summaryrefslogtreecommitdiffstats
path: root/src/backend/optimizer/prep/prepagg.c
blob: e1c525760cd0c47e4d41ea79761e6672bd675f83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/*-------------------------------------------------------------------------
 *
 * prepagg.c
 *	  Routines to preprocess aggregate function calls
 *
 * If there are identical aggregate calls in the query, they only need to
 * be computed once.  Also, some aggregate functions can share the same
 * transition state, so that we only need to call the final function for
 * them separately.  These optimizations are independent of how the
 * aggregates are executed.
 *
 * preprocess_aggrefs() detects those cases, creates AggInfo and
 * AggTransInfo structs for each aggregate and transition state that needs
 * to be computed, and sets the 'aggno' and 'transno' fields in the Aggrefs
 * accordingly.  It also resolves polymorphic transition types, and sets
 * the 'aggtranstype' fields accordingly.
 *
 * XXX: The AggInfo and AggTransInfo structs are thrown away after
 * planning, so executor startup has to perform some of the same lookups
 * of transition functions and initial values that we do here.  One day, we
 * might want to carry that information to the Agg nodes to save the effort
 * at executor startup.  The Agg nodes are constructed much later in the
 * planning, however, so it's not trivial.
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/optimizer/prep/prepagg.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "access/htup_details.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_type.h"
#include "nodes/nodeFuncs.h"
#include "nodes/pathnodes.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/plancat.h"
#include "optimizer/prep.h"
#include "parser/parse_agg.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"

static bool preprocess_aggrefs_walker(Node *node, PlannerInfo *root);
static int	find_compatible_agg(PlannerInfo *root, Aggref *newagg,
								List **same_input_transnos);
static int	find_compatible_trans(PlannerInfo *root, Aggref *newagg,
								  bool shareable,
								  Oid aggtransfn, Oid aggtranstype,
								  int transtypeLen, bool transtypeByVal,
								  Oid aggcombinefn,
								  Oid aggserialfn, Oid aggdeserialfn,
								  Datum initValue, bool initValueIsNull,
								  List *transnos);
static Datum GetAggInitVal(Datum textInitVal, Oid transtype);

/* -----------------
 * Resolve the transition type of all Aggrefs, and determine which Aggrefs
 * can share aggregate or transition state.
 *
 * Information about the aggregates and transition functions are collected
 * in the root->agginfos and root->aggtransinfos lists.  The 'aggtranstype',
 * 'aggno', and 'aggtransno' fields of each Aggref are filled in.
 *
 * NOTE: This modifies the Aggrefs in the input expression in-place!
 *
 * We try to optimize by detecting duplicate aggregate functions so that
 * their state and final values are re-used, rather than needlessly being
 * re-calculated independently.  We also detect aggregates that are not
 * the same, but which can share the same transition state.
 *
 * Scenarios:
 *
 * 1. Identical aggregate function calls appear in the query:
 *
 *	  SELECT SUM(x) FROM ... HAVING SUM(x) > 0
 *
 *	  Since these aggregates are identical, we only need to calculate
 *	  the value once.  Both aggregates will share the same 'aggno' value.
 *
 * 2. Two different aggregate functions appear in the query, but the
 *	  aggregates have the same arguments, transition functions and
 *	  initial values (and, presumably, different final functions):
 *
 *	  SELECT AVG(x), STDDEV(x) FROM ...
 *
 *	  In this case we must create a new AggInfo for the varying aggregate,
 *	  and we need to call the final functions separately, but we need
 *	  only run the transition function once.  (This requires that the
 *	  final functions be nondestructive of the transition state, but
 *	  that's required anyway for other reasons.)
 *
 * For either of these optimizations to be valid, all aggregate properties
 * used in the transition phase must be the same, including any modifiers
 * such as ORDER BY, DISTINCT and FILTER, and the arguments mustn't
 * contain any volatile functions.
 * -----------------
 */
void
preprocess_aggrefs(PlannerInfo *root, Node *clause)
{
	(void) preprocess_aggrefs_walker(clause, root);
}

