summaryrefslogtreecommitdiffstats
path: root/src/backend/utils/adt/numeric.c
blob: e78e0b92479718b429158aa42abe8b11ec73d4e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
/*-------------------------------------------------------------------------
 *
 * numeric.c
 *	  An exact numeric data type for the Postgres database system
 *
 * Original coding 1998, Jan Wieck.  Heavily revised 2003, Tom Lane.
 *
 * Many of the algorithmic ideas are borrowed from David M. Smith's "FM"
 * multiple-precision math library, most recently published as Algorithm
 * 786: Multiple-Precision Complex Arithmetic and Functions, ACM
 * Transactions on Mathematical Software, Vol. 24, No. 4, December 1998,
 * pages 359-367.
 *
 * Copyright (c) 1998-2021, PostgreSQL Global Development Group
 *
 * IDENTIFICATION
 *	  src/backend/utils/adt/numeric.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include <ctype.h>
#include <float.h>
#include <limits.h>
#include <math.h>

#include "catalog/pg_type.h"
#include "common/hashfn.h"
#include "common/int.h"
#include "funcapi.h"
#include "lib/hyperloglog.h"
#include "libpq/pqformat.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "nodes/supportnodes.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/float.h"
#include "utils/guc.h"
#include "utils/int8.h"
#include "utils/numeric.h"
#include "utils/pg_lsn.h"
#include "utils/sortsupport.h"

/* ----------
 * Uncomment the following to enable compilation of dump_numeric()
 * and dump_var() and to get a dump of any result produced by make_result().
 * ----------
#define NUMERIC_DEBUG
 */


/* ----------
 * Local data types
 *
 * Numeric values are represented in a base-NBASE floating point format.
 * Each "digit" ranges from 0 to NBASE-1.  The type NumericDigit is signed
 * and wide enough to store a digit.  We assume that NBASE*NBASE can fit in
 * an int.  Although the purely calculational routines could handle any even
 * NBASE that's less than sqrt(INT_MAX), in practice we are only interested
 * in NBASE a power of ten, so that I/O conversions and decimal rounding
 * are easy.  Also, it's actually more efficient if NBASE is rather less than
 * sqrt(INT_MAX), so that there is "headroom" for mul_var and div_var_fast to
 * postpone processing carries.
 *
 * Values of NBASE other than 10000 are considered of historical interest only
 * and are no longer supported in any sense; no mechanism exists for the client
 * to discover the base, so every client supporting binary mode expects the
 * base-10000 format.  If you plan to change this, also note the numeric
 * abbreviation code, which assumes NBASE=10000.
 * ----------
 */

#if 0
#define NBASE		10
#define HALF_NBASE	5
#define DEC_DIGITS	1			/* decimal digits per NBASE digit */
#define MUL_GUARD_DIGITS	4	/* these are measured in NBASE digits */
#define DIV_GUARD_DIGITS	8

typedef signed char NumericDigit;
#endif

#if 0
#define NBASE		100
#define HALF_NBASE	50
#define DEC_DIGITS	2			/* decimal digits per NBASE digit */
#define MUL_GUARD_DIGITS	3	/* these are measured in NBASE digits */
#define DIV_GUARD_DIGITS	6

typedef signed char NumericDigit;
#endif

#if 1
#define NBASE		10000
#define HALF_NBASE	5000
#define DEC_DIGITS	4			/* decimal digits per NBASE digit */
#define MUL_GUARD_DIGITS	2	/* these are measured in NBASE digits */
#define DIV_GUARD_DIGITS	4

typedef int16 NumericDigit;
#endif

/*
 * The Numeric type as stored on disk.
 *
 * If the high bits of the first word of a NumericChoice (n_header, or
 * n_short.n_header, or n_long.n_sign_dscale) are NUMERIC_SHORT, then the
 * numeric follows the NumericShort format; if they are NUMERIC_POS or
 * NUMERIC_NEG, it follows the NumericLong format. If they are NUMERIC_SPECIAL,
 * the value is a NaN or Infinity.  We currently always store SPECIAL values
 * using just two bytes (i.e. only n_header), but previous releases used only
 * the NumericLong format, so we might find 4-byte NaNs (though not infinities)
 * on disk if a database has been migrated using pg_upgrade.  In either case,
 * the low-order bits of a special value's header are reserved and currently
 * should always be set to zero.
 *
 * In the NumericShort format, the remaining 14 bits of the header word
 * (n_short.n_header) are allocated as follows: 1 for sign (positive or
 * negative), 6 for dynamic scale, and 7 for weight.  In practice, most
 * commonly-encountered values can be represented this way.
 *
 * In the NumericLong format, the remaining 14 bits of the header word
 * (n_long.n_sign_dscale) represent the display scale; and the weight is
 * stored separately in n_weight.
 *
 * NOTE: by convention, values in the packed form have been stripped of
 * all leading and trailing zero digits (where a "digit" is of base NBASE).
 * In particular, if the value is zero, there will be no digits at all!
 * The weight is arbitrary in that case, but we normally set it to zero.
 */

struct NumericShort
{
	uint16		n_header;		/* Sign + display scale + weight */
	NumericDigit n_data[FLEXIBLE_ARRAY_MEMBER]; /* Digits */
};

struct NumericLong
{
	uint16		n_sign_dscale;	/* Sign + display scale */
	int16		n_weight;		/* Weight of 1st digit	*/
	NumericDigit n_data[FLEXIBLE_ARRAY_MEMBER]; /* Digits */
};

union NumericChoice
{
	uint16		n_header;		/* Header word */
	struct NumericLong n_long;	/* Long form (4-byte header) */
	struct NumericShort n_short;	/* Short form (2-byte header) */
};

struct NumericData
{
	int32		vl_len_;		/* varlena header (do not touch directly!) */
	union NumericChoice choice; /* choice of format */
};


/*
 * Interpretation of high bits.
 */

#define NUMERIC_SIGN_MASK	0xC000
#define NUMERIC_POS			0x0000
#define NUMERIC_NEG			0x4000
#define NUMERIC_SHORT		0x8000
#define NUMERIC_SPECIAL		0xC000

#define NUMERIC_FLAGBITS(n) ((n)->choice.n_header & NUMERIC_SIGN_MASK)
#define NUMERIC_IS_SHORT(n)		(NUMERIC_FLAGBITS(n) == NUMERIC_SHORT)
#define NUMERIC_IS_SPECIAL(n)	(NUMERIC_FLAGBITS(n) == NUMERIC_SPECIAL)

#define NUMERIC_HDRSZ	(VARHDRSZ + sizeof(uint16) + sizeof(int16))
#define NUMERIC_HDRSZ_SHORT (VARHDRSZ + sizeof(uint16))

/*
 * If the flag bits are NUMERIC_SHORT or NUMERIC_SPECIAL, we want the short
 * header; otherwise, we want the long one.  Instead of testing against each
 * value, we can just look at the high bit, for a slight efficiency gain.
 */
#define NUMERIC_HEADER_IS_SHORT(n)	(((n)->choice.n_header & 0x8000) != 0)
#define NUMERIC_HEADER_SIZE(n) \
	(VARHDRSZ + sizeof(uint16) + \
	 (NUMERIC_HEADER_IS_SHORT(n) ? 0 : sizeof(int16)))

/*
 * Definitions for special values (NaN, positive infinity, negative infinity).
 *
 * The two bits after the NUMERIC_SPECIAL bits are 00 for NaN, 01 for positive
 * infinity, 11 for negative infinity.  (This makes the sign bit match where
 * it is in a short-format value, though we make no use of that at present.)
 * We could mask off the remaining bits before testing the active bits, but
 * currently those bits must be zeroes, so masking would just add cycles.
 */
#define NUMERIC_EXT_SIGN_MASK	0xF000	/* high bits plus NaN/Inf flag bits */
#define NUMERIC_NAN				0xC000
#define NUMERIC_PINF			0xD000
#define NUMERIC_NINF			0xF000
#define NUMERIC_INF_SIGN_MASK	0x2000

#define NUMERIC_EXT_FLAGBITS(n)	((n)->choice.n_header & NUMERIC_EXT_SIGN_MASK)
#define NUMERIC_IS_NAN(n)		((n)->choice.n_header == NUMERIC_NAN)
#define NUMERIC_IS_PINF(n)		((n)->choice.n_header == NUMERIC_PINF)
#define NUMERIC_IS_NINF(n)		((n)->choice.n_header == NUMERIC_NINF)
#define NUMERIC_IS_INF(n) \
	(((n)->choice.n_header & ~NUMERIC_INF_SIGN_MASK) == NUMERIC_PINF)

/*
 * Short format definitions.
 */

#define NUMERIC_SHORT_SIGN_MASK			0x2000
#define NUMERIC_SHORT_DSCALE_MASK		0x1F80
#define NUMERIC_SHORT_DSCALE_SHIFT		7
#define NUMERIC_SHORT_DSCALE_MAX		\
	(NUMERIC_SHORT_DSCALE_MASK >> NUMERIC_SHORT_DSCALE_SHIFT)
#define NUMERIC_SHORT_WEIGHT_SIGN_MASK	0x0040
#define NUMERIC_SHORT_WEIGHT_MASK		0x003F
#define NUMERIC_SHORT_WEIGHT_MAX		NUMERIC_SHORT_WEIGHT_MASK
#define NUMERIC_SHORT_WEIGHT_MIN		(-(NUMERIC_SHORT_WEIGHT_MASK+1))

/*
 * Extract sign, display scale, weight.  These macros extract field values
 * suitable for the NumericVar format from the Numeric (on-disk) format.
 *
 * Note that we don't trouble to ensure that dscale and weight read as zero
 * for an infinity; however, that doesn't matter since we never convert
 * "special" numerics to NumericVar form.  Only the constants defined below
 * (const_nan, etc) ever represent a non-finite value as a NumericVar.
 */

#define NUMERIC_DSCALE_MASK			0x3FFF
#define NUMERIC_DSCALE_MAX			NUMERIC_DSCALE_MASK

#define NUMERIC_SIGN(n) \
	(NUMERIC_IS_SHORT(n) ? \
		(((n)->choice.n_short.n_header & NUMERIC_SHORT_SIGN_MASK) ? \
		 NUMERIC_NEG : NUMERIC_POS) : \
		(NUMERIC_IS_SPECIAL(n) ? \
		 NUMERIC_EXT_FLAGBITS(n) : NUMERIC_FLAGBITS(n)))
#define NUMERIC_DSCALE(n)	(NUMERIC_HEADER_IS_SHORT((n)) ? \
	((n)->choice.n_short.n_header & NUMERIC_SHORT_DSCALE_MASK) \
		>> NUMERIC_SHORT_DSCALE_SHIFT \
	: ((n)->choice.n_long.n_sign_dscale & NUMERIC_DSCALE_MASK))
#define NUMERIC_WEIGHT(n)	(NUMERIC_HEADER_IS_SHORT((n)) ? \
	(((n)->choice.n_short.n_header & NUMERIC_SHORT_WEIGHT_SIGN_MASK ? \
		~NUMERIC_SHORT_WEIGHT_MASK : 0) \
	 | ((n)->choice.n_short.n_header & NUMERIC_SHORT_WEIGHT_MASK)) \
	: ((n)->choice.n_long.n_weight))

/* ----------
 * NumericVar is the format we use for arithmetic.  The digit-array part
 * is the same as the NumericData storage format, but the header is more
 * complex.
 *
 * The value represented by a NumericVar is determined by the sign, weight,
 * ndigits, and digits[] array.  If it is a "special" value (NaN or Inf)
 * then only the sign field matters; ndigits should be zero, and the weight
 * and dscale fields are ignored.
 *
 * Note: the first digit of a NumericVar's value is assumed to be multiplied
 * by NBASE ** weight.  Another way to say it is that there are weight+1
 * digits before the decimal point.  It is possible to have weight < 0.
 *
 * buf points at the physical start of the palloc'd digit buffer for the
 * NumericVar.  digits points at the first digit in actual use (the one
 * with the specified weight).  We normally leave an unused digit or two
 * (preset to zeroes) between buf and digits, so that there is room to store
 * a carry out of the top digit without reallocating space.  We just need to
 * decrement digits (and increment weight) to make room for the carry digit.
 * (There is no such extra space in a numeric value stored in the database,
 * only in a NumericVar in memory.)
 *
 * If buf is NULL then the digit buffer isn't actually palloc'd and should
 * not be freed --- see the constants below for an example.
 *
 * dscale, or display scale, is the nominal precision expressed as number
 * of digits after the decimal point (it must always be >= 0 at present).
 * dscale may be more than the number of physically stored fractional digits,
 * implying that we have suppressed storage of significant trailing zeroes.
 * It should never be less than the number of stored digits, since that would
 * imply hiding digits that are present.  NOTE that dscale is always expressed
 * in *decimal* digits, and so it may correspond to a fractional number of
 * base-NBASE digits --- divide by DEC_DIGITS to convert to NBASE digits.
 *
 * rscale, or result scale, is the target precision for a computation.
 * Like dscale it is expressed as number of *decimal* digits after the decimal
 * point, and is always >= 0 at present.
 * Note that rscale is not stored in variables --- it's figured on-the-fly
 * from the dscales of the inputs.
 *
 * While we consistently use "weight" to refer to the base-NBASE weight of
 * a numeric value, it is convenient in some scale-related calculations to
 * make use of the base-10 weight (ie, the approximate log10 of the value).
 * To avoid confusion, such a decimal-units weight is called a "dweight".
 *
 * NB: All the variable-level functions are written in a style that makes it
 * possible to give one and the same variable as argument and destination.
 * This is feasible because the digit buffer is separate from the variable.
 * ----------
 */
typedef struct NumericVar
{
	int			ndigits;		/* # of digits in digits[] - can be 0! */
	int			weight;			/* weight of first digit */
	int			sign;			/* NUMERIC_POS, _NEG, _NAN, _PINF, or _NINF */
	int			dscale;			/* display scale */
	NumericDigit *buf;			/* start of palloc'd space for digits[] */
	NumericDigit *digits;		/* base-NBASE digits */
} NumericVar;


/* ----------
 * Data for generate_series
 * ----------
 */
typedef struct
{
	NumericVar	current;
	NumericVar	stop;
	NumericVar	step;
} generate_series_numeric_fctx;


/* ----------
 * Sort support.
 * ----------
 */
typedef struct
{
	void	   *buf;			/* buffer for short varlenas */
	int64		input_count;	/* number of non-null values seen */
	bool		estimating;		/* true if estimating cardinality */

	hyperLogLogState abbr_card; /* cardinality estimator */
} NumericSortSupport;


/* ----------
 * Fast sum accumulator.
 *
 * NumericSumAccum is used to implement SUM(), and other standard aggregates
 * that track the sum of input values.  It uses 32-bit integers to store the
 * digits, instead of the normal 16-bit integers (with NBASE=10000).  This
 * way, we can safely accumulate up to NBASE - 1 values without propagating
 * carry, before risking overflow of any of the digits.  'num_uncarried'
 * tracks how many values have been accumulated without propagating carry.
 *
 * Positive and negative values are accumulated separately, in 'pos_digits'
 * and 'neg_digits'.  This is simpler and faster than deciding whether to add
 * or subtract from the current value, for each new value (see sub_var() for
 * the logic we avoid by doing this).  Both buffers are of same size, and
 * have the same weight and scale.  In accum_sum_final(), the positive and
 * negative sums are added together to produce the final result.
 *
 * When a new value has a larger ndigits or weight than the accumulator
 * currently does, the accumulator is enlarged to accommodate the new value.
 * We normally have one zero digit reserved for carry propagation, and that
 * is indicated by the 'have_carry_space' flag.  When accum_sum_carry() uses
 * up the reserved digit, it clears the 'have_carry_space' flag.  The next
 * call to accum_sum_add() will enlarge the buffer, to make room for the
 * extra digit, and set the flag again.
 *
 * To initialize a new accumulator, simply reset all fields to zeros.
 *
 * The accumulator does not handle NaNs.
 * ----------
 */
typedef struct NumericSumAccum
{
	int			ndigits;
	int			weight;
	int			dscale;
	int			num_uncarried;
	bool		have_carry_space;
	int32	   *pos_digits;
	int32	   *neg_digits;
} NumericSumAccum;


/*
 * We define our own macros for packing and unpacking abbreviated-key
 * representations for numeric values in order to avoid depending on
 * USE_FLOAT8_BYVAL.  The type of abbreviation we use is based only on
 * the size of a datum, not the argument-passing convention for float8.
 *
 * The range of abbreviations for finite values is from +PG_INT64/32_MAX
 * to -PG_INT64/32_MAX.  NaN has the abbreviation PG_INT64/32_MIN, and we
 * define the sort ordering to make that work out properly (see further
 * comments below).  PINF and NINF share the abbreviations of the largest
 * and smallest finite abbreviation classes.
 */
#define NUMERIC_ABBREV_BITS (SIZEOF_DATUM * BITS_PER_BYTE)
#if SIZEOF_DATUM == 8
#define NumericAbbrevGetDatum(X) ((Datum) (X))
#define DatumGetNumericAbbrev(X) ((int64) (X))
#define NUMERIC_ABBREV_NAN		 NumericAbbrevGetDatum(PG_INT64_MIN)
#define NUMERIC_ABBREV_PINF		 NumericAbbrevGetDatum(-PG_INT64_MAX)
#define NUMERIC_ABBREV_NINF		 NumericAbbrevGetDatum(PG_INT64_MAX)
#else
#define NumericAbbrevGetDatum(X) ((Datum) (X))
#define DatumGetNumericAbbrev(X) ((int32) (X))
#define NUMERIC_ABBREV_NAN		 NumericAbbrevGetDatum(PG_INT32_MIN)
#define NUMERIC_ABBREV_PINF		 NumericAbbrevGetDatum(-PG_INT32_MAX)
#define NUMERIC_ABBREV_NINF		 NumericAbbrevGetDatum(PG_INT32_MAX)
#endif


/* ----------
 * Some preinitialized constants
 * ----------
 */
static const NumericDigit const_zero_data[1] = {0};
static const NumericVar const_zero =
{0, 0, NUMERIC_POS, 0, NULL, (NumericDigit *) const_zero_data};

static const NumericDigit const_one_data[1] = {1};
static const NumericVar const_one =
{1, 0, NUMERIC_POS, 0, NULL, (NumericDigit *) const_one_data};

static const NumericVar const_minus_one =
{1, 0, NUMERIC_NEG, 0, NULL, (NumericDigit *) const_one_data};

static const NumericDigit const_two_data[1] = {2};
static const NumericVar const_two =
{1, 0, NUMERIC_POS, 0, NULL, (NumericDigit *) const_two_data};

#if DEC_DIGITS == 4
static const NumericDigit const_zero_point_nine_data[1] = {9000};
#elif DEC_DIGITS == 2
static const NumericDigit const_zero_point_nine_data[1] = {90};
#elif DEC_DIGITS == 1
static const NumericDigit const_zero_point_nine_data[1] = {9};
#endif
static const NumericVar const_zero_point_nine =
{1, -1, NUMERIC_POS, 1, NULL, (NumericDigit *) const_zero_point_nine_data};

#if DEC_DIGITS == 4
static const NumericDigit const_one_point_one_data[2] = {1, 1000};
#elif DEC_DIGITS == 2
static const NumericDigit const_one_point_one_data[2] = {1, 10};
#elif DEC_DIGITS == 1
static const NumericDigit const_one_point_one_data[2] = {1, 1};
#endif
static const NumericVar const_one_point_one =
{2, 0, NUMERIC_POS, 1, NULL, (NumericDigit *) const_one_point_one_data};

static const NumericVar const_nan =
{0, 0, NUMERIC_NAN, 0, NULL, NULL};

static const NumericVar const_pinf =
{0, 0, NUMERIC_PINF, 0, NULL, NULL};

static const NumericVar const_ninf =
{0, 0, NUMERIC_NINF, 0, NULL, NULL};

#if DEC_DIGITS == 4
static const int round_powers[4] = {0, 1000, 100, 10};
#endif


/* ----------
 * Local functions
 * ----------
 */

#ifdef NUMERIC_DEBUG
static void dump_numeric(const char *str, Numeric num);
static void dump_var(const char *str, NumericVar *var);
#else
#define dump_numeric(s,n)
#define dump_var(s,v)
#endif

#define digitbuf_alloc(ndigits)  \
	((NumericDigit *) palloc((ndigits) * sizeof(NumericDigit)))
#define digitbuf_free(buf)	\
	do { \
		 if ((buf) != NULL) \
			 pfree(buf); \
	} while (0)

#define init_var(v)		memset(v, 0, sizeof(NumericVar))

#define NUMERIC_DIGITS(num) (NUMERIC_HEADER_IS_SHORT(num) ? \
	(num)->choice.n_short.n_data : (num)->choice.n_long.n_data)
#define NUMERIC_NDIGITS(num) \
	((VARSIZE(num) - NUMERIC_HEADER_SIZE(num)) / sizeof(NumericDigit))
#define NUMERIC_CAN_BE_SHORT(scale,weight) \
	((scale) <= NUMERIC_SHORT_DSCALE_MAX && \
	(weight) <= NUMERIC_SHORT_WEIGHT_MAX && \
	(weight) >= NUMERIC_SHORT_WEIGHT_MIN)

static void alloc_var(NumericVar *var, int ndigits);
static void free_var(NumericVar *var);
static void zero_var(NumericVar *var);

static const char *set_var_from_str(const char *str, const char *cp,
									NumericVar *dest);
static void set_var_from_num(Numeric value, NumericVar *dest);
static void init_var_from_num(Numeric num, NumericVar *dest);
static void set_var_from_var(const NumericVar *value, NumericVar *dest);
static char *get_str_from_var(const NumericVar *var);
static char *get_str_from_var_sci(const NumericVar *var, int rscale);

static Numeric duplicate_numeric(Numeric num);
static Numeric make_result(const NumericVar *var);
static Numeric make_result_opt_error(const NumericVar *var, bool *error);

static void apply_typmod(NumericVar *var, int32 typmod);
static void apply_typmod_special(Numeric num, int32 typmod);

static bool numericvar_to_int32(const NumericVar *var, int32 *result);
static bool numericvar_to_int64(const NumericVar *var, int64 *result);
static void int64_to_numericvar(int64 val, NumericVar *var);
static bool numericvar_to_uint64(const NumericVar *var, uint64 *result);
#ifdef HAVE_INT128
static bool numericvar_to_int128(const NumericVar *var, int128 *result);
static void int128_to_numericvar(int128 val, NumericVar *var);
#endif
static double numericvar_to_double_no_overflow(const NumericVar *var);

static Datum numeric_abbrev_convert(Datum original_datum, SortSupport ssup);
static bool numeric_abbrev_abort(int memtupcount, SortSupport ssup);
static int	numeric_fast_cmp(Datum x, Datum y, SortSupport ssup);
static int	numeric_cmp_abbrev(Datum x, Datum y, SortSupport ssup);

static Datum numeric_abbrev_convert_var(const NumericVar *var,
										NumericSortSupport *nss);

static int	cmp_numerics(Numeric num1, Numeric num2);
static int	cmp_var(const NumericVar *var1, const NumericVar *var2);
static int	cmp_var_common(const NumericDigit *var1digits, int var1ndigits,
						   int var1weight, int var1sign,
						   const NumericDigit *var2digits, int var2ndigits,
						   int var2weight, int var2sign);
static void add_var(const NumericVar *var1, const NumericVar *var2,
					NumericVar *result);
static void sub_var(const NumericVar *var1, const NumericVar *var2,
					NumericVar *result);
static void mul_var(const NumericVar *var1, const NumericVar *var2,
					NumericVar *result,
					int rscale);
static void div_var(const NumericVar *var1, const NumericVar *var2,
					NumericVar *result,
					int rscale, bool round);
static void div_var_fast(const NumericVar *var1, const NumericVar *var2,
						 NumericVar *result, int rscale, bool round);
static int	select_div_scale(const NumericVar *var1, const NumericVar *var2);
static void mod_var(const NumericVar *var1, const NumericVar *var2,
					NumericVar *result);
static void div_mod_var(const NumericVar *var1, const NumericVar *var2,
						NumericVar *quot, NumericVar *rem);
static void ceil_var(const NumericVar *var, NumericVar *result);
static void floor_var(const NumericVar *var, NumericVar *result);

static void gcd_var(const NumericVar *var1, const NumericVar *var2,
					NumericVar *result);
static void sqrt_var(const NumericVar *arg, NumericVar *result, int rscale);
static void exp_var(const NumericVar *arg, NumericVar *result, int rscale);
static int	estimate_ln_dweight(const NumericVar *var);
static void ln_var(const NumericVar *arg, NumericVar *result, int rscale);
static void log_var(const NumericVar *base, const NumericVar *num,
					NumericVar *result);
static void power_var(const NumericVar *base, const NumericVar *exp,
					  NumericVar *result);
static void power_var_int(const NumericVar *base, int exp, NumericVar *result,
						  int rscale);
static void power_ten_int(int exp, NumericVar *result);

static int	cmp_abs(const NumericVar *var1, const NumericVar *var2);
static int	cmp_abs_common(const NumericDigit *var1digits, int var1ndigits,
						   int var1weight,
						   const NumericDigit *var2digits, int var2ndigits,
						   int var2weight);
static void add_abs(const NumericVar *var1, const NumericVar *var2,
					NumericVar *result);
static void sub_abs(const NumericVar *var1, const NumericVar *var2,
					NumericVar *result);
static void round_var(NumericVar *var, int rscale);
static void trunc_var(NumericVar *var, int rscale);
static void strip_var(NumericVar *var);
static void compute_bucket(Numeric operand, Numeric bound1, Numeric bound2,
						   const NumericVar *count_var, bool reversed_bounds,
						   NumericVar *result_var);

static void accum_sum_add(NumericSumAccum *accum, const NumericVar *var1);
static void accum_sum_rescale(NumericSumAccum *accum, const NumericVar *val);
static void accum_sum_carry(NumericSumAccum *accum);
static void accum_sum_reset(NumericSumAccum *accum);
static void accum_sum_final(NumericSumAccum *accum, NumericVar *result);
static void accum_sum_copy(NumericSumAccum *dst, NumericSumAccum *src);
static void accum_sum_combine(NumericSumAccum *accum, NumericSumAccum *accum2);


