summaryrefslogtreecommitdiffstats
path: root/src/backend/access/nbtree/nbtsearch.c
blob: fdf0e5654a183fec4fd2d8d9cee50a833f4aa5fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
/*-------------------------------------------------------------------------
 *
 * nbtsearch.c
 *	  Search code for postgres btrees.
 *
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/access/nbtree/nbtsearch.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "access/nbtree.h"
#include "access/relscan.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "storage/predicate.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"


static void _bt_drop_lock_and_maybe_pin(IndexScanDesc scan, BTScanPos sp);
static OffsetNumber _bt_binsrch(Relation rel, BTScanInsert key, Buffer buf);
static int	_bt_binsrch_posting(BTScanInsert key, Page page,
								OffsetNumber offnum);
static bool _bt_readpage(IndexScanDesc scan, ScanDirection dir,
						 OffsetNumber offnum);
static void _bt_saveitem(BTScanOpaque so, int itemIndex,
						 OffsetNumber offnum, IndexTuple itup);
static int	_bt_setuppostingitems(BTScanOpaque so, int itemIndex,
								  OffsetNumber offnum, ItemPointer heapTid,
								  IndexTuple itup);
static inline void _bt_savepostingitem(BTScanOpaque so, int itemIndex,
									   OffsetNumber offnum,
									   ItemPointer heapTid, int tupleOffset);
static bool _bt_steppage(IndexScanDesc scan, ScanDirection dir);
static bool _bt_readnextpage(IndexScanDesc scan, BlockNumber blkno, ScanDirection dir);
static bool _bt_parallel_readpage(IndexScanDesc scan, BlockNumber blkno,
								  ScanDirection dir);
static Buffer _bt_walk_left(Relation rel, Buffer buf, Snapshot snapshot);
static bool _bt_endpoint(IndexScanDesc scan, ScanDirection dir);
static inline void _bt_initialize_more_data(BTScanOpaque so, ScanDirection dir);


/*
 *	_bt_drop_lock_and_maybe_pin()
 *
 * Unlock the buffer; and if it is safe to release the pin, do that, too.  It
 * is safe if the scan is using an MVCC snapshot and the index is WAL-logged.
 * This will prevent vacuum from stalling in a blocked state trying to read a
 * page when a cursor is sitting on it -- at least in many important cases.
 *
 * Set the buffer to invalid if the pin is released, since the buffer may be
 * re-used.  If we need to go back to this block (for example, to apply
 * LP_DEAD hints) we must get a fresh reference to the buffer.  Hopefully it
 * will remain in shared memory for as long as it takes to scan the index
 * buffer page.
 */
static void
_bt_drop_lock_and_maybe_pin(IndexScanDesc scan, BTScanPos sp)
{
	_bt_unlockbuf(scan->indexRelation, sp->buf);

	if (IsMVCCSnapshot(scan->xs_snapshot) &&
		RelationNeedsWAL(scan->indexRelation) &&
		!scan->xs_want_itup)
	{
		ReleaseBuffer(sp->buf);
		sp->buf = InvalidBuffer;
	}
}

/*
 *	_bt_search() -- Search the tree for a particular scankey,
 *		or more precisely for the first leaf page it could be on.
 *
 * The passed scankey is an insertion-type scankey (see nbtree/README),
 * but it can omit the rightmost column(s) of the index.
 *
 * Return value is a stack of parent-page pointers (i.e. there is no entry for
 * the leaf level/page).  *bufP is set to the address of the leaf-page buffer,
 * which is locked and pinned.  No locks are held on the parent pages,
 * however!
 *
 * If the snapshot parameter is not NULL, "old snapshot" checking will take
 * place during the descent through the tree.  This is not needed when
 * positioning for an insert or delete, so NULL is used for those cases.
 *
 * The returned buffer is locked according to access parameter.  Additionally,
 * access = BT_WRITE will allow an empty root page to be created and returned.
 * When access = BT_READ, an empty index will result in *bufP being set to
 * InvalidBuffer.  Also, in BT_WRITE mode, any incomplete splits encountered
 * during the search will be finished.
 */
BTStack
_bt_search(Relation rel, BTScanInsert key, Buffer *bufP, int access,
		   Snapshot snapshot)
{
	BTStack		stack_in = NULL;
	int			page_access = BT_READ;

	/* Get the root page to start with */
	*bufP = _bt_getroot(rel, access);

	/* If index is empty and access = BT_READ, no root page is created. */
	if (!BufferIsValid(*bufP))
		return (BTStack) NULL;

	/* Loop iterates once per level descended in the tree */
	for (;;)
	{
		Page		page;
		BTPageOpaque opaque;
		OffsetNumber offnum;
		ItemId		itemid;
		IndexTuple	itup;
		BlockNumber child;
		BTStack		new_stack;

		/*
		 * Race -- the page we just grabbed may have split since we read its
		 * downlink in its parent page (or the metapage).  If it has, we may
		 * need to move right to its new sibling.  Do that.
		 *
		 * In write-mode, allow _bt_moveright to finish any incomplete splits
		 * along the way.  Strictly speaking, we'd only need to finish an
		 * incomplete split on the leaf page we're about to insert to, not on
		 * any of the upper levels (internal pages with incomplete splits are
		 * also taken care of in _bt_getstackbuf).  But this is a good
		 * opportunity to finish splits of internal pages too.
		 */
		*bufP = _bt_moveright(rel, key, *bufP, (access == BT_WRITE), stack_in,
							  page_access, snapshot);

		/* if this is a leaf page, we're done */
		page = BufferGetPage(*bufP);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		if (P_ISLEAF(opaque))
			break;

		/*
		 * Find the appropriate pivot tuple on this page.  Its downlink points
		 * to the child page that we're about to descend to.
		 */
		offnum = _bt_binsrch(rel, key, *bufP);
		itemid = PageGetItemId(page, offnum);
		itup = (IndexTuple) PageGetItem(page, itemid);
		Assert(BTreeTupleIsPivot(itup) || !key->heapkeyspace);
		child = BTreeTupleGetDownLink(itup);

		/*
		 * We need to save the location of the pivot tuple we chose in a new
		 * stack entry for this page/level.  If caller ends up splitting a
		 * page one level down, it usually ends up inserting a new pivot
		 * tuple/downlink immediately after the location recorded here.
		 */
		new_stack = (BTStack) palloc(sizeof(BTStackData));
		new_stack->bts_blkno = BufferGetBlockNumber(*bufP);
		new_stack->bts_offset = offnum;
		new_stack->bts_parent = stack_in;

		/*
		 * Page level 1 is lowest non-leaf page level prior to leaves.  So, if
		 * we're on the level 1 and asked to lock leaf page in write mode,
		 * then lock next page in write mode, because it must be a leaf.
		 */
		if (opaque->btpo_level == 1 && access == BT_WRITE)
			page_access = BT_WRITE;

		/* drop the read lock on the page, then acquire one on its child */
		*bufP = _bt_relandgetbuf(rel, *bufP, child, page_access);

		/* okay, all set to move down a level */
		stack_in = new_stack;
	}

	/*
	 * If we're asked to lock leaf in write mode, but didn't manage to, then
	 * relock.  This should only happen when the root page is a leaf page (and
	 * the only page in the index other than the metapage).
	 */
	if (access == BT_WRITE && page_access == BT_READ)
	{
		/* trade in our read lock for a write lock */
		_bt_unlockbuf(rel, *bufP);
		_bt_lockbuf(rel, *bufP, BT_WRITE);

		/*
		 * Race -- the leaf page may have split after we dropped the read lock
		 * but before we acquired a write lock.  If it has, we may need to
		 * move right to its new sibling.  Do that.
		 */
		*bufP = _bt_moveright(rel, key, *bufP, true, stack_in, BT_WRITE,
							  snapshot);
	}

	return stack_in;
}

/*
 *	_bt_moveright() -- move right in the btree if necessary.
 *
 * When we follow a pointer to reach a page, it is possible that
 * the page has changed in the meanwhile.  If this happens, we're
 * guaranteed that the page has "split right" -- that is, that any
 * data that appeared on the page originally is either on the page
 * or strictly to the right of it.
 *
 * This routine decides whether or not we need to move right in the
 * tree by examining the high key entry on the page.  If that entry is
 * strictly less than the scankey, or <= the scankey in the
 * key.nextkey=true case, then we followed the wrong link and we need
 * to move right.
 *
 * The passed insertion-type scankey can omit the rightmost column(s) of the
 * index. (see nbtree/README)
 *
 * When key.nextkey is false (the usual case), we are looking for the first
 * item >= key.  When key.nextkey is true, we are looking for the first item
 * strictly greater than key.
 *
 * If forupdate is true, we will attempt to finish any incomplete splits
 * that we encounter.  This is required when locking a target page for an
 * insertion, because we don't allow inserting on a page before the split
 * is completed.  'stack' is only used if forupdate is true.
 *
 * On entry, we have the buffer pinned and a lock of the type specified by
 * 'access'.  If we move right, we release the buffer and lock and acquire
 * the same on the right sibling.  Return value is the buffer we stop at.
 *
 * If the snapshot parameter is not NULL, "old snapshot" checking will take
 * place during the descent through the tree.  This is not needed when
 * positioning for an insert or delete, so NULL is used for those cases.
 */
Buffer
_bt_moveright(Relation rel,
			  BTScanInsert key,
			  Buffer buf,
			  bool forupdate,
			  BTStack stack,
			  int access,
			  Snapshot snapshot)
{
	Page		page;
	BTPageOpaque opaque;
	int32		cmpval;

	/*
	 * When nextkey = false (normal case): if the scan key that brought us to
	 * this page is > the high key stored on the page, then the page has split
	 * and we need to move right.  (pg_upgrade'd !heapkeyspace indexes could
	 * have some duplicates to the right as well as the left, but that's
	 * something that's only ever dealt with on the leaf level, after
	 * _bt_search has found an initial leaf page.)
	 *
	 * When nextkey = true: move right if the scan key is >= page's high key.
	 * (Note that key.scantid cannot be set in this case.)
	 *
	 * The page could even have split more than once, so scan as far as
	 * needed.
	 *
	 * We also have to move right if we followed a link that brought us to a
	 * dead page.
	 */
	cmpval = key->nextkey ? 0 : 1;

	for (;;)
	{
		page = BufferGetPage(buf);
		TestForOldSnapshot(snapshot, rel, page);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);

		if (P_RIGHTMOST(opaque))
			break;

