command that doesn\*(Aqt include
\fB\-i\fR, that is
.sp
.if n \{\
.RS 4
.\}
.nf
pgbench [ \fIoptions\fR ] \fIdbname\fR
.fi
.if n \{\
.RE
.\}
.sp
In nearly all cases, you\*(Aqll need some options to make a useful test\&. The most important options are
\fB\-c\fR
(number of clients),
\fB\-t\fR
(number of transactions),
\fB\-T\fR
(time limit), and
\fB\-f\fR
(specify a custom script file)\&. See below for a full list\&.
.SH "OPTIONS"
.PP
The following is divided into three subsections\&. Different options are used during database initialization and while running benchmarks, but some options are useful in both cases\&.
.SS "Initialization Options"
.PP
pgbench
accepts the following command\-line initialization arguments:
.PP
\fIdbname\fR
.RS 4
Specifies the name of the database to test in\&. If this is not specified, the environment variable
\fBPGDATABASE\fR
is used\&. If that is not set, the user name specified for the connection is used\&.
.RE
.PP
\fB\-i\fR
.br
\fB\-\-initialize\fR
.RS 4
Required to invoke initialization mode\&.
.RE
.PP
\fB\-I \fR\fB\fIinit_steps\fR\fR
.br
\fB\-\-init\-steps=\fR\fB\fIinit_steps\fR\fR
.RS 4
Perform just a selected set of the normal initialization steps\&.
\fIinit_steps\fR
specifies the initialization steps to be performed, using one character per step\&. Each step is invoked in the specified order\&. The default is
dtgvp\&. The available steps are:
.PP
d (Drop)
.RS 4
Drop any existing
pgbench
tables\&.
.RE
.PP
t (create Tables)
.RS 4
Create the tables used by the standard
pgbench
scenario, namely
pgbench_accounts,
pgbench_branches,
pgbench_history, and
pgbench_tellers\&.
.RE
.PP
g or G (Generate data, client\-side or server\-side)
.RS 4
Generate data and load it into the standard tables, replacing any data already present\&.
.sp
With
g
(client\-side data generation), data is generated in
\fBpgbench\fR
client and then sent to the server\&. This uses the client/server bandwidth extensively through a
\fBCOPY\fR\&. Using
g
causes logging to print one message every 100,000 rows while generating data for the
pgbench_accounts
table\&.
.sp
With
G
(server\-side data generation), only small queries are sent from the
\fBpgbench\fR
client and then data is actually generated in the server\&. No significant bandwidth is required for this variant, but the server will do more work\&. Using
G
causes logging not to print any progress message while generating data\&.
.sp
The default initialization behavior uses client\-side data generation (equivalent to
g)\&.
.RE
.PP
v (Vacuum)
.RS 4
Invoke
\fBVACUUM\fR
on the standard tables\&.
.RE
.PP
p (create Primary keys)
.RS 4
Create primary key indexes on the standard tables\&.
.RE
.PP
f (create Foreign keys)
.RS 4
Create foreign key constraints between the standard tables\&. (Note that this step is not performed by default\&.)
.RE
.RE
.PP
\fB\-F\fR \fIfillfactor\fR
.br
\fB\-\-fillfactor=\fR\fIfillfactor\fR
.RS 4
Create the
pgbench_accounts,
pgbench_tellers
and
pgbench_branches
tables with the given fillfactor\&. Default is 100\&.
.RE
.PP
\fB\-n\fR
.br
\fB\-\-no\-vacuum\fR
.RS 4
Perform no vacuuming during initialization\&. (This option suppresses the
v
initialization step, even if it was specified in
\fB\-I\fR\&.)
.RE
.PP
\fB\-q\fR
.br
\fB\-\-quiet\fR
.RS 4
Switch logging to quiet mode, producing only one progress message per 5 seconds\&. The default logging prints one message each 100,000 rows, which often outputs many lines per second (especially on good hardware)\&.
.sp
This setting has no effect if
G
is specified in
\fB\-I\fR\&.
.RE
.PP
\fB\-s\fR \fIscale_factor\fR
.br
\fB\-\-scale=\fR\fIscale_factor\fR
.RS 4
Multiply the number of rows generated by the scale factor\&. For example,
\-s 100
will create 10,000,000 rows in the
pgbench_accounts
table\&. Default is 1\&. When the scale is 20,000 or larger, the columns used to hold account identifiers (aid
columns) will switch to using larger integers (bigint), in order to be big enough to hold the range of account identifiers\&.
.RE
.PP
\fB\-\-foreign\-keys\fR
.RS 4
Create foreign key constraints between the standard tables\&. (This option adds the
f
step to the initialization step sequence, if it is not already present\&.)
.RE
.PP
\fB\-\-index\-tablespace=\fR\fB\fIindex_tablespace\fR\fR
.RS 4
Create indexes in the specified tablespace, rather than the default tablespace\&.
.RE
.PP
\fB\-\-partition\-method=\fR\fB\fINAME\fR\fR
.RS 4
Create a partitioned
pgbench_accounts
table with
\fINAME\fR
method\&. Expected values are
range
or
hash\&. This option requires that
\fB\-\-partitions\fR
is set to non\-zero\&. If unspecified, default is
range\&.
.RE
.PP
\fB\-\-partitions=\fR\fB\fINUM\fR\fR
.RS 4
Create a partitioned
pgbench_accounts
table with
\fINUM\fR
partitions of nearly equal size for the scaled number of accounts\&. Default is
0, meaning no partitioning\&.
.RE
.PP
\fB\-\-tablespace=\fR\fB\fItablespace\fR\fR
.RS 4
Create tables in the specified tablespace, rather than the default tablespace\&.
.RE
.PP
\fB\-\-unlogged\-tables\fR
.RS 4
Create all tables as unlogged tables, rather than permanent tables\&.
.RE
.SS "Benchmarking Options"
.PP
pgbench
accepts the following command\-line benchmarking arguments:
.PP
\fB\-b\fR \fIscriptname[@weight]\fR
.br
\fB\-\-builtin\fR=\fIscriptname[@weight]\fR
.RS 4
Add the specified built\-in script to the list of scripts to be executed\&. Available built\-in scripts are:
tpcb\-like,
simple\-update
and
select\-only\&. Unambiguous prefixes of built\-in names are accepted\&. With the special name
list, show the list of built\-in scripts and exit immediately\&.
.sp
Optionally, write an integer weight after
@
to adjust the probability of selecting this script versus other ones\&. The default weight is 1\&. See below for details\&.
.RE
.PP
\fB\-c\fR \fIclients\fR
.br
\fB\-\-client=\fR\fIclients\fR
.RS 4
Number of clients simulated, that is, number of concurrent database sessions\&. Default is 1\&.
.RE
.PP
\fB\-C\fR
.br
\fB\-\-connect\fR
.RS 4
Establish a new connection for each transaction, rather than doing it just once per client session\&. This is useful to measure the connection overhead\&.
.RE
.PP
\fB\-d\fR
.br
\fB\-\-debug\fR
.RS 4
Print debugging output\&.