/* ----------------------------------------------------------------------
 *
 * Input-, output- and rounding-functions
 *
 * ----------------------------------------------------------------------
 */


/*
 * numeric_in() -
 *
 *	Input function for numeric data type
 */
Datum
numeric_in(PG_FUNCTION_ARGS)
{
	char	   *str = PG_GETARG_CSTRING(0);

#ifdef NOT_USED
	Oid			typelem = PG_GETARG_OID(1);
#endif
	int32		typmod = PG_GETARG_INT32(2);
	Numeric		res;
	const char *cp;

	/* Skip leading spaces */
	cp = str;
	while (*cp)
	{
		if (!isspace((unsigned char) *cp))
			break;
		cp++;
	}

	/*
	 * Check for NaN and infinities.  We recognize the same strings allowed by
	 * float8in().
	 */
	if (pg_strncasecmp(cp, "NaN", 3) == 0)
	{
		res = make_result(&const_nan);
		cp += 3;
	}
	else if (pg_strncasecmp(cp, "Infinity", 8) == 0)
	{
		res = make_result(&const_pinf);
		cp += 8;
	}
	else if (pg_strncasecmp(cp, "+Infinity", 9) == 0)
	{
		res = make_result(&const_pinf);
		cp += 9;
	}
	else if (pg_strncasecmp(cp, "-Infinity", 9) == 0)
	{
		res = make_result(&const_ninf);
		cp += 9;
	}
	else if (pg_strncasecmp(cp, "inf", 3) == 0)
	{
		res = make_result(&const_pinf);
		cp += 3;
	}
	else if (pg_strncasecmp(cp, "+inf", 4) == 0)
	{
		res = make_result(&const_pinf);
		cp += 4;
	}
	else if (pg_strncasecmp(cp, "-inf", 4) == 0)
	{
		res = make_result(&const_ninf);
		cp += 4;
	}
	else
	{
		/*
		 * Use set_var_from_str() to parse a normal numeric value
		 */
		NumericVar	value;

		init_var(&value);

		cp = set_var_from_str(str, cp, &value);

		/*
		 * We duplicate a few lines of code here because we would like to
		 * throw any trailing-junk syntax error before any semantic error
		 * resulting from apply_typmod.  We can't easily fold the two cases
		 * together because we mustn't apply apply_typmod to a NaN/Inf.
		 */
		while (*cp)
		{
			if (!isspace((unsigned char) *cp))
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
						 errmsg("invalid input syntax for type %s: \"%s\"",
								"numeric", str)));
			cp++;
		}

		apply_typmod(&value, typmod);

		res = make_result(&value);
		free_var(&value);

		PG_RETURN_NUMERIC(res);
	}

	/* Should be nothing left but spaces */
	while (*cp)
	{
		if (!isspace((unsigned char) *cp))
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
					 errmsg("invalid input syntax for type %s: \"%s\"",
							"numeric", str)));
		cp++;
	}

	/* As above, throw any typmod error after finishing syntax check */
	apply_typmod_special(res, typmod);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_out() -
 *
 *	Output function for numeric data type
 */
Datum
numeric_out(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	NumericVar	x;
	char	   *str;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_PINF(num))
			PG_RETURN_CSTRING(pstrdup("Infinity"));
		else if (NUMERIC_IS_NINF(num))
			PG_RETURN_CSTRING(pstrdup("-Infinity"));
		else
			PG_RETURN_CSTRING(pstrdup("NaN"));
	}

	/*
	 * Get the number in the variable format.
	 */
	init_var_from_num(num, &x);

	str = get_str_from_var(&x);

	PG_RETURN_CSTRING(str);
}

/*
 * numeric_is_nan() -
 *
 *	Is Numeric value a NaN?
 */
bool
numeric_is_nan(Numeric num)
{
	return NUMERIC_IS_NAN(num);
}

/*
 * numeric_is_inf() -
 *
 *	Is Numeric value an infinity?
 */
bool
numeric_is_inf(Numeric num)
{
	return NUMERIC_IS_INF(num);
}

/*
 * numeric_is_integral() -
 *
 *	Is Numeric value integral?
 */
static bool
numeric_is_integral(Numeric num)
{
	NumericVar	arg;

	/* Reject NaN, but infinities are considered integral */
	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_NAN(num))
			return false;
		return true;
	}

	/* Integral if there are no digits to the right of the decimal point */
	init_var_from_num(num, &arg);

	return (arg.ndigits == 0 || arg.ndigits <= arg.weight + 1);
}

/*
 * numeric_maximum_size() -
 *
 *	Maximum size of a numeric with given typmod, or -1 if unlimited/unknown.
 */
int32
numeric_maximum_size(int32 typmod)
{
	int			precision;
	int			numeric_digits;

	if (typmod < (int32) (VARHDRSZ))
		return -1;

	/* precision (ie, max # of digits) is in upper bits of typmod */
	precision = ((typmod - VARHDRSZ) >> 16) & 0xffff;

	/*
	 * This formula computes the maximum number of NumericDigits we could need
	 * in order to store the specified number of decimal digits. Because the
	 * weight is stored as a number of NumericDigits rather than a number of
	 * decimal digits, it's possible that the first NumericDigit will contain
	 * only a single decimal digit.  Thus, the first two decimal digits can
	 * require two NumericDigits to store, but it isn't until we reach
	 * DEC_DIGITS + 2 decimal digits that we potentially need a third
	 * NumericDigit.
	 */
	numeric_digits = (precision + 2 * (DEC_DIGITS - 1)) / DEC_DIGITS;

	/*
	 * In most cases, the size of a numeric will be smaller than the value
	 * computed below, because the varlena header will typically get toasted
	 * down to a single byte before being stored on disk, and it may also be
	 * possible to use a short numeric header.  But our job here is to compute
	 * the worst case.
	 */
	return NUMERIC_HDRSZ + (numeric_digits * sizeof(NumericDigit));
}

/*
 * numeric_out_sci() -
 *
 *	Output function for numeric data type in scientific notation.
 */
char *
numeric_out_sci(Numeric num, int scale)
{
	NumericVar	x;
	char	   *str;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_PINF(num))
			return pstrdup("Infinity");
		else if (NUMERIC_IS_NINF(num))
			return pstrdup("-Infinity");
		else
			return pstrdup("NaN");
	}

	init_var_from_num(num, &x);

	str = get_str_from_var_sci(&x, scale);

	return str;
}

/*
 * numeric_normalize() -
 *
 *	Output function for numeric data type, suppressing insignificant trailing
 *	zeroes and then any trailing decimal point.  The intent of this is to
 *	produce strings that are equal if and only if the input numeric values
 *	compare equal.
 */
char *
numeric_normalize(Numeric num)
{
	NumericVar	x;
	char	   *str;
	int			last;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_PINF(num))
			return pstrdup("Infinity");
		else if (NUMERIC_IS_NINF(num))
			return pstrdup("-Infinity");
		else
			return pstrdup("NaN");
	}

	init_var_from_num(num, &x);

	str = get_str_from_var(&x);

	/* If there's no decimal point, there's certainly nothing to remove. */
	if (strchr(str, '.') != NULL)
	{
		/*
		 * Back up over trailing fractional zeroes.  Since there is a decimal
		 * point, this loop will terminate safely.
		 */
		last = strlen(str) - 1;
		while (str[last] == '0')
			last--;

		/* We want to get rid of the decimal point too, if it's now last. */
		if (str[last] == '.')
			last--;

		/* Delete whatever we backed up over. */
		str[last + 1] = '\0';
	}

	return str;
}

/*
 *		numeric_recv			- converts external binary format to numeric
 *
 * External format is a sequence of int16's:
 * ndigits, weight, sign, dscale, NumericDigits.
 */
Datum
numeric_recv(PG_FUNCTION_ARGS)
{
	StringInfo	buf = (StringInfo) PG_GETARG_POINTER(0);

#ifdef NOT_USED
	Oid			typelem = PG_GETARG_OID(1);
#endif
	int32		typmod = PG_GETARG_INT32(2);
	NumericVar	value;
	Numeric		res;
	int			len,
				i;

	init_var(&value);

	len = (uint16) pq_getmsgint(buf, sizeof(uint16));

	alloc_var(&value, len);

	value.weight = (int16) pq_getmsgint(buf, sizeof(int16));
	/* we allow any int16 for weight --- OK? */

	value.sign = (uint16) pq_getmsgint(buf, sizeof(uint16));
	if (!(value.sign == NUMERIC_POS ||
		  value.sign == NUMERIC_NEG ||
		  value.sign == NUMERIC_NAN ||
		  value.sign == NUMERIC_PINF ||
		  value.sign == NUMERIC_NINF))
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
				 errmsg("invalid sign in external \"numeric\" value")));

	value.dscale = (uint16) pq_getmsgint(buf, sizeof(uint16));
	if ((value.dscale & NUMERIC_DSCALE_MASK) != value.dscale)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
				 errmsg("invalid scale in external \"numeric\" value")));

	for (i = 0; i < len; i++)
	{
		NumericDigit d = pq_getmsgint(buf, sizeof(NumericDigit));

		if (d < 0 || d >= NBASE)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
					 errmsg("invalid digit in external \"numeric\" value")));
		value.digits[i] = d;
	}

	/*
	 * If the given dscale would hide any digits, truncate those digits away.
	 * We could alternatively throw an error, but that would take a bunch of
	 * extra code (about as much as trunc_var involves), and it might cause
	 * client compatibility issues.  Be careful not to apply trunc_var to
	 * special values, as it could do the wrong thing; we don't need it
	 * anyway, since make_result will ignore all but the sign field.
	 *
	 * After doing that, be sure to check the typmod restriction.
	 */
	if (value.sign == NUMERIC_POS ||
		value.sign == NUMERIC_NEG)
	{
		trunc_var(&value, value.dscale);

		apply_typmod(&value, typmod);

		res = make_result(&value);
	}
	else
	{
		/* apply_typmod_special wants us to make the Numeric first */
		res = make_result(&value);

		apply_typmod_special(res, typmod);
	}

	free_var(&value);

	PG_RETURN_NUMERIC(res);
}

/*
 *		numeric_send			- converts numeric to binary format
 */
Datum
numeric_send(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	NumericVar	x;
	StringInfoData buf;
	int			i;

	init_var_from_num(num, &x);

	pq_begintypsend(&buf);

	pq_sendint16(&buf, x.ndigits);
	pq_sendint16(&buf, x.weight);
	pq_sendint16(&buf, x.sign);
	pq_sendint16(&buf, x.dscale);
	for (i = 0; i < x.ndigits; i++)
		pq_sendint16(&buf, x.digits[i]);

	PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}


/*
 * numeric_support()
 *
 * Planner support function for the numeric() length coercion function.
 *
 * Flatten calls that solely represent increases in allowable precision.
 * Scale changes mutate every datum, so they are unoptimizable.  Some values,
 * e.g. 1E-1001, can only fit into an unconstrained numeric, so a change from
 * an unconstrained numeric to any constrained numeric is also unoptimizable.
 */
Datum
numeric_support(PG_FUNCTION_ARGS)
{
	Node	   *rawreq = (Node *) PG_GETARG_POINTER(0);
	Node	   *ret = NULL;

	if (IsA(rawreq, SupportRequestSimplify))
	{
		SupportRequestSimplify *req = (SupportRequestSimplify *) rawreq;
		FuncExpr   *expr = req->fcall;
		Node	   *typmod;

		Assert(list_length(expr->args) >= 2);

		typmod = (Node *) lsecond(expr->args);

		if (IsA(typmod, Const) && !((Const *) typmod)->constisnull)
		{
			Node	   *source = (Node *) linitial(expr->args);
			int32		old_typmod = exprTypmod(source);
			int32		new_typmod = DatumGetInt32(((Const *) typmod)->constvalue);
			int32		old_scale = (old_typmod - VARHDRSZ) & 0xffff;
			int32		new_scale = (new_typmod - VARHDRSZ) & 0xffff;
			int32		old_precision = (old_typmod - VARHDRSZ) >> 16 & 0xffff;
			int32		new_precision = (new_typmod - VARHDRSZ) >> 16 & 0xffff;

			/*
			 * If new_typmod < VARHDRSZ, the destination is unconstrained;
			 * that's always OK.  If old_typmod >= VARHDRSZ, the source is
			 * constrained, and we're OK if the scale is unchanged and the
			 * precision is not decreasing.  See further notes in function
			 * header comment.
			 */
			if (new_typmod < (int32) VARHDRSZ ||
				(old_typmod >= (int32) VARHDRSZ &&
				 new_scale == old_scale && new_precision >= old_precision))
				ret = relabel_to_typmod(source, new_typmod);
		}
	}

	PG_RETURN_POINTER(ret);
}

/*
 * numeric() -
 *
 *	This is a special function called by the Postgres database system
 *	before a value is stored in a tuple's attribute. The precision and
 *	scale of the attribute have to be applied on the value.
 */
Datum
numeric		(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	int32		typmod = PG_GETARG_INT32(1);
	Numeric		new;
	int32		tmp_typmod;
	int			precision;
	int			scale;
	int			ddigits;
	int			maxdigits;
	NumericVar	var;

	/*
	 * Handle NaN and infinities: if apply_typmod_special doesn't complain,
	 * just return a copy of the input.
	 */
	if (NUMERIC_IS_SPECIAL(num))
	{
		apply_typmod_special(num, typmod);
		PG_RETURN_NUMERIC(duplicate_numeric(num));
	}

	/*
	 * If the value isn't a valid type modifier, simply return a copy of the
	 * input value
	 */
	if (typmod < (int32) (VARHDRSZ))
		PG_RETURN_NUMERIC(duplicate_numeric(num));

	/*
	 * Get the precision and scale out of the typmod value
	 */
	tmp_typmod = typmod - VARHDRSZ;
	precision = (tmp_typmod >> 16) & 0xffff;
	scale = tmp_typmod & 0xffff;
	maxdigits = precision - scale;

	/*
	 * If the number is certainly in bounds and due to the target scale no
	 * rounding could be necessary, just make a copy of the input and modify
	 * its scale fields, unless the larger scale forces us to abandon the
	 * short representation.  (Note we assume the existing dscale is
	 * honest...)
	 */
	ddigits = (NUMERIC_WEIGHT(num) + 1) * DEC_DIGITS;
	if (ddigits <= maxdigits && scale >= NUMERIC_DSCALE(num)
		&& (NUMERIC_CAN_BE_SHORT(scale, NUMERIC_WEIGHT(num))
			|| !NUMERIC_IS_SHORT(num)))
	{
		new = duplicate_numeric(num);
		if (NUMERIC_IS_SHORT(num))
			new->choice.n_short.n_header =
				(num->choice.n_short.n_header & ~NUMERIC_SHORT_DSCALE_MASK)
				| (scale << NUMERIC_SHORT_DSCALE_SHIFT);
		else
			new->choice.n_long.n_sign_dscale = NUMERIC_SIGN(new) |
				((uint16) scale & NUMERIC_DSCALE_MASK);
		PG_RETURN_NUMERIC(new);
	}

	/*
	 * We really need to fiddle with things - unpack the number into a
	 * variable and let apply_typmod() do it.
	 */
	init_var(&var);

	set_var_from_num(num, &var);
	apply_typmod(&var, typmod);
	new = make_result(&var);

	free_var(&var);

	PG_RETURN_NUMERIC(new);
}

Datum
numerictypmodin(PG_FUNCTION_ARGS)
{
	ArrayType  *ta = PG_GETARG_ARRAYTYPE_P(0);
	int32	   *tl;
	int			n;
	int32		typmod;

	tl = ArrayGetIntegerTypmods(ta, &n);

	if (n == 2)
	{
		if (tl[0] < 1 || tl[0] > NUMERIC_MAX_PRECISION)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
					 errmsg("NUMERIC precision %d must be between 1 and %d",
							tl[0], NUMERIC_MAX_PRECISION)));
		if (tl[1] < 0 || tl[1] > tl[0])
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
					 errmsg("NUMERIC scale %d must be between 0 and precision %d",
							tl[1], tl[0])));
		typmod = ((tl[0] << 16) | tl[1]) + VARHDRSZ;
	}
	else if (n == 1)
	{
		if (tl[0] < 1 || tl[0] > NUMERIC_MAX_PRECISION)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
					 errmsg("NUMERIC precision %d must be between 1 and %d",
							tl[0], NUMERIC_MAX_PRECISION)));
		/* scale defaults to zero */
		typmod = (tl[0] << 16) + VARHDRSZ;
	}
	else
	{
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
				 errmsg("invalid NUMERIC type modifier")));
		typmod = 0;				/* keep compiler quiet */
	}

	PG_RETURN_INT32(typmod);
}

Datum
numerictypmodout(PG_FUNCTION_ARGS)
{
	int32		typmod = PG_GETARG_INT32(0);
	char	   *res = (char *) palloc(64);

	if (typmod >= 0)
		snprintf(res, 64, "(%d,%d)",
				 ((typmod - VARHDRSZ) >> 16) & 0xffff,
				 (typmod - VARHDRSZ) & 0xffff);
	else
		*res = '\0';

	PG_RETURN_CSTRING(res);
}


/* ----------------------------------------------------------------------
 *
 * Sign manipulation, rounding and the like
 *
 * ----------------------------------------------------------------------
 */

Datum
numeric_abs(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	Numeric		res;

	/*
	 * Do it the easy way directly on the packed format
	 */
	res = duplicate_numeric(num);

	if (NUMERIC_IS_SHORT(num))
		res->choice.n_short.n_header =
			num->choice.n_short.n_header & ~NUMERIC_SHORT_SIGN_MASK;
	else if (NUMERIC_IS_SPECIAL(num))
	{
		/* This changes -Inf to Inf, and doesn't affect NaN */
		res->choice.n_short.n_header =
			num->choice.n_short.n_header & ~NUMERIC_INF_SIGN_MASK;
	}
	else
		res->choice.n_long.n_sign_dscale = NUMERIC_POS | NUMERIC_DSCALE(num);

	PG_RETURN_NUMERIC(res);
}


Datum
numeric_uminus(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	Numeric		res;

	/*
	 * Do it the easy way directly on the packed format
	 */
	res = duplicate_numeric(num);

	if (NUMERIC_IS_SPECIAL(num))
	{
		/* Flip the sign, if it's Inf or -Inf */
		if (!NUMERIC_IS_NAN(num))
			res->choice.n_short.n_header =
				num->choice.n_short.n_header ^ NUMERIC_INF_SIGN_MASK;
	}

	/*
	 * The packed format is known to be totally zero digit trimmed always. So
	 * once we've eliminated specials, we can identify a zero by the fact that
	 * there are no digits at all. Do nothing to a zero.
	 */
	else if (NUMERIC_NDIGITS(num) != 0)
	{
		/* Else, flip the sign */
		if (NUMERIC_IS_SHORT(num))
			res->choice.n_short.n_header =
				num->choice.n_short.n_header ^ NUMERIC_SHORT_SIGN_MASK;
		else if (NUMERIC_SIGN(num) == NUMERIC_POS)
			res->choice.n_long.n_sign_dscale =
				NUMERIC_NEG | NUMERIC_DSCALE(num);
		else
			res->choice.n_long.n_sign_dscale =
				NUMERIC_POS | NUMERIC_DSCALE(num);
	}

	PG_RETURN_NUMERIC(res);
}


Datum
numeric_uplus(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);

	PG_RETURN_NUMERIC(duplicate_numeric(num));
}


/*
 * numeric_sign_internal() -
 *
 * Returns -1 if the argument is less than 0, 0 if the argument is equal
 * to 0, and 1 if the argument is greater than zero.  Caller must have
 * taken care of the NaN case, but we can handle infinities here.
 */
static int
numeric_sign_internal(Numeric num)
{
	if (NUMERIC_IS_SPECIAL(num))
	{
		Assert(!NUMERIC_IS_NAN(num));
		/* Must be Inf or -Inf */
		if (NUMERIC_IS_PINF(num))
			return 1;
		else
			return -1;
	}

	/*
	 * The packed format is known to be totally zero digit trimmed always. So
	 * once we've eliminated specials, we can identify a zero by the fact that
	 * there are no digits at all.
	 */
	else if (NUMERIC_NDIGITS(num) == 0)
		return 0;
	else if (NUMERIC_SIGN(num) == NUMERIC_NEG)
		return -1;
	else
		return 1;
}

/*
 * numeric_sign() -
 *
 * returns -1 if the argument is less than 0, 0 if the argument is equal
 * to 0, and 1 if the argument is greater than zero.
 */
Datum
numeric_sign(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);

	/*
	 * Handle NaN (infinities can be handled normally)
	 */
	if (NUMERIC_IS_NAN(num))
		PG_RETURN_NUMERIC(make_result(&const_nan));

	switch (numeric_sign_internal(num))
	{
		case 0:
			PG_RETURN_NUMERIC(make_result(&const_zero));
		case 1:
			PG_RETURN_NUMERIC(make_result(&const_one));
		case -1:
			PG_RETURN_NUMERIC(make_result(&const_minus_one));
	}