		/*
		 * Finish any incomplete splits we encounter along the way.
		 */
		if (forupdate && P_INCOMPLETE_SPLIT(opaque))
		{
			BlockNumber blkno = BufferGetBlockNumber(buf);

			/* upgrade our lock if necessary */
			if (access == BT_READ)
			{
				_bt_unlockbuf(rel, buf);
				_bt_lockbuf(rel, buf, BT_WRITE);
			}

			if (P_INCOMPLETE_SPLIT(opaque))
				_bt_finish_split(rel, buf, stack);
			else
				_bt_relbuf(rel, buf);

			/* re-acquire the lock in the right mode, and re-check */
			buf = _bt_getbuf(rel, blkno, access);
			continue;
		}

		if (P_IGNORE(opaque) || _bt_compare(rel, key, page, P_HIKEY) >= cmpval)
		{
			/* step right one page */
			buf = _bt_relandgetbuf(rel, buf, opaque->btpo_next, access);
			continue;
		}
		else
			break;
	}

	if (P_IGNORE(opaque))
		elog(ERROR, "fell off the end of index \"%s\"",
			 RelationGetRelationName(rel));

	return buf;
}

/*
 *	_bt_binsrch() -- Do a binary search for a key on a particular page.
 *
 * On a leaf page, _bt_binsrch() returns the OffsetNumber of the first
 * key >= given scankey, or > scankey if nextkey is true.  (NOTE: in
 * particular, this means it is possible to return a value 1 greater than the
 * number of keys on the page, if the scankey is > all keys on the page.)
 *
 * On an internal (non-leaf) page, _bt_binsrch() returns the OffsetNumber
 * of the last key < given scankey, or last key <= given scankey if nextkey
 * is true.  (Since _bt_compare treats the first data key of such a page as
 * minus infinity, there will be at least one key < scankey, so the result
 * always points at one of the keys on the page.)  This key indicates the
 * right place to descend to be sure we find all leaf keys >= given scankey
 * (or leaf keys > given scankey when nextkey is true).
 *
 * This procedure is not responsible for walking right, it just examines
 * the given page.  _bt_binsrch() has no lock or refcount side effects
 * on the buffer.
 */
static OffsetNumber
_bt_binsrch(Relation rel,
			BTScanInsert key,
			Buffer buf)
{
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber low,
				high;
	int32		result,
				cmpval;

	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	/* Requesting nextkey semantics while using scantid seems nonsensical */
	Assert(!key->nextkey || key->scantid == NULL);
	/* scantid-set callers must use _bt_binsrch_insert() on leaf pages */
	Assert(!P_ISLEAF(opaque) || key->scantid == NULL);

	low = P_FIRSTDATAKEY(opaque);
	high = PageGetMaxOffsetNumber(page);

	/*
	 * If there are no keys on the page, return the first available slot. Note
	 * this covers two cases: the page is really empty (no keys), or it
	 * contains only a high key.  The latter case is possible after vacuuming.
	 * This can never happen on an internal page, however, since they are
	 * never empty (an internal page must have children).
	 */
	if (unlikely(high < low))
		return low;

	/*
	 * Binary search to find the first key on the page >= scan key, or first
	 * key > scankey when nextkey is true.
	 *
	 * For nextkey=false (cmpval=1), the loop invariant is: all slots before
	 * 'low' are < scan key, all slots at or after 'high' are >= scan key.
	 *
	 * For nextkey=true (cmpval=0), the loop invariant is: all slots before
	 * 'low' are <= scan key, all slots at or after 'high' are > scan key.
	 *
	 * We can fall out when high == low.
	 */
	high++;						/* establish the loop invariant for high */

	cmpval = key->nextkey ? 0 : 1;	/* select comparison value */

	while (high > low)
	{
		OffsetNumber mid = low + ((high - low) / 2);

		/* We have low <= mid < high, so mid points at a real slot */

		result = _bt_compare(rel, key, page, mid);

		if (result >= cmpval)
			low = mid + 1;
		else
			high = mid;
	}

	/*
	 * At this point we have high == low, but be careful: they could point
	 * past the last slot on the page.
	 *
	 * On a leaf page, we always return the first key >= scan key (resp. >
	 * scan key), which could be the last slot + 1.
	 */
	if (P_ISLEAF(opaque))
		return low;

	/*
	 * On a non-leaf page, return the last key < scan key (resp. <= scan key).
	 * There must be one if _bt_compare() is playing by the rules.
	 */
	Assert(low > P_FIRSTDATAKEY(opaque));

	return OffsetNumberPrev(low);
}

/*
 *
 *	_bt_binsrch_insert() -- Cacheable, incremental leaf page binary search.
 *
 * Like _bt_binsrch(), but with support for caching the binary search
 * bounds.  Only used during insertion, and only on the leaf page that it
 * looks like caller will insert tuple on.  Exclusive-locked and pinned
 * leaf page is contained within insertstate.
 *
 * Caches the bounds fields in insertstate so that a subsequent call can
 * reuse the low and strict high bounds of original binary search.  Callers
 * that use these fields directly must be prepared for the case where low
 * and/or stricthigh are not on the same page (one or both exceed maxoff
 * for the page).  The case where there are no items on the page (high <
 * low) makes bounds invalid.
 *
 * Caller is responsible for invalidating bounds when it modifies the page
 * before calling here a second time, and for dealing with posting list
 * tuple matches (callers can use insertstate's postingoff field to
 * determine which existing heap TID will need to be replaced by a posting
 * list split).
 */
OffsetNumber
_bt_binsrch_insert(Relation rel, BTInsertState insertstate)
{
	BTScanInsert key = insertstate->itup_key;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber low,
				high,
				stricthigh;
	int32		result,
				cmpval;

	page = BufferGetPage(insertstate->buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	Assert(P_ISLEAF(opaque));
	Assert(!key->nextkey);
	Assert(insertstate->postingoff == 0);

	if (!insertstate->bounds_valid)
	{
		/* Start new binary search */
		low = P_FIRSTDATAKEY(opaque);
		high = PageGetMaxOffsetNumber(page);
	}
	else
	{
		/* Restore result of previous binary search against same page */
		low = insertstate->low;
		high = insertstate->stricthigh;
	}

	/* If there are no keys on the page, return the first available slot */
	if (unlikely(high < low))
	{
		/* Caller can't reuse bounds */
		insertstate->low = InvalidOffsetNumber;
		insertstate->stricthigh = InvalidOffsetNumber;
		insertstate->bounds_valid = false;
		return low;
	}

	/*
	 * Binary search to find the first key on the page >= scan key. (nextkey
	 * is always false when inserting).
	 *
	 * The loop invariant is: all slots before 'low' are < scan key, all slots
	 * at or after 'high' are >= scan key.  'stricthigh' is > scan key, and is
	 * maintained to save additional search effort for caller.
	 *
	 * We can fall out when high == low.
	 */
	if (!insertstate->bounds_valid)
		high++;					/* establish the loop invariant for high */
	stricthigh = high;			/* high initially strictly higher */

	cmpval = 1;					/* !nextkey comparison value */

	while (high > low)
	{
		OffsetNumber mid = low + ((high - low) / 2);

		/* We have low <= mid < high, so mid points at a real slot */

		result = _bt_compare(rel, key, page, mid);

		if (result >= cmpval)
			low = mid + 1;
		else
		{
			high = mid;
			if (result != 0)
				stricthigh = high;
		}

		/*
		 * If tuple at offset located by binary search is a posting list whose
		 * TID range overlaps with caller's scantid, perform posting list
		 * binary search to set postingoff for caller.  Caller must split the
		 * posting list when postingoff is set.  This should happen
		 * infrequently.
		 */
		if (unlikely(result == 0 && key->scantid != NULL))
		{
			/*
			 * postingoff should never be set more than once per leaf page
			 * binary search.  That would mean that there are duplicate table
			 * TIDs in the index, which is never okay.  Check for that here.
			 */
			if (insertstate->postingoff != 0)
				ereport(ERROR,
						(errcode(ERRCODE_INDEX_CORRUPTED),
						 errmsg_internal("table tid from new index tuple (%u,%u) cannot find insert offset between offsets %u and %u of block %u in index \"%s\"",
										 ItemPointerGetBlockNumber(key->scantid),
										 ItemPointerGetOffsetNumber(key->scantid),
										 low, stricthigh,
										 BufferGetBlockNumber(insertstate->buf),
										 RelationGetRelationName(rel))));

			insertstate->postingoff = _bt_binsrch_posting(key, page, mid);
		}
	}

	/*
	 * On a leaf page, a binary search always returns the first key >= scan
	 * key (at least in !nextkey case), which could be the last slot + 1. This
	 * is also the lower bound of cached search.
	 *
	 * stricthigh may also be the last slot + 1, which prevents caller from
	 * using bounds directly, but is still useful to us if we're called a
	 * second time with cached bounds (cached low will be < stricthigh when
	 * that happens).
	 */
	insertstate->low = low;
	insertstate->stricthigh = stricthigh;
	insertstate->bounds_valid = true;

	return low;
}

/*----------
 *	_bt_binsrch_posting() -- posting list binary search.
 *
 * Helper routine for _bt_binsrch_insert().
 *
 * Returns offset into posting list where caller's scantid belongs.
 *----------
 */
static int
_bt_binsrch_posting(BTScanInsert key, Page page, OffsetNumber offnum)
{
	IndexTuple	itup;
	ItemId		itemid;
	int			low,
				high,
				mid,
				res;