static void
preprocess_aggref(Aggref *aggref, PlannerInfo *root)
{
	HeapTuple	aggTuple;
	Form_pg_aggregate aggform;
	Oid			aggtransfn;
	Oid			aggfinalfn;
	Oid			aggcombinefn;
	Oid			aggserialfn;
	Oid			aggdeserialfn;
	Oid			aggtranstype;
	int32		aggtranstypmod;
	int32		aggtransspace;
	bool		shareable;
	int			aggno;
	int			transno;
	List	   *same_input_transnos;
	int16		resulttypeLen;
	bool		resulttypeByVal;
	Datum		textInitVal;
	Datum		initValue;
	bool		initValueIsNull;
	bool		transtypeByVal;
	int16		transtypeLen;
	Oid			inputTypes[FUNC_MAX_ARGS];
	int			numArguments;

	Assert(aggref->agglevelsup == 0);

	/*
	 * Fetch info about the aggregate from pg_aggregate.  Note it's correct to
	 * ignore the moving-aggregate variant, since what we're concerned with
	 * here is aggregates not window functions.
	 */
	aggTuple = SearchSysCache1(AGGFNOID,
							   ObjectIdGetDatum(aggref->aggfnoid));
	if (!HeapTupleIsValid(aggTuple))
		elog(ERROR, "cache lookup failed for aggregate %u",
			 aggref->aggfnoid);
	aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
	aggtransfn = aggform->aggtransfn;
	aggfinalfn = aggform->aggfinalfn;
	aggcombinefn = aggform->aggcombinefn;
	aggserialfn = aggform->aggserialfn;
	aggdeserialfn = aggform->aggdeserialfn;
	aggtranstype = aggform->aggtranstype;
	aggtransspace = aggform->aggtransspace;

	/*
	 * Resolve the possibly-polymorphic aggregate transition type.
	 */

	/* extract argument types (ignoring any ORDER BY expressions) */
	numArguments = get_aggregate_argtypes(aggref, inputTypes);

	/* resolve actual type of transition state, if polymorphic */
	aggtranstype = resolve_aggregate_transtype(aggref->aggfnoid,
											   aggtranstype,
											   inputTypes,
											   numArguments);
	aggref->aggtranstype = aggtranstype;

	/*
	 * If transition state is of same type as first aggregated input, assume
	 * it's the same typmod (same width) as well.  This works for cases like
	 * MAX/MIN and is probably somewhat reasonable otherwise.
	 */
	aggtranstypmod = -1;
	if (aggref->args)
	{
		TargetEntry *tle = (TargetEntry *) linitial(aggref->args);

		if (aggtranstype == exprType((Node *) tle->expr))
			aggtranstypmod = exprTypmod((Node *) tle->expr);
	}

	/*
	 * If finalfn is marked read-write, we can't share transition states; but
	 * it is okay to share states for AGGMODIFY_SHAREABLE aggs.
	 *
	 * In principle, in a partial aggregate, we could share the transition
	 * state even if the final function is marked as read-write, because the
	 * partial aggregate doesn't execute the final function.  But it's too
	 * early to know whether we're going perform a partial aggregate.
	 */
	shareable = (aggform->aggfinalmodify != AGGMODIFY_READ_WRITE);

	/* get info about the output value's datatype */
	get_typlenbyval(aggref->aggtype,
					&resulttypeLen,
					&resulttypeByVal);

	/* get initial value */
	textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
								  Anum_pg_aggregate_agginitval,
								  &initValueIsNull);
	if (initValueIsNull)
		initValue = (Datum) 0;
	else
		initValue = GetAggInitVal(textInitVal, aggtranstype);

	ReleaseSysCache(aggTuple);