	Assert(false);
	return (Datum) 0;
}


/*
 * numeric_round() -
 *
 *	Round a value to have 'scale' digits after the decimal point.
 *	We allow negative 'scale', implying rounding before the decimal
 *	point --- Oracle interprets rounding that way.
 */
Datum
numeric_round(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	int32		scale = PG_GETARG_INT32(1);
	Numeric		res;
	NumericVar	arg;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
		PG_RETURN_NUMERIC(duplicate_numeric(num));

	/*
	 * Limit the scale value to avoid possible overflow in calculations
	 */
	scale = Max(scale, -NUMERIC_MAX_RESULT_SCALE);
	scale = Min(scale, NUMERIC_MAX_RESULT_SCALE);

	/*
	 * Unpack the argument and round it at the proper digit position
	 */
	init_var(&arg);
	set_var_from_num(num, &arg);

	round_var(&arg, scale);

	/* We don't allow negative output dscale */
	if (scale < 0)
		arg.dscale = 0;

	/*
	 * Return the rounded result
	 */
	res = make_result(&arg);

	free_var(&arg);
	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_trunc() -
 *
 *	Truncate a value to have 'scale' digits after the decimal point.
 *	We allow negative 'scale', implying a truncation before the decimal
 *	point --- Oracle interprets truncation that way.
 */
Datum
numeric_trunc(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	int32		scale = PG_GETARG_INT32(1);
	Numeric		res;
	NumericVar	arg;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
		PG_RETURN_NUMERIC(duplicate_numeric(num));

	/*
	 * Limit the scale value to avoid possible overflow in calculations
	 */
	scale = Max(scale, -NUMERIC_MAX_RESULT_SCALE);
	scale = Min(scale, NUMERIC_MAX_RESULT_SCALE);

	/*
	 * Unpack the argument and truncate it at the proper digit position
	 */
	init_var(&arg);
	set_var_from_num(num, &arg);

	trunc_var(&arg, scale);

	/* We don't allow negative output dscale */
	if (scale < 0)
		arg.dscale = 0;

	/*
	 * Return the truncated result
	 */
	res = make_result(&arg);

	free_var(&arg);
	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_ceil() -
 *
 *	Return the smallest integer greater than or equal to the argument
 */
Datum
numeric_ceil(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	Numeric		res;
	NumericVar	result;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
		PG_RETURN_NUMERIC(duplicate_numeric(num));

	init_var_from_num(num, &result);
	ceil_var(&result, &result);

	res = make_result(&result);
	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_floor() -
 *
 *	Return the largest integer equal to or less than the argument
 */
Datum
numeric_floor(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	Numeric		res;
	NumericVar	result;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
		PG_RETURN_NUMERIC(duplicate_numeric(num));

	init_var_from_num(num, &result);
	floor_var(&result, &result);

	res = make_result(&result);
	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * generate_series_numeric() -
 *
 *	Generate series of numeric.
 */
Datum
generate_series_numeric(PG_FUNCTION_ARGS)
{
	return generate_series_step_numeric(fcinfo);
}

Datum
generate_series_step_numeric(PG_FUNCTION_ARGS)
{
	generate_series_numeric_fctx *fctx;
	FuncCallContext *funcctx;
	MemoryContext oldcontext;

	if (SRF_IS_FIRSTCALL())
	{
		Numeric		start_num = PG_GETARG_NUMERIC(0);
		Numeric		stop_num = PG_GETARG_NUMERIC(1);
		NumericVar	steploc = const_one;

		/* Reject NaN and infinities in start and stop values */
		if (NUMERIC_IS_SPECIAL(start_num))
		{
			if (NUMERIC_IS_NAN(start_num))
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
						 errmsg("start value cannot be NaN")));
			else
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
						 errmsg("start value cannot be infinity")));
		}
		if (NUMERIC_IS_SPECIAL(stop_num))
		{
			if (NUMERIC_IS_NAN(stop_num))
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
						 errmsg("stop value cannot be NaN")));
			else
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
						 errmsg("stop value cannot be infinity")));
		}

		/* see if we were given an explicit step size */
		if (PG_NARGS() == 3)
		{
			Numeric		step_num = PG_GETARG_NUMERIC(2);

			if (NUMERIC_IS_SPECIAL(step_num))
			{
				if (NUMERIC_IS_NAN(step_num))
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
							 errmsg("step size cannot be NaN")));
				else
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
							 errmsg("step size cannot be infinity")));
			}

			init_var_from_num(step_num, &steploc);

			if (cmp_var(&steploc, &const_zero) == 0)
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
						 errmsg("step size cannot equal zero")));
		}

		/* create a function context for cross-call persistence */
		funcctx = SRF_FIRSTCALL_INIT();

		/*
		 * Switch to memory context appropriate for multiple function calls.
		 */
		oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

		/* allocate memory for user context */
		fctx = (generate_series_numeric_fctx *)
			palloc(sizeof(generate_series_numeric_fctx));

		/*
		 * Use fctx to keep state from call to call. Seed current with the
		 * original start value. We must copy the start_num and stop_num
		 * values rather than pointing to them, since we may have detoasted
		 * them in the per-call context.
		 */
		init_var(&fctx->current);
		init_var(&fctx->stop);
		init_var(&fctx->step);

		set_var_from_num(start_num, &fctx->current);
		set_var_from_num(stop_num, &fctx->stop);
		set_var_from_var(&steploc, &fctx->step);

		funcctx->user_fctx = fctx;
		MemoryContextSwitchTo(oldcontext);
	}

	/* stuff done on every call of the function */
	funcctx = SRF_PERCALL_SETUP();

	/*
	 * Get the saved state and use current state as the result of this
	 * iteration.
	 */
	fctx = funcctx->user_fctx;

	if ((fctx->step.sign == NUMERIC_POS &&
		 cmp_var(&fctx->current, &fctx->stop) <= 0) ||
		(fctx->step.sign == NUMERIC_NEG &&
		 cmp_var(&fctx->current, &fctx->stop) >= 0))
	{
		Numeric		result = make_result(&fctx->current);

		/* switch to memory context appropriate for iteration calculation */
		oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

		/* increment current in preparation for next iteration */
		add_var(&fctx->current, &fctx->step, &fctx->current);
		MemoryContextSwitchTo(oldcontext);

		/* do when there is more left to send */
		SRF_RETURN_NEXT(funcctx, NumericGetDatum(result));
	}
	else
		/* do when there is no more left */
		SRF_RETURN_DONE(funcctx);
}


/*
 * Implements the numeric version of the width_bucket() function
 * defined by SQL2003. See also width_bucket_float8().
 *
 * 'bound1' and 'bound2' are the lower and upper bounds of the
 * histogram's range, respectively. 'count' is the number of buckets
 * in the histogram. width_bucket() returns an integer indicating the
 * bucket number that 'operand' belongs to in an equiwidth histogram
 * with the specified characteristics. An operand smaller than the
 * lower bound is assigned to bucket 0. An operand greater than the
 * upper bound is assigned to an additional bucket (with number
 * count+1). We don't allow "NaN" for any of the numeric arguments.
 */
Datum
width_bucket_numeric(PG_FUNCTION_ARGS)
{
	Numeric		operand = PG_GETARG_NUMERIC(0);
	Numeric		bound1 = PG_GETARG_NUMERIC(1);
	Numeric		bound2 = PG_GETARG_NUMERIC(2);
	int32		count = PG_GETARG_INT32(3);
	NumericVar	count_var;
	NumericVar	result_var;
	int32		result;

	if (count <= 0)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
				 errmsg("count must be greater than zero")));

	if (NUMERIC_IS_SPECIAL(operand) ||
		NUMERIC_IS_SPECIAL(bound1) ||
		NUMERIC_IS_SPECIAL(bound2))
	{
		if (NUMERIC_IS_NAN(operand) ||
			NUMERIC_IS_NAN(bound1) ||
			NUMERIC_IS_NAN(bound2))
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
					 errmsg("operand, lower bound, and upper bound cannot be NaN")));
		/* We allow "operand" to be infinite; cmp_numerics will cope */
		if (NUMERIC_IS_INF(bound1) || NUMERIC_IS_INF(bound2))
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
					 errmsg("lower and upper bounds must be finite")));
	}

	init_var(&result_var);
	init_var(&count_var);

	/* Convert 'count' to a numeric, for ease of use later */
	int64_to_numericvar((int64) count, &count_var);

	switch (cmp_numerics(bound1, bound2))
	{
		case 0:
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
					 errmsg("lower bound cannot equal upper bound")));
			break;

			/* bound1 < bound2 */
		case -1:
			if (cmp_numerics(operand, bound1) < 0)
				set_var_from_var(&const_zero, &result_var);
			else if (cmp_numerics(operand, bound2) >= 0)
				add_var(&count_var, &const_one, &result_var);
			else
				compute_bucket(operand, bound1, bound2, &count_var, false,
							   &result_var);
			break;

			/* bound1 > bound2 */
		case 1:
			if (cmp_numerics(operand, bound1) > 0)
				set_var_from_var(&const_zero, &result_var);
			else if (cmp_numerics(operand, bound2) <= 0)
				add_var(&count_var, &const_one, &result_var);
			else
				compute_bucket(operand, bound1, bound2, &count_var, true,
							   &result_var);
			break;
	}

	/* if result exceeds the range of a legal int4, we ereport here */
	if (!numericvar_to_int32(&result_var, &result))
		ereport(ERROR,
				(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
				 errmsg("integer out of range")));

	free_var(&count_var);
	free_var(&result_var);

	PG_RETURN_INT32(result);
}

/*
 * If 'operand' is not outside the bucket range, determine the correct
 * bucket for it to go. The calculations performed by this function
 * are derived directly from the SQL2003 spec. Note however that we
 * multiply by count before dividing, to avoid unnecessary roundoff error.
 */
static void
compute_bucket(Numeric operand, Numeric bound1, Numeric bound2,
			   const NumericVar *count_var, bool reversed_bounds,
			   NumericVar *result_var)
{
	NumericVar	bound1_var;
	NumericVar	bound2_var;
	NumericVar	operand_var;

	init_var_from_num(bound1, &bound1_var);
	init_var_from_num(bound2, &bound2_var);
	init_var_from_num(operand, &operand_var);

	if (!reversed_bounds)
	{
		sub_var(&operand_var, &bound1_var, &operand_var);
		sub_var(&bound2_var, &bound1_var, &bound2_var);
	}
	else
	{
		sub_var(&bound1_var, &operand_var, &operand_var);
		sub_var(&bound1_var, &bound2_var, &bound2_var);
	}

	mul_var(&operand_var, count_var, &operand_var,
			operand_var.dscale + count_var->dscale);
	div_var(&operand_var, &bound2_var, result_var,
			select_div_scale(&operand_var, &bound2_var), true);
	add_var(result_var, &const_one, result_var);
	floor_var(result_var, result_var);

	free_var(&bound1_var);
	free_var(&bound2_var);
	free_var(&operand_var);
}

/* ----------------------------------------------------------------------
 *
 * Comparison functions
 *
 * Note: btree indexes need these routines not to leak memory; therefore,
 * be careful to free working copies of toasted datums.  Most places don't
 * need to be so careful.
 *
 * Sort support:
 *
 * We implement the sortsupport strategy routine in order to get the benefit of
 * abbreviation. The ordinary numeric comparison can be quite slow as a result
 * of palloc/pfree cycles (due to detoasting packed values for alignment);
 * while this could be worked on itself, the abbreviation strategy gives more
 * speedup in many common cases.
 *
 * Two different representations are used for the abbreviated form, one in
 * int32 and one in int64, whichever fits into a by-value Datum.  In both cases
 * the representation is negated relative to the original value, because we use
 * the largest negative value for NaN, which sorts higher than other values. We
 * convert the absolute value of the numeric to a 31-bit or 63-bit positive
 * value, and then negate it if the original number was positive.
 *
 * We abort the abbreviation process if the abbreviation cardinality is below
 * 0.01% of the row count (1 per 10k non-null rows).  The actual break-even
 * point is somewhat below that, perhaps 1 per 30k (at 1 per 100k there's a
 * very small penalty), but we don't want to build up too many abbreviated
 * values before first testing for abort, so we take the slightly pessimistic
 * number.  We make no attempt to estimate the cardinality of the real values,
 * since it plays no part in the cost model here (if the abbreviation is equal,
 * the cost of comparing equal and unequal underlying values is comparable).
 * We discontinue even checking for abort (saving us the hashing overhead) if
 * the estimated cardinality gets to 100k; that would be enough to support many
 * billions of rows while doing no worse than breaking even.
 *
 * ----------------------------------------------------------------------
 */

/*
 * Sort support strategy routine.
 */
Datum
numeric_sortsupport(PG_FUNCTION_ARGS)
{
	SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);

	ssup->comparator = numeric_fast_cmp;

	if (ssup->abbreviate)
	{
		NumericSortSupport *nss;
		MemoryContext oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt);

		nss = palloc(sizeof(NumericSortSupport));

		/*
		 * palloc a buffer for handling unaligned packed values in addition to
		 * the support struct
		 */
		nss->buf = palloc(VARATT_SHORT_MAX + VARHDRSZ + 1);

		nss->input_count = 0;
		nss->estimating = true;
		initHyperLogLog(&nss->abbr_card, 10);

		ssup->ssup_extra = nss;

		ssup->abbrev_full_comparator = ssup->comparator;
		ssup->comparator = numeric_cmp_abbrev;
		ssup->abbrev_converter = numeric_abbrev_convert;
		ssup->abbrev_abort = numeric_abbrev_abort;

		MemoryContextSwitchTo(oldcontext);
	}

	PG_RETURN_VOID();
}

/*
 * Abbreviate a numeric datum, handling NaNs and detoasting
 * (must not leak memory!)
 */
static Datum
numeric_abbrev_convert(Datum original_datum, SortSupport ssup)
{
	NumericSortSupport *nss = ssup->ssup_extra;
	void	   *original_varatt = PG_DETOAST_DATUM_PACKED(original_datum);
	Numeric		value;
	Datum		result;

	nss->input_count += 1;

	/*
	 * This is to handle packed datums without needing a palloc/pfree cycle;
	 * we keep and reuse a buffer large enough to handle any short datum.
	 */
	if (VARATT_IS_SHORT(original_varatt))
	{
		void	   *buf = nss->buf;
		Size		sz = VARSIZE_SHORT(original_varatt) - VARHDRSZ_SHORT;

		Assert(sz <= VARATT_SHORT_MAX - VARHDRSZ_SHORT);

		SET_VARSIZE(buf, VARHDRSZ + sz);
		memcpy(VARDATA(buf), VARDATA_SHORT(original_varatt), sz);

		value = (Numeric) buf;
	}
	else
		value = (Numeric) original_varatt;

	if (NUMERIC_IS_SPECIAL(value))
	{
		if (NUMERIC_IS_PINF(value))
			result = NUMERIC_ABBREV_PINF;
		else if (NUMERIC_IS_NINF(value))
			result = NUMERIC_ABBREV_NINF;
		else
			result = NUMERIC_ABBREV_NAN;
	}
	else
	{
		NumericVar	var;

		init_var_from_num(value, &var);

		result = numeric_abbrev_convert_var(&var, nss);
	}

	/* should happen only for external/compressed toasts */
	if ((Pointer) original_varatt != DatumGetPointer(original_datum))
		pfree(original_varatt);

	return result;
}

/*
 * Consider whether to abort abbreviation.
 *
 * We pay no attention to the cardinality of the non-abbreviated data. There is
 * no reason to do so: unlike text, we have no fast check for equal values, so
 * we pay the full overhead whenever the abbreviations are equal regardless of
 * whether the underlying values are also equal.
 */
static bool
numeric_abbrev_abort(int memtupcount, SortSupport ssup)
{
	NumericSortSupport *nss = ssup->ssup_extra;
	double		abbr_card;

	if (memtupcount < 10000 || nss->input_count < 10000 || !nss->estimating)
		return false;

	abbr_card = estimateHyperLogLog(&nss->abbr_card);

	/*
	 * If we have >100k distinct values, then even if we were sorting many
	 * billion rows we'd likely still break even, and the penalty of undoing
	 * that many rows of abbrevs would probably not be worth it. Stop even
	 * counting at that point.
	 */
	if (abbr_card > 100000.0)
	{
#ifdef TRACE_SORT
		if (trace_sort)
			elog(LOG,
				 "numeric_abbrev: estimation ends at cardinality %f"
				 " after " INT64_FORMAT " values (%d rows)",
				 abbr_card, nss->input_count, memtupcount);
#endif
		nss->estimating = false;
		return false;
	}

	/*
	 * Target minimum cardinality is 1 per ~10k of non-null inputs.  (The
	 * break even point is somewhere between one per 100k rows, where
	 * abbreviation has a very slight penalty, and 1 per 10k where it wins by
	 * a measurable percentage.)  We use the relatively pessimistic 10k
	 * threshold, and add a 0.5 row fudge factor, because it allows us to
	 * abort earlier on genuinely pathological data where we've had exactly
	 * one abbreviated value in the first 10k (non-null) rows.
	 */
	if (abbr_card < nss->input_count / 10000.0 + 0.5)
	{
#ifdef TRACE_SORT
		if (trace_sort)
			elog(LOG,
				 "numeric_abbrev: aborting abbreviation at cardinality %f"
				 " below threshold %f after " INT64_FORMAT " values (%d rows)",
				 abbr_card, nss->input_count / 10000.0 + 0.5,
				 nss->input_count, memtupcount);
#endif
		return true;
	}

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG,
			 "numeric_abbrev: cardinality %f"
			 " after " INT64_FORMAT " values (%d rows)",
			 abbr_card, nss->input_count, memtupcount);
#endif

	return false;
}

/*
 * Non-fmgr interface to the comparison routine to allow sortsupport to elide
 * the fmgr call.  The saving here is small given how slow numeric comparisons
 * are, but it is a required part of the sort support API when abbreviations
 * are performed.
 *
 * Two palloc/pfree cycles could be saved here by using persistent buffers for
 * aligning short-varlena inputs, but this has not so far been considered to
 * be worth the effort.
 */
static int
numeric_fast_cmp(Datum x, Datum y, SortSupport ssup)
{
	Numeric		nx = DatumGetNumeric(x);
	Numeric		ny = DatumGetNumeric(y);
	int			result;

	result = cmp_numerics(nx, ny);

	if ((Pointer) nx != DatumGetPointer(x))
		pfree(nx);
	if ((Pointer) ny != DatumGetPointer(y))
		pfree(ny);

	return result;
}

/*
 * Compare abbreviations of values. (Abbreviations may be equal where the true
 * values differ, but if the abbreviations differ, they must reflect the
 * ordering of the true values.)
 */
static int
numeric_cmp_abbrev(Datum x, Datum y, SortSupport ssup)
{
	/*
	 * NOTE WELL: this is intentionally backwards, because the abbreviation is
	 * negated relative to the original value, to handle NaN/infinity cases.
	 */
	if (DatumGetNumericAbbrev(x) < DatumGetNumericAbbrev(y))
		return 1;
	if (DatumGetNumericAbbrev(x) > DatumGetNumericAbbrev(y))
		return -1;
	return 0;
}

/*
 * Abbreviate a NumericVar according to the available bit size.
 *
 * The 31-bit value is constructed as:
 *
 *	0 + 7bits digit weight + 24 bits digit value
 *
 * where the digit weight is in single decimal digits, not digit words, and
 * stored in excess-44 representation[1]. The 24-bit digit value is the 7 most
 * significant decimal digits of the value converted to binary. Values whose
 * weights would fall outside the representable range are rounded off to zero
 * (which is also used to represent actual zeros) or to 0x7FFFFFFF (which
 * otherwise cannot occur). Abbreviation therefore fails to gain any advantage
 * where values are outside the range 10^-44 to 10^83, which is not considered
 * to be a serious limitation, or when values are of the same magnitude and
 * equal in the first 7 decimal digits, which is considered to be an
 * unavoidable limitation given the available bits. (Stealing three more bits
 * to compare another digit would narrow the range of representable weights by
 * a factor of 8, which starts to look like a real limiting factor.)
 *
 * (The value 44 for the excess is essentially arbitrary)
 *
 * The 63-bit value is constructed as:
 *
 *	0 + 7bits weight + 4 x 14-bit packed digit words
 *
 * The weight in this case is again stored in excess-44, but this time it is
 * the original weight in digit words (i.e. powers of 10000). The first four
 * digit words of the value (if present; trailing zeros are assumed as needed)
 * are packed into 14 bits each to form the rest of the value. Again,
 * out-of-range values are rounded off to 0 or 0x7FFFFFFFFFFFFFFF. The
 * representable range in this case is 10^-176 to 10^332, which is considered
 * to be good enough for all practical purposes, and comparison of 4 words
 * means that at least 13 decimal digits are compared, which is considered to
 * be a reasonable compromise between effectiveness and efficiency in computing
 * the abbreviation.
 *
 * (The value 44 for the excess is even more arbitrary here, it was chosen just
 * to match the value used in the 31-bit case)
 *
 * [1] - Excess-k representation means that the value is offset by adding 'k'
 * and then treated as unsigned, so the smallest representable value is stored
 * with all bits zero. This allows simple comparisons to work on the composite
 * value.
 */

#if NUMERIC_ABBREV_BITS == 64

static Datum
numeric_abbrev_convert_var(const NumericVar *var, NumericSortSupport *nss)
{
	int			ndigits = var->ndigits;
	int			weight = var->weight;
	int64		result;

	if (ndigits == 0 || weight < -44)
	{
		result = 0;
	}
	else if (weight > 83)
	{
		result = PG_INT64_MAX;
	}
	else
	{
		result = ((int64) (weight + 44) << 56);

		switch (ndigits)
		{
			default:
				result |= ((int64) var->digits[3]);
				/* FALLTHROUGH */
			case 3:
				result |= ((int64) var->digits[2]) << 14;
				/* FALLTHROUGH */
			case 2:
				result |= ((int64) var->digits[1]) << 28;
				/* FALLTHROUGH */
			case 1:
				result |= ((int64) var->digits[0]) << 42;
				break;
		}
	}

	/* the abbrev is negated relative to the original */
	if (var->sign == NUMERIC_POS)
		result = -result;

	if (nss->estimating)
	{
		uint32		tmp = ((uint32) result
						   ^ (uint32) ((uint64) result >> 32));

		addHyperLogLog(&nss->abbr_card, DatumGetUInt32(hash_uint32(tmp)));
	}

	return NumericAbbrevGetDatum(result);
}

#endif							/* NUMERIC_ABBREV_BITS == 64 */

#if NUMERIC_ABBREV_BITS == 32

static Datum
numeric_abbrev_convert_var(const NumericVar *var, NumericSortSupport *nss)
{
	int			ndigits = var->ndigits;
	int			weight = var->weight;
	int32		result;

	if (ndigits == 0 || weight < -11)
	{
		result = 0;
	}
	else if (weight > 20)
	{
		result = PG_INT32_MAX;
	}
	else
	{
		NumericDigit nxt1 = (ndigits > 1) ? var->digits[1] : 0;

		weight = (weight + 11) * 4;

		result = var->digits[0];

		/*
		 * "result" now has 1 to 4 nonzero decimal digits. We pack in more
		 * digits to make 7 in total (largest we can fit in 24 bits)
		 */

		if (result > 999)
		{
			/* already have 4 digits, add 3 more */
			result = (result * 1000) + (nxt1 / 10);
			weight += 3;
		}
		else if (result > 99)
		{
			/* already have 3 digits, add 4 more */
			result = (result * 10000) + nxt1;
			weight += 2;
		}
		else if (result > 9)
		{
			NumericDigit nxt2 = (ndigits > 2) ? var->digits[2] : 0;