.RE
.PP
\fB\-D\fR \fIvarname\fR=\fIvalue\fR
.br
\fB\-\-define=\fR\fIvarname\fR=\fIvalue\fR
.RS 4
Define a variable for use by a custom script (see below)\&. Multiple
\fB\-D\fR
options are allowed\&.
.RE
.PP
\fB\-f\fR \fIfilename[@weight]\fR
.br
\fB\-\-file=\fR\fIfilename[@weight]\fR
.RS 4
Add a transaction script read from
\fIfilename\fR
to the list of scripts to be executed\&.
.sp
Optionally, write an integer weight after
@
to adjust the probability of selecting this script versus other ones\&. The default weight is 1\&. (To use a script file name that includes an
@
character, append a weight so that there is no ambiguity, for example
filen@me@1\&.) See below for details\&.
.RE
.PP
\fB\-j\fR \fIthreads\fR
.br
\fB\-\-jobs=\fR\fIthreads\fR
.RS 4
Number of worker threads within
pgbench\&. Using more than one thread can be helpful on multi\-CPU machines\&. Clients are distributed as evenly as possible among available threads\&. Default is 1\&.
.RE
.PP
\fB\-l\fR
.br
\fB\-\-log\fR
.RS 4
Write information about each transaction to a log file\&. See below for details\&.
.RE
.PP
\fB\-L\fR \fIlimit\fR
.br
\fB\-\-latency\-limit=\fR\fIlimit\fR
.RS 4
Transactions that last more than
\fIlimit\fR
milliseconds are counted and reported separately, as
late\&.
.sp
When throttling is used (\fB\-\-rate=\&.\&.\&.\fR), transactions that lag behind schedule by more than
\fIlimit\fR
ms, and thus have no hope of meeting the latency limit, are not sent to the server at all\&. They are counted and reported separately as
skipped\&.
.RE
.PP
\fB\-M\fR \fIquerymode\fR
.br
\fB\-\-protocol=\fR\fIquerymode\fR
.RS 4
Protocol to use for submitting queries to the server:
.sp
.RS 4
.ie n \{\
\h'-04'\(bu\h'+03'\c
.\}
.el \{\
.sp -1
.IP \(bu 2.3
.\}
simple: use simple query protocol\&.
.RE
.sp
.RS 4
.ie n \{\
\h'-04'\(bu\h'+03'\c
.\}
.el \{\
.sp -1
.IP \(bu 2.3
.\}
extended: use extended query protocol\&.
.RE
.sp
.RS 4
.ie n \{\
\h'-04'\(bu\h'+03'\c
.\}
.el \{\
.sp -1
.IP \(bu 2.3
.\}
prepared: use extended query protocol with prepared statements\&.
.RE
.sp
In the
prepared
mode,
pgbench
reuses the parse analysis result starting from the second query iteration, so
pgbench
runs faster than in other modes\&.
.sp
The default is simple query protocol\&. (See
Chapter\ \&53
for more information\&.)
.RE
.PP
\fB\-n\fR
.br
\fB\-\-no\-vacuum\fR
.RS 4
Perform no vacuuming before running the test\&. This option is
\fInecessary\fR
if you are running a custom test scenario that does not include the standard tables
pgbench_accounts,
pgbench_branches,
pgbench_history, and
pgbench_tellers\&.
.RE
.PP
\fB\-N\fR
.br
\fB\-\-skip\-some\-updates\fR
.RS 4
Run built\-in simple\-update script\&. Shorthand for
\fB\-b simple\-update\fR\&.
.RE
.PP
\fB\-P\fR \fIsec\fR
.br
\fB\-\-progress=\fR\fIsec\fR
.RS 4
Show progress report every
\fIsec\fR
seconds\&. The report includes the time since the beginning of the run, the TPS since the last report, and the transaction latency average and standard deviation since the last report\&. Under throttling (\fB\-R\fR), the latency is computed with respect to the transaction scheduled start time, not the actual transaction beginning time, thus it also includes the average schedule lag time\&.
.RE
.PP
\fB\-r\fR
.br
\fB\-\-report\-latencies\fR
.RS 4
Report the average per\-statement latency (execution time from the perspective of the client) of each command after the benchmark finishes\&. See below for details\&.
.RE
.PP
\fB\-R\fR \fIrate\fR
.br
\fB\-\-rate=\fR\fIrate\fR
.RS 4
Execute transactions targeting the specified rate instead of running as fast as possible (the default)\&. The rate is given in transactions per second\&. If the targeted rate is above the maximum possible rate, the rate limit won\*(Aqt impact the results\&.
.sp
The rate is targeted by starting transactions along a Poisson\-distributed schedule time line\&. The expected start time schedule moves forward based on when the client first started, not when the previous transaction ended\&. That approach means that when transactions go past their original scheduled end time, it is possible for later ones to catch up again\&.
.sp
When throttling is active, the transaction latency reported at the end of the run is calculated from the scheduled start times, so it includes the time each transaction had to wait for the previous transaction to finish\&. The wait time is called the schedule lag time, and its average and maximum are also reported separately\&. The transaction latency with respect to the actual transaction start time, i\&.e\&., the time spent executing the transaction in the database, can be computed by subtracting the schedule lag time from the reported latency\&.
.sp
If
\fB\-\-latency\-limit\fR
is used together with
\fB\-\-rate\fR, a transaction can lag behind so much that it is already over the latency limit when the previous transaction ends, because the latency is calculated from the scheduled start time\&. Such transactions are not sent to the server, but are skipped altogether and counted separately\&.
.sp
A high schedule lag time is an indication that the system cannot process transactions at the specified rate, with the chosen number of clients and threads\&. When the average transaction execution time is longer than the scheduled interval between each transaction, each successive transaction will fall further behind, and the schedule lag time will keep increasing the longer the test run is\&. When that happens, you will have to reduce the specified transaction rate\&.
.RE
.PP
\fB\-s\fR \fIscale_factor\fR
.br
\fB\-\-scale=\fR\fIscale_factor\fR
.RS 4
Report the specified scale factor in
pgbench\*(Aqs output\&. With the built\-in tests, this is not necessary; the correct scale factor will be detected by counting the number of rows in the
pgbench_branches
table\&. However, when testing only custom benchmarks (\fB\-f\fR
option), the scale factor will be reported as 1 unless this option is used\&.
.RE
.PP
\fB\-S\fR
.br
\fB\-\-select\-only\fR
.RS 4
Run built\-in select\-only script\&. Shorthand for
\fB\-b select\-only\fR\&.
.RE
.PP
\fB\-t\fR \fItransactions\fR
.br
\fB\-\-transactions=\fR\fItransactions\fR
.RS 4
Number of transactions each client runs\&. Default is 10\&.
.RE
.PP
\fB\-T\fR \fIseconds\fR
.br
\fB\-\-time=\fR\fIseconds\fR
.RS 4
Run the test for this many seconds, rather than a fixed number of transactions per client\&.
\fB\-t\fR
and
\fB\-T\fR
are mutually exclusive\&.