	/*
	 * 1. See if this is identical to another aggregate function call that
	 * we've seen already.
	 */
	aggno = find_compatible_agg(root, aggref, &same_input_transnos);
	if (aggno != -1)
	{
		AggInfo    *agginfo = list_nth(root->agginfos, aggno);

		transno = agginfo->transno;
	}
	else
	{
		AggInfo    *agginfo = palloc(sizeof(AggInfo));

		agginfo->finalfn_oid = aggfinalfn;
		agginfo->representative_aggref = aggref;
		agginfo->shareable = shareable;

		aggno = list_length(root->agginfos);
		root->agginfos = lappend(root->agginfos, agginfo);

		/*
		 * Count it, and check for cases requiring ordered input.  Note that
		 * ordered-set aggs always have nonempty aggorder.  Any ordered-input
		 * case also defeats partial aggregation.
		 */
		if (aggref->aggorder != NIL || aggref->aggdistinct != NIL)
		{
			root->numOrderedAggs++;
			root->hasNonPartialAggs = true;
		}

		get_typlenbyval(aggtranstype,
						&transtypeLen,
						&transtypeByVal);

		/*
		 * 2. See if this aggregate can share transition state with another
		 * aggregate that we've initialized already.
		 */
		transno = find_compatible_trans(root, aggref, shareable,
										aggtransfn, aggtranstype,
										transtypeLen, transtypeByVal,
										aggcombinefn,
										aggserialfn, aggdeserialfn,
										initValue, initValueIsNull,
										same_input_transnos);
		if (transno == -1)
		{
			AggTransInfo *transinfo = palloc(sizeof(AggTransInfo));

			transinfo->args = aggref->args;
			transinfo->aggfilter = aggref->aggfilter;
			transinfo->transfn_oid = aggtransfn;
			transinfo->combinefn_oid = aggcombinefn;
			transinfo->serialfn_oid = aggserialfn;
			transinfo->deserialfn_oid = aggdeserialfn;
			transinfo->aggtranstype = aggtranstype;
			transinfo->aggtranstypmod = aggtranstypmod;
			transinfo->transtypeLen = transtypeLen;
			transinfo->transtypeByVal = transtypeByVal;
			transinfo->aggtransspace = aggtransspace;
			transinfo->initValue = initValue;
			transinfo->initValueIsNull = initValueIsNull;

			transno = list_length(root->aggtransinfos);
			root->aggtransinfos = lappend(root->aggtransinfos, transinfo);

			/*
			 * Check whether partial aggregation is feasible, unless we
			 * already found out that we can't do it.
			 */
			if (!root->hasNonPartialAggs)
			{
				/*
				 * If there is no combine function, then partial aggregation
				 * is not possible.
				 */
				if (!OidIsValid(transinfo->combinefn_oid))
					root->hasNonPartialAggs = true;

				/*
				 * If we have any aggs with transtype INTERNAL then we must
				 * check whether they have serialization/deserialization
				 * functions; if not, we can't serialize partial-aggregation
				 * results.
				 */
				else if (transinfo->aggtranstype == INTERNALOID &&
						 (!OidIsValid(transinfo->serialfn_oid) ||
						  !OidIsValid(transinfo->deserialfn_oid)))
					root->hasNonSerialAggs = true;
			}
		}
		agginfo->transno = transno;
	}

	/*
	 * Fill in the fields in the Aggref (aggtranstype was set above already)
	 */
	aggref->aggno = aggno;
	aggref->aggtransno = transno;
}

static bool
preprocess_aggrefs_walker(Node *node, PlannerInfo *root)
{
	if (node == NULL)
		return false;
	if (IsA(node, Aggref))
	{
		Aggref	   *aggref = (Aggref *) node;

		preprocess_aggref(aggref, root);

		/*
		 * We assume that the parser checked that there are no aggregates (of
		 * this level anyway) in the aggregated arguments, direct arguments,
		 * or filter clause.  Hence, we need not recurse into any of them.
		 */
		return false;
	}
	Assert(!IsA(node, SubLink));
	return expression_tree_walker(node, preprocess_aggrefs_walker,
								  (void *) root);
}