			/* already have 2 digits, add 5 more */
			result = (result * 100000) + (nxt1 * 10) + (nxt2 / 1000);
			weight += 1;
		}
		else
		{
			NumericDigit nxt2 = (ndigits > 2) ? var->digits[2] : 0;

			/* already have 1 digit, add 6 more */
			result = (result * 1000000) + (nxt1 * 100) + (nxt2 / 100);
		}

		result = result | (weight << 24);
	}

	/* the abbrev is negated relative to the original */
	if (var->sign == NUMERIC_POS)
		result = -result;

	if (nss->estimating)
	{
		uint32		tmp = (uint32) result;

		addHyperLogLog(&nss->abbr_card, DatumGetUInt32(hash_uint32(tmp)));
	}

	return NumericAbbrevGetDatum(result);
}

#endif							/* NUMERIC_ABBREV_BITS == 32 */

/*
 * Ordinary (non-sortsupport) comparisons follow.
 */

Datum
numeric_cmp(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	int			result;

	result = cmp_numerics(num1, num2);

	PG_FREE_IF_COPY(num1, 0);
	PG_FREE_IF_COPY(num2, 1);

	PG_RETURN_INT32(result);
}


Datum
numeric_eq(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	bool		result;

	result = cmp_numerics(num1, num2) == 0;

	PG_FREE_IF_COPY(num1, 0);
	PG_FREE_IF_COPY(num2, 1);

	PG_RETURN_BOOL(result);
}

Datum
numeric_ne(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	bool		result;

	result = cmp_numerics(num1, num2) != 0;

	PG_FREE_IF_COPY(num1, 0);
	PG_FREE_IF_COPY(num2, 1);

	PG_RETURN_BOOL(result);
}

Datum
numeric_gt(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	bool		result;

	result = cmp_numerics(num1, num2) > 0;

	PG_FREE_IF_COPY(num1, 0);
	PG_FREE_IF_COPY(num2, 1);

	PG_RETURN_BOOL(result);
}

Datum
numeric_ge(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	bool		result;

	result = cmp_numerics(num1, num2) >= 0;

	PG_FREE_IF_COPY(num1, 0);
	PG_FREE_IF_COPY(num2, 1);

	PG_RETURN_BOOL(result);
}

Datum
numeric_lt(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	bool		result;

	result = cmp_numerics(num1, num2) < 0;

	PG_FREE_IF_COPY(num1, 0);
	PG_FREE_IF_COPY(num2, 1);

	PG_RETURN_BOOL(result);
}

Datum
numeric_le(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	bool		result;

	result = cmp_numerics(num1, num2) <= 0;

	PG_FREE_IF_COPY(num1, 0);
	PG_FREE_IF_COPY(num2, 1);

	PG_RETURN_BOOL(result);
}

static int
cmp_numerics(Numeric num1, Numeric num2)
{
	int			result;

	/*
	 * We consider all NANs to be equal and larger than any non-NAN (including
	 * Infinity).  This is somewhat arbitrary; the important thing is to have
	 * a consistent sort order.
	 */
	if (NUMERIC_IS_SPECIAL(num1))
	{
		if (NUMERIC_IS_NAN(num1))
		{
			if (NUMERIC_IS_NAN(num2))
				result = 0;		/* NAN = NAN */
			else
				result = 1;		/* NAN > non-NAN */
		}
		else if (NUMERIC_IS_PINF(num1))
		{
			if (NUMERIC_IS_NAN(num2))
				result = -1;	/* PINF < NAN */
			else if (NUMERIC_IS_PINF(num2))
				result = 0;		/* PINF = PINF */
			else
				result = 1;		/* PINF > anything else */
		}
		else					/* num1 must be NINF */
		{
			if (NUMERIC_IS_NINF(num2))
				result = 0;		/* NINF = NINF */
			else
				result = -1;	/* NINF < anything else */
		}
	}
	else if (NUMERIC_IS_SPECIAL(num2))
	{
		if (NUMERIC_IS_NINF(num2))
			result = 1;			/* normal > NINF */
		else
			result = -1;		/* normal < NAN or PINF */
	}
	else
	{
		result = cmp_var_common(NUMERIC_DIGITS(num1), NUMERIC_NDIGITS(num1),
								NUMERIC_WEIGHT(num1), NUMERIC_SIGN(num1),
								NUMERIC_DIGITS(num2), NUMERIC_NDIGITS(num2),
								NUMERIC_WEIGHT(num2), NUMERIC_SIGN(num2));
	}

	return result;
}

/*
 * in_range support function for numeric.
 */
Datum
in_range_numeric_numeric(PG_FUNCTION_ARGS)
{
	Numeric		val = PG_GETARG_NUMERIC(0);
	Numeric		base = PG_GETARG_NUMERIC(1);
	Numeric		offset = PG_GETARG_NUMERIC(2);
	bool		sub = PG_GETARG_BOOL(3);
	bool		less = PG_GETARG_BOOL(4);
	bool		result;

	/*
	 * Reject negative (including -Inf) or NaN offset.  Negative is per spec,
	 * and NaN is because appropriate semantics for that seem non-obvious.
	 */
	if (NUMERIC_IS_NAN(offset) ||
		NUMERIC_IS_NINF(offset) ||
		NUMERIC_SIGN(offset) == NUMERIC_NEG)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
				 errmsg("invalid preceding or following size in window function")));

	/*
	 * Deal with cases where val and/or base is NaN, following the rule that
	 * NaN sorts after non-NaN (cf cmp_numerics).  The offset cannot affect
	 * the conclusion.
	 */
	if (NUMERIC_IS_NAN(val))
	{
		if (NUMERIC_IS_NAN(base))
			result = true;		/* NAN = NAN */
		else
			result = !less;		/* NAN > non-NAN */
	}
	else if (NUMERIC_IS_NAN(base))
	{
		result = less;			/* non-NAN < NAN */
	}

	/*
	 * Deal with infinite offset (necessarily +Inf, at this point).
	 */
	else if (NUMERIC_IS_SPECIAL(offset))
	{
		Assert(NUMERIC_IS_PINF(offset));
		if (sub ? NUMERIC_IS_PINF(base) : NUMERIC_IS_NINF(base))
		{
			/*
			 * base +/- offset would produce NaN, so return true for any val
			 * (see in_range_float8_float8() for reasoning).
			 */
			result = true;
		}
		else if (sub)
		{
			/* base - offset must be -inf */
			if (less)
				result = NUMERIC_IS_NINF(val);	/* only -inf is <= sum */
			else
				result = true;	/* any val is >= sum */
		}
		else
		{
			/* base + offset must be +inf */
			if (less)
				result = true;	/* any val is <= sum */
			else
				result = NUMERIC_IS_PINF(val);	/* only +inf is >= sum */
		}
	}

	/*
	 * Deal with cases where val and/or base is infinite.  The offset, being
	 * now known finite, cannot affect the conclusion.
	 */
	else if (NUMERIC_IS_SPECIAL(val))
	{
		if (NUMERIC_IS_PINF(val))
		{
			if (NUMERIC_IS_PINF(base))
				result = true;	/* PINF = PINF */
			else
				result = !less; /* PINF > any other non-NAN */
		}
		else					/* val must be NINF */
		{
			if (NUMERIC_IS_NINF(base))
				result = true;	/* NINF = NINF */
			else
				result = less;	/* NINF < anything else */
		}
	}
	else if (NUMERIC_IS_SPECIAL(base))
	{
		if (NUMERIC_IS_NINF(base))
			result = !less;		/* normal > NINF */
		else
			result = less;		/* normal < PINF */
	}
	else
	{
		/*
		 * Otherwise go ahead and compute base +/- offset.  While it's
		 * possible for this to overflow the numeric format, it's unlikely
		 * enough that we don't take measures to prevent it.
		 */
		NumericVar	valv;
		NumericVar	basev;
		NumericVar	offsetv;
		NumericVar	sum;

		init_var_from_num(val, &valv);
		init_var_from_num(base, &basev);
		init_var_from_num(offset, &offsetv);
		init_var(&sum);

		if (sub)
			sub_var(&basev, &offsetv, &sum);
		else
			add_var(&basev, &offsetv, &sum);

		if (less)
			result = (cmp_var(&valv, &sum) <= 0);
		else
			result = (cmp_var(&valv, &sum) >= 0);

		free_var(&sum);
	}

	PG_FREE_IF_COPY(val, 0);
	PG_FREE_IF_COPY(base, 1);
	PG_FREE_IF_COPY(offset, 2);

	PG_RETURN_BOOL(result);
}

Datum
hash_numeric(PG_FUNCTION_ARGS)
{
	Numeric		key = PG_GETARG_NUMERIC(0);
	Datum		digit_hash;
	Datum		result;
	int			weight;
	int			start_offset;
	int			end_offset;
	int			i;
	int			hash_len;
	NumericDigit *digits;

	/* If it's NaN or infinity, don't try to hash the rest of the fields */
	if (NUMERIC_IS_SPECIAL(key))
		PG_RETURN_UINT32(0);

	weight = NUMERIC_WEIGHT(key);
	start_offset = 0;
	end_offset = 0;

	/*
	 * Omit any leading or trailing zeros from the input to the hash. The
	 * numeric implementation *should* guarantee that leading and trailing
	 * zeros are suppressed, but we're paranoid. Note that we measure the
	 * starting and ending offsets in units of NumericDigits, not bytes.
	 */
	digits = NUMERIC_DIGITS(key);
	for (i = 0; i < NUMERIC_NDIGITS(key); i++)
	{
		if (digits[i] != (NumericDigit) 0)
			break;

		start_offset++;

		/*
		 * The weight is effectively the # of digits before the decimal point,
		 * so decrement it for each leading zero we skip.
		 */
		weight--;
	}

	/*
	 * If there are no non-zero digits, then the value of the number is zero,
	 * regardless of any other fields.
	 */
	if (NUMERIC_NDIGITS(key) == start_offset)
		PG_RETURN_UINT32(-1);

	for (i = NUMERIC_NDIGITS(key) - 1; i >= 0; i--)
	{
		if (digits[i] != (NumericDigit) 0)
			break;

		end_offset++;
	}

	/* If we get here, there should be at least one non-zero digit */
	Assert(start_offset + end_offset < NUMERIC_NDIGITS(key));

	/*
	 * Note that we don't hash on the Numeric's scale, since two numerics can
	 * compare equal but have different scales. We also don't hash on the
	 * sign, although we could: since a sign difference implies inequality,
	 * this shouldn't affect correctness.
	 */
	hash_len = NUMERIC_NDIGITS(key) - start_offset - end_offset;
	digit_hash = hash_any((unsigned char *) (NUMERIC_DIGITS(key) + start_offset),
						  hash_len * sizeof(NumericDigit));

	/* Mix in the weight, via XOR */
	result = digit_hash ^ weight;

	PG_RETURN_DATUM(result);
}

/*
 * Returns 64-bit value by hashing a value to a 64-bit value, with a seed.
 * Otherwise, similar to hash_numeric.
 */
Datum
hash_numeric_extended(PG_FUNCTION_ARGS)
{
	Numeric		key = PG_GETARG_NUMERIC(0);
	uint64		seed = PG_GETARG_INT64(1);
	Datum		digit_hash;
	Datum		result;
	int			weight;
	int			start_offset;
	int			end_offset;
	int			i;
	int			hash_len;
	NumericDigit *digits;

	/* If it's NaN or infinity, don't try to hash the rest of the fields */
	if (NUMERIC_IS_SPECIAL(key))
		PG_RETURN_UINT64(seed);

	weight = NUMERIC_WEIGHT(key);
	start_offset = 0;
	end_offset = 0;

	digits = NUMERIC_DIGITS(key);
	for (i = 0; i < NUMERIC_NDIGITS(key); i++)
	{
		if (digits[i] != (NumericDigit) 0)
			break;

		start_offset++;

		weight--;
	}

	if (NUMERIC_NDIGITS(key) == start_offset)
		PG_RETURN_UINT64(seed - 1);

	for (i = NUMERIC_NDIGITS(key) - 1; i >= 0; i--)
	{
		if (digits[i] != (NumericDigit) 0)
			break;

		end_offset++;
	}

	Assert(start_offset + end_offset < NUMERIC_NDIGITS(key));

	hash_len = NUMERIC_NDIGITS(key) - start_offset - end_offset;
	digit_hash = hash_any_extended((unsigned char *) (NUMERIC_DIGITS(key)
													  + start_offset),
								   hash_len * sizeof(NumericDigit),
								   seed);

	result = UInt64GetDatum(DatumGetUInt64(digit_hash) ^ weight);

	PG_RETURN_DATUM(result);
}


/* ----------------------------------------------------------------------
 *
 * Basic arithmetic functions
 *
 * ----------------------------------------------------------------------
 */


/*
 * numeric_add() -
 *
 *	Add two numerics
 */
Datum
numeric_add(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	Numeric		res;

	res = numeric_add_opt_error(num1, num2, NULL);

	PG_RETURN_NUMERIC(res);
}

/*
 * numeric_add_opt_error() -
 *
 *	Internal version of numeric_add().  If "*have_error" flag is provided,
 *	on error it's set to true, NULL returned.  This is helpful when caller
 *	need to handle errors by itself.
 */
Numeric
numeric_add_opt_error(Numeric num1, Numeric num2, bool *have_error)
{
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;
	Numeric		res;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
	{
		if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
			return make_result(&const_nan);
		if (NUMERIC_IS_PINF(num1))
		{
			if (NUMERIC_IS_NINF(num2))
				return make_result(&const_nan); /* Inf + -Inf */
			else
				return make_result(&const_pinf);
		}
		if (NUMERIC_IS_NINF(num1))
		{
			if (NUMERIC_IS_PINF(num2))
				return make_result(&const_nan); /* -Inf + Inf */
			else
				return make_result(&const_ninf);
		}
		/* by here, num1 must be finite, so num2 is not */
		if (NUMERIC_IS_PINF(num2))
			return make_result(&const_pinf);
		Assert(NUMERIC_IS_NINF(num2));
		return make_result(&const_ninf);
	}

	/*
	 * Unpack the values, let add_var() compute the result and return it.
	 */
	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);

	init_var(&result);
	add_var(&arg1, &arg2, &result);

	res = make_result_opt_error(&result, have_error);

	free_var(&result);

	return res;
}


/*
 * numeric_sub() -
 *
 *	Subtract one numeric from another
 */
Datum
numeric_sub(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	Numeric		res;

	res = numeric_sub_opt_error(num1, num2, NULL);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_sub_opt_error() -
 *
 *	Internal version of numeric_sub().  If "*have_error" flag is provided,
 *	on error it's set to true, NULL returned.  This is helpful when caller
 *	need to handle errors by itself.
 */
Numeric
numeric_sub_opt_error(Numeric num1, Numeric num2, bool *have_error)
{
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;
	Numeric		res;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
	{
		if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
			return make_result(&const_nan);
		if (NUMERIC_IS_PINF(num1))
		{
			if (NUMERIC_IS_PINF(num2))
				return make_result(&const_nan); /* Inf - Inf */
			else
				return make_result(&const_pinf);
		}
		if (NUMERIC_IS_NINF(num1))
		{
			if (NUMERIC_IS_NINF(num2))
				return make_result(&const_nan); /* -Inf - -Inf */
			else
				return make_result(&const_ninf);
		}
		/* by here, num1 must be finite, so num2 is not */
		if (NUMERIC_IS_PINF(num2))
			return make_result(&const_ninf);
		Assert(NUMERIC_IS_NINF(num2));
		return make_result(&const_pinf);
	}

	/*
	 * Unpack the values, let sub_var() compute the result and return it.
	 */
	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);

	init_var(&result);
	sub_var(&arg1, &arg2, &result);

	res = make_result_opt_error(&result, have_error);

	free_var(&result);

	return res;
}


/*
 * numeric_mul() -
 *
 *	Calculate the product of two numerics
 */
Datum
numeric_mul(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	Numeric		res;

	res = numeric_mul_opt_error(num1, num2, NULL);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_mul_opt_error() -
 *
 *	Internal version of numeric_mul().  If "*have_error" flag is provided,
 *	on error it's set to true, NULL returned.  This is helpful when caller
 *	need to handle errors by itself.
 */
Numeric
numeric_mul_opt_error(Numeric num1, Numeric num2, bool *have_error)
{
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;
	Numeric		res;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
	{
		if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
			return make_result(&const_nan);
		if (NUMERIC_IS_PINF(num1))
		{
			switch (numeric_sign_internal(num2))
			{
				case 0:
					return make_result(&const_nan); /* Inf * 0 */
				case 1:
					return make_result(&const_pinf);
				case -1:
					return make_result(&const_ninf);
			}
			Assert(false);
		}
		if (NUMERIC_IS_NINF(num1))
		{
			switch (numeric_sign_internal(num2))
			{
				case 0:
					return make_result(&const_nan); /* -Inf * 0 */
				case 1:
					return make_result(&const_ninf);
				case -1:
					return make_result(&const_pinf);
			}
			Assert(false);
		}
		/* by here, num1 must be finite, so num2 is not */
		if (NUMERIC_IS_PINF(num2))
		{
			switch (numeric_sign_internal(num1))
			{
				case 0:
					return make_result(&const_nan); /* 0 * Inf */
				case 1:
					return make_result(&const_pinf);
				case -1:
					return make_result(&const_ninf);
			}
			Assert(false);
		}
		Assert(NUMERIC_IS_NINF(num2));
		switch (numeric_sign_internal(num1))
		{
			case 0:
				return make_result(&const_nan); /* 0 * -Inf */
			case 1:
				return make_result(&const_ninf);
			case -1:
				return make_result(&const_pinf);
		}
		Assert(false);
	}

	/*
	 * Unpack the values, let mul_var() compute the result and return it.
	 * Unlike add_var() and sub_var(), mul_var() will round its result. In the
	 * case of numeric_mul(), which is invoked for the * operator on numerics,
	 * we request exact representation for the product (rscale = sum(dscale of
	 * arg1, dscale of arg2)).  If the exact result has more digits after the
	 * decimal point than can be stored in a numeric, we round it.  Rounding
	 * after computing the exact result ensures that the final result is
	 * correctly rounded (rounding in mul_var() using a truncated product
	 * would not guarantee this).
	 */
	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);

	init_var(&result);
	mul_var(&arg1, &arg2, &result, arg1.dscale + arg2.dscale);

	if (result.dscale > NUMERIC_DSCALE_MAX)
		round_var(&result, NUMERIC_DSCALE_MAX);

	res = make_result_opt_error(&result, have_error);

	free_var(&result);

	return res;
}


/*
 * numeric_div() -
 *
 *	Divide one numeric into another
 */
Datum
numeric_div(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	Numeric		res;

	res = numeric_div_opt_error(num1, num2, NULL);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_div_opt_error() -
 *
 *	Internal version of numeric_div().  If "*have_error" flag is provided,
 *	on error it's set to true, NULL returned.  This is helpful when caller
 *	need to handle errors by itself.
 */
Numeric
numeric_div_opt_error(Numeric num1, Numeric num2, bool *have_error)
{
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;
	Numeric		res;
	int			rscale;

	if (have_error)
		*have_error = false;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
	{
		if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
			return make_result(&const_nan);
		if (NUMERIC_IS_PINF(num1))
		{
			if (NUMERIC_IS_SPECIAL(num2))
				return make_result(&const_nan); /* Inf / [-]Inf */
			switch (numeric_sign_internal(num2))
			{
				case 0:
					if (have_error)
					{
						*have_error = true;
						return NULL;
					}
					ereport(ERROR,
							(errcode(ERRCODE_DIVISION_BY_ZERO),
							 errmsg("division by zero")));
					break;
				case 1:
					return make_result(&const_pinf);
				case -1:
					return make_result(&const_ninf);
			}
			Assert(false);
		}
		if (NUMERIC_IS_NINF(num1))
		{
			if (NUMERIC_IS_SPECIAL(num2))
				return make_result(&const_nan); /* -Inf / [-]Inf */
			switch (numeric_sign_internal(num2))
			{
				case 0:
					if (have_error)
					{
						*have_error = true;
						return NULL;
					}
					ereport(ERROR,
							(errcode(ERRCODE_DIVISION_BY_ZERO),
							 errmsg("division by zero")));
					break;
				case 1:
					return make_result(&const_ninf);
				case -1:
					return make_result(&const_pinf);
			}
			Assert(false);
		}
		/* by here, num1 must be finite, so num2 is not */

		/*
		 * POSIX would have us return zero or minus zero if num1 is zero, and
		 * otherwise throw an underflow error.  But the numeric type doesn't
		 * really do underflow, so let's just return zero.
		 */
		return make_result(&const_zero);
	}

	/*
	 * Unpack the arguments
	 */
	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);

	init_var(&result);

	/*
	 * Select scale for division result
	 */
	rscale = select_div_scale(&arg1, &arg2);

	/*
	 * If "have_error" is provided, check for division by zero here
	 */
	if (have_error && (arg2.ndigits == 0 || arg2.digits[0] == 0))
	{
		*have_error = true;
		return NULL;
	}

	/*
	 * Do the divide and return the result
	 */
	div_var(&arg1, &arg2, &result, rscale, true);

	res = make_result_opt_error(&result, have_error);

	free_var(&result);

	return res;
}


/*
 * numeric_div_trunc() -
 *
 *	Divide one numeric into another, truncating the result to an integer
 */
Datum
numeric_div_trunc(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;
	Numeric		res;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
	{
		if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
			PG_RETURN_NUMERIC(make_result(&const_nan));
		if (NUMERIC_IS_PINF(num1))
		{
			if (NUMERIC_IS_SPECIAL(num2))
				PG_RETURN_NUMERIC(make_result(&const_nan)); /* Inf / [-]Inf */
			switch (numeric_sign_internal(num2))
			{
				case 0:
					ereport(ERROR,
							(errcode(ERRCODE_DIVISION_BY_ZERO),
							 errmsg("division by zero")));
					break;
				case 1:
					PG_RETURN_NUMERIC(make_result(&const_pinf));
				case -1:
					PG_RETURN_NUMERIC(make_result(&const_ninf));
			}
			Assert(false);
		}
		if (NUMERIC_IS_NINF(num1))
		{
			if (NUMERIC_IS_SPECIAL(num2))
				PG_RETURN_NUMERIC(make_result(&const_nan)); /* -Inf / [-]Inf */
			switch (numeric_sign_internal(num2))
			{
				case 0:
					ereport(ERROR,
							(errcode(ERRCODE_DIVISION_BY_ZERO),
							 errmsg("division by zero")));
					break;
				case 1:
					PG_RETURN_NUMERIC(make_result(&const_ninf));
				case -1:
					PG_RETURN_NUMERIC(make_result(&const_pinf));
			}
			Assert(false);
		}
		/* by here, num1 must be finite, so num2 is not */

		/*
		 * POSIX would have us return zero or minus zero if num1 is zero, and
		 * otherwise throw an underflow error.  But the numeric type doesn't
		 * really do underflow, so let's just return zero.
		 */
		PG_RETURN_NUMERIC(make_result(&const_zero));
	}

	/*
	 * Unpack the arguments
	 */
	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);

	init_var(&result);

	/*
	 * Do the divide and return the result
	 */
	div_var(&arg1, &arg2, &result, 0, false);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_mod() -
 *
 *	Calculate the modulo of two numerics
 */
Datum
numeric_mod(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	Numeric		res;

	res = numeric_mod_opt_error(num1, num2, NULL);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_mod_opt_error() -
 *
 *	Internal version of numeric_mod().  If "*have_error" flag is provided,
 *	on error it's set to true, NULL returned.  This is helpful when caller
 *	need to handle errors by itself.
 */
Numeric
numeric_mod_opt_error(Numeric num1, Numeric num2, bool *have_error)
{
	Numeric		res;
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;

	if (have_error)
		*have_error = false;