.RE
.PP
\fB\-v\fR
.br
\fB\-\-vacuum\-all\fR
.RS 4
Vacuum all four standard tables before running the test\&. With neither
\fB\-n\fR
nor
\fB\-v\fR,
pgbench
will vacuum the
pgbench_tellers
and
pgbench_branches
tables, and will truncate
pgbench_history\&.
.RE
.PP
\fB\-\-aggregate\-interval=\fR\fB\fIseconds\fR\fR
.RS 4
Length of aggregation interval (in seconds)\&. May be used only with
\fB\-l\fR
option\&. With this option, the log contains per\-interval summary data, as described below\&.
.RE
.PP
\fB\-\-log\-prefix=\fR\fB\fIprefix\fR\fR
.RS 4
Set the filename prefix for the log files created by
\fB\-\-log\fR\&. The default is
pgbench_log\&.
.RE
.PP
\fB\-\-progress\-timestamp\fR
.RS 4
When showing progress (option
\fB\-P\fR), use a timestamp (Unix epoch) instead of the number of seconds since the beginning of the run\&. The unit is in seconds, with millisecond precision after the dot\&. This helps compare logs generated by various tools\&.
.RE
.PP
\fB\-\-random\-seed=\fR\fIseed\fR
.RS 4
Set random generator seed\&. Seeds the system random number generator, which then produces a sequence of initial generator states, one for each thread\&. Values for
\fIseed\fR
may be:
time
(the default, the seed is based on the current time),
rand
(use a strong random source, failing if none is available), or an unsigned decimal integer value\&. The random generator is invoked explicitly from a pgbench script (random\&.\&.\&.
functions) or implicitly (for instance option
\fB\-\-rate\fR
uses it to schedule transactions)\&. When explicitly set, the value used for seeding is shown on the terminal\&. Any value allowed for
\fIseed\fR
may also be provided through the environment variable
PGBENCH_RANDOM_SEED\&. To ensure that the provided seed impacts all possible uses, put this option first or use the environment variable\&.
.sp
Setting the seed explicitly allows to reproduce a
\fBpgbench\fR
run exactly, as far as random numbers are concerned\&. As the random state is managed per thread, this means the exact same
\fBpgbench\fR
run for an identical invocation if there is one client per thread and there are no external or data dependencies\&. From a statistical viewpoint reproducing runs exactly is a bad idea because it can hide the performance variability or improve performance unduly, e\&.g\&., by hitting the same pages as a previous run\&. However, it may also be of great help for debugging, for instance re\-running a tricky case which leads to an error\&. Use wisely\&.
.RE
.PP
\fB\-\-sampling\-rate=\fR\fB\fIrate\fR\fR
.RS 4
Sampling rate, used when writing data into the log, to reduce the amount of log generated\&. If this option is given, only the specified fraction of transactions are logged\&. 1\&.0 means all transactions will be logged, 0\&.05 means only 5% of the transactions will be logged\&.
.sp
Remember to take the sampling rate into account when processing the log file\&. For example, when computing TPS values, you need to multiply the numbers accordingly (e\&.g\&., with 0\&.01 sample rate, you\*(Aqll only get 1/100 of the actual TPS)\&.
.RE
.PP
\fB\-\-show\-script=\fR\fIscriptname\fR
.RS 4
Show the actual code of builtin script
\fIscriptname\fR
on stderr, and exit immediately\&.
.RE
.SS "Common Options"
.PP
pgbench
also accepts the following common command\-line arguments for connection parameters:
.PP
\fB\-h\fR \fIhostname\fR
.br
\fB\-\-host=\fR\fIhostname\fR
.RS 4
The database server\*(Aqs host name
.RE
.PP
\fB\-p\fR \fIport\fR
.br
\fB\-\-port=\fR\fIport\fR
.RS 4
The database server\*(Aqs port number
.RE
.PP
\fB\-U\fR \fIlogin\fR
.br
\fB\-\-username=\fR\fIlogin\fR
.RS 4
The user name to connect as
.RE
.PP
\fB\-V\fR
.br
\fB\-\-version\fR
.RS 4
Print the
pgbench
version and exit\&.
.RE
.PP
\fB\-?\fR
.br
\fB\-\-help\fR
.RS 4
Show help about
pgbench
command line arguments, and exit\&.
.RE
.SH "EXIT STATUS"
.PP
A successful run will exit with status 0\&. Exit status 1 indicates static problems such as invalid command\-line options\&. Errors during the run such as database errors or problems in the script will result in exit status 2\&. In the latter case,
pgbench
will print partial results\&.
.SH "ENVIRONMENT"
.PP
\fBPGDATABASE\fR
.br
\fBPGHOST\fR
.br
\fBPGPORT\fR
.br
\fBPGUSER\fR
.RS 4
Default connection parameters\&.
.RE
.PP
This utility, like most other
PostgreSQL
utilities, uses the environment variables supported by
libpq
(see
Section\ \&34.15)\&.
.PP
The environment variable
\fBPG_COLOR\fR
specifies whether to use color in diagnostic messages\&. Possible values are
always,
auto
and
never\&.
.SH "NOTES"
.SS "What Is the \(lqTransaction\(rq Actually Performed in pgbench?"
.PP
pgbench
executes test scripts chosen randomly from a specified list\&. The scripts may include built\-in scripts specified with
\fB\-b\fR
and user\-provided scripts specified with
\fB\-f\fR\&. Each script may be given a relative weight specified after an
@
so as to change its selection probability\&. The default weight is
1\&. Scripts with a weight of
0
are ignored\&.
.PP
The default built\-in transaction script (also invoked with
\fB\-b tpcb\-like\fR) issues seven commands per transaction over randomly chosen
aid,
tid,
bid
and
delta\&. The scenario is inspired by the TPC\-B benchmark, but is not actually TPC\-B, hence the name\&.
.sp
.RS 4
.ie n \{\
\h'-04' 1.\h'+01'\c
.\}
.el \{\
.sp -1
.IP " 1." 4.2
.\}
BEGIN;
.RE
.sp
.RS 4
.ie n \{\
\h'-04' 2.\h'+01'\c
.\}
.el \{\
.sp -1
.IP " 2." 4.2
.\}
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
.RE
.sp
.RS 4
.ie n \{\
\h'-04' 3.\h'+01'\c
.\}
.el \{\
.sp -1
.IP " 3." 4.2
.\}
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
.RE
.sp
.RS 4
.ie n \{\
\h'-04' 4.\h'+01'\c
.\}
.el \{\
.sp -1
.IP " 4." 4.2
.\}
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
.RE
.sp
.RS 4
.ie n \{\
\h'-04' 5.\h'+01'\c
.\}
.el \{\
.sp -1
.IP " 5." 4.2
.\}
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
.RE
.sp
.RS 4
.ie n \{\
\h'-04' 6.\h'+01'\c
.\}
.el \{\
.sp -1
.IP " 6." 4.2
.\}
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
.RE
.sp
.RS 4
.ie n \{\
\h'-04' 7.\h'+01'\c
.\}
.el \{\
.sp -1
.IP " 7." 4.2
.\}
END;
.RE
.PP
If you select the
simple\-update
built\-in (also
\fB\-N\fR), steps 4 and 5 aren\*(Aqt included in the transaction\&. This will avoid update contention on these tables, but it makes the test case even less like TPC\-B\&.