	/*
	 * If this isn't a posting tuple, then the index must be corrupt (if it is
	 * an ordinary non-pivot tuple then there must be an existing tuple with a
	 * heap TID that equals inserter's new heap TID/scantid).  Defensively
	 * check that tuple is a posting list tuple whose posting list range
	 * includes caller's scantid.
	 *
	 * (This is also needed because contrib/amcheck's rootdescend option needs
	 * to be able to relocate a non-pivot tuple using _bt_binsrch_insert().)
	 */
	itemid = PageGetItemId(page, offnum);
	itup = (IndexTuple) PageGetItem(page, itemid);
	if (!BTreeTupleIsPosting(itup))
		return 0;

	Assert(key->heapkeyspace && key->allequalimage);

	/*
	 * In the event that posting list tuple has LP_DEAD bit set, indicate this
	 * to _bt_binsrch_insert() caller by returning -1, a sentinel value.  A
	 * second call to _bt_binsrch_insert() can take place when its caller has
	 * removed the dead item.
	 */
	if (ItemIdIsDead(itemid))
		return -1;

	/* "high" is past end of posting list for loop invariant */
	low = 0;
	high = BTreeTupleGetNPosting(itup);
	Assert(high >= 2);

	while (high > low)
	{
		mid = low + ((high - low) / 2);
		res = ItemPointerCompare(key->scantid,
								 BTreeTupleGetPostingN(itup, mid));

		if (res > 0)
			low = mid + 1;
		else if (res < 0)
			high = mid;
		else
			return mid;
	}

	/* Exact match not found */
	return low;
}

/*----------
 *	_bt_compare() -- Compare insertion-type scankey to tuple on a page.
 *
 *	page/offnum: location of btree item to be compared to.
 *
 *		This routine returns:
 *			<0 if scankey < tuple at offnum;
 *			 0 if scankey == tuple at offnum;
 *			>0 if scankey > tuple at offnum.
 *
 * NULLs in the keys are treated as sortable values.  Therefore
 * "equality" does not necessarily mean that the item should be returned
 * to the caller as a matching key.  Similarly, an insertion scankey
 * with its scantid set is treated as equal to a posting tuple whose TID
 * range overlaps with their scantid.  There generally won't be a
 * matching TID in the posting tuple, which caller must handle
 * themselves (e.g., by splitting the posting list tuple).
 *
 * CRUCIAL NOTE: on a non-leaf page, the first data key is assumed to be
 * "minus infinity": this routine will always claim it is less than the
 * scankey.  The actual key value stored is explicitly truncated to 0
 * attributes (explicitly minus infinity) with version 3+ indexes, but
 * that isn't relied upon.  This allows us to implement the Lehman and
 * Yao convention that the first down-link pointer is before the first
 * key.  See backend/access/nbtree/README for details.
 *----------
 */
int32
_bt_compare(Relation rel,
			BTScanInsert key,
			Page page,
			OffsetNumber offnum)
{
	TupleDesc	itupdesc = RelationGetDescr(rel);
	BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	IndexTuple	itup;
	ItemPointer heapTid;
	ScanKey		scankey;
	int			ncmpkey;
	int			ntupatts;
	int32		result;

	Assert(_bt_check_natts(rel, key->heapkeyspace, page, offnum));
	Assert(key->keysz <= IndexRelationGetNumberOfKeyAttributes(rel));
	Assert(key->heapkeyspace || key->scantid == NULL);

	/*
	 * Force result ">" if target item is first data item on an internal page
	 * --- see NOTE above.
	 */
	if (!P_ISLEAF(opaque) && offnum == P_FIRSTDATAKEY(opaque))
		return 1;

	itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
	ntupatts = BTreeTupleGetNAtts(itup, rel);

	/*
	 * The scan key is set up with the attribute number associated with each
	 * term in the key.  It is important that, if the index is multi-key, the
	 * scan contain the first k key attributes, and that they be in order.  If
	 * you think about how multi-key ordering works, you'll understand why
	 * this is.
	 *
	 * We don't test for violation of this condition here, however.  The
	 * initial setup for the index scan had better have gotten it right (see
	 * _bt_first).
	 */

	ncmpkey = Min(ntupatts, key->keysz);
	Assert(key->heapkeyspace || ncmpkey == key->keysz);
	Assert(!BTreeTupleIsPosting(itup) || key->allequalimage);
	scankey = key->scankeys;
	for (int i = 1; i <= ncmpkey; i++)
	{
		Datum		datum;
		bool		isNull;

		datum = index_getattr(itup, scankey->sk_attno, itupdesc, &isNull);

		if (scankey->sk_flags & SK_ISNULL)	/* key is NULL */
		{
			if (isNull)
				result = 0;		/* NULL "=" NULL */
			else if (scankey->sk_flags & SK_BT_NULLS_FIRST)
				result = -1;	/* NULL "<" NOT_NULL */
			else
				result = 1;		/* NULL ">" NOT_NULL */
		}
		else if (isNull)		/* key is NOT_NULL and item is NULL */
		{
			if (scankey->sk_flags & SK_BT_NULLS_FIRST)
				result = 1;		/* NOT_NULL ">" NULL */
			else
				result = -1;	/* NOT_NULL "<" NULL */
		}
		else
		{
			/*
			 * The sk_func needs to be passed the index value as left arg and
			 * the sk_argument as right arg (they might be of different
			 * types).  Since it is convenient for callers to think of
			 * _bt_compare as comparing the scankey to the index item, we have
			 * to flip the sign of the comparison result.  (Unless it's a DESC
			 * column, in which case we *don't* flip the sign.)
			 */
			result = DatumGetInt32(FunctionCall2Coll(&scankey->sk_func,
													 scankey->sk_collation,
													 datum,
													 scankey->sk_argument));

			if (!(scankey->sk_flags & SK_BT_DESC))
				INVERT_COMPARE_RESULT(result);
		}

		/* if the keys are unequal, return the difference */
		if (result != 0)
			return result;

		scankey++;
	}

	/*
	 * All non-truncated attributes (other than heap TID) were found to be
	 * equal.  Treat truncated attributes as minus infinity when scankey has a
	 * key attribute value that would otherwise be compared directly.
	 *
	 * Note: it doesn't matter if ntupatts includes non-key attributes;
	 * scankey won't, so explicitly excluding non-key attributes isn't
	 * necessary.
	 */
	if (key->keysz > ntupatts)
		return 1;

	/*
	 * Use the heap TID attribute and scantid to try to break the tie.  The
	 * rules are the same as any other key attribute -- only the
	 * representation differs.
	 */
	heapTid = BTreeTupleGetHeapTID(itup);
	if (key->scantid == NULL)
	{
		/*
		 * Most searches have a scankey that is considered greater than a
		 * truncated pivot tuple if and when the scankey has equal values for
		 * attributes up to and including the least significant untruncated
		 * attribute in tuple.
		 *
		 * For example, if an index has the minimum two attributes (single
		 * user key attribute, plus heap TID attribute), and a page's high key
		 * is ('foo', -inf), and scankey is ('foo', <omitted>), the search
		 * will not descend to the page to the left.  The search will descend
		 * right instead.  The truncated attribute in pivot tuple means that
		 * all non-pivot tuples on the page to the left are strictly < 'foo',
		 * so it isn't necessary to descend left.  In other words, search
		 * doesn't have to descend left because it isn't interested in a match
		 * that has a heap TID value of -inf.
		 *
		 * However, some searches (pivotsearch searches) actually require that
		 * we descend left when this happens.  -inf is treated as a possible
		 * match for omitted scankey attribute(s).  This is needed by page
		 * deletion, which must re-find leaf pages that are targets for
		 * deletion using their high keys.
		 *
		 * Note: the heap TID part of the test ensures that scankey is being
		 * compared to a pivot tuple with one or more truncated key
		 * attributes.
		 *
		 * Note: pg_upgrade'd !heapkeyspace indexes must always descend to the
		 * left here, since they have no heap TID attribute (and cannot have
		 * any -inf key values in any case, since truncation can only remove
		 * non-key attributes).  !heapkeyspace searches must always be
		 * prepared to deal with matches on both sides of the pivot once the
		 * leaf level is reached.
		 */
		if (key->heapkeyspace && !key->pivotsearch &&
			key->keysz == ntupatts && heapTid == NULL)
			return 1;

		/* All provided scankey arguments found to be equal */
		return 0;
	}

	/*
	 * Treat truncated heap TID as minus infinity, since scankey has a key
	 * attribute value (scantid) that would otherwise be compared directly
	 */
	Assert(key->keysz == IndexRelationGetNumberOfKeyAttributes(rel));
	if (heapTid == NULL)
		return 1;

	/*
	 * Scankey must be treated as equal to a posting list tuple if its scantid
	 * value falls within the range of the posting list.  In all other cases
	 * there can only be a single heap TID value, which is compared directly
	 * with scantid.
	 */
	Assert(ntupatts >= IndexRelationGetNumberOfKeyAttributes(rel));
	result = ItemPointerCompare(key->scantid, heapTid);
	if (result <= 0 || !BTreeTupleIsPosting(itup))
		return result;
	else
	{
		result = ItemPointerCompare(key->scantid,
									BTreeTupleGetMaxHeapTID(itup));
		if (result > 0)
			return 1;
	}

	return 0;
}

/*
 *	_bt_first() -- Find the first item in a scan.
 *
 *		We need to be clever about the direction of scan, the search
 *		conditions, and the tree ordering.  We find the first item (or,
 *		if backwards scan, the last item) in the tree that satisfies the
 *		qualifications in the scan key.  On success exit, the page containing
 *		the current index tuple is pinned but not locked, and data about
 *		the matching tuple(s) on the page has been loaded into so->currPos.
 *		scan->xs_ctup.t_self is set to the heap TID of the current tuple,
 *		and if requested, scan->xs_itup points to a copy of the index tuple.
 *
 * If there are no matching items in the index, we return false, with no
 * pins or locks held.
 *
 * Note that scan->keyData[], and the so->keyData[] scankey built from it,
 * are both search-type scankeys (see nbtree/README for more about this).
 * Within this routine, we build a temporary insertion-type scankey to use
 * in locating the scan start position.
 */
bool
_bt_first(IndexScanDesc scan, ScanDirection dir)
{
	Relation	rel = scan->indexRelation;
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Buffer		buf;
	BTStack		stack;
	OffsetNumber offnum;
	StrategyNumber strat;
	bool		nextkey;
	bool		goback;
	BTScanInsertData inskey;
	ScanKey		startKeys[INDEX_MAX_KEYS];
	ScanKeyData notnullkeys[INDEX_MAX_KEYS];
	int			keysCount = 0;
	int			i;
	bool		status;
	StrategyNumber strat_total;
	BTScanPosItem *currItem;
	BlockNumber blkno;