	/*
	 * Handle NaN and infinities.  We follow POSIX fmod() on this, except that
	 * POSIX treats x-is-infinite and y-is-zero identically, raising EDOM and
	 * returning NaN.  We choose to throw error only for y-is-zero.
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
	{
		if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
			return make_result(&const_nan);
		if (NUMERIC_IS_INF(num1))
		{
			if (numeric_sign_internal(num2) == 0)
			{
				if (have_error)
				{
					*have_error = true;
					return NULL;
				}
				ereport(ERROR,
						(errcode(ERRCODE_DIVISION_BY_ZERO),
						 errmsg("division by zero")));
			}
			/* Inf % any nonzero = NaN */
			return make_result(&const_nan);
		}
		/* num2 must be [-]Inf; result is num1 regardless of sign of num2 */
		return duplicate_numeric(num1);
	}

	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);

	init_var(&result);

	/*
	 * If "have_error" is provided, check for division by zero here
	 */
	if (have_error && (arg2.ndigits == 0 || arg2.digits[0] == 0))
	{
		*have_error = true;
		return NULL;
	}

	mod_var(&arg1, &arg2, &result);

	res = make_result_opt_error(&result, NULL);

	free_var(&result);

	return res;
}


/*
 * numeric_inc() -
 *
 *	Increment a number by one
 */
Datum
numeric_inc(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	NumericVar	arg;
	Numeric		res;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
		PG_RETURN_NUMERIC(duplicate_numeric(num));

	/*
	 * Compute the result and return it
	 */
	init_var_from_num(num, &arg);

	add_var(&arg, &const_one, &arg);

	res = make_result(&arg);

	free_var(&arg);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_smaller() -
 *
 *	Return the smaller of two numbers
 */
Datum
numeric_smaller(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);

	/*
	 * Use cmp_numerics so that this will agree with the comparison operators,
	 * particularly as regards comparisons involving NaN.
	 */
	if (cmp_numerics(num1, num2) < 0)
		PG_RETURN_NUMERIC(num1);
	else
		PG_RETURN_NUMERIC(num2);
}


/*
 * numeric_larger() -
 *
 *	Return the larger of two numbers
 */
Datum
numeric_larger(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);

	/*
	 * Use cmp_numerics so that this will agree with the comparison operators,
	 * particularly as regards comparisons involving NaN.
	 */
	if (cmp_numerics(num1, num2) > 0)
		PG_RETURN_NUMERIC(num1);
	else
		PG_RETURN_NUMERIC(num2);
}


/* ----------------------------------------------------------------------
 *
 * Advanced math functions
 *
 * ----------------------------------------------------------------------
 */

/*
 * numeric_gcd() -
 *
 *	Calculate the greatest common divisor of two numerics
 */
Datum
numeric_gcd(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;
	Numeric		res;

	/*
	 * Handle NaN and infinities: we consider the result to be NaN in all such
	 * cases.
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
		PG_RETURN_NUMERIC(make_result(&const_nan));

	/*
	 * Unpack the arguments
	 */
	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);

	init_var(&result);

	/*
	 * Find the GCD and return the result
	 */
	gcd_var(&arg1, &arg2, &result);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_lcm() -
 *
 *	Calculate the least common multiple of two numerics
 */
Datum
numeric_lcm(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;
	Numeric		res;

	/*
	 * Handle NaN and infinities: we consider the result to be NaN in all such
	 * cases.
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
		PG_RETURN_NUMERIC(make_result(&const_nan));

	/*
	 * Unpack the arguments
	 */
	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);

	init_var(&result);

	/*
	 * Compute the result using lcm(x, y) = abs(x / gcd(x, y) * y), returning
	 * zero if either input is zero.
	 *
	 * Note that the division is guaranteed to be exact, returning an integer
	 * result, so the LCM is an integral multiple of both x and y.  A display
	 * scale of Min(x.dscale, y.dscale) would be sufficient to represent it,
	 * but as with other numeric functions, we choose to return a result whose
	 * display scale is no smaller than either input.
	 */
	if (arg1.ndigits == 0 || arg2.ndigits == 0)
		set_var_from_var(&const_zero, &result);
	else
	{
		gcd_var(&arg1, &arg2, &result);
		div_var(&arg1, &result, &result, 0, false);
		mul_var(&arg2, &result, &result, arg2.dscale);
		result.sign = NUMERIC_POS;
	}

	result.dscale = Max(arg1.dscale, arg2.dscale);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_fac()
 *
 * Compute factorial
 */
Datum
numeric_fac(PG_FUNCTION_ARGS)
{
	int64		num = PG_GETARG_INT64(0);
	Numeric		res;
	NumericVar	fact;
	NumericVar	result;

	if (num < 0)
		ereport(ERROR,
				(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
				 errmsg("factorial of a negative number is undefined")));
	if (num <= 1)
	{
		res = make_result(&const_one);
		PG_RETURN_NUMERIC(res);
	}
	/* Fail immediately if the result would overflow */
	if (num > 32177)
		ereport(ERROR,
				(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
				 errmsg("value overflows numeric format")));

	init_var(&fact);
	init_var(&result);

	int64_to_numericvar(num, &result);

	for (num = num - 1; num > 1; num--)
	{
		/* this loop can take awhile, so allow it to be interrupted */
		CHECK_FOR_INTERRUPTS();

		int64_to_numericvar(num, &fact);

		mul_var(&result, &fact, &result, 0);
	}

	res = make_result(&result);

	free_var(&fact);
	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_sqrt() -
 *
 *	Compute the square root of a numeric.
 */
Datum
numeric_sqrt(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	Numeric		res;
	NumericVar	arg;
	NumericVar	result;
	int			sweight;
	int			rscale;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
	{
		/* error should match that in sqrt_var() */
		if (NUMERIC_IS_NINF(num))
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
					 errmsg("cannot take square root of a negative number")));
		/* For NAN or PINF, just duplicate the input */
		PG_RETURN_NUMERIC(duplicate_numeric(num));
	}

	/*
	 * Unpack the argument and determine the result scale.  We choose a scale
	 * to give at least NUMERIC_MIN_SIG_DIGITS significant digits; but in any
	 * case not less than the input's dscale.
	 */
	init_var_from_num(num, &arg);

	init_var(&result);

	/* Assume the input was normalized, so arg.weight is accurate */
	sweight = (arg.weight + 1) * DEC_DIGITS / 2 - 1;

	rscale = NUMERIC_MIN_SIG_DIGITS - sweight;
	rscale = Max(rscale, arg.dscale);
	rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
	rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);

	/*
	 * Let sqrt_var() do the calculation and return the result.
	 */
	sqrt_var(&arg, &result, rscale);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_exp() -
 *
 *	Raise e to the power of x
 */
Datum
numeric_exp(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	Numeric		res;
	NumericVar	arg;
	NumericVar	result;
	int			rscale;
	double		val;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
	{
		/* Per POSIX, exp(-Inf) is zero */
		if (NUMERIC_IS_NINF(num))
			PG_RETURN_NUMERIC(make_result(&const_zero));
		/* For NAN or PINF, just duplicate the input */
		PG_RETURN_NUMERIC(duplicate_numeric(num));
	}

	/*
	 * Unpack the argument and determine the result scale.  We choose a scale
	 * to give at least NUMERIC_MIN_SIG_DIGITS significant digits; but in any
	 * case not less than the input's dscale.
	 */
	init_var_from_num(num, &arg);

	init_var(&result);

	/* convert input to float8, ignoring overflow */
	val = numericvar_to_double_no_overflow(&arg);

	/*
	 * log10(result) = num * log10(e), so this is approximately the decimal
	 * weight of the result:
	 */
	val *= 0.434294481903252;

	/* limit to something that won't cause integer overflow */
	val = Max(val, -NUMERIC_MAX_RESULT_SCALE);
	val = Min(val, NUMERIC_MAX_RESULT_SCALE);

	rscale = NUMERIC_MIN_SIG_DIGITS - (int) val;
	rscale = Max(rscale, arg.dscale);
	rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
	rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);

	/*
	 * Let exp_var() do the calculation and return the result.
	 */
	exp_var(&arg, &result, rscale);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_ln() -
 *
 *	Compute the natural logarithm of x
 */
Datum
numeric_ln(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	Numeric		res;
	NumericVar	arg;
	NumericVar	result;
	int			ln_dweight;
	int			rscale;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_NINF(num))
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
					 errmsg("cannot take logarithm of a negative number")));
		/* For NAN or PINF, just duplicate the input */
		PG_RETURN_NUMERIC(duplicate_numeric(num));
	}

	init_var_from_num(num, &arg);
	init_var(&result);

	/* Estimated dweight of logarithm */
	ln_dweight = estimate_ln_dweight(&arg);

	rscale = NUMERIC_MIN_SIG_DIGITS - ln_dweight;
	rscale = Max(rscale, arg.dscale);
	rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
	rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);

	ln_var(&arg, &result, rscale);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_log() -
 *
 *	Compute the logarithm of x in a given base
 */
Datum
numeric_log(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	Numeric		res;
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
	{
		int			sign1,
					sign2;

		if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
			PG_RETURN_NUMERIC(make_result(&const_nan));
		/* fail on negative inputs including -Inf, as log_var would */
		sign1 = numeric_sign_internal(num1);
		sign2 = numeric_sign_internal(num2);
		if (sign1 < 0 || sign2 < 0)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
					 errmsg("cannot take logarithm of a negative number")));
		/* fail on zero inputs, as log_var would */
		if (sign1 == 0 || sign2 == 0)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
					 errmsg("cannot take logarithm of zero")));
		if (NUMERIC_IS_PINF(num1))
		{
			/* log(Inf, Inf) reduces to Inf/Inf, so it's NaN */
			if (NUMERIC_IS_PINF(num2))
				PG_RETURN_NUMERIC(make_result(&const_nan));
			/* log(Inf, finite-positive) is zero (we don't throw underflow) */
			PG_RETURN_NUMERIC(make_result(&const_zero));
		}
		Assert(NUMERIC_IS_PINF(num2));
		/* log(finite-positive, Inf) is Inf */
		PG_RETURN_NUMERIC(make_result(&const_pinf));
	}

	/*
	 * Initialize things
	 */
	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);
	init_var(&result);

	/*
	 * Call log_var() to compute and return the result; note it handles scale
	 * selection itself.
	 */
	log_var(&arg1, &arg2, &result);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/*
 * numeric_power() -
 *
 *	Raise x to the power of y
 */
Datum
numeric_power(PG_FUNCTION_ARGS)
{
	Numeric		num1 = PG_GETARG_NUMERIC(0);
	Numeric		num2 = PG_GETARG_NUMERIC(1);
	Numeric		res;
	NumericVar	arg1;
	NumericVar	arg2;
	NumericVar	result;
	int			sign1,
				sign2;

	/*
	 * Handle NaN and infinities
	 */
	if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2))
	{
		/*
		 * We follow the POSIX spec for pow(3), which says that NaN ^ 0 = 1,
		 * and 1 ^ NaN = 1, while all other cases with NaN inputs yield NaN
		 * (with no error).
		 */
		if (NUMERIC_IS_NAN(num1))
		{
			if (!NUMERIC_IS_SPECIAL(num2))
			{
				init_var_from_num(num2, &arg2);
				if (cmp_var(&arg2, &const_zero) == 0)
					PG_RETURN_NUMERIC(make_result(&const_one));
			}
			PG_RETURN_NUMERIC(make_result(&const_nan));
		}
		if (NUMERIC_IS_NAN(num2))
		{
			if (!NUMERIC_IS_SPECIAL(num1))
			{
				init_var_from_num(num1, &arg1);
				if (cmp_var(&arg1, &const_one) == 0)
					PG_RETURN_NUMERIC(make_result(&const_one));
			}
			PG_RETURN_NUMERIC(make_result(&const_nan));
		}
		/* At least one input is infinite, but error rules still apply */
		sign1 = numeric_sign_internal(num1);
		sign2 = numeric_sign_internal(num2);
		if (sign1 == 0 && sign2 < 0)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
					 errmsg("zero raised to a negative power is undefined")));
		if (sign1 < 0 && !numeric_is_integral(num2))
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
					 errmsg("a negative number raised to a non-integer power yields a complex result")));

		/*
		 * POSIX gives this series of rules for pow(3) with infinite inputs:
		 *
		 * For any value of y, if x is +1, 1.0 shall be returned.
		 */
		if (!NUMERIC_IS_SPECIAL(num1))
		{
			init_var_from_num(num1, &arg1);
			if (cmp_var(&arg1, &const_one) == 0)
				PG_RETURN_NUMERIC(make_result(&const_one));
		}

		/*
		 * For any value of x, if y is [-]0, 1.0 shall be returned.
		 */
		if (sign2 == 0)
			PG_RETURN_NUMERIC(make_result(&const_one));

		/*
		 * For any odd integer value of y > 0, if x is [-]0, [-]0 shall be
		 * returned.  For y > 0 and not an odd integer, if x is [-]0, +0 shall
		 * be returned.  (Since we don't deal in minus zero, we need not
		 * distinguish these two cases.)
		 */
		if (sign1 == 0 && sign2 > 0)
			PG_RETURN_NUMERIC(make_result(&const_zero));

		/*
		 * If x is -1, and y is [-]Inf, 1.0 shall be returned.
		 *
		 * For |x| < 1, if y is -Inf, +Inf shall be returned.
		 *
		 * For |x| > 1, if y is -Inf, +0 shall be returned.
		 *
		 * For |x| < 1, if y is +Inf, +0 shall be returned.
		 *
		 * For |x| > 1, if y is +Inf, +Inf shall be returned.
		 */
		if (NUMERIC_IS_INF(num2))
		{
			bool		abs_x_gt_one;

			if (NUMERIC_IS_SPECIAL(num1))
				abs_x_gt_one = true;	/* x is either Inf or -Inf */
			else
			{
				init_var_from_num(num1, &arg1);
				if (cmp_var(&arg1, &const_minus_one) == 0)
					PG_RETURN_NUMERIC(make_result(&const_one));
				arg1.sign = NUMERIC_POS;	/* now arg1 = abs(x) */
				abs_x_gt_one = (cmp_var(&arg1, &const_one) > 0);
			}
			if (abs_x_gt_one == (sign2 > 0))
				PG_RETURN_NUMERIC(make_result(&const_pinf));
			else
				PG_RETURN_NUMERIC(make_result(&const_zero));
		}

		/*
		 * For y < 0, if x is +Inf, +0 shall be returned.
		 *
		 * For y > 0, if x is +Inf, +Inf shall be returned.
		 */
		if (NUMERIC_IS_PINF(num1))
		{
			if (sign2 > 0)
				PG_RETURN_NUMERIC(make_result(&const_pinf));
			else
				PG_RETURN_NUMERIC(make_result(&const_zero));
		}

		Assert(NUMERIC_IS_NINF(num1));

		/*
		 * For y an odd integer < 0, if x is -Inf, -0 shall be returned.  For
		 * y < 0 and not an odd integer, if x is -Inf, +0 shall be returned.
		 * (Again, we need not distinguish these two cases.)
		 */
		if (sign2 < 0)
			PG_RETURN_NUMERIC(make_result(&const_zero));

		/*
		 * For y an odd integer > 0, if x is -Inf, -Inf shall be returned. For
		 * y > 0 and not an odd integer, if x is -Inf, +Inf shall be returned.
		 */
		init_var_from_num(num2, &arg2);
		if (arg2.ndigits > 0 && arg2.ndigits == arg2.weight + 1 &&
			(arg2.digits[arg2.ndigits - 1] & 1))
			PG_RETURN_NUMERIC(make_result(&const_ninf));
		else
			PG_RETURN_NUMERIC(make_result(&const_pinf));
	}

	/*
	 * The SQL spec requires that we emit a particular SQLSTATE error code for
	 * certain error conditions.  Specifically, we don't return a
	 * divide-by-zero error code for 0 ^ -1.  Raising a negative number to a
	 * non-integer power must produce the same error code, but that case is
	 * handled in power_var().
	 */
	sign1 = numeric_sign_internal(num1);
	sign2 = numeric_sign_internal(num2);

	if (sign1 == 0 && sign2 < 0)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
				 errmsg("zero raised to a negative power is undefined")));

	/*
	 * Initialize things
	 */
	init_var(&result);
	init_var_from_num(num1, &arg1);
	init_var_from_num(num2, &arg2);

	/*
	 * Call power_var() to compute and return the result; note it handles
	 * scale selection itself.
	 */
	power_var(&arg1, &arg2, &result);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}

/*
 * numeric_scale() -
 *
 *	Returns the scale, i.e. the count of decimal digits in the fractional part
 */
Datum
numeric_scale(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);

	if (NUMERIC_IS_SPECIAL(num))
		PG_RETURN_NULL();

	PG_RETURN_INT32(NUMERIC_DSCALE(num));
}

/*
 * Calculate minimum scale for value.
 */
static int
get_min_scale(NumericVar *var)
{
	int			min_scale;
	int			last_digit_pos;

	/*
	 * Ordinarily, the input value will be "stripped" so that the last
	 * NumericDigit is nonzero.  But we don't want to get into an infinite
	 * loop if it isn't, so explicitly find the last nonzero digit.
	 */
	last_digit_pos = var->ndigits - 1;
	while (last_digit_pos >= 0 &&
		   var->digits[last_digit_pos] == 0)
		last_digit_pos--;

	if (last_digit_pos >= 0)
	{
		/* compute min_scale assuming that last ndigit has no zeroes */
		min_scale = (last_digit_pos - var->weight) * DEC_DIGITS;

		/*
		 * We could get a negative result if there are no digits after the
		 * decimal point.  In this case the min_scale must be zero.
		 */
		if (min_scale > 0)
		{
			/*
			 * Reduce min_scale if trailing digit(s) in last NumericDigit are
			 * zero.
			 */
			NumericDigit last_digit = var->digits[last_digit_pos];

			while (last_digit % 10 == 0)
			{
				min_scale--;
				last_digit /= 10;
			}
		}
		else
			min_scale = 0;
	}
	else
		min_scale = 0;			/* result if input is zero */

	return min_scale;
}

/*
 * Returns minimum scale required to represent supplied value without loss.
 */
Datum
numeric_min_scale(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	NumericVar	arg;
	int			min_scale;

	if (NUMERIC_IS_SPECIAL(num))
		PG_RETURN_NULL();

	init_var_from_num(num, &arg);
	min_scale = get_min_scale(&arg);
	free_var(&arg);

	PG_RETURN_INT32(min_scale);
}

/*
 * Reduce scale of numeric value to represent supplied value without loss.
 */
Datum
numeric_trim_scale(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	Numeric		res;
	NumericVar	result;

	if (NUMERIC_IS_SPECIAL(num))
		PG_RETURN_NUMERIC(duplicate_numeric(num));

	init_var_from_num(num, &result);
	result.dscale = get_min_scale(&result);
	res = make_result(&result);
	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


/* ----------------------------------------------------------------------
 *
 * Type conversion functions
 *
 * ----------------------------------------------------------------------
 */

Numeric
int64_to_numeric(int64 val)
{
	Numeric		res;
	NumericVar	result;

	init_var(&result);

	int64_to_numericvar(val, &result);

	res = make_result(&result);

	free_var(&result);

	return res;
}

/*
 * Convert val1/(10**val2) to numeric.  This is much faster than normal
 * numeric division.
 */
Numeric
int64_div_fast_to_numeric(int64 val1, int log10val2)
{
	Numeric		res;
	NumericVar	result;
	int64		saved_val1 = val1;
	int			w;
	int			m;

	/* how much to decrease the weight by */
	w = log10val2 / DEC_DIGITS;
	/* how much is left */
	m = log10val2 % DEC_DIGITS;

	/*
	 * If there is anything left, multiply the dividend by what's left, then
	 * shift the weight by one more.
	 */
	if (m > 0)
	{
		static int	pow10[] = {1, 10, 100, 1000};

		StaticAssertStmt(lengthof(pow10) == DEC_DIGITS, "mismatch with DEC_DIGITS");
		if (unlikely(pg_mul_s64_overflow(val1, pow10[DEC_DIGITS - m], &val1)))
		{
			/*
			 * If it doesn't fit, do the whole computation in numeric the slow
			 * way.  Note that va1l may have been overwritten, so use
			 * saved_val1 instead.
			 */
			int			val2 = 1;

			for (int i = 0; i < log10val2; i++)
				val2 *= 10;
			res = numeric_div_opt_error(int64_to_numeric(saved_val1), int64_to_numeric(val2), NULL);
			res = DatumGetNumeric(DirectFunctionCall2(numeric_round,
													  NumericGetDatum(res),
													  Int32GetDatum(log10val2)));
			return res;
		}
		w++;
	}

	init_var(&result);

	int64_to_numericvar(val1, &result);

	result.weight -= w;
	result.dscale += w * DEC_DIGITS - (DEC_DIGITS - m);

	res = make_result(&result);

	free_var(&result);

	return res;
}

Datum
int4_numeric(PG_FUNCTION_ARGS)
{
	int32		val = PG_GETARG_INT32(0);

	PG_RETURN_NUMERIC(int64_to_numeric(val));
}

int32
numeric_int4_opt_error(Numeric num, bool *have_error)
{
	NumericVar	x;
	int32		result;

	if (have_error)
		*have_error = false;

	if (NUMERIC_IS_SPECIAL(num))
	{
		if (have_error)
		{
			*have_error = true;
			return 0;
		}
		else
		{
			if (NUMERIC_IS_NAN(num))
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("cannot convert NaN to %s", "integer")));
			else
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("cannot convert infinity to %s", "integer")));
		}
	}

	/* Convert to variable format, then convert to int4 */
	init_var_from_num(num, &x);

	if (!numericvar_to_int32(&x, &result))
	{
		if (have_error)
		{
			*have_error = true;
			return 0;
		}
		else
		{
			ereport(ERROR,
					(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
					 errmsg("integer out of range")));
		}
	}

	return result;
}

Datum
numeric_int4(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);

	PG_RETURN_INT32(numeric_int4_opt_error(num, NULL));
}

/*
 * Given a NumericVar, convert it to an int32. If the NumericVar
 * exceeds the range of an int32, false is returned, otherwise true is returned.
 * The input NumericVar is *not* free'd.
 */
static bool
numericvar_to_int32(const NumericVar *var, int32 *result)
{
	int64		val;

	if (!numericvar_to_int64(var, &val))
		return false;

	if (unlikely(val < PG_INT32_MIN) || unlikely(val > PG_INT32_MAX))
		return false;

	/* Down-convert to int4 */
	*result = (int32) val;

	return true;
}

Datum
int8_numeric(PG_FUNCTION_ARGS)
{
	int64		val = PG_GETARG_INT64(0);

	PG_RETURN_NUMERIC(int64_to_numeric(val));
}


Datum
numeric_int8(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	NumericVar	x;
	int64		result;

	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_NAN(num))
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("cannot convert NaN to %s", "bigint")));
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("cannot convert infinity to %s", "bigint")));
	}

	/* Convert to variable format and thence to int8 */
	init_var_from_num(num, &x);

	if (!numericvar_to_int64(&x, &result))
		ereport(ERROR,
				(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
				 errmsg("bigint out of range")));

	PG_RETURN_INT64(result);
}


Datum
int2_numeric(PG_FUNCTION_ARGS)
{
	int16		val = PG_GETARG_INT16(0);

	PG_RETURN_NUMERIC(int64_to_numeric(val));
}


Datum
numeric_int2(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	NumericVar	x;
	int64		val;
	int16		result;