.PP
If you select the
select\-only
built\-in (also
\fB\-S\fR), only the
\fBSELECT\fR
is issued\&.
.SS "Custom Scripts"
.PP
pgbench
has support for running custom benchmark scenarios by replacing the default transaction script (described above) with a transaction script read from a file (\fB\-f\fR
option)\&. In this case a
\(lqtransaction\(rq
counts as one execution of a script file\&.
.PP
A script file contains one or more SQL commands terminated by semicolons\&. Empty lines and lines beginning with
\-\-
are ignored\&. Script files can also contain
\(lqmeta commands\(rq, which are interpreted by
pgbench
itself, as described below\&.
.if n \{\
.sp
.\}
.RS 4
.it 1 an-trap
.nr an-no-space-flag 1
.nr an-break-flag 1
.br
.ps +1
\fBNote\fR
.ps -1
.br
.PP
Before
PostgreSQL
9\&.6, SQL commands in script files were terminated by newlines, and so they could not be continued across lines\&. Now a semicolon is
\fIrequired\fR
to separate consecutive SQL commands (though an SQL command does not need one if it is followed by a meta command)\&. If you need to create a script file that works with both old and new versions of
pgbench, be sure to write each SQL command on a single line ending with a semicolon\&.
.sp .5v
.RE
.PP
There is a simple variable\-substitution facility for script files\&. Variable names must consist of letters (including non\-Latin letters), digits, and underscores, with the first character not being a digit\&. Variables can be set by the command\-line
\fB\-D\fR
option, explained above, or by the meta commands explained below\&. In addition to any variables preset by
\fB\-D\fR
command\-line options, there are a few variables that are preset automatically, listed in
Table\ \&282\&. A value specified for these variables using
\fB\-D\fR
takes precedence over the automatic presets\&. Once set, a variable\*(Aqs value can be inserted into an SQL command by writing
:\fIvariablename\fR\&. When running more than one client session, each session has its own set of variables\&.
pgbench
supports up to 255 variable uses in one statement\&.
.sp
.it 1 an-trap
.nr an-no-space-flag 1
.nr an-break-flag 1
.br
.B Table\ \&282.\ \&pgbench Automatic Variables
.TS
allbox tab(:);
lB lB.
T{
Variable
T}:T{
Description
T}
.T&
l l
l l
l l
l l.
T{
client_id
T}:T{
unique number identifying the client session (starts from zero)
T}
T{
default_seed
T}:T{
seed used in hash and pseudorandom permutation functions by default
T}
T{
random_seed
T}:T{
random generator seed (unless overwritten with \fB\-D\fR)
T}
T{
scale
T}:T{
current scale factor
T}
.TE
.sp 1
.PP
Script file meta commands begin with a backslash (\e) and normally extend to the end of the line, although they can be continued to additional lines by writing backslash\-return\&. Arguments to a meta command are separated by white space\&. These meta commands are supported:
.PP
\egset [\fIprefix\fR] \easet [\fIprefix\fR]
.RS 4
These commands may be used to end SQL queries, taking the place of the terminating semicolon (;)\&.
.sp
When the
\egset
command is used, the preceding SQL query is expected to return one row, the columns of which are stored into variables named after column names, and prefixed with
\fIprefix\fR
if provided\&.
.sp
When the
\easet
command is used, all combined SQL queries (separated by
\e;) have their columns stored into variables named after column names, and prefixed with
\fIprefix\fR
if provided\&. If a query returns no row, no assignment is made and the variable can be tested for existence to detect this\&. If a query returns more than one row, the last value is kept\&.
.sp
\egset
and
\easet
cannot be used in pipeline mode, since the query results are not yet available by the time the commands would need them\&.
.sp
The following example puts the final account balance from the first query into variable
\fIabalance\fR, and fills variables
\fIp_two\fR
and
\fIp_three\fR
with integers from the third query\&. The result of the second query is discarded\&. The result of the two last combined queries are stored in variables
\fIfour\fR
and
\fIfive\fR\&.
.sp
.if n \{\
.RS 4
.\}
.nf
UPDATE pgbench_accounts
SET abalance = abalance + :delta
WHERE aid = :aid
RETURNING abalance \egset
\-\- compound of two queries
SELECT 1 \e;
SELECT 2 AS two, 3 AS three \egset p_
SELECT 4 AS four \e; SELECT 5 AS five \easet
.fi
.if n \{\
.RE
.\}
.RE
.PP
\eif \fIexpression\fR
.br
\eelif \fIexpression\fR
.br
\eelse
.br
\eendif
.RS 4
This group of commands implements nestable conditional blocks, similarly to
psql\*(Aqs
\eif \fIexpression\fR\&. Conditional expressions are identical to those with
\eset, with non\-zero values interpreted as true\&.
.RE
.PP
\eset \fIvarname\fR \fIexpression\fR
.RS 4
Sets variable
\fIvarname\fR
to a value calculated from
\fIexpression\fR\&. The expression may contain the
NULL
constant, Boolean constants
TRUE
and
FALSE, integer constants such as
5432, double constants such as
3\&.14159, references to variables
:\fIvariablename\fR,
operators
with their usual SQL precedence and associativity,
function calls, SQL
CASE generic conditional expressions
and parentheses\&.
.sp
Functions and most operators return
NULL
on
NULL
input\&.
.sp
For conditional purposes, non zero numerical values are
TRUE, zero numerical values and
NULL
are
FALSE\&.
.sp
Too large or small integer and double constants, as well as integer arithmetic operators (+,
\-,
*
and
/) raise errors on overflows\&.
.sp
When no final
ELSE
clause is provided to a
CASE, the default value is
NULL\&.
.sp
Examples:
.sp
.if n \{\
.RS 4
.\}
.nf
\eset ntellers 10 * :scale
\eset aid (1021 * random(1, 100000 * :scale)) % \e
(100000 * :scale) + 1
\eset divx CASE WHEN :x <> 0 THEN :y/:x ELSE NULL END
.fi
.if n \{\
.RE
.\}
.RE
.PP
\esleep \fInumber\fR [ us | ms | s ]
.RS 4
Causes script execution to sleep for the specified duration in microseconds (us), milliseconds (ms) or seconds (s)\&. If the unit is omitted then seconds are the default\&.
\fInumber\fR
can be either an integer constant or a
:\fIvariablename\fR
reference to a variable having an integer value\&.
.sp
Example:
.sp
.if n \{\
.RS 4
.\}
.nf
\esleep 10 ms
.fi
.if n \{\
.RE
.\}
.RE
.PP
\esetshell \fIvarname\fR \fIcommand\fR [ \fIargument\fR \&.\&.\&. ]
.RS 4
Sets variable
\fIvarname\fR
to the result of the shell command
\fIcommand\fR
with the given
\fIargument\fR(s)\&. The command must return an integer value through its standard output\&.