/*
 * find_compatible_agg - search for a previously initialized per-Agg struct
 *
 * Searches the previously looked at aggregates to find one which is compatible
 * with this one, with the same input parameters.  If no compatible aggregate
 * can be found, returns -1.
 *
 * As a side-effect, this also collects a list of existing, shareable per-Trans
 * structs with matching inputs.  If no identical Aggref is found, the list is
 * passed later to find_compatible_trans, to see if we can at least reuse
 * the state value of another aggregate.
 */
static int
find_compatible_agg(PlannerInfo *root, Aggref *newagg,
					List **same_input_transnos)
{
	ListCell   *lc;
	int			aggno;

	*same_input_transnos = NIL;

	/* we mustn't reuse the aggref if it contains volatile function calls */
	if (contain_volatile_functions((Node *) newagg))
		return -1;

	/*
	 * Search through the list of already seen aggregates.  If we find an
	 * existing identical aggregate call, then we can re-use that one.  While
	 * searching, we'll also collect a list of Aggrefs with the same input
	 * parameters.  If no matching Aggref is found, the caller can potentially
	 * still re-use the transition state of one of them.  (At this stage we
	 * just compare the parsetrees; whether different aggregates share the
	 * same transition function will be checked later.)
	 */
	aggno = -1;
	foreach(lc, root->agginfos)
	{
		AggInfo    *agginfo = (AggInfo *) lfirst(lc);
		Aggref	   *existingRef;

		aggno++;

		existingRef = agginfo->representative_aggref;

		/* all of the following must be the same or it's no match */
		if (newagg->inputcollid != existingRef->inputcollid ||
			newagg->aggtranstype != existingRef->aggtranstype ||
			newagg->aggstar != existingRef->aggstar ||
			newagg->aggvariadic != existingRef->aggvariadic ||
			newagg->aggkind != existingRef->aggkind ||
			!equal(newagg->args, existingRef->args) ||
			!equal(newagg->aggorder, existingRef->aggorder) ||
			!equal(newagg->aggdistinct, existingRef->aggdistinct) ||
			!equal(newagg->aggfilter, existingRef->aggfilter))
			continue;

		/* if it's the same aggregate function then report exact match */
		if (newagg->aggfnoid == existingRef->aggfnoid &&
			newagg->aggtype == existingRef->aggtype &&
			newagg->aggcollid == existingRef->aggcollid &&
			equal(newagg->aggdirectargs, existingRef->aggdirectargs))
		{
			list_free(*same_input_transnos);
			*same_input_transnos = NIL;
			return aggno;
		}

		/*
		 * Not identical, but it had the same inputs.  If the final function
		 * permits sharing, return its transno to the caller, in case we can
		 * re-use its per-trans state.  (If there's already sharing going on,
		 * we might report a transno more than once.  find_compatible_trans is
		 * cheap enough that it's not worth spending cycles to avoid that.)
		 */
		if (agginfo->shareable)
			*same_input_transnos = lappend_int(*same_input_transnos,
											   agginfo->transno);
	}

	return -1;
}

/*
 * find_compatible_trans - search for a previously initialized per-Trans
 * struct
 *
 * Searches the list of transnos for a per-Trans struct with the same
 * transition function and initial condition. (The inputs have already been
 * verified to match.)
 */
static int
find_compatible_trans(PlannerInfo *root, Aggref *newagg, bool shareable,
					  Oid aggtransfn, Oid aggtranstype,
					  int transtypeLen, bool transtypeByVal,
					  Oid aggcombinefn,
					  Oid aggserialfn, Oid aggdeserialfn,
					  Datum initValue, bool initValueIsNull,
					  List *transnos)
{
	ListCell   *lc;