	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_NAN(num))
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("cannot convert NaN to %s", "smallint")));
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("cannot convert infinity to %s", "smallint")));
	}

	/* Convert to variable format and thence to int8 */
	init_var_from_num(num, &x);

	if (!numericvar_to_int64(&x, &val))
		ereport(ERROR,
				(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
				 errmsg("smallint out of range")));

	if (unlikely(val < PG_INT16_MIN) || unlikely(val > PG_INT16_MAX))
		ereport(ERROR,
				(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
				 errmsg("smallint out of range")));

	/* Down-convert to int2 */
	result = (int16) val;

	PG_RETURN_INT16(result);
}


Datum
float8_numeric(PG_FUNCTION_ARGS)
{
	float8		val = PG_GETARG_FLOAT8(0);
	Numeric		res;
	NumericVar	result;
	char		buf[DBL_DIG + 100];

	if (isnan(val))
		PG_RETURN_NUMERIC(make_result(&const_nan));

	if (isinf(val))
	{
		if (val < 0)
			PG_RETURN_NUMERIC(make_result(&const_ninf));
		else
			PG_RETURN_NUMERIC(make_result(&const_pinf));
	}

	snprintf(buf, sizeof(buf), "%.*g", DBL_DIG, val);

	init_var(&result);

	/* Assume we need not worry about leading/trailing spaces */
	(void) set_var_from_str(buf, buf, &result);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


Datum
numeric_float8(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	char	   *tmp;
	Datum		result;

	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_PINF(num))
			PG_RETURN_FLOAT8(get_float8_infinity());
		else if (NUMERIC_IS_NINF(num))
			PG_RETURN_FLOAT8(-get_float8_infinity());
		else
			PG_RETURN_FLOAT8(get_float8_nan());
	}

	tmp = DatumGetCString(DirectFunctionCall1(numeric_out,
											  NumericGetDatum(num)));

	result = DirectFunctionCall1(float8in, CStringGetDatum(tmp));

	pfree(tmp);

	PG_RETURN_DATUM(result);
}


/*
 * Convert numeric to float8; if out of range, return +/- HUGE_VAL
 *
 * (internal helper function, not directly callable from SQL)
 */
Datum
numeric_float8_no_overflow(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	double		val;

	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_PINF(num))
			val = HUGE_VAL;
		else if (NUMERIC_IS_NINF(num))
			val = -HUGE_VAL;
		else
			val = get_float8_nan();
	}
	else
	{
		NumericVar	x;

		init_var_from_num(num, &x);
		val = numericvar_to_double_no_overflow(&x);
	}

	PG_RETURN_FLOAT8(val);
}

Datum
float4_numeric(PG_FUNCTION_ARGS)
{
	float4		val = PG_GETARG_FLOAT4(0);
	Numeric		res;
	NumericVar	result;
	char		buf[FLT_DIG + 100];

	if (isnan(val))
		PG_RETURN_NUMERIC(make_result(&const_nan));

	if (isinf(val))
	{
		if (val < 0)
			PG_RETURN_NUMERIC(make_result(&const_ninf));
		else
			PG_RETURN_NUMERIC(make_result(&const_pinf));
	}

	snprintf(buf, sizeof(buf), "%.*g", FLT_DIG, val);

	init_var(&result);

	/* Assume we need not worry about leading/trailing spaces */
	(void) set_var_from_str(buf, buf, &result);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
}


Datum
numeric_float4(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	char	   *tmp;
	Datum		result;

	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_PINF(num))
			PG_RETURN_FLOAT4(get_float4_infinity());
		else if (NUMERIC_IS_NINF(num))
			PG_RETURN_FLOAT4(-get_float4_infinity());
		else
			PG_RETURN_FLOAT4(get_float4_nan());
	}

	tmp = DatumGetCString(DirectFunctionCall1(numeric_out,
											  NumericGetDatum(num)));

	result = DirectFunctionCall1(float4in, CStringGetDatum(tmp));

	pfree(tmp);

	PG_RETURN_DATUM(result);
}


Datum
numeric_pg_lsn(PG_FUNCTION_ARGS)
{
	Numeric		num = PG_GETARG_NUMERIC(0);
	NumericVar	x;
	XLogRecPtr	result;

	if (NUMERIC_IS_SPECIAL(num))
	{
		if (NUMERIC_IS_NAN(num))
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("cannot convert NaN to %s", "pg_lsn")));
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("cannot convert infinity to %s", "pg_lsn")));
	}

	/* Convert to variable format and thence to pg_lsn */
	init_var_from_num(num, &x);

	if (!numericvar_to_uint64(&x, (uint64 *) &result))
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
				 errmsg("pg_lsn out of range")));

	PG_RETURN_LSN(result);
}


/* ----------------------------------------------------------------------
 *
 * Aggregate functions
 *
 * The transition datatype for all these aggregates is declared as INTERNAL.
 * Actually, it's a pointer to a NumericAggState allocated in the aggregate
 * context.  The digit buffers for the NumericVars will be there too.
 *
 * On platforms which support 128-bit integers some aggregates instead use a
 * 128-bit integer based transition datatype to speed up calculations.
 *
 * ----------------------------------------------------------------------
 */

typedef struct NumericAggState
{
	bool		calcSumX2;		/* if true, calculate sumX2 */
	MemoryContext agg_context;	/* context we're calculating in */
	int64		N;				/* count of processed numbers */
	NumericSumAccum sumX;		/* sum of processed numbers */
	NumericSumAccum sumX2;		/* sum of squares of processed numbers */
	int			maxScale;		/* maximum scale seen so far */
	int64		maxScaleCount;	/* number of values seen with maximum scale */
	/* These counts are *not* included in N!  Use NA_TOTAL_COUNT() as needed */
	int64		NaNcount;		/* count of NaN values */
	int64		pInfcount;		/* count of +Inf values */
	int64		nInfcount;		/* count of -Inf values */
} NumericAggState;

#define NA_TOTAL_COUNT(na) \
	((na)->N + (na)->NaNcount + (na)->pInfcount + (na)->nInfcount)

/*
 * Prepare state data for a numeric aggregate function that needs to compute
 * sum, count and optionally sum of squares of the input.
 */
static NumericAggState *
makeNumericAggState(FunctionCallInfo fcinfo, bool calcSumX2)
{
	NumericAggState *state;
	MemoryContext agg_context;
	MemoryContext old_context;

	if (!AggCheckCallContext(fcinfo, &agg_context))
		elog(ERROR, "aggregate function called in non-aggregate context");

	old_context = MemoryContextSwitchTo(agg_context);

	state = (NumericAggState *) palloc0(sizeof(NumericAggState));
	state->calcSumX2 = calcSumX2;
	state->agg_context = agg_context;

	MemoryContextSwitchTo(old_context);

	return state;
}

/*
 * Like makeNumericAggState(), but allocate the state in the current memory
 * context.
 */
static NumericAggState *
makeNumericAggStateCurrentContext(bool calcSumX2)
{
	NumericAggState *state;

	state = (NumericAggState *) palloc0(sizeof(NumericAggState));
	state->calcSumX2 = calcSumX2;
	state->agg_context = CurrentMemoryContext;

	return state;
}

/*
 * Accumulate a new input value for numeric aggregate functions.
 */
static void
do_numeric_accum(NumericAggState *state, Numeric newval)
{
	NumericVar	X;
	NumericVar	X2;
	MemoryContext old_context;

	/* Count NaN/infinity inputs separately from all else */
	if (NUMERIC_IS_SPECIAL(newval))
	{
		if (NUMERIC_IS_PINF(newval))
			state->pInfcount++;
		else if (NUMERIC_IS_NINF(newval))
			state->nInfcount++;
		else
			state->NaNcount++;
		return;
	}

	/* load processed number in short-lived context */
	init_var_from_num(newval, &X);

	/*
	 * Track the highest input dscale that we've seen, to support inverse
	 * transitions (see do_numeric_discard).
	 */
	if (X.dscale > state->maxScale)
	{
		state->maxScale = X.dscale;
		state->maxScaleCount = 1;
	}
	else if (X.dscale == state->maxScale)
		state->maxScaleCount++;

	/* if we need X^2, calculate that in short-lived context */
	if (state->calcSumX2)
	{
		init_var(&X2);
		mul_var(&X, &X, &X2, X.dscale * 2);
	}

	/* The rest of this needs to work in the aggregate context */
	old_context = MemoryContextSwitchTo(state->agg_context);

	state->N++;

	/* Accumulate sums */
	accum_sum_add(&(state->sumX), &X);

	if (state->calcSumX2)
		accum_sum_add(&(state->sumX2), &X2);

	MemoryContextSwitchTo(old_context);
}

/*
 * Attempt to remove an input value from the aggregated state.
 *
 * If the value cannot be removed then the function will return false; the
 * possible reasons for failing are described below.
 *
 * If we aggregate the values 1.01 and 2 then the result will be 3.01.
 * If we are then asked to un-aggregate the 1.01 then we must fail as we
 * won't be able to tell what the new aggregated value's dscale should be.
 * We don't want to return 2.00 (dscale = 2), since the sum's dscale would
 * have been zero if we'd really aggregated only 2.
 *
 * Note: alternatively, we could count the number of inputs with each possible
 * dscale (up to some sane limit).  Not yet clear if it's worth the trouble.
 */
static bool
do_numeric_discard(NumericAggState *state, Numeric newval)
{
	NumericVar	X;
	NumericVar	X2;
	MemoryContext old_context;

	/* Count NaN/infinity inputs separately from all else */
	if (NUMERIC_IS_SPECIAL(newval))
	{
		if (NUMERIC_IS_PINF(newval))
			state->pInfcount--;
		else if (NUMERIC_IS_NINF(newval))
			state->nInfcount--;
		else
			state->NaNcount--;
		return true;
	}

	/* load processed number in short-lived context */
	init_var_from_num(newval, &X);

	/*
	 * state->sumX's dscale is the maximum dscale of any of the inputs.
	 * Removing the last input with that dscale would require us to recompute
	 * the maximum dscale of the *remaining* inputs, which we cannot do unless
	 * no more non-NaN inputs remain at all.  So we report a failure instead,
	 * and force the aggregation to be redone from scratch.
	 */
	if (X.dscale == state->maxScale)
	{
		if (state->maxScaleCount > 1 || state->maxScale == 0)
		{
			/*
			 * Some remaining inputs have same dscale, or dscale hasn't gotten
			 * above zero anyway
			 */
			state->maxScaleCount--;
		}
		else if (state->N == 1)
		{
			/* No remaining non-NaN inputs at all, so reset maxScale */
			state->maxScale = 0;
			state->maxScaleCount = 0;
		}
		else
		{
			/* Correct new maxScale is uncertain, must fail */
			return false;
		}
	}

	/* if we need X^2, calculate that in short-lived context */
	if (state->calcSumX2)
	{
		init_var(&X2);
		mul_var(&X, &X, &X2, X.dscale * 2);
	}

	/* The rest of this needs to work in the aggregate context */
	old_context = MemoryContextSwitchTo(state->agg_context);

	if (state->N-- > 1)
	{
		/* Negate X, to subtract it from the sum */
		X.sign = (X.sign == NUMERIC_POS ? NUMERIC_NEG : NUMERIC_POS);
		accum_sum_add(&(state->sumX), &X);

		if (state->calcSumX2)
		{
			/* Negate X^2. X^2 is always positive */
			X2.sign = NUMERIC_NEG;
			accum_sum_add(&(state->sumX2), &X2);
		}
	}
	else
	{
		/* Zero the sums */
		Assert(state->N == 0);

		accum_sum_reset(&state->sumX);
		if (state->calcSumX2)
			accum_sum_reset(&state->sumX2);
	}

	MemoryContextSwitchTo(old_context);

	return true;
}

/*
 * Generic transition function for numeric aggregates that require sumX2.
 */
Datum
numeric_accum(PG_FUNCTION_ARGS)
{
	NumericAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	/* Create the state data on the first call */
	if (state == NULL)
		state = makeNumericAggState(fcinfo, true);

	if (!PG_ARGISNULL(1))
		do_numeric_accum(state, PG_GETARG_NUMERIC(1));

	PG_RETURN_POINTER(state);
}

/*
 * Generic combine function for numeric aggregates which require sumX2
 */
Datum
numeric_combine(PG_FUNCTION_ARGS)
{
	NumericAggState *state1;
	NumericAggState *state2;
	MemoryContext agg_context;
	MemoryContext old_context;

	if (!AggCheckCallContext(fcinfo, &agg_context))
		elog(ERROR, "aggregate function called in non-aggregate context");

	state1 = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);
	state2 = PG_ARGISNULL(1) ? NULL : (NumericAggState *) PG_GETARG_POINTER(1);

	if (state2 == NULL)
		PG_RETURN_POINTER(state1);

	/* manually copy all fields from state2 to state1 */
	if (state1 == NULL)
	{
		old_context = MemoryContextSwitchTo(agg_context);

		state1 = makeNumericAggStateCurrentContext(true);
		state1->N = state2->N;
		state1->NaNcount = state2->NaNcount;
		state1->pInfcount = state2->pInfcount;
		state1->nInfcount = state2->nInfcount;
		state1->maxScale = state2->maxScale;
		state1->maxScaleCount = state2->maxScaleCount;

		accum_sum_copy(&state1->sumX, &state2->sumX);
		accum_sum_copy(&state1->sumX2, &state2->sumX2);

		MemoryContextSwitchTo(old_context);

		PG_RETURN_POINTER(state1);
	}

	state1->N += state2->N;
	state1->NaNcount += state2->NaNcount;
	state1->pInfcount += state2->pInfcount;
	state1->nInfcount += state2->nInfcount;

	if (state2->N > 0)
	{
		/*
		 * These are currently only needed for moving aggregates, but let's do
		 * the right thing anyway...
		 */
		if (state2->maxScale > state1->maxScale)
		{
			state1->maxScale = state2->maxScale;
			state1->maxScaleCount = state2->maxScaleCount;
		}
		else if (state2->maxScale == state1->maxScale)
			state1->maxScaleCount += state2->maxScaleCount;

		/* The rest of this needs to work in the aggregate context */
		old_context = MemoryContextSwitchTo(agg_context);

		/* Accumulate sums */
		accum_sum_combine(&state1->sumX, &state2->sumX);
		accum_sum_combine(&state1->sumX2, &state2->sumX2);

		MemoryContextSwitchTo(old_context);
	}
	PG_RETURN_POINTER(state1);
}

/*
 * Generic transition function for numeric aggregates that don't require sumX2.
 */
Datum
numeric_avg_accum(PG_FUNCTION_ARGS)
{
	NumericAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	/* Create the state data on the first call */
	if (state == NULL)
		state = makeNumericAggState(fcinfo, false);

	if (!PG_ARGISNULL(1))
		do_numeric_accum(state, PG_GETARG_NUMERIC(1));

	PG_RETURN_POINTER(state);
}

/*
 * Combine function for numeric aggregates which don't require sumX2
 */
Datum
numeric_avg_combine(PG_FUNCTION_ARGS)
{
	NumericAggState *state1;
	NumericAggState *state2;
	MemoryContext agg_context;
	MemoryContext old_context;

	if (!AggCheckCallContext(fcinfo, &agg_context))
		elog(ERROR, "aggregate function called in non-aggregate context");

	state1 = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);
	state2 = PG_ARGISNULL(1) ? NULL : (NumericAggState *) PG_GETARG_POINTER(1);

	if (state2 == NULL)
		PG_RETURN_POINTER(state1);

	/* manually copy all fields from state2 to state1 */
	if (state1 == NULL)
	{
		old_context = MemoryContextSwitchTo(agg_context);

		state1 = makeNumericAggStateCurrentContext(false);
		state1->N = state2->N;
		state1->NaNcount = state2->NaNcount;
		state1->pInfcount = state2->pInfcount;
		state1->nInfcount = state2->nInfcount;
		state1->maxScale = state2->maxScale;
		state1->maxScaleCount = state2->maxScaleCount;

		accum_sum_copy(&state1->sumX, &state2->sumX);

		MemoryContextSwitchTo(old_context);

		PG_RETURN_POINTER(state1);
	}

	state1->N += state2->N;
	state1->NaNcount += state2->NaNcount;
	state1->pInfcount += state2->pInfcount;
	state1->nInfcount += state2->nInfcount;

	if (state2->N > 0)
	{
		/*
		 * These are currently only needed for moving aggregates, but let's do
		 * the right thing anyway...
		 */
		if (state2->maxScale > state1->maxScale)
		{
			state1->maxScale = state2->maxScale;
			state1->maxScaleCount = state2->maxScaleCount;
		}
		else if (state2->maxScale == state1->maxScale)
			state1->maxScaleCount += state2->maxScaleCount;

		/* The rest of this needs to work in the aggregate context */
		old_context = MemoryContextSwitchTo(agg_context);

		/* Accumulate sums */
		accum_sum_combine(&state1->sumX, &state2->sumX);

		MemoryContextSwitchTo(old_context);
	}
	PG_RETURN_POINTER(state1);
}

/*
 * numeric_avg_serialize
 *		Serialize NumericAggState for numeric aggregates that don't require
 *		sumX2.
 */
Datum
numeric_avg_serialize(PG_FUNCTION_ARGS)
{
	NumericAggState *state;
	StringInfoData buf;
	Datum		temp;
	bytea	   *sumX;
	bytea	   *result;
	NumericVar	tmp_var;

	/* Ensure we disallow calling when not in aggregate context */
	if (!AggCheckCallContext(fcinfo, NULL))
		elog(ERROR, "aggregate function called in non-aggregate context");

	state = (NumericAggState *) PG_GETARG_POINTER(0);

	/*
	 * This is a little wasteful since make_result converts the NumericVar
	 * into a Numeric and numeric_send converts it back again. Is it worth
	 * splitting the tasks in numeric_send into separate functions to stop
	 * this? Doing so would also remove the fmgr call overhead.
	 */
	init_var(&tmp_var);
	accum_sum_final(&state->sumX, &tmp_var);

	temp = DirectFunctionCall1(numeric_send,
							   NumericGetDatum(make_result(&tmp_var)));
	sumX = DatumGetByteaPP(temp);
	free_var(&tmp_var);

	pq_begintypsend(&buf);

	/* N */
	pq_sendint64(&buf, state->N);

	/* sumX */
	pq_sendbytes(&buf, VARDATA_ANY(sumX), VARSIZE_ANY_EXHDR(sumX));

	/* maxScale */
	pq_sendint32(&buf, state->maxScale);

	/* maxScaleCount */
	pq_sendint64(&buf, state->maxScaleCount);

	/* NaNcount */
	pq_sendint64(&buf, state->NaNcount);

	/* pInfcount */
	pq_sendint64(&buf, state->pInfcount);

	/* nInfcount */
	pq_sendint64(&buf, state->nInfcount);

	result = pq_endtypsend(&buf);

	PG_RETURN_BYTEA_P(result);
}

/*
 * numeric_avg_deserialize
 *		Deserialize bytea into NumericAggState for numeric aggregates that
 *		don't require sumX2.
 */
Datum
numeric_avg_deserialize(PG_FUNCTION_ARGS)
{
	bytea	   *sstate;
	NumericAggState *result;
	Datum		temp;
	NumericVar	tmp_var;
	StringInfoData buf;

	if (!AggCheckCallContext(fcinfo, NULL))
		elog(ERROR, "aggregate function called in non-aggregate context");

	sstate = PG_GETARG_BYTEA_PP(0);

	/*
	 * Copy the bytea into a StringInfo so that we can "receive" it using the
	 * standard recv-function infrastructure.
	 */
	initStringInfo(&buf);
	appendBinaryStringInfo(&buf,
						   VARDATA_ANY(sstate), VARSIZE_ANY_EXHDR(sstate));

	result = makeNumericAggStateCurrentContext(false);

	/* N */
	result->N = pq_getmsgint64(&buf);

	/* sumX */
	temp = DirectFunctionCall3(numeric_recv,
							   PointerGetDatum(&buf),
							   ObjectIdGetDatum(InvalidOid),
							   Int32GetDatum(-1));
	init_var_from_num(DatumGetNumeric(temp), &tmp_var);
	accum_sum_add(&(result->sumX), &tmp_var);

	/* maxScale */
	result->maxScale = pq_getmsgint(&buf, 4);

	/* maxScaleCount */
	result->maxScaleCount = pq_getmsgint64(&buf);

	/* NaNcount */
	result->NaNcount = pq_getmsgint64(&buf);

	/* pInfcount */
	result->pInfcount = pq_getmsgint64(&buf);

	/* nInfcount */
	result->nInfcount = pq_getmsgint64(&buf);

	pq_getmsgend(&buf);
	pfree(buf.data);

	PG_RETURN_POINTER(result);
}

/*
 * numeric_serialize
 *		Serialization function for NumericAggState for numeric aggregates that
 *		require sumX2.
 */
Datum
numeric_serialize(PG_FUNCTION_ARGS)
{
	NumericAggState *state;
	StringInfoData buf;
	Datum		temp;
	bytea	   *sumX;
	NumericVar	tmp_var;
	bytea	   *sumX2;
	bytea	   *result;

	/* Ensure we disallow calling when not in aggregate context */
	if (!AggCheckCallContext(fcinfo, NULL))
		elog(ERROR, "aggregate function called in non-aggregate context");

	state = (NumericAggState *) PG_GETARG_POINTER(0);

	/*
	 * This is a little wasteful since make_result converts the NumericVar
	 * into a Numeric and numeric_send converts it back again. Is it worth
	 * splitting the tasks in numeric_send into separate functions to stop
	 * this? Doing so would also remove the fmgr call overhead.
	 */
	init_var(&tmp_var);

	accum_sum_final(&state->sumX, &tmp_var);
	temp = DirectFunctionCall1(numeric_send,
							   NumericGetDatum(make_result(&tmp_var)));
	sumX = DatumGetByteaPP(temp);

	accum_sum_final(&state->sumX2, &tmp_var);
	temp = DirectFunctionCall1(numeric_send,
							   NumericGetDatum(make_result(&tmp_var)));
	sumX2 = DatumGetByteaPP(temp);

	free_var(&tmp_var);

	pq_begintypsend(&buf);

	/* N */
	pq_sendint64(&buf, state->N);

	/* sumX */
	pq_sendbytes(&buf, VARDATA_ANY(sumX), VARSIZE_ANY_EXHDR(sumX));

	/* sumX2 */
	pq_sendbytes(&buf, VARDATA_ANY(sumX2), VARSIZE_ANY_EXHDR(sumX2));

	/* maxScale */
	pq_sendint32(&buf, state->maxScale);

	/* maxScaleCount */
	pq_sendint64(&buf, state->maxScaleCount);

	/* NaNcount */
	pq_sendint64(&buf, state->NaNcount);

	/* pInfcount */
	pq_sendint64(&buf, state->pInfcount);

	/* nInfcount */
	pq_sendint64(&buf, state->nInfcount);

	result = pq_endtypsend(&buf);

	PG_RETURN_BYTEA_P(result);
}

/*
 * numeric_deserialize
 *		Deserialization function for NumericAggState for numeric aggregates that
 *		require sumX2.
 */
Datum
numeric_deserialize(PG_FUNCTION_ARGS)
{
	bytea	   *sstate;
	NumericAggState *result;
	Datum		temp;
	NumericVar	sumX_var;
	NumericVar	sumX2_var;
	StringInfoData buf;

	if (!AggCheckCallContext(fcinfo, NULL))
		elog(ERROR, "aggregate function called in non-aggregate context");

	sstate = PG_GETARG_BYTEA_PP(0);