.sp
\fIcommand\fR
and each
\fIargument\fR
can be either a text constant or a
:\fIvariablename\fR
reference to a variable\&. If you want to use an
\fIargument\fR
starting with a colon, write an additional colon at the beginning of
\fIargument\fR\&.
.sp
Example:
.sp
.if n \{\
.RS 4
.\}
.nf
\esetshell variable_to_be_assigned command literal_argument :variable ::literal_starting_with_colon
.fi
.if n \{\
.RE
.\}
.RE
.PP
\eshell \fIcommand\fR [ \fIargument\fR \&.\&.\&. ]
.RS 4
Same as
\esetshell, but the result of the command is discarded\&.
.sp
Example:
.sp
.if n \{\
.RS 4
.\}
.nf
\eshell command literal_argument :variable ::literal_starting_with_colon
.fi
.if n \{\
.RE
.\}
.RE
.PP
\estartpipeline
.br
\eendpipeline
.RS 4
These commands delimit the start and end of a pipeline of SQL statements\&. In pipeline mode, statements are sent to the server without waiting for the results of previous statements\&. See
Section\ \&34.5
for more details\&. Pipeline mode requires the use of extended query protocol\&.
.RE
.SS "Built\-in Operators"
.PP
The arithmetic, bitwise, comparison and logical operators listed in
Table\ \&283
are built into
pgbench
and may be used in expressions appearing in
\eset\&. The operators are listed in increasing precedence order\&. Except as noted, operators taking two numeric inputs will produce a double value if either input is double, otherwise they produce an integer result\&.
.sp
.it 1 an-trap
.nr an-no-space-flag 1
.nr an-break-flag 1
.br
.B Table\ \&283.\ \&pgbench Operators
.TS
allbox tab(:);
lB.
T{
.PP
Operator
.PP
Description
.PP
Example(s)
T}
.T&
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l.
T{
.PP
\fIboolean\fR
OR
\fIboolean\fR
→ \fIboolean\fR
.PP
Logical OR
.PP
5 or 0
→ TRUE
T}
T{
.PP
\fIboolean\fR
AND
\fIboolean\fR
→ \fIboolean\fR
.PP
Logical AND
.PP
3 and 0
→ FALSE
T}
T{
.PP
NOT
\fIboolean\fR
→ \fIboolean\fR
.PP
Logical NOT
.PP
not false
→ TRUE
T}
T{
.PP
\fIboolean\fR
IS [NOT] (NULL|TRUE|FALSE)
→ \fIboolean\fR
.PP
Boolean value tests
.PP
1 is null
→ FALSE
T}
T{
.PP
\fIvalue\fR
ISNULL|NOTNULL
→ \fIboolean\fR
.PP
Nullness tests
.PP
1 notnull
→ TRUE
T}
T{
.PP
\fInumber\fR
=
\fInumber\fR
→ \fIboolean\fR
.PP
Equal
.PP
5 = 4
→ FALSE
T}
T{
.PP
\fInumber\fR
<>
\fInumber\fR
→ \fIboolean\fR
.PP
Not equal
.PP
5 <> 4
→ TRUE
T}
T{
.PP
\fInumber\fR
!=
\fInumber\fR
→ \fIboolean\fR
.PP
Not equal
.PP
5 != 5
→ FALSE
T}
T{
.PP
\fInumber\fR
<
\fInumber\fR
→ \fIboolean\fR
.PP
Less than
.PP
5 < 4
→ FALSE
T}
T{
.PP
\fInumber\fR
<=
\fInumber\fR
→ \fIboolean\fR
.PP
Less than or equal to
.PP
5 <= 4
→ FALSE
T}
T{
.PP
\fInumber\fR
>
\fInumber\fR
→ \fIboolean\fR
.PP
Greater than
.PP
5 > 4
→ TRUE
T}
T{
.PP
\fInumber\fR
>=
\fInumber\fR
→ \fIboolean\fR
.PP
Greater than or equal to
.PP
5 >= 4
→ TRUE
T}
T{
.PP
\fIinteger\fR
|
\fIinteger\fR
→ \fIinteger\fR
.PP
Bitwise OR
.PP
1 | 2
→ 3
T}
T{
.PP
\fIinteger\fR
#
\fIinteger\fR
→ \fIinteger\fR
.PP
Bitwise XOR
.PP
1 # 3
→ 2
T}
T{
.PP
\fIinteger\fR
&
\fIinteger\fR
→ \fIinteger\fR
.PP
Bitwise AND
.PP
1 & 3
→ 1
T}
T{
.PP
~
\fIinteger\fR
→ \fIinteger\fR
.PP
Bitwise NOT
.PP
~ 1
→ \-2
T}
T{
.PP
\fIinteger\fR
<<
\fIinteger\fR
→ \fIinteger\fR
.PP
Bitwise shift left
.PP
1 << 2
→ 4
T}
T{
.PP
\fIinteger\fR
>>
\fIinteger\fR
→ \fIinteger\fR
.PP
Bitwise shift right
.PP
8 >> 2
→ 2
T}
T{
.PP
\fInumber\fR
+
\fInumber\fR
→ \fInumber\fR
.PP
Addition
.PP
5 + 4
→ 9
T}
T{
.PP
\fInumber\fR
\-
\fInumber\fR
→ \fInumber\fR
.PP
Subtraction
.PP
3 \- 2\&.0
→ 1\&.0
T}
T{
.PP
\fInumber\fR
*
\fInumber\fR
→ \fInumber\fR
.PP
Multiplication
.PP
5 * 4
→ 20
T}
T{
.PP
\fInumber\fR
/
\fInumber\fR
→ \fInumber\fR
.PP
Division (truncates the result towards zero if both inputs are integers)
.PP
5 / 3
→ 1
T}
T{
.PP
\fIinteger\fR
%
\fIinteger\fR
→ \fIinteger\fR
.PP
Modulo (remainder)
.PP
3 % 2
→ 1
T}
T{
.PP
\-
\fInumber\fR
→ \fInumber\fR
.PP
Negation
.PP
\- 2\&.0
→ \-2\&.0
T}
.TE
.sp 1
.SS "Built\-In Functions"
.PP
The functions listed in
Table\ \&284
are built into
pgbench
and may be used in expressions appearing in
\eset\&.
.sp
.it 1 an-trap
.nr an-no-space-flag 1
.nr an-break-flag 1
.br
.B Table\ \&284.\ \&pgbench Functions
.TS
allbox tab(:);
lB.
T{
.PP
Function
.PP
Description
.PP
Example(s)
T}
.T&
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l.
T{
.PP
\fBabs\fR
(
\fInumber\fR
)
→
same type as input
.PP
Absolute value
.PP
abs(\-17)
→ 17
T}
T{
.PP
\fBdebug\fR
(
\fInumber\fR
)
→
same type as input
.PP
Prints the argument to
stderr, and returns the argument\&.
.PP
debug(5432\&.1)
→ 5432\&.1
T}
T{
.PP
\fBdouble\fR
(
\fInumber\fR
)
→ double
.PP
Casts to double\&.