	Assert(!BTScanPosIsValid(so->currPos));

	pgstat_count_index_scan(rel);

	/*
	 * Examine the scan keys and eliminate any redundant keys; also mark the
	 * keys that must be matched to continue the scan.
	 */
	_bt_preprocess_keys(scan);

	/*
	 * Quit now if _bt_preprocess_keys() discovered that the scan keys can
	 * never be satisfied (eg, x == 1 AND x > 2).
	 */
	if (!so->qual_ok)
	{
		/* Notify any other workers that we're done with this scan key. */
		_bt_parallel_done(scan);
		return false;
	}

	/*
	 * For parallel scans, get the starting page from shared state. If the
	 * scan has not started, proceed to find out first leaf page in the usual
	 * way while keeping other participating processes waiting.  If the scan
	 * has already begun, use the page number from the shared structure.
	 */
	if (scan->parallel_scan != NULL)
	{
		status = _bt_parallel_seize(scan, &blkno);
		if (!status)
			return false;
		else if (blkno == P_NONE)
		{
			_bt_parallel_done(scan);
			return false;
		}
		else if (blkno != InvalidBlockNumber)
		{
			if (!_bt_parallel_readpage(scan, blkno, dir))
				return false;
			goto readcomplete;
		}
	}

	/*----------
	 * Examine the scan keys to discover where we need to start the scan.
	 *
	 * We want to identify the keys that can be used as starting boundaries;
	 * these are =, >, or >= keys for a forward scan or =, <, <= keys for
	 * a backwards scan.  We can use keys for multiple attributes so long as
	 * the prior attributes had only =, >= (resp. =, <=) keys.  Once we accept
	 * a > or < boundary or find an attribute with no boundary (which can be
	 * thought of as the same as "> -infinity"), we can't use keys for any
	 * attributes to its right, because it would break our simplistic notion
	 * of what initial positioning strategy to use.
	 *
	 * When the scan keys include cross-type operators, _bt_preprocess_keys
	 * may not be able to eliminate redundant keys; in such cases we will
	 * arbitrarily pick a usable one for each attribute.  This is correct
	 * but possibly not optimal behavior.  (For example, with keys like
	 * "x >= 4 AND x >= 5" we would elect to scan starting at x=4 when
	 * x=5 would be more efficient.)  Since the situation only arises given
	 * a poorly-worded query plus an incomplete opfamily, live with it.
	 *
	 * When both equality and inequality keys appear for a single attribute
	 * (again, only possible when cross-type operators appear), we *must*
	 * select one of the equality keys for the starting point, because
	 * _bt_checkkeys() will stop the scan as soon as an equality qual fails.
	 * For example, if we have keys like "x >= 4 AND x = 10" and we elect to
	 * start at x=4, we will fail and stop before reaching x=10.  If multiple
	 * equality quals survive preprocessing, however, it doesn't matter which
	 * one we use --- by definition, they are either redundant or
	 * contradictory.
	 *
	 * Any regular (not SK_SEARCHNULL) key implies a NOT NULL qualifier.
	 * If the index stores nulls at the end of the index we'll be starting
	 * from, and we have no boundary key for the column (which means the key
	 * we deduced NOT NULL from is an inequality key that constrains the other
	 * end of the index), then we cons up an explicit SK_SEARCHNOTNULL key to
	 * use as a boundary key.  If we didn't do this, we might find ourselves
	 * traversing a lot of null entries at the start of the scan.
	 *
	 * In this loop, row-comparison keys are treated the same as keys on their
	 * first (leftmost) columns.  We'll add on lower-order columns of the row
	 * comparison below, if possible.
	 *
	 * The selected scan keys (at most one per index column) are remembered by
	 * storing their addresses into the local startKeys[] array.
	 *----------
	 */
	strat_total = BTEqualStrategyNumber;
	if (so->numberOfKeys > 0)
	{
		AttrNumber	curattr;
		ScanKey		chosen;
		ScanKey		impliesNN;
		ScanKey		cur;

		/*
		 * chosen is the so-far-chosen key for the current attribute, if any.
		 * We don't cast the decision in stone until we reach keys for the
		 * next attribute.
		 */
		curattr = 1;
		chosen = NULL;
		/* Also remember any scankey that implies a NOT NULL constraint */
		impliesNN = NULL;

		/*
		 * Loop iterates from 0 to numberOfKeys inclusive; we use the last
		 * pass to handle after-last-key processing.  Actual exit from the
		 * loop is at one of the "break" statements below.
		 */
		for (cur = so->keyData, i = 0;; cur++, i++)
		{
			if (i >= so->numberOfKeys || cur->sk_attno != curattr)
			{
				/*
				 * Done looking at keys for curattr.  If we didn't find a
				 * usable boundary key, see if we can deduce a NOT NULL key.
				 */
				if (chosen == NULL && impliesNN != NULL &&
					((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ?
					 ScanDirectionIsForward(dir) :
					 ScanDirectionIsBackward(dir)))
				{
					/* Yes, so build the key in notnullkeys[keysCount] */
					chosen = &notnullkeys[keysCount];
					ScanKeyEntryInitialize(chosen,
										   (SK_SEARCHNOTNULL | SK_ISNULL |
											(impliesNN->sk_flags &
											 (SK_BT_DESC | SK_BT_NULLS_FIRST))),
										   curattr,
										   ((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ?
											BTGreaterStrategyNumber :
											BTLessStrategyNumber),
										   InvalidOid,
										   InvalidOid,
										   InvalidOid,
										   (Datum) 0);
				}

				/*
				 * If we still didn't find a usable boundary key, quit; else
				 * save the boundary key pointer in startKeys.
				 */
				if (chosen == NULL)
					break;
				startKeys[keysCount++] = chosen;

				/*
				 * Adjust strat_total, and quit if we have stored a > or <
				 * key.
				 */
				strat = chosen->sk_strategy;
				if (strat != BTEqualStrategyNumber)
				{
					strat_total = strat;
					if (strat == BTGreaterStrategyNumber ||
						strat == BTLessStrategyNumber)
						break;
				}

				/*
				 * Done if that was the last attribute, or if next key is not
				 * in sequence (implying no boundary key is available for the
				 * next attribute).
				 */
				if (i >= so->numberOfKeys ||
					cur->sk_attno != curattr + 1)
					break;

				/*
				 * Reset for next attr.
				 */
				curattr = cur->sk_attno;
				chosen = NULL;
				impliesNN = NULL;
			}

			/*
			 * Can we use this key as a starting boundary for this attr?
			 *
			 * If not, does it imply a NOT NULL constraint?  (Because
			 * SK_SEARCHNULL keys are always assigned BTEqualStrategyNumber,
			 * *any* inequality key works for that; we need not test.)
			 */
			switch (cur->sk_strategy)
			{
				case BTLessStrategyNumber:
				case BTLessEqualStrategyNumber:
					if (chosen == NULL)
					{
						if (ScanDirectionIsBackward(dir))
							chosen = cur;
						else
							impliesNN = cur;
					}
					break;
				case BTEqualStrategyNumber:
					/* override any non-equality choice */
					chosen = cur;
					break;
				case BTGreaterEqualStrategyNumber:
				case BTGreaterStrategyNumber:
					if (chosen == NULL)
					{
						if (ScanDirectionIsForward(dir))
							chosen = cur;
						else
							impliesNN = cur;
					}
					break;
			}
		}
	}

	/*
	 * If we found no usable boundary keys, we have to start from one end of
	 * the tree.  Walk down that edge to the first or last key, and scan from
	 * there.
	 */
	if (keysCount == 0)
	{
		bool		match;

		match = _bt_endpoint(scan, dir);

		if (!match)
		{
			/* No match, so mark (parallel) scan finished */
			_bt_parallel_done(scan);
		}

		return match;
	}

	/*
	 * We want to start the scan somewhere within the index.  Set up an
	 * insertion scankey we can use to search for the boundary point we
	 * identified above.  The insertion scankey is built using the keys
	 * identified by startKeys[].  (Remaining insertion scankey fields are
	 * initialized after initial-positioning strategy is finalized.)
	 */
	Assert(keysCount <= INDEX_MAX_KEYS);
	for (i = 0; i < keysCount; i++)
	{
		ScanKey		cur = startKeys[i];

		Assert(cur->sk_attno == i + 1);

		if (cur->sk_flags & SK_ROW_HEADER)
		{
			/*
			 * Row comparison header: look to the first row member instead.
			 *
			 * The member scankeys are already in insertion format (ie, they
			 * have sk_func = 3-way-comparison function), but we have to watch
			 * out for nulls, which _bt_preprocess_keys didn't check. A null
			 * in the first row member makes the condition unmatchable, just
			 * like qual_ok = false.
			 */
			ScanKey		subkey = (ScanKey) DatumGetPointer(cur->sk_argument);

			Assert(subkey->sk_flags & SK_ROW_MEMBER);
			if (subkey->sk_flags & SK_ISNULL)
			{
				_bt_parallel_done(scan);
				return false;
			}
			memcpy(inskey.scankeys + i, subkey, sizeof(ScanKeyData));

			/*
			 * If the row comparison is the last positioning key we accepted,
			 * try to add additional keys from the lower-order row members.
			 * (If we accepted independent conditions on additional index
			 * columns, we use those instead --- doesn't seem worth trying to
			 * determine which is more restrictive.)  Note that this is OK
			 * even if the row comparison is of ">" or "<" type, because the
			 * condition applied to all but the last row member is effectively
			 * ">=" or "<=", and so the extra keys don't break the positioning
			 * scheme.  But, by the same token, if we aren't able to use all
			 * the row members, then the part of the row comparison that we
			 * did use has to be treated as just a ">=" or "<=" condition, and
			 * so we'd better adjust strat_total accordingly.
			 */
			if (i == keysCount - 1)
			{
				bool		used_all_subkeys = false;