	/*
	 * Copy the bytea into a StringInfo so that we can "receive" it using the
	 * standard recv-function infrastructure.
	 */
	initStringInfo(&buf);
	appendBinaryStringInfo(&buf,
						   VARDATA_ANY(sstate), VARSIZE_ANY_EXHDR(sstate));

	result = makeNumericAggStateCurrentContext(false);

	/* N */
	result->N = pq_getmsgint64(&buf);

	/* sumX */
	temp = DirectFunctionCall3(numeric_recv,
							   PointerGetDatum(&buf),
							   ObjectIdGetDatum(InvalidOid),
							   Int32GetDatum(-1));
	init_var_from_num(DatumGetNumeric(temp), &sumX_var);
	accum_sum_add(&(result->sumX), &sumX_var);

	/* sumX2 */
	temp = DirectFunctionCall3(numeric_recv,
							   PointerGetDatum(&buf),
							   ObjectIdGetDatum(InvalidOid),
							   Int32GetDatum(-1));
	init_var_from_num(DatumGetNumeric(temp), &sumX2_var);
	accum_sum_add(&(result->sumX2), &sumX2_var);

	/* maxScale */
	result->maxScale = pq_getmsgint(&buf, 4);

	/* maxScaleCount */
	result->maxScaleCount = pq_getmsgint64(&buf);

	/* NaNcount */
	result->NaNcount = pq_getmsgint64(&buf);

	/* pInfcount */
	result->pInfcount = pq_getmsgint64(&buf);

	/* nInfcount */
	result->nInfcount = pq_getmsgint64(&buf);

	pq_getmsgend(&buf);
	pfree(buf.data);

	PG_RETURN_POINTER(result);
}

/*
 * Generic inverse transition function for numeric aggregates
 * (with or without requirement for X^2).
 */
Datum
numeric_accum_inv(PG_FUNCTION_ARGS)
{
	NumericAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	/* Should not get here with no state */
	if (state == NULL)
		elog(ERROR, "numeric_accum_inv called with NULL state");

	if (!PG_ARGISNULL(1))
	{
		/* If we fail to perform the inverse transition, return NULL */
		if (!do_numeric_discard(state, PG_GETARG_NUMERIC(1)))
			PG_RETURN_NULL();
	}

	PG_RETURN_POINTER(state);
}


/*
 * Integer data types in general use Numeric accumulators to share code
 * and avoid risk of overflow.
 *
 * However for performance reasons optimized special-purpose accumulator
 * routines are used when possible.
 *
 * On platforms with 128-bit integer support, the 128-bit routines will be
 * used when sum(X) or sum(X*X) fit into 128-bit.
 *
 * For 16 and 32 bit inputs, the N and sum(X) fit into 64-bit so the 64-bit
 * accumulators will be used for SUM and AVG of these data types.
 */

#ifdef HAVE_INT128
typedef struct Int128AggState
{
	bool		calcSumX2;		/* if true, calculate sumX2 */
	int64		N;				/* count of processed numbers */
	int128		sumX;			/* sum of processed numbers */
	int128		sumX2;			/* sum of squares of processed numbers */
} Int128AggState;

/*
 * Prepare state data for a 128-bit aggregate function that needs to compute
 * sum, count and optionally sum of squares of the input.
 */
static Int128AggState *
makeInt128AggState(FunctionCallInfo fcinfo, bool calcSumX2)
{
	Int128AggState *state;
	MemoryContext agg_context;
	MemoryContext old_context;

	if (!AggCheckCallContext(fcinfo, &agg_context))
		elog(ERROR, "aggregate function called in non-aggregate context");

	old_context = MemoryContextSwitchTo(agg_context);

	state = (Int128AggState *) palloc0(sizeof(Int128AggState));
	state->calcSumX2 = calcSumX2;

	MemoryContextSwitchTo(old_context);

	return state;
}

/*
 * Like makeInt128AggState(), but allocate the state in the current memory
 * context.
 */
static Int128AggState *
makeInt128AggStateCurrentContext(bool calcSumX2)
{
	Int128AggState *state;

	state = (Int128AggState *) palloc0(sizeof(Int128AggState));
	state->calcSumX2 = calcSumX2;

	return state;
}

/*
 * Accumulate a new input value for 128-bit aggregate functions.
 */
static void
do_int128_accum(Int128AggState *state, int128 newval)
{
	if (state->calcSumX2)
		state->sumX2 += newval * newval;

	state->sumX += newval;
	state->N++;
}

/*
 * Remove an input value from the aggregated state.
 */
static void
do_int128_discard(Int128AggState *state, int128 newval)
{
	if (state->calcSumX2)
		state->sumX2 -= newval * newval;

	state->sumX -= newval;
	state->N--;
}

typedef Int128AggState PolyNumAggState;
#define makePolyNumAggState makeInt128AggState
#define makePolyNumAggStateCurrentContext makeInt128AggStateCurrentContext
#else
typedef NumericAggState PolyNumAggState;
#define makePolyNumAggState makeNumericAggState
#define makePolyNumAggStateCurrentContext makeNumericAggStateCurrentContext
#endif

Datum
int2_accum(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	/* Create the state data on the first call */
	if (state == NULL)
		state = makePolyNumAggState(fcinfo, true);

	if (!PG_ARGISNULL(1))
	{
#ifdef HAVE_INT128
		do_int128_accum(state, (int128) PG_GETARG_INT16(1));
#else
		do_numeric_accum(state, int64_to_numeric(PG_GETARG_INT16(1)));
#endif
	}

	PG_RETURN_POINTER(state);
}

Datum
int4_accum(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	/* Create the state data on the first call */
	if (state == NULL)
		state = makePolyNumAggState(fcinfo, true);

	if (!PG_ARGISNULL(1))
	{
#ifdef HAVE_INT128
		do_int128_accum(state, (int128) PG_GETARG_INT32(1));
#else
		do_numeric_accum(state, int64_to_numeric(PG_GETARG_INT32(1)));
#endif
	}

	PG_RETURN_POINTER(state);
}

Datum
int8_accum(PG_FUNCTION_ARGS)
{
	NumericAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	/* Create the state data on the first call */
	if (state == NULL)
		state = makeNumericAggState(fcinfo, true);

	if (!PG_ARGISNULL(1))
		do_numeric_accum(state, int64_to_numeric(PG_GETARG_INT64(1)));

	PG_RETURN_POINTER(state);
}

/*
 * Combine function for numeric aggregates which require sumX2
 */
Datum
numeric_poly_combine(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state1;
	PolyNumAggState *state2;
	MemoryContext agg_context;
	MemoryContext old_context;

	if (!AggCheckCallContext(fcinfo, &agg_context))
		elog(ERROR, "aggregate function called in non-aggregate context");

	state1 = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);
	state2 = PG_ARGISNULL(1) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(1);

	if (state2 == NULL)
		PG_RETURN_POINTER(state1);

	/* manually copy all fields from state2 to state1 */
	if (state1 == NULL)
	{
		old_context = MemoryContextSwitchTo(agg_context);

		state1 = makePolyNumAggState(fcinfo, true);
		state1->N = state2->N;

#ifdef HAVE_INT128
		state1->sumX = state2->sumX;
		state1->sumX2 = state2->sumX2;
#else
		accum_sum_copy(&state1->sumX, &state2->sumX);
		accum_sum_copy(&state1->sumX2, &state2->sumX2);
#endif

		MemoryContextSwitchTo(old_context);

		PG_RETURN_POINTER(state1);
	}

	if (state2->N > 0)
	{
		state1->N += state2->N;

#ifdef HAVE_INT128
		state1->sumX += state2->sumX;
		state1->sumX2 += state2->sumX2;
#else
		/* The rest of this needs to work in the aggregate context */
		old_context = MemoryContextSwitchTo(agg_context);

		/* Accumulate sums */
		accum_sum_combine(&state1->sumX, &state2->sumX);
		accum_sum_combine(&state1->sumX2, &state2->sumX2);

		MemoryContextSwitchTo(old_context);
#endif

	}
	PG_RETURN_POINTER(state1);
}

/*
 * numeric_poly_serialize
 *		Serialize PolyNumAggState into bytea for aggregate functions which
 *		require sumX2.
 */
Datum
numeric_poly_serialize(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state;
	StringInfoData buf;
	bytea	   *sumX;
	bytea	   *sumX2;
	bytea	   *result;

	/* Ensure we disallow calling when not in aggregate context */
	if (!AggCheckCallContext(fcinfo, NULL))
		elog(ERROR, "aggregate function called in non-aggregate context");

	state = (PolyNumAggState *) PG_GETARG_POINTER(0);

	/*
	 * If the platform supports int128 then sumX and sumX2 will be a 128 bit
	 * integer type. Here we'll convert that into a numeric type so that the
	 * combine state is in the same format for both int128 enabled machines
	 * and machines which don't support that type. The logic here is that one
	 * day we might like to send these over to another server for further
	 * processing and we want a standard format to work with.
	 */
	{
		Datum		temp;
		NumericVar	num;

		init_var(&num);

#ifdef HAVE_INT128
		int128_to_numericvar(state->sumX, &num);
#else
		accum_sum_final(&state->sumX, &num);
#endif
		temp = DirectFunctionCall1(numeric_send,
								   NumericGetDatum(make_result(&num)));
		sumX = DatumGetByteaPP(temp);

#ifdef HAVE_INT128
		int128_to_numericvar(state->sumX2, &num);
#else
		accum_sum_final(&state->sumX2, &num);
#endif
		temp = DirectFunctionCall1(numeric_send,
								   NumericGetDatum(make_result(&num)));
		sumX2 = DatumGetByteaPP(temp);

		free_var(&num);
	}

	pq_begintypsend(&buf);

	/* N */
	pq_sendint64(&buf, state->N);

	/* sumX */
	pq_sendbytes(&buf, VARDATA_ANY(sumX), VARSIZE_ANY_EXHDR(sumX));

	/* sumX2 */
	pq_sendbytes(&buf, VARDATA_ANY(sumX2), VARSIZE_ANY_EXHDR(sumX2));

	result = pq_endtypsend(&buf);

	PG_RETURN_BYTEA_P(result);
}

/*
 * numeric_poly_deserialize
 *		Deserialize PolyNumAggState from bytea for aggregate functions which
 *		require sumX2.
 */
Datum
numeric_poly_deserialize(PG_FUNCTION_ARGS)
{
	bytea	   *sstate;
	PolyNumAggState *result;
	Datum		sumX;
	NumericVar	sumX_var;
	Datum		sumX2;
	NumericVar	sumX2_var;
	StringInfoData buf;

	if (!AggCheckCallContext(fcinfo, NULL))
		elog(ERROR, "aggregate function called in non-aggregate context");

	sstate = PG_GETARG_BYTEA_PP(0);

	/*
	 * Copy the bytea into a StringInfo so that we can "receive" it using the
	 * standard recv-function infrastructure.
	 */
	initStringInfo(&buf);
	appendBinaryStringInfo(&buf,
						   VARDATA_ANY(sstate), VARSIZE_ANY_EXHDR(sstate));

	result = makePolyNumAggStateCurrentContext(false);

	/* N */
	result->N = pq_getmsgint64(&buf);

	/* sumX */
	sumX = DirectFunctionCall3(numeric_recv,
							   PointerGetDatum(&buf),
							   ObjectIdGetDatum(InvalidOid),
							   Int32GetDatum(-1));

	/* sumX2 */
	sumX2 = DirectFunctionCall3(numeric_recv,
								PointerGetDatum(&buf),
								ObjectIdGetDatum(InvalidOid),
								Int32GetDatum(-1));

	init_var_from_num(DatumGetNumeric(sumX), &sumX_var);
#ifdef HAVE_INT128
	numericvar_to_int128(&sumX_var, &result->sumX);
#else
	accum_sum_add(&result->sumX, &sumX_var);
#endif

	init_var_from_num(DatumGetNumeric(sumX2), &sumX2_var);
#ifdef HAVE_INT128
	numericvar_to_int128(&sumX2_var, &result->sumX2);
#else
	accum_sum_add(&result->sumX2, &sumX2_var);
#endif

	pq_getmsgend(&buf);
	pfree(buf.data);

	PG_RETURN_POINTER(result);
}

/*
 * Transition function for int8 input when we don't need sumX2.
 */
Datum
int8_avg_accum(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	/* Create the state data on the first call */
	if (state == NULL)
		state = makePolyNumAggState(fcinfo, false);

	if (!PG_ARGISNULL(1))
	{
#ifdef HAVE_INT128
		do_int128_accum(state, (int128) PG_GETARG_INT64(1));
#else
		do_numeric_accum(state, int64_to_numeric(PG_GETARG_INT64(1)));
#endif
	}

	PG_RETURN_POINTER(state);
}

/*
 * Combine function for PolyNumAggState for aggregates which don't require
 * sumX2
 */
Datum
int8_avg_combine(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state1;
	PolyNumAggState *state2;
	MemoryContext agg_context;
	MemoryContext old_context;

	if (!AggCheckCallContext(fcinfo, &agg_context))
		elog(ERROR, "aggregate function called in non-aggregate context");

	state1 = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);
	state2 = PG_ARGISNULL(1) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(1);

	if (state2 == NULL)
		PG_RETURN_POINTER(state1);

	/* manually copy all fields from state2 to state1 */
	if (state1 == NULL)
	{
		old_context = MemoryContextSwitchTo(agg_context);

		state1 = makePolyNumAggState(fcinfo, false);
		state1->N = state2->N;

#ifdef HAVE_INT128
		state1->sumX = state2->sumX;
#else
		accum_sum_copy(&state1->sumX, &state2->sumX);
#endif
		MemoryContextSwitchTo(old_context);

		PG_RETURN_POINTER(state1);
	}

	if (state2->N > 0)
	{
		state1->N += state2->N;

#ifdef HAVE_INT128
		state1->sumX += state2->sumX;
#else
		/* The rest of this needs to work in the aggregate context */
		old_context = MemoryContextSwitchTo(agg_context);

		/* Accumulate sums */
		accum_sum_combine(&state1->sumX, &state2->sumX);

		MemoryContextSwitchTo(old_context);
#endif

	}
	PG_RETURN_POINTER(state1);
}

/*
 * int8_avg_serialize
 *		Serialize PolyNumAggState into bytea using the standard
 *		recv-function infrastructure.
 */
Datum
int8_avg_serialize(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state;
	StringInfoData buf;
	bytea	   *sumX;
	bytea	   *result;

	/* Ensure we disallow calling when not in aggregate context */
	if (!AggCheckCallContext(fcinfo, NULL))
		elog(ERROR, "aggregate function called in non-aggregate context");

	state = (PolyNumAggState *) PG_GETARG_POINTER(0);

	/*
	 * If the platform supports int128 then sumX will be a 128 integer type.
	 * Here we'll convert that into a numeric type so that the combine state
	 * is in the same format for both int128 enabled machines and machines
	 * which don't support that type. The logic here is that one day we might
	 * like to send these over to another server for further processing and we
	 * want a standard format to work with.
	 */
	{
		Datum		temp;
		NumericVar	num;

		init_var(&num);

#ifdef HAVE_INT128
		int128_to_numericvar(state->sumX, &num);
#else
		accum_sum_final(&state->sumX, &num);
#endif
		temp = DirectFunctionCall1(numeric_send,
								   NumericGetDatum(make_result(&num)));
		sumX = DatumGetByteaPP(temp);

		free_var(&num);
	}

	pq_begintypsend(&buf);

	/* N */
	pq_sendint64(&buf, state->N);

	/* sumX */
	pq_sendbytes(&buf, VARDATA_ANY(sumX), VARSIZE_ANY_EXHDR(sumX));

	result = pq_endtypsend(&buf);

	PG_RETURN_BYTEA_P(result);
}

/*
 * int8_avg_deserialize
 *		Deserialize bytea back into PolyNumAggState.
 */
Datum
int8_avg_deserialize(PG_FUNCTION_ARGS)
{
	bytea	   *sstate;
	PolyNumAggState *result;
	StringInfoData buf;
	Datum		temp;
	NumericVar	num;

	if (!AggCheckCallContext(fcinfo, NULL))
		elog(ERROR, "aggregate function called in non-aggregate context");

	sstate = PG_GETARG_BYTEA_PP(0);

	/*
	 * Copy the bytea into a StringInfo so that we can "receive" it using the
	 * standard recv-function infrastructure.
	 */
	initStringInfo(&buf);
	appendBinaryStringInfo(&buf,
						   VARDATA_ANY(sstate), VARSIZE_ANY_EXHDR(sstate));

	result = makePolyNumAggStateCurrentContext(false);

	/* N */
	result->N = pq_getmsgint64(&buf);

	/* sumX */
	temp = DirectFunctionCall3(numeric_recv,
							   PointerGetDatum(&buf),
							   ObjectIdGetDatum(InvalidOid),
							   Int32GetDatum(-1));
	init_var_from_num(DatumGetNumeric(temp), &num);
#ifdef HAVE_INT128
	numericvar_to_int128(&num, &result->sumX);
#else
	accum_sum_add(&result->sumX, &num);
#endif

	pq_getmsgend(&buf);
	pfree(buf.data);

	PG_RETURN_POINTER(result);
}

/*
 * Inverse transition functions to go with the above.
 */

Datum
int2_accum_inv(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	/* Should not get here with no state */
	if (state == NULL)
		elog(ERROR, "int2_accum_inv called with NULL state");

	if (!PG_ARGISNULL(1))
	{
#ifdef HAVE_INT128
		do_int128_discard(state, (int128) PG_GETARG_INT16(1));
#else
		/* Should never fail, all inputs have dscale 0 */
		if (!do_numeric_discard(state, int64_to_numeric(PG_GETARG_INT16(1))))
			elog(ERROR, "do_numeric_discard failed unexpectedly");
#endif
	}

	PG_RETURN_POINTER(state);
}

Datum
int4_accum_inv(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	/* Should not get here with no state */
	if (state == NULL)
		elog(ERROR, "int4_accum_inv called with NULL state");

	if (!PG_ARGISNULL(1))
	{
#ifdef HAVE_INT128
		do_int128_discard(state, (int128) PG_GETARG_INT32(1));
#else
		/* Should never fail, all inputs have dscale 0 */
		if (!do_numeric_discard(state, int64_to_numeric(PG_GETARG_INT32(1))))
			elog(ERROR, "do_numeric_discard failed unexpectedly");
#endif
	}

	PG_RETURN_POINTER(state);
}

Datum
int8_accum_inv(PG_FUNCTION_ARGS)
{
	NumericAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	/* Should not get here with no state */
	if (state == NULL)
		elog(ERROR, "int8_accum_inv called with NULL state");

	if (!PG_ARGISNULL(1))
	{
		/* Should never fail, all inputs have dscale 0 */
		if (!do_numeric_discard(state, int64_to_numeric(PG_GETARG_INT64(1))))
			elog(ERROR, "do_numeric_discard failed unexpectedly");
	}

	PG_RETURN_POINTER(state);
}

Datum
int8_avg_accum_inv(PG_FUNCTION_ARGS)
{
	PolyNumAggState *state;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	/* Should not get here with no state */
	if (state == NULL)
		elog(ERROR, "int8_avg_accum_inv called with NULL state");

	if (!PG_ARGISNULL(1))
	{
#ifdef HAVE_INT128
		do_int128_discard(state, (int128) PG_GETARG_INT64(1));
#else
		/* Should never fail, all inputs have dscale 0 */
		if (!do_numeric_discard(state, int64_to_numeric(PG_GETARG_INT64(1))))
			elog(ERROR, "do_numeric_discard failed unexpectedly");
#endif
	}

	PG_RETURN_POINTER(state);
}

Datum
numeric_poly_sum(PG_FUNCTION_ARGS)
{
#ifdef HAVE_INT128
	PolyNumAggState *state;
	Numeric		res;
	NumericVar	result;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	/* If there were no non-null inputs, return NULL */
	if (state == NULL || state->N == 0)
		PG_RETURN_NULL();

	init_var(&result);

	int128_to_numericvar(state->sumX, &result);

	res = make_result(&result);

	free_var(&result);

	PG_RETURN_NUMERIC(res);
#else
	return numeric_sum(fcinfo);
#endif
}

Datum
numeric_poly_avg(PG_FUNCTION_ARGS)
{
#ifdef HAVE_INT128
	PolyNumAggState *state;
	NumericVar	result;
	Datum		countd,
				sumd;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	/* If there were no non-null inputs, return NULL */
	if (state == NULL || state->N == 0)
		PG_RETURN_NULL();

	init_var(&result);

	int128_to_numericvar(state->sumX, &result);

	countd = NumericGetDatum(int64_to_numeric(state->N));
	sumd = NumericGetDatum(make_result(&result));

	free_var(&result);

	PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, sumd, countd));
#else
	return numeric_avg(fcinfo);
#endif
}

Datum
numeric_avg(PG_FUNCTION_ARGS)
{
	NumericAggState *state;
	Datum		N_datum;
	Datum		sumX_datum;
	NumericVar	sumX_var;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	/* If there were no non-null inputs, return NULL */
	if (state == NULL || NA_TOTAL_COUNT(state) == 0)
		PG_RETURN_NULL();

	if (state->NaNcount > 0)	/* there was at least one NaN input */
		PG_RETURN_NUMERIC(make_result(&const_nan));

	/* adding plus and minus infinities gives NaN */
	if (state->pInfcount > 0 && state->nInfcount > 0)
		PG_RETURN_NUMERIC(make_result(&const_nan));
	if (state->pInfcount > 0)
		PG_RETURN_NUMERIC(make_result(&const_pinf));
	if (state->nInfcount > 0)
		PG_RETURN_NUMERIC(make_result(&const_ninf));

	N_datum = NumericGetDatum(int64_to_numeric(state->N));

	init_var(&sumX_var);
	accum_sum_final(&state->sumX, &sumX_var);
	sumX_datum = NumericGetDatum(make_result(&sumX_var));
	free_var(&sumX_var);

	PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, sumX_datum, N_datum));
}

Datum
numeric_sum(PG_FUNCTION_ARGS)
{
	NumericAggState *state;
	NumericVar	sumX_var;
	Numeric		result;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	/* If there were no non-null inputs, return NULL */
	if (state == NULL || NA_TOTAL_COUNT(state) == 0)
		PG_RETURN_NULL();

	if (state->NaNcount > 0)	/* there was at least one NaN input */
		PG_RETURN_NUMERIC(make_result(&const_nan));

	/* adding plus and minus infinities gives NaN */
	if (state->pInfcount > 0 && state->nInfcount > 0)
		PG_RETURN_NUMERIC(make_result(&const_nan));
	if (state->pInfcount > 0)
		PG_RETURN_NUMERIC(make_result(&const_pinf));
	if (state->nInfcount > 0)
		PG_RETURN_NUMERIC(make_result(&const_ninf));

	init_var(&sumX_var);
	accum_sum_final(&state->sumX, &sumX_var);
	result = make_result(&sumX_var);
	free_var(&sumX_var);

	PG_RETURN_NUMERIC(result);
}

/*
 * Workhorse routine for the standard deviance and variance
 * aggregates. 'state' is aggregate's transition state.
 * 'variance' specifies whether we should calculate the
 * variance or the standard deviation. 'sample' indicates whether the
 * caller is interested in the sample or the population
 * variance/stddev.
 *
 * If appropriate variance statistic is undefined for the input,
 * *is_null is set to true and NULL is returned.
 */
static Numeric
numeric_stddev_internal(NumericAggState *state,
						bool variance, bool sample,
						bool *is_null)
{
	Numeric		res;
	NumericVar	vN,
				vsumX,
				vsumX2,
				vNminus1;
	int64		totCount;
	int			rscale;