.PP
double(5432)
→ 5432\&.0
T}
T{
.PP
\fBexp\fR
(
\fInumber\fR
)
→ double
.PP
Exponential (e
raised to the given power)
.PP
exp(1\&.0)
→ 2\&.718281828459045
T}
T{
.PP
\fBgreatest\fR
(
\fInumber\fR
[, \&.\&.\&. ]
)
→
double
if any argument is double, else
integer
.PP
Selects the largest value among the arguments\&.
.PP
greatest(5, 4, 3, 2)
→ 5
T}
T{
.PP
\fBhash\fR
(
\fIvalue\fR
[, \fIseed\fR ]
)
→ integer
.PP
This is an alias for
\fBhash_murmur2\fR\&.
.PP
hash(10, 5432)
→ \-5817877081768721676
T}
T{
.PP
\fBhash_fnv1a\fR
(
\fIvalue\fR
[, \fIseed\fR ]
)
→ integer
.PP
Computes
\m[blue]\fBFNV\-1a hash\fR\m[]\&.
.PP
hash_fnv1a(10, 5432)
→ \-7793829335365542153
T}
T{
.PP
\fBhash_murmur2\fR
(
\fIvalue\fR
[, \fIseed\fR ]
)
→ integer
.PP
Computes
\m[blue]\fBMurmurHash2 hash\fR\m[]\&.
.PP
hash_murmur2(10, 5432)
→ \-5817877081768721676
T}
T{
.PP
\fBint\fR
(
\fInumber\fR
)
→ integer
.PP
Casts to integer\&.
.PP
int(5\&.4 + 3\&.8)
→ 9
T}
T{
.PP
\fBleast\fR
(
\fInumber\fR
[, \&.\&.\&. ]
)
→
double
if any argument is double, else
integer
.PP
Selects the smallest value among the arguments\&.
.PP
least(5, 4, 3, 2\&.1)
→ 2\&.1
T}
T{
.PP
\fBln\fR
(
\fInumber\fR
)
→ double
.PP
Natural logarithm
.PP
ln(2\&.718281828459045)
→ 1\&.0
T}
T{
.PP
\fBmod\fR
(
\fIinteger\fR,
\fIinteger\fR
)
→ integer
.PP
Modulo (remainder)
.PP
mod(54, 32)
→ 22
T}
T{
.PP
\fBpermute\fR
(
\fIi\fR,
\fIsize\fR
[,
\fIseed\fR
] )
→ integer
.PP
Permuted value of
\fIi\fR, in the range
[0, size)\&. This is the new position of
\fIi\fR
(modulo
\fIsize\fR) in a pseudorandom permutation of the integers
0\&.\&.\&.size\-1, parameterized by
\fIseed\fR, see below\&.
.PP
permute(0, 4)
→ an integer between 0 and 3
T}
T{
.PP
\fBpi\fR
()
→ double
.PP
Approximate value of
π
.PP
pi()
→ 3\&.14159265358979323846
T}
T{
.PP
\fBpow\fR
(
\fIx\fR,
\fIy\fR
)
→ double
.PP
\fBpower\fR
(
\fIx\fR,
\fIy\fR
)
→ double
.PP
\fIx\fR
raised to the power of
\fIy\fR
.PP
pow(2\&.0, 10)
→ 1024\&.0
T}
T{
.PP
\fBrandom\fR
(
\fIlb\fR,
\fIub\fR
)
→ integer
.PP
Computes a uniformly\-distributed random integer in
[lb, ub]\&.
.PP
random(1, 10)
→ an integer between 1 and 10
T}
T{
.PP
\fBrandom_exponential\fR
(
\fIlb\fR,
\fIub\fR,
\fIparameter\fR
)
→ integer
.PP
Computes an exponentially\-distributed random integer in
[lb, ub], see below\&.
.PP
random_exponential(1, 10, 3\&.0)
→ an integer between 1 and 10
T}
T{
.PP
\fBrandom_gaussian\fR
(
\fIlb\fR,
\fIub\fR,
\fIparameter\fR
)
→ integer
.PP
Computes a Gaussian\-distributed random integer in
[lb, ub], see below\&.
.PP
random_gaussian(1, 10, 2\&.5)
→ an integer between 1 and 10
T}
T{
.PP
\fBrandom_zipfian\fR
(
\fIlb\fR,
\fIub\fR,
\fIparameter\fR
)
→ integer
.PP
Computes a Zipfian\-distributed random integer in
[lb, ub], see below\&.
.PP
random_zipfian(1, 10, 1\&.5)
→ an integer between 1 and 10
T}
T{
.PP
\fBsqrt\fR
(
\fInumber\fR
)
→ double
.PP
Square root
.PP
sqrt(2\&.0)
→ 1\&.414213562
T}
.TE
.sp 1
.PP
The
random
function generates values using a uniform distribution, that is all the values are drawn within the specified range with equal probability\&. The
random_exponential,
random_gaussian
and
random_zipfian
functions require an additional double parameter which determines the precise shape of the distribution\&.
.sp
.RS 4
.ie n \{\
\h'-04'\(bu\h'+03'\c
.\}
.el \{\
.sp -1
.IP \(bu 2.3
.\}
For an exponential distribution,
\fIparameter\fR
controls the distribution by truncating a quickly\-decreasing exponential distribution at
\fIparameter\fR, and then projecting onto integers between the bounds\&. To be precise, with
.sp
.if n \{\
.RS 4
.\}
.nf
f(x) = exp(\-parameter * (x \- min) / (max \- min + 1)) / (1 \- exp(\-parameter))
.fi
.if n \{\
.RE
.\}
.sp
Then value
\fIi\fR
between
\fImin\fR
and
\fImax\fR
inclusive is drawn with probability:
f(i) \- f(i + 1)\&.
.sp
Intuitively, the larger the
\fIparameter\fR, the more frequently values close to
\fImin\fR
are accessed, and the less frequently values close to
\fImax\fR
are accessed\&. The closer to 0
\fIparameter\fR
is, the flatter (more uniform) the access distribution\&. A crude approximation of the distribution is that the most frequent 1% values in the range, close to
\fImin\fR, are drawn
\fIparameter\fR% of the time\&. The
\fIparameter\fR
value must be strictly positive\&.
.RE
.sp
.RS 4
.ie n \{\
\h'-04'\(bu\h'+03'\c
.\}
.el \{\
.sp -1
.IP \(bu 2.3
.\}
For a Gaussian distribution, the interval is mapped onto a standard normal distribution (the classical bell\-shaped Gaussian curve) truncated at
\-parameter
on the left and
+parameter
on the right\&. Values in the middle of the interval are more likely to be drawn\&. To be precise, if
PHI(x)
is the cumulative distribution function of the standard normal distribution, with mean
mu
defined as
(max + min) / 2\&.0, with
.sp
.if n \{\
.RS 4
.\}
.nf
f(x) = PHI(2\&.0 * parameter * (x \- mu) / (max \- min + 1)) /
(2\&.0 * PHI(parameter) \- 1)
.fi
.if n \{\
.RE
.\}
.sp
then value
\fIi\fR
between
\fImin\fR
and
\fImax\fR
inclusive is drawn with probability:
f(i + 0\&.5) \- f(i \- 0\&.5)\&. Intuitively, the larger the
\fIparameter\fR, the more frequently values close to the middle of the interval are drawn, and the less frequently values close to the
\fImin\fR
and
\fImax\fR
bounds\&. About 67% of values are drawn from the middle
1\&.0 / parameter, that is a relative
0\&.5 / parameter
around the mean, and 95% in the middle
2\&.0 / parameter, that is a relative
1\&.0 / parameter
around the mean; for instance, if
\fIparameter\fR
is 4\&.0, 67% of values are drawn from the middle quarter (1\&.0 / 4\&.0) of the interval (i\&.e\&., from
3\&.0 / 8\&.0
to
5\&.0 / 8\&.0) and 95% from the middle half (2\&.0 / 4\&.0) of the interval (second and third quartiles)\&. The minimum allowed
\fIparameter\fR
value is 2\&.0\&.