				Assert(!(subkey->sk_flags & SK_ROW_END));
				for (;;)
				{
					subkey++;
					Assert(subkey->sk_flags & SK_ROW_MEMBER);
					if (subkey->sk_attno != keysCount + 1)
						break;	/* out-of-sequence, can't use it */
					if (subkey->sk_strategy != cur->sk_strategy)
						break;	/* wrong direction, can't use it */
					if (subkey->sk_flags & SK_ISNULL)
						break;	/* can't use null keys */
					Assert(keysCount < INDEX_MAX_KEYS);
					memcpy(inskey.scankeys + keysCount, subkey,
						   sizeof(ScanKeyData));
					keysCount++;
					if (subkey->sk_flags & SK_ROW_END)
					{
						used_all_subkeys = true;
						break;
					}
				}
				if (!used_all_subkeys)
				{
					switch (strat_total)
					{
						case BTLessStrategyNumber:
							strat_total = BTLessEqualStrategyNumber;
							break;
						case BTGreaterStrategyNumber:
							strat_total = BTGreaterEqualStrategyNumber;
							break;
					}
				}
				break;			/* done with outer loop */
			}
		}
		else
		{
			/*
			 * Ordinary comparison key.  Transform the search-style scan key
			 * to an insertion scan key by replacing the sk_func with the
			 * appropriate btree comparison function.
			 *
			 * If scankey operator is not a cross-type comparison, we can use
			 * the cached comparison function; otherwise gotta look it up in
			 * the catalogs.  (That can't lead to infinite recursion, since no
			 * indexscan initiated by syscache lookup will use cross-data-type
			 * operators.)
			 *
			 * We support the convention that sk_subtype == InvalidOid means
			 * the opclass input type; this is a hack to simplify life for
			 * ScanKeyInit().
			 */
			if (cur->sk_subtype == rel->rd_opcintype[i] ||
				cur->sk_subtype == InvalidOid)
			{
				FmgrInfo   *procinfo;

				procinfo = index_getprocinfo(rel, cur->sk_attno, BTORDER_PROC);
				ScanKeyEntryInitializeWithInfo(inskey.scankeys + i,
											   cur->sk_flags,
											   cur->sk_attno,
											   InvalidStrategy,
											   cur->sk_subtype,
											   cur->sk_collation,
											   procinfo,
											   cur->sk_argument);
			}
			else
			{
				RegProcedure cmp_proc;

				cmp_proc = get_opfamily_proc(rel->rd_opfamily[i],
											 rel->rd_opcintype[i],
											 cur->sk_subtype,
											 BTORDER_PROC);
				if (!RegProcedureIsValid(cmp_proc))
					elog(ERROR, "missing support function %d(%u,%u) for attribute %d of index \"%s\"",
						 BTORDER_PROC, rel->rd_opcintype[i], cur->sk_subtype,
						 cur->sk_attno, RelationGetRelationName(rel));
				ScanKeyEntryInitialize(inskey.scankeys + i,
									   cur->sk_flags,
									   cur->sk_attno,
									   InvalidStrategy,
									   cur->sk_subtype,
									   cur->sk_collation,
									   cmp_proc,
									   cur->sk_argument);
			}
		}
	}

	/*----------
	 * Examine the selected initial-positioning strategy to determine exactly
	 * where we need to start the scan, and set flag variables to control the
	 * code below.
	 *
	 * If nextkey = false, _bt_search and _bt_binsrch will locate the first
	 * item >= scan key.  If nextkey = true, they will locate the first
	 * item > scan key.
	 *
	 * If goback = true, we will then step back one item, while if
	 * goback = false, we will start the scan on the located item.
	 *----------
	 */
	switch (strat_total)
	{
		case BTLessStrategyNumber:

			/*
			 * Find first item >= scankey, then back up one to arrive at last
			 * item < scankey.  (Note: this positioning strategy is only used
			 * for a backward scan, so that is always the correct starting
			 * position.)
			 */
			nextkey = false;
			goback = true;
			break;

		case BTLessEqualStrategyNumber:

			/*
			 * Find first item > scankey, then back up one to arrive at last
			 * item <= scankey.  (Note: this positioning strategy is only used
			 * for a backward scan, so that is always the correct starting
			 * position.)
			 */
			nextkey = true;
			goback = true;
			break;

		case BTEqualStrategyNumber:

			/*
			 * If a backward scan was specified, need to start with last equal
			 * item not first one.
			 */
			if (ScanDirectionIsBackward(dir))
			{
				/*
				 * This is the same as the <= strategy.  We will check at the
				 * end whether the found item is actually =.
				 */
				nextkey = true;
				goback = true;
			}
			else
			{
				/*
				 * This is the same as the >= strategy.  We will check at the
				 * end whether the found item is actually =.
				 */
				nextkey = false;
				goback = false;
			}
			break;

		case BTGreaterEqualStrategyNumber:

			/*
			 * Find first item >= scankey.  (This is only used for forward
			 * scans.)
			 */
			nextkey = false;
			goback = false;
			break;

		case BTGreaterStrategyNumber:

			/*
			 * Find first item > scankey.  (This is only used for forward
			 * scans.)
			 */
			nextkey = true;
			goback = false;
			break;

		default:
			/* can't get here, but keep compiler quiet */
			elog(ERROR, "unrecognized strat_total: %d", (int) strat_total);
			return false;
	}

	/* Initialize remaining insertion scan key fields */
	_bt_metaversion(rel, &inskey.heapkeyspace, &inskey.allequalimage);
	inskey.anynullkeys = false; /* unused */
	inskey.nextkey = nextkey;
	inskey.pivotsearch = false;
	inskey.scantid = NULL;
	inskey.keysz = keysCount;

	/*
	 * Use the manufactured insertion scan key to descend the tree and
	 * position ourselves on the target leaf page.
	 */
	stack = _bt_search(rel, &inskey, &buf, BT_READ, scan->xs_snapshot);

	/* don't need to keep the stack around... */
	_bt_freestack(stack);

	if (!BufferIsValid(buf))
	{
		/*
		 * We only get here if the index is completely empty. Lock relation
		 * because nothing finer to lock exists.
		 */
		PredicateLockRelation(rel, scan->xs_snapshot);

		/*
		 * mark parallel scan as done, so that all the workers can finish
		 * their scan
		 */
		_bt_parallel_done(scan);
		BTScanPosInvalidate(so->currPos);

		return false;
	}
	else
		PredicateLockPage(rel, BufferGetBlockNumber(buf),
						  scan->xs_snapshot);

	_bt_initialize_more_data(so, dir);

	/* position to the precise item on the page */
	offnum = _bt_binsrch(rel, &inskey, buf);

	/*
	 * If nextkey = false, we are positioned at the first item >= scan key, or
	 * possibly at the end of a page on which all the existing items are less
	 * than the scan key and we know that everything on later pages is greater
	 * than or equal to scan key.
	 *
	 * If nextkey = true, we are positioned at the first item > scan key, or
	 * possibly at the end of a page on which all the existing items are less
	 * than or equal to the scan key and we know that everything on later
	 * pages is greater than scan key.
	 *
	 * The actually desired starting point is either this item or the prior
	 * one, or in the end-of-page case it's the first item on the next page or
	 * the last item on this page.  Adjust the starting offset if needed. (If
	 * this results in an offset before the first item or after the last one,
	 * _bt_readpage will report no items found, and then we'll step to the
	 * next page as needed.)
	 */
	if (goback)
		offnum = OffsetNumberPrev(offnum);

	/* remember which buffer we have pinned, if any */
	Assert(!BTScanPosIsValid(so->currPos));
	so->currPos.buf = buf;

	/*
	 * Now load data from the first page of the scan.
	 */
	if (!_bt_readpage(scan, dir, offnum))
	{
		/*
		 * There's no actually-matching data on this page.  Try to advance to
		 * the next page.  Return false if there's no matching data at all.
		 */
		_bt_unlockbuf(scan->indexRelation, so->currPos.buf);
		if (!_bt_steppage(scan, dir))
			return false;
	}
	else
	{
		/* Drop the lock, and maybe the pin, on the current page */
		_bt_drop_lock_and_maybe_pin(scan, &so->currPos);
	}

readcomplete:
	/* OK, itemIndex says what to return */
	currItem = &so->currPos.items[so->currPos.itemIndex];
	scan->xs_heaptid = currItem->heapTid;
	if (scan->xs_want_itup)
		scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset);

	return true;
}

/*
 *	_bt_next() -- Get the next item in a scan.
 *
 *		On entry, so->currPos describes the current page, which may be pinned
 *		but is not locked, and so->currPos.itemIndex identifies which item was
 *		previously returned.
 *
 *		On successful exit, scan->xs_ctup.t_self is set to the TID of the
 *		next heap tuple, and if requested, scan->xs_itup points to a copy of
 *		the index tuple.  so->currPos is updated as needed.
 *
 *		On failure exit (no more tuples), we release pin and set
 *		so->currPos.buf to InvalidBuffer.
 */
bool
_bt_next(IndexScanDesc scan, ScanDirection dir)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	BTScanPosItem *currItem;

	/*
	 * Advance to next tuple on current page; or if there's no more, try to
	 * step to the next page with data.
	 */
	if (ScanDirectionIsForward(dir))
	{
		if (++so->currPos.itemIndex > so->currPos.lastItem)
		{
			if (!_bt_steppage(scan, dir))
				return false;
		}
	}
	else
	{
		if (--so->currPos.itemIndex < so->currPos.firstItem)
		{
			if (!_bt_steppage(scan, dir))
				return false;
		}
	}