	/* If this aggregate can't share transition states, give up */
	if (!shareable)
		return -1;

	foreach(lc, transnos)
	{
		int			transno = lfirst_int(lc);
		AggTransInfo *pertrans = (AggTransInfo *) list_nth(root->aggtransinfos, transno);

		/*
		 * if the transfns or transition state types are not the same then the
		 * state can't be shared.
		 */
		if (aggtransfn != pertrans->transfn_oid ||
			aggtranstype != pertrans->aggtranstype)
			continue;

		/*
		 * The serialization and deserialization functions must match, if
		 * present, as we're unable to share the trans state for aggregates
		 * which will serialize or deserialize into different formats.
		 * Remember that these will be InvalidOid if they're not required for
		 * this agg node.
		 */
		if (aggserialfn != pertrans->serialfn_oid ||
			aggdeserialfn != pertrans->deserialfn_oid)
			continue;

		/*
		 * Combine function must also match.  We only care about the combine
		 * function with partial aggregates, but it's too early in the
		 * planning to know if we will do partial aggregation, so be
		 * conservative.
		 */
		if (aggcombinefn != pertrans->combinefn_oid)
			continue;

		/*
		 * Check that the initial condition matches, too.
		 */
		if (initValueIsNull && pertrans->initValueIsNull)
			return transno;

		if (!initValueIsNull && !pertrans->initValueIsNull &&
			datumIsEqual(initValue, pertrans->initValue,
						 transtypeByVal, transtypeLen))
			return transno;
	}
	return -1;
}

static Datum
GetAggInitVal(Datum textInitVal, Oid transtype)
{
	Oid			typinput,
				typioparam;
	char	   *strInitVal;
	Datum		initVal;

	getTypeInputInfo(transtype, &typinput, &typioparam);
	strInitVal = TextDatumGetCString(textInitVal);
	initVal = OidInputFunctionCall(typinput, strInitVal,
								   typioparam, -1);
	pfree(strInitVal);
	return initVal;
}


/*
 * get_agg_clause_costs
 *	  Process the PlannerInfo's 'aggtransinfos' and 'agginfos' lists
 *	  accumulating the cost information about them.
 *
 * 'aggsplit' tells us the expected partial-aggregation mode, which affects
 * the cost estimates.
 *
 * NOTE that the costs are ADDED to those already in *costs ... so the caller
 * is responsible for zeroing the struct initially.
 *
 * For each AggTransInfo, we add the cost of an aggregate transition using
 * either the transfn or combinefn depending on the 'aggsplit' value.  We also
 * account for the costs of any aggfilters and any serializations and
 * deserializations of the transition state and also estimate the total space
 * needed for the transition states as if each aggregate's state was stored in
 * memory concurrently (as would be done in a HashAgg plan).
 *
 * For each AggInfo in the 'agginfos' list we add the cost of running the
 * final function and the direct args, if any.
 */
void
get_agg_clause_costs(PlannerInfo *root, AggSplit aggsplit, AggClauseCosts *costs)
{
	ListCell   *lc;

	foreach(lc, root->aggtransinfos)
	{
		AggTransInfo *transinfo = (AggTransInfo *) lfirst(lc);

		/*
		 * Add the appropriate component function execution costs to
		 * appropriate totals.
		 */
		if (DO_AGGSPLIT_COMBINE(aggsplit))
		{
			/* charge for combining previously aggregated states */
			add_function_cost(root, transinfo->combinefn_oid, NULL,
							  &costs->transCost);
		}
		else
			add_function_cost(root, transinfo->transfn_oid, NULL,
							  &costs->transCost);
		if (DO_AGGSPLIT_DESERIALIZE(aggsplit) &&
			OidIsValid(transinfo->deserialfn_oid))
			add_function_cost(root, transinfo->deserialfn_oid, NULL,
							  &costs->transCost);
		if (DO_AGGSPLIT_SERIALIZE(aggsplit) &&
			OidIsValid(transinfo->serialfn_oid))
			add_function_cost(root, transinfo->serialfn_oid, NULL,
							  &costs->finalCost);