.RE
.sp
.RS 4
.ie n \{\
\h'-04'\(bu\h'+03'\c
.\}
.el \{\
.sp -1
.IP \(bu 2.3
.\}
random_zipfian
generates a bounded Zipfian distribution\&.
\fIparameter\fR
defines how skewed the distribution is\&. The larger the
\fIparameter\fR, the more frequently values closer to the beginning of the interval are drawn\&. The distribution is such that, assuming the range starts from 1, the ratio of the probability of drawing
\fIk\fR
versus drawing
\fIk+1\fR
is
((\fIk\fR+1)/\fIk\fR)**\fIparameter\fR\&. For example,
random_zipfian(1, \&.\&.\&., 2\&.5)
produces the value
1
about
(2/1)**2\&.5 = 5\&.66
times more frequently than
2, which itself is produced
(3/2)**2\&.5 = 2\&.76
times more frequently than
3, and so on\&.
.sp
pgbench\*(Aqs implementation is based on "Non\-Uniform Random Variate Generation", Luc Devroye, p\&. 550\-551, Springer 1986\&. Due to limitations of that algorithm, the
\fIparameter\fR
value is restricted to the range [1\&.001, 1000]\&.
.RE
.if n \{\
.sp
.\}
.RS 4
.it 1 an-trap
.nr an-no-space-flag 1
.nr an-break-flag 1
.br
.ps +1
\fBNote\fR
.ps -1
.br
.PP
When designing a benchmark which selects rows non\-uniformly, be aware that the rows chosen may be correlated with other data such as IDs from a sequence or the physical row ordering, which may skew performance measurements\&.
.PP
To avoid this, you may wish to use the
\fBpermute\fR
function, or some other additional step with similar effect, to shuffle the selected rows and remove such correlations\&.
.sp .5v
.RE
.PP
Hash functions
hash,
hash_murmur2
and
hash_fnv1a
accept an input value and an optional seed parameter\&. In case the seed isn\*(Aqt provided the value of
:default_seed
is used, which is initialized randomly unless set by the command\-line
\-D
option\&.
.PP
permute
accepts an input value, a size, and an optional seed parameter\&. It generates a pseudorandom permutation of integers in the range
[0, size), and returns the index of the input value in the permuted values\&. The permutation chosen is parameterized by the seed, which defaults to
:default_seed, if not specified\&. Unlike the hash functions,
permute
ensures that there are no collisions or holes in the output values\&. Input values outside the interval are interpreted modulo the size\&. The function raises an error if the size is not positive\&.
\fBpermute\fR
can be used to scatter the distribution of non\-uniform random functions such as
random_zipfian
or
random_exponential
so that values drawn more often are not trivially correlated\&. For instance, the following
pgbench
script simulates a possible real world workload typical for social media and blogging platforms where a few accounts generate excessive load:
.sp
.if n \{\
.RS 4
.\}
.nf
\eset size 1000000
\eset r random_zipfian(1, :size, 1\&.07)
\eset k 1 + permute(:r, :size)
.fi
.if n \{\
.RE
.\}
.sp
In some cases several distinct distributions are needed which don\*(Aqt correlate with each other and this is when the optional seed parameter comes in handy:
.sp
.if n \{\
.RS 4
.\}
.nf
\eset k1 1 + permute(:r, :size, :default_seed + 123)
\eset k2 1 + permute(:r, :size, :default_seed + 321)
.fi
.if n \{\
.RE
.\}
.sp
A similar behavior can also be approximated with
\fBhash\fR:
.sp
.if n \{\
.RS 4
.\}
.nf
\eset size 1000000
\eset r random_zipfian(1, 100 * :size, 1\&.07)
\eset k 1 + abs(hash(:r)) % :size
.fi
.if n \{\
.RE
.\}
.sp
However, since
\fBhash\fR
generates collisions, some values will not be reachable and others will be more frequent than expected from the original distribution\&.
.PP
As an example, the full definition of the built\-in TPC\-B\-like transaction is:
.sp
.if n \{\
.RS 4
.\}
.nf
\eset aid random(1, 100000 * :scale)
\eset bid random(1, 1 * :scale)
\eset tid random(1, 10 * :scale)
\eset delta random(\-5000, 5000)
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;
.fi
.if n \{\
.RE
.\}
.sp
This script allows each iteration of the transaction to reference different, randomly\-chosen rows\&. (This example also shows why it\*(Aqs important for each client session to have its own variables \(em otherwise they\*(Aqd not be independently touching different rows\&.)
.SS "Per\-Transaction Logging"
.PP
With the
\fB\-l\fR
option (but without the
\fB\-\-aggregate\-interval\fR
option),
pgbench
writes information about each transaction to a log file\&. The log file will be named
\fIprefix\fR\&.\fInnn\fR, where
\fIprefix\fR
defaults to
pgbench_log, and
\fInnn\fR
is the PID of the
pgbench
process\&. The prefix can be changed by using the
\fB\-\-log\-prefix\fR
option\&. If the
\fB\-j\fR
option is 2 or higher, so that there are multiple worker threads, each will have its own log file\&. The first worker will use the same name for its log file as in the standard single worker case\&. The additional log files for the other workers will be named
\fIprefix\fR\&.\fInnn\fR\&.\fImmm\fR, where
\fImmm\fR
is a sequential number for each worker starting with 1\&.
.PP
The format of the log is:
.sp
.if n \{\
.RS 4
.\}
.nf
\fIclient_id\fR \fItransaction_no\fR \fItime\fR \fIscript_no\fR \fItime_epoch\fR \fItime_us\fR [ \fIschedule_lag\fR ]
.fi
.if n \{\
.RE
.\}
.sp
where
\fIclient_id\fR
indicates which client session ran the transaction,
\fItransaction_no\fR
counts how many transactions have been run by that session,
\fItime\fR
is the total elapsed transaction time in microseconds,
\fIscript_no\fR
identifies which script file was used (useful when multiple scripts were specified with
\fB\-f\fR
or
\fB\-b\fR), and
\fItime_epoch\fR/\fItime_us\fR
are a Unix\-epoch time stamp and an offset in microseconds (suitable for creating an ISO 8601 time stamp with fractional seconds) showing when the transaction completed\&. The
\fIschedule_lag\fR
field is the difference between the transaction\*(Aqs scheduled start time, and the time it actually started, in microseconds\&. It is only present when the
\fB\-\-rate\fR
option is used\&. When both
\fB\-\-rate\fR
and
\fB\-\-latency\-limit\fR
are used, the
\fItime\fR
for a skipped transaction will be reported as
skipped\&.