	/* OK, itemIndex says what to return */
	currItem = &so->currPos.items[so->currPos.itemIndex];
	scan->xs_heaptid = currItem->heapTid;
	if (scan->xs_want_itup)
		scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset);

	return true;
}

/*
 *	_bt_readpage() -- Load data from current index page into so->currPos
 *
 * Caller must have pinned and read-locked so->currPos.buf; the buffer's state
 * is not changed here.  Also, currPos.moreLeft and moreRight must be valid;
 * they are updated as appropriate.  All other fields of so->currPos are
 * initialized from scratch here.
 *
 * We scan the current page starting at offnum and moving in the indicated
 * direction.  All items matching the scan keys are loaded into currPos.items.
 * moreLeft or moreRight (as appropriate) is cleared if _bt_checkkeys reports
 * that there can be no more matching tuples in the current scan direction.
 *
 * In the case of a parallel scan, caller must have called _bt_parallel_seize
 * prior to calling this function; this function will invoke
 * _bt_parallel_release before returning.
 *
 * Returns true if any matching items found on the page, false if none.
 */
static bool
_bt_readpage(IndexScanDesc scan, ScanDirection dir, OffsetNumber offnum)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber minoff;
	OffsetNumber maxoff;
	int			itemIndex;
	bool		continuescan;
	int			indnatts;

	/*
	 * We must have the buffer pinned and locked, but the usual macro can't be
	 * used here; this function is what makes it good for currPos.
	 */
	Assert(BufferIsValid(so->currPos.buf));

	page = BufferGetPage(so->currPos.buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	/* allow next page be processed by parallel worker */
	if (scan->parallel_scan)
	{
		if (ScanDirectionIsForward(dir))
			_bt_parallel_release(scan, opaque->btpo_next);
		else
			_bt_parallel_release(scan, BufferGetBlockNumber(so->currPos.buf));
	}

	continuescan = true;		/* default assumption */
	indnatts = IndexRelationGetNumberOfAttributes(scan->indexRelation);
	minoff = P_FIRSTDATAKEY(opaque);
	maxoff = PageGetMaxOffsetNumber(page);

	/*
	 * We note the buffer's block number so that we can release the pin later.
	 * This allows us to re-read the buffer if it is needed again for hinting.
	 */
	so->currPos.currPage = BufferGetBlockNumber(so->currPos.buf);

	/*
	 * We save the LSN of the page as we read it, so that we know whether it
	 * safe to apply LP_DEAD hints to the page later.  This allows us to drop
	 * the pin for MVCC scans, which allows vacuum to avoid blocking.
	 */
	so->currPos.lsn = BufferGetLSNAtomic(so->currPos.buf);

	/*
	 * we must save the page's right-link while scanning it; this tells us
	 * where to step right to after we're done with these items.  There is no
	 * corresponding need for the left-link, since splits always go right.
	 */
	so->currPos.nextPage = opaque->btpo_next;

	/* initialize tuple workspace to empty */
	so->currPos.nextTupleOffset = 0;

	/*
	 * Now that the current page has been made consistent, the macro should be
	 * good.
	 */
	Assert(BTScanPosIsPinned(so->currPos));

	if (ScanDirectionIsForward(dir))
	{
		/* load items[] in ascending order */
		itemIndex = 0;

		offnum = Max(offnum, minoff);

		while (offnum <= maxoff)
		{
			ItemId		iid = PageGetItemId(page, offnum);
			IndexTuple	itup;

			/*
			 * If the scan specifies not to return killed tuples, then we
			 * treat a killed tuple as not passing the qual
			 */
			if (scan->ignore_killed_tuples && ItemIdIsDead(iid))
			{
				offnum = OffsetNumberNext(offnum);
				continue;
			}

			itup = (IndexTuple) PageGetItem(page, iid);

			if (_bt_checkkeys(scan, itup, indnatts, dir, &continuescan))
			{
				/* tuple passes all scan key conditions */
				if (!BTreeTupleIsPosting(itup))
				{
					/* Remember it */
					_bt_saveitem(so, itemIndex, offnum, itup);
					itemIndex++;
				}
				else
				{
					int			tupleOffset;

					/*
					 * Set up state to return posting list, and remember first
					 * TID
					 */
					tupleOffset =
						_bt_setuppostingitems(so, itemIndex, offnum,
											  BTreeTupleGetPostingN(itup, 0),
											  itup);
					itemIndex++;
					/* Remember additional TIDs */
					for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
					{
						_bt_savepostingitem(so, itemIndex, offnum,
											BTreeTupleGetPostingN(itup, i),
											tupleOffset);
						itemIndex++;
					}
				}
			}
			/* When !continuescan, there can't be any more matches, so stop */
			if (!continuescan)
				break;

			offnum = OffsetNumberNext(offnum);
		}

		/*
		 * We don't need to visit page to the right when the high key
		 * indicates that no more matches will be found there.
		 *
		 * Checking the high key like this works out more often than you might
		 * think.  Leaf page splits pick a split point between the two most
		 * dissimilar tuples (this is weighed against the need to evenly share
		 * free space).  Leaf pages with high key attribute values that can
		 * only appear on non-pivot tuples on the right sibling page are
		 * common.
		 */
		if (continuescan && !P_RIGHTMOST(opaque))
		{
			ItemId		iid = PageGetItemId(page, P_HIKEY);
			IndexTuple	itup = (IndexTuple) PageGetItem(page, iid);
			int			truncatt;

			truncatt = BTreeTupleGetNAtts(itup, scan->indexRelation);
			_bt_checkkeys(scan, itup, truncatt, dir, &continuescan);
		}

		if (!continuescan)
			so->currPos.moreRight = false;

		Assert(itemIndex <= MaxTIDsPerBTreePage);
		so->currPos.firstItem = 0;
		so->currPos.lastItem = itemIndex - 1;
		so->currPos.itemIndex = 0;
	}
	else
	{
		/* load items[] in descending order */
		itemIndex = MaxTIDsPerBTreePage;

		offnum = Min(offnum, maxoff);

		while (offnum >= minoff)
		{
			ItemId		iid = PageGetItemId(page, offnum);
			IndexTuple	itup;
			bool		tuple_alive;
			bool		passes_quals;

			/*
			 * If the scan specifies not to return killed tuples, then we
			 * treat a killed tuple as not passing the qual.  Most of the
			 * time, it's a win to not bother examining the tuple's index
			 * keys, but just skip to the next tuple (previous, actually,
			 * since we're scanning backwards).  However, if this is the first
			 * tuple on the page, we do check the index keys, to prevent
			 * uselessly advancing to the page to the left.  This is similar
			 * to the high key optimization used by forward scans.
			 */
			if (scan->ignore_killed_tuples && ItemIdIsDead(iid))
			{
				Assert(offnum >= P_FIRSTDATAKEY(opaque));
				if (offnum > P_FIRSTDATAKEY(opaque))
				{
					offnum = OffsetNumberPrev(offnum);
					continue;
				}

				tuple_alive = false;
			}
			else
				tuple_alive = true;

			itup = (IndexTuple) PageGetItem(page, iid);

			passes_quals = _bt_checkkeys(scan, itup, indnatts, dir,
										 &continuescan);
			if (passes_quals && tuple_alive)
			{
				/* tuple passes all scan key conditions */
				if (!BTreeTupleIsPosting(itup))
				{
					/* Remember it */
					itemIndex--;
					_bt_saveitem(so, itemIndex, offnum, itup);
				}
				else
				{
					int			tupleOffset;

					/*
					 * Set up state to return posting list, and remember first
					 * TID.
					 *
					 * Note that we deliberately save/return items from
					 * posting lists in ascending heap TID order for backwards
					 * scans.  This allows _bt_killitems() to make a
					 * consistent assumption about the order of items
					 * associated with the same posting list tuple.
					 */
					itemIndex--;
					tupleOffset =
						_bt_setuppostingitems(so, itemIndex, offnum,
											  BTreeTupleGetPostingN(itup, 0),
											  itup);
					/* Remember additional TIDs */
					for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
					{
						itemIndex--;
						_bt_savepostingitem(so, itemIndex, offnum,
											BTreeTupleGetPostingN(itup, i),
											tupleOffset);
					}
				}
			}
			if (!continuescan)
			{
				/* there can't be any more matches, so stop */
				so->currPos.moreLeft = false;
				break;
			}

			offnum = OffsetNumberPrev(offnum);
		}

		Assert(itemIndex >= 0);
		so->currPos.firstItem = itemIndex;
		so->currPos.lastItem = MaxTIDsPerBTreePage - 1;
		so->currPos.itemIndex = MaxTIDsPerBTreePage - 1;
	}

	return (so->currPos.firstItem <= so->currPos.lastItem);
}

/* Save an index item into so->currPos.items[itemIndex] */
static void
_bt_saveitem(BTScanOpaque so, int itemIndex,
			 OffsetNumber offnum, IndexTuple itup)
{
	BTScanPosItem *currItem = &so->currPos.items[itemIndex];

	Assert(!BTreeTupleIsPivot(itup) && !BTreeTupleIsPosting(itup));

	currItem->heapTid = itup->t_tid;
	currItem->indexOffset = offnum;
	if (so->currTuples)
	{
		Size		itupsz = IndexTupleSize(itup);

		currItem->tupleOffset = so->currPos.nextTupleOffset;
		memcpy(so->currTuples + so->currPos.nextTupleOffset, itup, itupsz);
		so->currPos.nextTupleOffset += MAXALIGN(itupsz);
	}
}

/*
 * Setup state to save TIDs/items from a single posting list tuple.
 *
 * Saves an index item into so->currPos.items[itemIndex] for TID that is
 * returned to scan first.  Second or subsequent TIDs for posting list should
 * be saved by calling _bt_savepostingitem().
 *
 * Returns an offset into tuple storage space that main tuple is stored at if
 * needed.
 */
static int
_bt_setuppostingitems(BTScanOpaque so, int itemIndex, OffsetNumber offnum,
					  ItemPointer heapTid, IndexTuple itup)
{
	BTScanPosItem *currItem = &so->currPos.items[itemIndex];