		/*
		 * These costs are incurred only by the initial aggregate node, so we
		 * mustn't include them again at upper levels.
		 */
		if (!DO_AGGSPLIT_COMBINE(aggsplit))
		{
			/* add the input expressions' cost to per-input-row costs */
			QualCost	argcosts;

			cost_qual_eval_node(&argcosts, (Node *) transinfo->args, root);
			costs->transCost.startup += argcosts.startup;
			costs->transCost.per_tuple += argcosts.per_tuple;

			/*
			 * Add any filter's cost to per-input-row costs.
			 *
			 * XXX Ideally we should reduce input expression costs according
			 * to filter selectivity, but it's not clear it's worth the
			 * trouble.
			 */
			if (transinfo->aggfilter)
			{
				cost_qual_eval_node(&argcosts, (Node *) transinfo->aggfilter,
									root);
				costs->transCost.startup += argcosts.startup;
				costs->transCost.per_tuple += argcosts.per_tuple;
			}
		}

		/*
		 * If the transition type is pass-by-value then it doesn't add
		 * anything to the required size of the hashtable.  If it is
		 * pass-by-reference then we have to add the estimated size of the
		 * value itself, plus palloc overhead.
		 */
		if (!transinfo->transtypeByVal)
		{
			int32		avgwidth;

			/* Use average width if aggregate definition gave one */
			if (transinfo->aggtransspace > 0)
				avgwidth = transinfo->aggtransspace;
			else if (transinfo->transfn_oid == F_ARRAY_APPEND)
			{
				/*
				 * If the transition function is array_append(), it'll use an
				 * expanded array as transvalue, which will occupy at least
				 * ALLOCSET_SMALL_INITSIZE and possibly more.  Use that as the
				 * estimate for lack of a better idea.
				 */
				avgwidth = ALLOCSET_SMALL_INITSIZE;
			}
			else
			{
				avgwidth = get_typavgwidth(transinfo->aggtranstype, transinfo->aggtranstypmod);
			}

			avgwidth = MAXALIGN(avgwidth);
			costs->transitionSpace += avgwidth + 2 * sizeof(void *);
		}
		else if (transinfo->aggtranstype == INTERNALOID)
		{
			/*
			 * INTERNAL transition type is a special case: although INTERNAL
			 * is pass-by-value, it's almost certainly being used as a pointer
			 * to some large data structure.  The aggregate definition can
			 * provide an estimate of the size.  If it doesn't, then we assume
			 * ALLOCSET_DEFAULT_INITSIZE, which is a good guess if the data is
			 * being kept in a private memory context, as is done by
			 * array_agg() for instance.
			 */
			if (transinfo->aggtransspace > 0)
				costs->transitionSpace += transinfo->aggtransspace;
			else
				costs->transitionSpace += ALLOCSET_DEFAULT_INITSIZE;
		}
	}

	foreach(lc, root->agginfos)
	{
		AggInfo    *agginfo = (AggInfo *) lfirst(lc);
		Aggref	   *aggref = agginfo->representative_aggref;

		/*
		 * Add the appropriate component function execution costs to
		 * appropriate totals.
		 */
		if (!DO_AGGSPLIT_SKIPFINAL(aggsplit) &&
			OidIsValid(agginfo->finalfn_oid))
			add_function_cost(root, agginfo->finalfn_oid, NULL,
							  &costs->finalCost);

		/*
		 * If there are direct arguments, treat their evaluation cost like the
		 * cost of the finalfn.
		 */
		if (aggref->aggdirectargs)
		{
			QualCost	argcosts;

			cost_qual_eval_node(&argcosts, (Node *) aggref->aggdirectargs,
								root);
			costs->finalCost.startup += argcosts.startup;
			costs->finalCost.per_tuple += argcosts.per_tuple;
		}
	}
}