.PP
Here is a snippet of a log file generated in a single\-client run:
.sp
.if n \{\
.RS 4
.\}
.nf
0 199 2241 0 1175850568 995598
0 200 2465 0 1175850568 998079
0 201 2513 0 1175850569 608
0 202 2038 0 1175850569 2663
.fi
.if n \{\
.RE
.\}
.sp
Another example with
\-\-rate=100
and
\-\-latency\-limit=5
(note the additional
\fIschedule_lag\fR
column):
.sp
.if n \{\
.RS 4
.\}
.nf
0 81 4621 0 1412881037 912698 3005
0 82 6173 0 1412881037 914578 4304
0 83 skipped 0 1412881037 914578 5217
0 83 skipped 0 1412881037 914578 5099
0 83 4722 0 1412881037 916203 3108
0 84 4142 0 1412881037 918023 2333
0 85 2465 0 1412881037 919759 740
.fi
.if n \{\
.RE
.\}
.sp
In this example, transaction 82 was late, because its latency (6\&.173 ms) was over the 5 ms limit\&. The next two transactions were skipped, because they were already late before they were even started\&.
.PP
When running a long test on hardware that can handle a lot of transactions, the log files can become very large\&. The
\fB\-\-sampling\-rate\fR
option can be used to log only a random sample of transactions\&.
.SS "Aggregated Logging"
.PP
With the
\fB\-\-aggregate\-interval\fR
option, a different format is used for the log files:
.sp
.if n \{\
.RS 4
.\}
.nf
\fIinterval_start\fR \fInum_transactions\fR\: \fIsum_latency\fR \fIsum_latency_2\fR \fImin_latency\fR \fImax_latency\fR\: [ \fIsum_lag\fR \fIsum_lag_2\fR \fImin_lag\fR \fImax_lag\fR [ \fIskipped\fR ] ]
.fi
.if n \{\
.RE
.\}
.sp
where
\fIinterval_start\fR
is the start of the interval (as a Unix epoch time stamp),
\fInum_transactions\fR
is the number of transactions within the interval,
\fIsum_latency\fR
is the sum of the transaction latencies within the interval,
\fIsum_latency_2\fR
is the sum of squares of the transaction latencies within the interval,
\fImin_latency\fR
is the minimum latency within the interval, and
\fImax_latency\fR
is the maximum latency within the interval\&. The next fields,
\fIsum_lag\fR,
\fIsum_lag_2\fR,
\fImin_lag\fR, and
\fImax_lag\fR, are only present if the
\fB\-\-rate\fR
option is used\&. They provide statistics about the time each transaction had to wait for the previous one to finish, i\&.e\&., the difference between each transaction\*(Aqs scheduled start time and the time it actually started\&. The very last field,
\fIskipped\fR, is only present if the
\fB\-\-latency\-limit\fR
option is used, too\&. It counts the number of transactions skipped because they would have started too late\&. Each transaction is counted in the interval when it was committed\&.
.PP
Here is some example output:
.sp
.if n \{\
.RS 4
.\}
.nf
1345828501 5601 1542744 483552416 61 2573
1345828503 7884 1979812 565806736 60 1479
1345828505 7208 1979422 567277552 59 1391
1345828507 7685 1980268 569784714 60 1398
1345828509 7073 1979779 573489941 236 1411
.fi
.if n \{\
.RE
.\}
.PP
Notice that while the plain (unaggregated) log file shows which script was used for each transaction, the aggregated log does not\&. Therefore if you need per\-script data, you need to aggregate the data on your own\&.
.SS "Per\-Statement Latencies"
.PP
With the
\fB\-r\fR
option,
pgbench
collects the elapsed transaction time of each statement executed by every client\&. It then reports an average of those values, referred to as the latency for each statement, after the benchmark has finished\&.
.PP
For the default script, the output will look similar to this:
.sp
.if n \{\
.RS 4
.\}
.nf
starting vacuum\&.\&.\&.end\&.
transaction type: <builtin: TPC\-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
latency average = 10\&.870 ms
latency stddev = 7\&.341 ms
initial connection time = 30\&.954 ms
tps = 907\&.949122 (without initial connection time)
statement latencies in milliseconds:
0\&.001 \eset aid random(1, 100000 * :scale)
0\&.001 \eset bid random(1, 1 * :scale)
0\&.001 \eset tid random(1, 10 * :scale)
0\&.000 \eset delta random(\-5000, 5000)
0\&.046 BEGIN;
0\&.151 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
0\&.107 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
4\&.241 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
5\&.245 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
0\&.102 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
0\&.974 END;
.fi
.if n \{\
.RE
.\}
.PP
If multiple script files are specified, the averages are reported separately for each script file\&.
.PP
Note that collecting the additional timing information needed for per\-statement latency computation adds some overhead\&. This will slow average execution speed and lower the computed TPS\&. The amount of slowdown varies significantly depending on platform and hardware\&. Comparing average TPS values with and without latency reporting enabled is a good way to measure if the timing overhead is significant\&.
.SS "Good Practices"
.PP
It is very easy to use
pgbench
to produce completely meaningless numbers\&. Here are some guidelines to help you get useful results\&.
.PP
In the first place,
\fInever\fR
believe any test that runs for only a few seconds\&. Use the
\fB\-t\fR
or
\fB\-T\fR
option to make the run last at least a few minutes, so as to average out noise\&. In some cases you could need hours to get numbers that are reproducible\&. It\*(Aqs a good idea to try the test run a few times, to find out if your numbers are reproducible or not\&.
.PP
For the default TPC\-B\-like test scenario, the initialization scale factor (\fB\-s\fR) should be at least as large as the largest number of clients you intend to test (\fB\-c\fR); else you\*(Aqll mostly be measuring update contention\&. There are only
\fB\-s\fR
rows in the
pgbench_branches
table, and every transaction wants to update one of them, so
\fB\-c\fR
values in excess of
\fB\-s\fR
will undoubtedly result in lots of transactions blocked waiting for other transactions\&.
.PP
The default test scenario is also quite sensitive to how long it\*(Aqs been since the tables were initialized: accumulation of dead rows and dead space in the tables changes the results\&. To understand the results you must keep track of the total number of updates and when vacuuming happens\&. If autovacuum is enabled it can result in unpredictable changes in measured performance\&.
.PP
A limitation of
pgbench
is that it can itself become the bottleneck when trying to test a large number of client sessions\&. This can be alleviated by running
pgbench
on a different machine from the database server, although low network latency will be essential\&. It might even be useful to run several
pgbench
instances concurrently, on several client machines, against the same database server\&.
.SS "Security"
.PP
If untrusted users have access to a database that has not adopted a
secure schema usage pattern, do not run
pgbench
in that database\&.
pgbench
uses unqualified names and does not manipulate the search path\&.
|