	Assert(BTreeTupleIsPosting(itup));

	currItem->heapTid = *heapTid;
	currItem->indexOffset = offnum;
	if (so->currTuples)
	{
		/* Save base IndexTuple (truncate posting list) */
		IndexTuple	base;
		Size		itupsz = BTreeTupleGetPostingOffset(itup);

		itupsz = MAXALIGN(itupsz);
		currItem->tupleOffset = so->currPos.nextTupleOffset;
		base = (IndexTuple) (so->currTuples + so->currPos.nextTupleOffset);
		memcpy(base, itup, itupsz);
		/* Defensively reduce work area index tuple header size */
		base->t_info &= ~INDEX_SIZE_MASK;
		base->t_info |= itupsz;
		so->currPos.nextTupleOffset += itupsz;

		return currItem->tupleOffset;
	}

	return 0;
}

/*
 * Save an index item into so->currPos.items[itemIndex] for current posting
 * tuple.
 *
 * Assumes that _bt_setuppostingitems() has already been called for current
 * posting list tuple.  Caller passes its return value as tupleOffset.
 */
static inline void
_bt_savepostingitem(BTScanOpaque so, int itemIndex, OffsetNumber offnum,
					ItemPointer heapTid, int tupleOffset)
{
	BTScanPosItem *currItem = &so->currPos.items[itemIndex];

	currItem->heapTid = *heapTid;
	currItem->indexOffset = offnum;

	/*
	 * Have index-only scans return the same base IndexTuple for every TID
	 * that originates from the same posting list
	 */
	if (so->currTuples)
		currItem->tupleOffset = tupleOffset;
}

/*
 *	_bt_steppage() -- Step to next page containing valid data for scan
 *
 * On entry, if so->currPos.buf is valid the buffer is pinned but not locked;
 * if pinned, we'll drop the pin before moving to next page.  The buffer is
 * not locked on entry.
 *
 * For success on a scan using a non-MVCC snapshot we hold a pin, but not a
 * read lock, on that page.  If we do not hold the pin, we set so->currPos.buf
 * to InvalidBuffer.  We return true to indicate success.
 */
static bool
_bt_steppage(IndexScanDesc scan, ScanDirection dir)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	BlockNumber blkno = InvalidBlockNumber;
	bool		status;

	Assert(BTScanPosIsValid(so->currPos));

	/* Before leaving current page, deal with any killed items */
	if (so->numKilled > 0)
		_bt_killitems(scan);

	/*
	 * Before we modify currPos, make a copy of the page data if there was a
	 * mark position that needs it.
	 */
	if (so->markItemIndex >= 0)
	{
		/* bump pin on current buffer for assignment to mark buffer */
		if (BTScanPosIsPinned(so->currPos))
			IncrBufferRefCount(so->currPos.buf);
		memcpy(&so->markPos, &so->currPos,
			   offsetof(BTScanPosData, items[1]) +
			   so->currPos.lastItem * sizeof(BTScanPosItem));
		if (so->markTuples)
			memcpy(so->markTuples, so->currTuples,
				   so->currPos.nextTupleOffset);
		so->markPos.itemIndex = so->markItemIndex;
		so->markItemIndex = -1;
	}

	if (ScanDirectionIsForward(dir))
	{
		/* Walk right to the next page with data */
		if (scan->parallel_scan != NULL)
		{
			/*
			 * Seize the scan to get the next block number; if the scan has
			 * ended already, bail out.
			 */
			status = _bt_parallel_seize(scan, &blkno);
			if (!status)
			{
				/* release the previous buffer, if pinned */
				BTScanPosUnpinIfPinned(so->currPos);
				BTScanPosInvalidate(so->currPos);
				return false;
			}
		}
		else
		{
			/* Not parallel, so use the previously-saved nextPage link. */
			blkno = so->currPos.nextPage;
		}

		/* Remember we left a page with data */
		so->currPos.moreLeft = true;

		/* release the previous buffer, if pinned */
		BTScanPosUnpinIfPinned(so->currPos);
	}
	else
	{
		/* Remember we left a page with data */
		so->currPos.moreRight = true;

		if (scan->parallel_scan != NULL)
		{
			/*
			 * Seize the scan to get the current block number; if the scan has
			 * ended already, bail out.
			 */
			status = _bt_parallel_seize(scan, &blkno);
			BTScanPosUnpinIfPinned(so->currPos);
			if (!status)
			{
				BTScanPosInvalidate(so->currPos);
				return false;
			}
		}
		else
		{
			/* Not parallel, so just use our own notion of the current page */
			blkno = so->currPos.currPage;
		}
	}

	if (!_bt_readnextpage(scan, blkno, dir))
		return false;

	/* Drop the lock, and maybe the pin, on the current page */
	_bt_drop_lock_and_maybe_pin(scan, &so->currPos);

	return true;
}

/*
 *	_bt_readnextpage() -- Read next page containing valid data for scan
 *
 * On success exit, so->currPos is updated to contain data from the next
 * interesting page.  Caller is responsible to release lock and pin on
 * buffer on success.  We return true to indicate success.
 *
 * If there are no more matching records in the given direction, we drop all
 * locks and pins, set so->currPos.buf to InvalidBuffer, and return false.
 */
static bool
_bt_readnextpage(IndexScanDesc scan, BlockNumber blkno, ScanDirection dir)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Relation	rel;
	Page		page;
	BTPageOpaque opaque;
	bool		status;

	rel = scan->indexRelation;

	if (ScanDirectionIsForward(dir))
	{
		for (;;)
		{
			/*
			 * if we're at end of scan, give up and mark parallel scan as
			 * done, so that all the workers can finish their scan
			 */
			if (blkno == P_NONE || !so->currPos.moreRight)
			{
				_bt_parallel_done(scan);
				BTScanPosInvalidate(so->currPos);
				return false;
			}
			/* check for interrupts while we're not holding any buffer lock */
			CHECK_FOR_INTERRUPTS();
			/* step right one page */
			so->currPos.buf = _bt_getbuf(rel, blkno, BT_READ);
			page = BufferGetPage(so->currPos.buf);
			TestForOldSnapshot(scan->xs_snapshot, rel, page);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
			/* check for deleted page */
			if (!P_IGNORE(opaque))
			{
				PredicateLockPage(rel, blkno, scan->xs_snapshot);
				/* see if there are any matches on this page */
				/* note that this will clear moreRight if we can stop */
				if (_bt_readpage(scan, dir, P_FIRSTDATAKEY(opaque)))
					break;
			}
			else if (scan->parallel_scan != NULL)
			{
				/* allow next page be processed by parallel worker */
				_bt_parallel_release(scan, opaque->btpo_next);
			}

			/* nope, keep going */
			if (scan->parallel_scan != NULL)
			{
				_bt_relbuf(rel, so->currPos.buf);
				status = _bt_parallel_seize(scan, &blkno);
				if (!status)
				{
					BTScanPosInvalidate(so->currPos);
					return false;
				}
			}
			else
			{
				blkno = opaque->btpo_next;
				_bt_relbuf(rel, so->currPos.buf);
			}
		}
	}
	else
	{
		/*
		 * Should only happen in parallel cases, when some other backend
		 * advanced the scan.
		 */
		if (so->currPos.currPage != blkno)
		{
			BTScanPosUnpinIfPinned(so->currPos);
			so->currPos.currPage = blkno;
		}

		/*
		 * Walk left to the next page with data.  This is much more complex
		 * than the walk-right case because of the possibility that the page
		 * to our left splits while we are in flight to it, plus the
		 * possibility that the page we were on gets deleted after we leave
		 * it.  See nbtree/README for details.
		 *
		 * It might be possible to rearrange this code to have less overhead
		 * in pinning and locking, but that would require capturing the left
		 * pointer when the page is initially read, and using it here, along
		 * with big changes to _bt_walk_left() and the code below.  It is not
		 * clear whether this would be a win, since if the page immediately to
		 * the left splits after we read this page and before we step left, we
		 * would need to visit more pages than with the current code.
		 *
		 * Note that if we change the code so that we drop the pin for a scan
		 * which uses a non-MVCC snapshot, we will need to modify the code for
		 * walking left, to allow for the possibility that a referenced page
		 * has been deleted.  As long as the buffer is pinned or the snapshot
		 * is MVCC the page cannot move past the half-dead state to fully
		 * deleted.
		 */
		if (BTScanPosIsPinned(so->currPos))
			_bt_lockbuf(rel, so->currPos.buf, BT_READ);
		else
			so->currPos.buf = _bt_getbuf(rel, so->currPos.currPage, BT_READ);

		for (;;)
		{
			/* Done if we know there are no matching keys to the left */
			if (!so->currPos.moreLeft)
			{
				_bt_relbuf(rel, so->currPos.buf);
				_bt_parallel_done(scan);
				BTScanPosInvalidate(so->currPos);
				return false;
			}

			/* Step to next physical page */
			so->currPos.buf = _bt_walk_left(rel, so->currPos.buf,
											scan->xs_snapshot);

			/* if we're physically at end of index, return failure */
			if (so->currPos.buf == InvalidBuffer)
			{
				_bt_parallel_done(scan);
				BTScanPosInvalidate(so->currPos);
				return false;
			}

			/*
			 * Okay, we managed to move left to a non-deleted page. Done if
			 * it's not half-dead and contains matching tuples. Else loop back
			 * and do it all again.
			 */
			page = BufferGetPage(so->currPos.buf);
			TestForOldSnapshot(scan->xs_snapshot, rel, page);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
			if (!P_IGNORE(opaque))
			{
				PredicateLockPage(rel, BufferGetBlockNumber(so->currPos.buf), scan->xs_snapshot);
				/* see if there are any matches on this page */
				/* note that this will clear moreLeft if we can stop */
				if (_bt_readpage(scan, dir, PageGetMaxOffsetNumber(page)))
					break;
			}
			else if (scan->parallel_scan != NULL)
			{
				/* allow next page be processed by parallel worker */
				_bt_parallel_release(scan, BufferGetBlockNumber(so->currPos.buf));
			}

			/*
			 * For parallel scans, get the last page scanned as it is quite
			 * possible that by the time we try to seize the scan, some other
			 * worker has already advanced the scan to a different page.  We
			 * must continue based on the latest page scanned by any worker.
			 */
			if (scan->parallel_scan != NULL)
			{
				_bt_relbuf(rel, so->currPos.buf);
				status = _bt_parallel_seize(scan, &blkno);
				if (!status)
				{
					BTScanPosInvalidate(so->currPos);
					return false;
				}
				so->currPos.buf = _bt_getbuf(rel, blkno, BT_READ);
			}
		}
	}

	return true;
}

/*
 *	_bt_parallel_readpage() -- Read current page containing valid data for scan
 *
 * On success, release lock and maybe pin on buffer.  We return true to
 * indicate success.
 */
static bool
_bt_parallel_readpage(IndexScanDesc scan, BlockNumber blkno, ScanDirection dir)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	_bt_initialize_more_data(so, dir);

	if (!_bt_readnextpage(scan, blkno, dir))
		return false;

	/* Drop the lock, and maybe the pin, on the current page */
	_bt_drop_lock_and_maybe_pin(scan, &so->currPos);

	return true;
}

/*
 * _bt_walk_left() -- step left one page, if possible
 *
 * The given buffer must be pinned and read-locked.  This will be dropped
 * before stepping left.  On return, we have pin and read lock on the
 * returned page, instead.
 *
 * Returns InvalidBuffer if there is no page to the left (no lock is held
 * in that case).
 *
 * When working on a non-leaf level, it is possible for the returned page
 * to be half-dead; the caller should check that condition and step left
 * again if it's important.
 */
static Buffer
_bt_walk_left(Relation rel, Buffer buf, Snapshot snapshot)
{
	Page		page;
	BTPageOpaque opaque;

	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	for (;;)
	{
		BlockNumber obknum;
		BlockNumber lblkno;
		BlockNumber blkno;
		int			tries;

		/* if we're at end of tree, release buf and return failure */
		if (P_LEFTMOST(opaque))
		{
			_bt_relbuf(rel, buf);
			break;
		}
		/* remember original page we are stepping left from */
		obknum = BufferGetBlockNumber(buf);
		/* step left */
		blkno = lblkno = opaque->btpo_prev;
		_bt_relbuf(rel, buf);
		/* check for interrupts while we're not holding any buffer lock */
		CHECK_FOR_INTERRUPTS();
		buf = _bt_getbuf(rel, blkno, BT_READ);
		page = BufferGetPage(buf);
		TestForOldSnapshot(snapshot, rel, page);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);

		/*
		 * If this isn't the page we want, walk right till we find what we
		 * want --- but go no more than four hops (an arbitrary limit). If we
		 * don't find the correct page by then, the most likely bet is that
		 * the original page got deleted and isn't in the sibling chain at all
		 * anymore, not that its left sibling got split more than four times.
		 *
		 * Note that it is correct to test P_ISDELETED not P_IGNORE here,
		 * because half-dead pages are still in the sibling chain.  Caller
		 * must reject half-dead pages if wanted.
		 */
		tries = 0;
		for (;;)
		{
			if (!P_ISDELETED(opaque) && opaque->btpo_next == obknum)
			{
				/* Found desired page, return it */
				return buf;
			}
			if (P_RIGHTMOST(opaque) || ++tries > 4)
				break;
			blkno = opaque->btpo_next;
			buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
			page = BufferGetPage(buf);
			TestForOldSnapshot(snapshot, rel, page);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		}

		/* Return to the original page to see what's up */
		buf = _bt_relandgetbuf(rel, buf, obknum, BT_READ);
		page = BufferGetPage(buf);
		TestForOldSnapshot(snapshot, rel, page);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		if (P_ISDELETED(opaque))
		{
			/*
			 * It was deleted.  Move right to first nondeleted page (there
			 * must be one); that is the page that has acquired the deleted
			 * one's keyspace, so stepping left from it will take us where we
			 * want to be.
			 */
			for (;;)
			{
				if (P_RIGHTMOST(opaque))
					elog(ERROR, "fell off the end of index \"%s\"",
						 RelationGetRelationName(rel));
				blkno = opaque->btpo_next;
				buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
				page = BufferGetPage(buf);
				TestForOldSnapshot(snapshot, rel, page);
				opaque = (BTPageOpaque) PageGetSpecialPointer(page);
				if (!P_ISDELETED(opaque))
					break;
			}

			/*
			 * Now return to top of loop, resetting obknum to point to this
			 * nondeleted page, and try again.
			 */
		}
		else
		{
			/*
			 * It wasn't deleted; the explanation had better be that the page
			 * to the left got split or deleted. Without this check, we'd go
			 * into an infinite loop if there's anything wrong.
			 */
			if (opaque->btpo_prev == lblkno)
				elog(ERROR, "could not find left sibling of block %u in index \"%s\"",
					 obknum, RelationGetRelationName(rel));
			/* Okay to try again with new lblkno value */
		}
	}

	return InvalidBuffer;
}

/*
 * _bt_get_endpoint() -- Find the first or last page on a given tree level
 *
 * If the index is empty, we will return InvalidBuffer; any other failure
 * condition causes ereport().  We will not return a dead page.
 *
 * The returned buffer is pinned and read-locked.
 */
Buffer
_bt_get_endpoint(Relation rel, uint32 level, bool rightmost,
				 Snapshot snapshot)
{
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber offnum;
	BlockNumber blkno;
	IndexTuple	itup;

	/*
	 * If we are looking for a leaf page, okay to descend from fast root;
	 * otherwise better descend from true root.  (There is no point in being
	 * smarter about intermediate levels.)
	 */
	if (level == 0)
		buf = _bt_getroot(rel, BT_READ);
	else
		buf = _bt_gettrueroot(rel);

	if (!BufferIsValid(buf))
		return InvalidBuffer;

	page = BufferGetPage(buf);
	TestForOldSnapshot(snapshot, rel, page);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	for (;;)
	{
		/*
		 * If we landed on a deleted page, step right to find a live page
		 * (there must be one).  Also, if we want the rightmost page, step
		 * right if needed to get to it (this could happen if the page split
		 * since we obtained a pointer to it).
		 */
		while (P_IGNORE(opaque) ||
			   (rightmost && !P_RIGHTMOST(opaque)))
		{
			blkno = opaque->btpo_next;
			if (blkno == P_NONE)
				elog(ERROR, "fell off the end of index \"%s\"",
					 RelationGetRelationName(rel));
			buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
			page = BufferGetPage(buf);
			TestForOldSnapshot(snapshot, rel, page);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		}

		/* Done? */
		if (opaque->btpo_level == level)
			break;
		if (opaque->btpo_level < level)
			ereport(ERROR,
					(errcode(ERRCODE_INDEX_CORRUPTED),
					 errmsg_internal("btree level %u not found in index \"%s\"",
									 level, RelationGetRelationName(rel))));

		/* Descend to leftmost or rightmost child page */
		if (rightmost)
			offnum = PageGetMaxOffsetNumber(page);
		else
			offnum = P_FIRSTDATAKEY(opaque);

		itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
		blkno = BTreeTupleGetDownLink(itup);

		buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
		page = BufferGetPage(buf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	}

	return buf;
}

/*
 *	_bt_endpoint() -- Find the first or last page in the index, and scan
 * from there to the first key satisfying all the quals.
 *
 * This is used by _bt_first() to set up a scan when we've determined
 * that the scan must start at the beginning or end of the index (for
 * a forward or backward scan respectively).  Exit conditions are the
 * same as for _bt_first().
 */
static bool
_bt_endpoint(IndexScanDesc scan, ScanDirection dir)
{
	Relation	rel = scan->indexRelation;
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber start;
	BTScanPosItem *currItem;

	/*
	 * Scan down to the leftmost or rightmost leaf page.  This is a simplified
	 * version of _bt_search().  We don't maintain a stack since we know we
	 * won't need it.
	 */
	buf = _bt_get_endpoint(rel, 0, ScanDirectionIsBackward(dir), scan->xs_snapshot);

	if (!BufferIsValid(buf))
	{
		/*
		 * Empty index. Lock the whole relation, as nothing finer to lock
		 * exists.
		 */
		PredicateLockRelation(rel, scan->xs_snapshot);
		BTScanPosInvalidate(so->currPos);
		return false;
	}

	PredicateLockPage(rel, BufferGetBlockNumber(buf), scan->xs_snapshot);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	Assert(P_ISLEAF(opaque));

	if (ScanDirectionIsForward(dir))
	{
		/* There could be dead pages to the left, so not this: */
		/* Assert(P_LEFTMOST(opaque)); */

		start = P_FIRSTDATAKEY(opaque);
	}
	else if (ScanDirectionIsBackward(dir))
	{
		Assert(P_RIGHTMOST(opaque));

		start = PageGetMaxOffsetNumber(page);
	}
	else
	{
		elog(ERROR, "invalid scan direction: %d", (int) dir);
		start = 0;				/* keep compiler quiet */
	}

	/* remember which buffer we have pinned */
	so->currPos.buf = buf;

	_bt_initialize_more_data(so, dir);

	/*
	 * Now load data from the first page of the scan.
	 */
	if (!_bt_readpage(scan, dir, start))
	{
		/*
		 * There's no actually-matching data on this page.  Try to advance to
		 * the next page.  Return false if there's no matching data at all.
		 */
		_bt_unlockbuf(scan->indexRelation, so->currPos.buf);
		if (!_bt_steppage(scan, dir))
			return false;
	}
	else
	{
		/* Drop the lock, and maybe the pin, on the current page */
		_bt_drop_lock_and_maybe_pin(scan, &so->currPos);
	}

	/* OK, itemIndex says what to return */
	currItem = &so->currPos.items[so->currPos.itemIndex];
	scan->xs_heaptid = currItem->heapTid;
	if (scan->xs_want_itup)
		scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset);

	return true;
}

/*
 * _bt_initialize_more_data() -- initialize moreLeft/moreRight appropriately
 * for scan direction
 */
static inline void
_bt_initialize_more_data(BTScanOpaque so, ScanDirection dir)
{
	/* initialize moreLeft/moreRight appropriately for scan direction */
	if (ScanDirectionIsForward(dir))
	{
		so->currPos.moreLeft = false;
		so->currPos.moreRight = true;
	}
	else
	{
		so->currPos.moreLeft = true;
		so->currPos.moreRight = false;
	}
	so->numKilled = 0;			/* just paranoia */
	so->markItemIndex = -1;		/* ditto */
}