	/*
	 * Sample stddev and variance are undefined when N <= 1; population stddev
	 * is undefined when N == 0.  Return NULL in either case (note that NaNs
	 * and infinities count as normal inputs for this purpose).
	 */
	if (state == NULL || (totCount = NA_TOTAL_COUNT(state)) == 0)
	{
		*is_null = true;
		return NULL;
	}

	if (sample && totCount <= 1)
	{
		*is_null = true;
		return NULL;
	}

	*is_null = false;

	/*
	 * Deal with NaN and infinity cases.  By analogy to the behavior of the
	 * float8 functions, any infinity input produces NaN output.
	 */
	if (state->NaNcount > 0 || state->pInfcount > 0 || state->nInfcount > 0)
		return make_result(&const_nan);

	/* OK, normal calculation applies */
	init_var(&vN);
	init_var(&vsumX);
	init_var(&vsumX2);

	int64_to_numericvar(state->N, &vN);
	accum_sum_final(&(state->sumX), &vsumX);
	accum_sum_final(&(state->sumX2), &vsumX2);

	init_var(&vNminus1);
	sub_var(&vN, &const_one, &vNminus1);

	/* compute rscale for mul_var calls */
	rscale = vsumX.dscale * 2;

	mul_var(&vsumX, &vsumX, &vsumX, rscale);	/* vsumX = sumX * sumX */
	mul_var(&vN, &vsumX2, &vsumX2, rscale); /* vsumX2 = N * sumX2 */
	sub_var(&vsumX2, &vsumX, &vsumX2);	/* N * sumX2 - sumX * sumX */

	if (cmp_var(&vsumX2, &const_zero) <= 0)
	{
		/* Watch out for roundoff error producing a negative numerator */
		res = make_result(&const_zero);
	}
	else
	{
		if (sample)
			mul_var(&vN, &vNminus1, &vNminus1, 0);	/* N * (N - 1) */
		else
			mul_var(&vN, &vN, &vNminus1, 0);	/* N * N */
		rscale = select_div_scale(&vsumX2, &vNminus1);
		div_var(&vsumX2, &vNminus1, &vsumX, rscale, true);	/* variance */
		if (!variance)
			sqrt_var(&vsumX, &vsumX, rscale);	/* stddev */

		res = make_result(&vsumX);
	}

	free_var(&vNminus1);
	free_var(&vsumX);
	free_var(&vsumX2);

	return res;
}

Datum
numeric_var_samp(PG_FUNCTION_ARGS)
{
	NumericAggState *state;
	Numeric		res;
	bool		is_null;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	res = numeric_stddev_internal(state, true, true, &is_null);

	if (is_null)
		PG_RETURN_NULL();
	else
		PG_RETURN_NUMERIC(res);
}

Datum
numeric_stddev_samp(PG_FUNCTION_ARGS)
{
	NumericAggState *state;
	Numeric		res;
	bool		is_null;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	res = numeric_stddev_internal(state, false, true, &is_null);

	if (is_null)
		PG_RETURN_NULL();
	else
		PG_RETURN_NUMERIC(res);
}

Datum
numeric_var_pop(PG_FUNCTION_ARGS)
{
	NumericAggState *state;
	Numeric		res;
	bool		is_null;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	res = numeric_stddev_internal(state, true, false, &is_null);

	if (is_null)
		PG_RETURN_NULL();
	else
		PG_RETURN_NUMERIC(res);
}

Datum
numeric_stddev_pop(PG_FUNCTION_ARGS)
{
	NumericAggState *state;
	Numeric		res;
	bool		is_null;

	state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0);

	res = numeric_stddev_internal(state, false, false, &is_null);

	if (is_null)
		PG_RETURN_NULL();
	else
		PG_RETURN_NUMERIC(res);
}

#ifdef HAVE_INT128
static Numeric
numeric_poly_stddev_internal(Int128AggState *state,
							 bool variance, bool sample,
							 bool *is_null)
{
	NumericAggState numstate;
	Numeric		res;

	/* Initialize an empty agg state */
	memset(&numstate, 0, sizeof(NumericAggState));

	if (state)
	{
		NumericVar	tmp_var;

		numstate.N = state->N;

		init_var(&tmp_var);

		int128_to_numericvar(state->sumX, &tmp_var);
		accum_sum_add(&numstate.sumX, &tmp_var);

		int128_to_numericvar(state->sumX2, &tmp_var);
		accum_sum_add(&numstate.sumX2, &tmp_var);

		free_var(&tmp_var);
	}

	res = numeric_stddev_internal(&numstate, variance, sample, is_null);

	if (numstate.sumX.ndigits > 0)
	{
		pfree(numstate.sumX.pos_digits);
		pfree(numstate.sumX.neg_digits);
	}
	if (numstate.sumX2.ndigits > 0)
	{
		pfree(numstate.sumX2.pos_digits);
		pfree(numstate.sumX2.neg_digits);
	}

	return res;
}
#endif

Datum
numeric_poly_var_samp(PG_FUNCTION_ARGS)
{
#ifdef HAVE_INT128
	PolyNumAggState *state;
	Numeric		res;
	bool		is_null;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	res = numeric_poly_stddev_internal(state, true, true, &is_null);

	if (is_null)
		PG_RETURN_NULL();
	else
		PG_RETURN_NUMERIC(res);
#else
	return numeric_var_samp(fcinfo);
#endif
}

Datum
numeric_poly_stddev_samp(PG_FUNCTION_ARGS)
{
#ifdef HAVE_INT128
	PolyNumAggState *state;
	Numeric		res;
	bool		is_null;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	res = numeric_poly_stddev_internal(state, false, true, &is_null);

	if (is_null)
		PG_RETURN_NULL();
	else
		PG_RETURN_NUMERIC(res);
#else
	return numeric_stddev_samp(fcinfo);
#endif
}

Datum
numeric_poly_var_pop(PG_FUNCTION_ARGS)
{
#ifdef HAVE_INT128
	PolyNumAggState *state;
	Numeric		res;
	bool		is_null;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	res = numeric_poly_stddev_internal(state, true, false, &is_null);

	if (is_null)
		PG_RETURN_NULL();
	else
		PG_RETURN_NUMERIC(res);
#else
	return numeric_var_pop(fcinfo);
#endif
}

Datum
numeric_poly_stddev_pop(PG_FUNCTION_ARGS)
{
#ifdef HAVE_INT128
	PolyNumAggState *state;
	Numeric		res;
	bool		is_null;

	state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0);

	res = numeric_poly_stddev_internal(state, false, false, &is_null);

	if (is_null)
		PG_RETURN_NULL();
	else
		PG_RETURN_NUMERIC(res);
#else
	return numeric_stddev_pop(fcinfo);
#endif
}

/*
 * SUM transition functions for integer datatypes.
 *
 * To avoid overflow, we use accumulators wider than the input datatype.
 * A Numeric accumulator is needed for int8 input; for int4 and int2
 * inputs, we use int8 accumulators which should be sufficient for practical
 * purposes.  (The latter two therefore don't really belong in this file,
 * but we keep them here anyway.)
 *
 * Because SQL defines the SUM() of no values to be NULL, not zero,
 * the initial condition of the transition data value needs to be NULL. This
 * means we can't rely on ExecAgg to automatically insert the first non-null
 * data value into the transition data: it doesn't know how to do the type
 * conversion.  The upshot is that these routines have to be marked non-strict
 * and handle substitution of the first non-null input themselves.
 *
 * Note: these functions are used only in plain aggregation mode.
 * In moving-aggregate mode, we use intX_avg_accum and intX_avg_accum_inv.
 */

Datum
int2_sum(PG_FUNCTION_ARGS)
{
	int64		newval;

	if (PG_ARGISNULL(0))
	{
		/* No non-null input seen so far... */
		if (PG_ARGISNULL(1))
			PG_RETURN_NULL();	/* still no non-null */
		/* This is the first non-null input. */
		newval = (int64) PG_GETARG_INT16(1);
		PG_RETURN_INT64(newval);
	}

	/*
	 * If we're invoked as an aggregate, we can cheat and modify our first
	 * parameter in-place to avoid palloc overhead. If not, we need to return
	 * the new value of the transition variable. (If int8 is pass-by-value,
	 * then of course this is useless as well as incorrect, so just ifdef it
	 * out.)
	 */
#ifndef USE_FLOAT8_BYVAL		/* controls int8 too */
	if (AggCheckCallContext(fcinfo, NULL))
	{
		int64	   *oldsum = (int64 *) PG_GETARG_POINTER(0);

		/* Leave the running sum unchanged in the new input is null */
		if (!PG_ARGISNULL(1))
			*oldsum = *oldsum + (int64) PG_GETARG_INT16(1);

		PG_RETURN_POINTER(oldsum);
	}
	else
#endif
	{
		int64		oldsum = PG_GETARG_INT64(0);

		/* Leave sum unchanged if new input is null. */
		if (PG_ARGISNULL(1))
			PG_RETURN_INT64(oldsum);

		/* OK to do the addition. */
		newval = oldsum + (int64) PG_GETARG_INT16(1);

		PG_RETURN_INT64(newval);
	}
}

Datum
int4_sum(PG_FUNCTION_ARGS)
{
	int64		newval;

	if (PG_ARGISNULL(0))
	{
		/* No non-null input seen so far... */
		if (PG_ARGISNULL(1))
			PG_RETURN_NULL();	/* still no non-null */
		/* This is the first non-null input. */
		newval = (int64) PG_GETARG_INT32(1);
		PG_RETURN_INT64(newval);
	}

	/*
	 * If we're invoked as an aggregate, we can cheat and modify our first
	 * parameter in-place to avoid palloc overhead. If not, we need to return
	 * the new value of the transition variable. (If int8 is pass-by-value,
	 * then of course this is useless as well as incorrect, so just ifdef it
	 * out.)
	 */
#ifndef USE_FLOAT8_BYVAL		/* controls int8 too */
	if (AggCheckCallContext(fcinfo, NULL))
	{
		int64	   *oldsum = (int64 *) PG_GETARG_POINTER(0);

		/* Leave the running sum unchanged in the new input is null */
		if (!PG_ARGISNULL(1))
			*oldsum = *oldsum + (int64) PG_GETARG_INT32(1);

		PG_RETURN_POINTER(oldsum);
	}
	else
#endif
	{
		int64		oldsum = PG_GETARG_INT64(0);

		/* Leave sum unchanged if new input is null. */
		if (PG_ARGISNULL(1))
			PG_RETURN_INT64(oldsum);

		/* OK to do the addition. */
		newval = oldsum + (int64) PG_GETARG_INT32(1);

		PG_RETURN_INT64(newval);
	}
}

/*
 * Note: this function is obsolete, it's no longer used for SUM(int8).
 */
Datum
int8_sum(PG_FUNCTION_ARGS)
{
	Numeric		oldsum;

	if (PG_ARGISNULL(0))
	{
		/* No non-null input seen so far... */
		if (PG_ARGISNULL(1))
			PG_RETURN_NULL();	/* still no non-null */
		/* This is the first non-null input. */
		PG_RETURN_NUMERIC(int64_to_numeric(PG_GETARG_INT64(1)));
	}

	/*
	 * Note that we cannot special-case the aggregate case here, as we do for
	 * int2_sum and int4_sum: numeric is of variable size, so we cannot modify
	 * our first parameter in-place.
	 */

	oldsum = PG_GETARG_NUMERIC(0);

	/* Leave sum unchanged if new input is null. */
	if (PG_ARGISNULL(1))
		PG_RETURN_NUMERIC(oldsum);

	/* OK to do the addition. */
	PG_RETURN_DATUM(DirectFunctionCall2(numeric_add,
										NumericGetDatum(oldsum),
										NumericGetDatum(int64_to_numeric(PG_GETARG_INT64(1)))));
}


/*
 * Routines for avg(int2) and avg(int4).  The transition datatype
 * is a two-element int8 array, holding count and sum.
 *
 * These functions are also used for sum(int2) and sum(int4) when
 * operating in moving-aggregate mode, since for correct inverse transitions
 * we need to count the inputs.
 */

typedef struct Int8TransTypeData
{
	int64		count;
	int64		sum;
} Int8TransTypeData;

Datum
int2_avg_accum(PG_FUNCTION_ARGS)
{
	ArrayType  *transarray;
	int16		newval = PG_GETARG_INT16(1);
	Int8TransTypeData *transdata;

	/*
	 * If we're invoked as an aggregate, we can cheat and modify our first
	 * parameter in-place to reduce palloc overhead. Otherwise we need to make
	 * a copy of it before scribbling on it.
	 */
	if (AggCheckCallContext(fcinfo, NULL))
		transarray = PG_GETARG_ARRAYTYPE_P(0);
	else
		transarray = PG_GETARG_ARRAYTYPE_P_COPY(0);

	if (ARR_HASNULL(transarray) ||
		ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData))
		elog(ERROR, "expected 2-element int8 array");

	transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
	transdata->count++;
	transdata->sum += newval;

	PG_RETURN_ARRAYTYPE_P(transarray);
}

Datum
int4_avg_accum(PG_FUNCTION_ARGS)
{
	ArrayType  *transarray;
	int32		newval = PG_GETARG_INT32(1);
	Int8TransTypeData *transdata;

	/*
	 * If we're invoked as an aggregate, we can cheat and modify our first
	 * parameter in-place to reduce palloc overhead. Otherwise we need to make
	 * a copy of it before scribbling on it.
	 */
	if (AggCheckCallContext(fcinfo, NULL))
		transarray = PG_GETARG_ARRAYTYPE_P(0);
	else
		transarray = PG_GETARG_ARRAYTYPE_P_COPY(0);

	if (ARR_HASNULL(transarray) ||
		ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData))
		elog(ERROR, "expected 2-element int8 array");

	transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
	transdata->count++;
	transdata->sum += newval;

	PG_RETURN_ARRAYTYPE_P(transarray);
}

Datum
int4_avg_combine(PG_FUNCTION_ARGS)
{
	ArrayType  *transarray1;
	ArrayType  *transarray2;
	Int8TransTypeData *state1;
	Int8TransTypeData *state2;

	if (!AggCheckCallContext(fcinfo, NULL))
		elog(ERROR, "aggregate function called in non-aggregate context");

	transarray1 = PG_GETARG_ARRAYTYPE_P(0);
	transarray2 = PG_GETARG_ARRAYTYPE_P(1);

	if (ARR_HASNULL(transarray1) ||
		ARR_SIZE(transarray1) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData))
		elog(ERROR, "expected 2-element int8 array");

	if (ARR_HASNULL(transarray2) ||
		ARR_SIZE(transarray2) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData))
		elog(ERROR, "expected 2-element int8 array");

	state1 = (Int8TransTypeData *) ARR_DATA_PTR(transarray1);
	state2 = (Int8TransTypeData *) ARR_DATA_PTR(transarray2);

	state1->count += state2->count;
	state1->sum += state2->sum;

	PG_RETURN_ARRAYTYPE_P(transarray1);
}

Datum
int2_avg_accum_inv(PG_FUNCTION_ARGS)
{
	ArrayType  *transarray;
	int16		newval = PG_GETARG_INT16(1);
	Int8TransTypeData *transdata;

	/*
	 * If we're invoked as an aggregate, we can cheat and modify our first
	 * parameter in-place to reduce palloc overhead. Otherwise we need to make
	 * a copy of it before scribbling on it.
	 */
	if (AggCheckCallContext(fcinfo, NULL))
		transarray = PG_GETARG_ARRAYTYPE_P(0);
	else
		transarray = PG_GETARG_ARRAYTYPE_P_COPY(0);

	if (ARR_HASNULL(transarray) ||
		ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData))
		elog(ERROR, "expected 2-element int8 array");

	transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
	transdata->count--;
	transdata->sum -= newval;

	PG_RETURN_ARRAYTYPE_P(transarray);
}

Datum
int4_avg_accum_inv(PG_FUNCTION_ARGS)
{
	ArrayType  *transarray;
	int32		newval = PG_GETARG_INT32(1);
	Int8TransTypeData *transdata;

	/*
	 * If we're invoked as an aggregate, we can cheat and modify our first
	 * parameter in-place to reduce palloc overhead. Otherwise we need to make
	 * a copy of it before scribbling on it.
	 */
	if (AggCheckCallContext(fcinfo, NULL))
		transarray = PG_GETARG_ARRAYTYPE_P(0);
	else
		transarray = PG_GETARG_ARRAYTYPE_P_COPY(0);

	if (ARR_HASNULL(transarray) ||
		ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData))
		elog(ERROR, "expected 2-element int8 array");

	transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
	transdata->count--;
	transdata->sum -= newval;

	PG_RETURN_ARRAYTYPE_P(transarray);
}

Datum
int8_avg(PG_FUNCTION_ARGS)
{
	ArrayType  *transarray = PG_GETARG_ARRAYTYPE_P(0);
	Int8TransTypeData *transdata;
	Datum		countd,
				sumd;

	if (ARR_HASNULL(transarray) ||
		ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData))
		elog(ERROR, "expected 2-element int8 array");
	transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);

	/* SQL defines AVG of no values to be NULL */
	if (transdata->count == 0)
		PG_RETURN_NULL();

	countd = NumericGetDatum(int64_to_numeric(transdata->count));
	sumd = NumericGetDatum(int64_to_numeric(transdata->sum));

	PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, sumd, countd));
}

/*
 * SUM(int2) and SUM(int4) both return int8, so we can use this
 * final function for both.
 */
Datum
int2int4_sum(PG_FUNCTION_ARGS)
{
	ArrayType  *transarray = PG_GETARG_ARRAYTYPE_P(0);
	Int8TransTypeData *transdata;

	if (ARR_HASNULL(transarray) ||
		ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData))
		elog(ERROR, "expected 2-element int8 array");
	transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);

	/* SQL defines SUM of no values to be NULL */
	if (transdata->count == 0)
		PG_RETURN_NULL();

	PG_RETURN_DATUM(Int64GetDatumFast(transdata->sum));
}


/* ----------------------------------------------------------------------
 *
 * Debug support
 *
 * ----------------------------------------------------------------------
 */

#ifdef NUMERIC_DEBUG

/*
 * dump_numeric() - Dump a value in the db storage format for debugging
 */
static void
dump_numeric(const char *str, Numeric num)
{
	NumericDigit *digits = NUMERIC_DIGITS(num);
	int			ndigits;
	int			i;

	ndigits = NUMERIC_NDIGITS(num);

	printf("%s: NUMERIC w=%d d=%d ", str,
		   NUMERIC_WEIGHT(num), NUMERIC_DSCALE(num));
	switch (NUMERIC_SIGN(num))
	{
		case NUMERIC_POS:
			printf("POS");
			break;
		case NUMERIC_NEG:
			printf("NEG");
			break;
		case NUMERIC_NAN:
			printf("NaN");
			break;
		case NUMERIC_PINF:
			printf("Infinity");
			break;
		case NUMERIC_NINF:
			printf("-Infinity");
			break;
		default:
			printf("SIGN=0x%x", NUMERIC_SIGN(num));
			break;
	}

	for (i = 0; i < ndigits; i++)
		printf(" %0*d", DEC_DIGITS, digits[i]);
	printf("\n");
}


/*
 * dump_var() - Dump a value in the variable format for debugging
 */
static void
dump_var(const char *str, NumericVar *var)
{
	int			i;

	printf("%s: VAR w=%d d=%d ", str, var->weight, var->dscale);
	switch (var->sign)
	{
		case NUMERIC_POS:
			printf("POS");
			break;
		case NUMERIC_NEG:
			printf("NEG");
			break;
		case NUMERIC_NAN:
			printf("NaN");
			break;
		case NUMERIC_PINF:
			printf("Infinity");
			break;
		case NUMERIC_NINF:
			printf("-Infinity");
			break;
		default:
			printf("SIGN=0x%x", var->sign);
			break;
	}

	for (i = 0; i < var->ndigits; i++)
		printf(" %0*d", DEC_DIGITS, var->digits[i]);

	printf("\n");
}
#endif							/* NUMERIC_DEBUG */


/* ----------------------------------------------------------------------
 *
 * Local functions follow
 *
 * In general, these do not support "special" (NaN or infinity) inputs;
 * callers should handle those possibilities first.
 * (There are one or two exceptions, noted in their header comments.)
 *
 * ----------------------------------------------------------------------
 */


/*
 * alloc_var() -
 *
 *	Allocate a digit buffer of ndigits digits (plus a spare digit for rounding)
 */
static void
alloc_var(NumericVar *var, int ndigits)
{
	digitbuf_free(var->buf);
	var->buf = digitbuf_alloc(ndigits + 1);
	var->buf[0] = 0;			/* spare digit for rounding */
	var->digits = var->buf + 1;
	var->ndigits = ndigits;
}


/*
 * free_var() -
 *
 *	Return the digit buffer of a variable to the free pool
 */
static void
free_var(NumericVar *var)
{
	digitbuf_free(var->buf);
	var->buf = NULL;
	var->digits = NULL;
	var->sign = NUMERIC_NAN;
}


/*
 * zero_var() -
 *
 *	Set a variable to ZERO.
 *	Note: its dscale is not touched.
 */
static void
zero_var(NumericVar *var)
{
	digitbuf_free(var->buf);
	var->buf = NULL;
	var->digits = NULL;
	var->ndigits = 0;
	var->weight = 0;			/* by convention; doesn't really matter */
	var->sign = NUMERIC_POS;	/* anything but NAN... */
}


/*
 * set_var_from_str()
 *
 *	Parse a string and put the number into a variable
 *
 * This function does not handle leading or trailing spaces.  It returns
 * the end+1 position parsed, so that caller can check for trailing
 * spaces/garbage if deemed necessary.
 *
 * cp is the place to actually start parsing; str is what to use in error
 * reports.  (Typically cp would be the same except advanced over spaces.)
 */
static const char *
set_var_from_str(const char *str, const char *cp, NumericVar *dest)
{
	bool		have_dp = false;
	int			i;
	unsigned char *decdigits;
	int			sign = NUMERIC_POS;
	int			dweight = -1;
	int			ddigits;
	int			dscale = 0;
	int			weight;
	int			ndigits;
	int			offset;
	NumericDigit *digits;

	/*
	 * We first parse the string to extract decimal digits and determine the
	 * correct decimal weight.  Then convert to NBASE representation.
	 */
	switch (*cp)
	{
		case '+':
			sign = NUMERIC_POS;
			cp++;
			break;

		case '-':
			sign = NUMERIC_NEG;
			cp++;
			break;
	}

	if (*cp == '.')
	{
		have_dp = true;
		cp++;
	}

	if (!isdigit((unsigned char) *cp))
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
				 errmsg("invalid input syntax for type %s: \"%s\"",
						"numeric", str)));

	decdigits = (unsigned char *) palloc(strlen(cp) + DEC_DIGITS * 2);

	/* leading padding for digit alignment later */
	memset(decdigits, 0, DEC_DIGITS);
	i = DEC_DIGITS;

	while (*cp)
	{
		if (isdigit((unsigned char) *cp))
		{
			decdigits[i++] = *cp++ - '0';
			if (!have_dp)
				dweight++;
			else
				dscale++;
		}
		else if (*cp == '.')
		{
			if (have_dp)
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
						 errmsg("invalid input syntax for type %s: \"%s\"",
								"numeric", str)));
			have_dp = true;
			cp++;
		}
		else
			break;
	}

	ddigits = i - DEC_DIGITS;
	/* trailing padding for digit alignment later */
	memset(decdigits + i, 0, DEC_DIGITS - 1);

	/* Handle exponent, if any */
	if (*cp == 'e' || *cp == 'E')
	{
		long		exponent;
		char	   *endptr;

		cp++;
		exponent = strtol(cp, &endptr, 10);
		if (endptr == cp)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
					 errmsg("invalid input syntax for type %s: \"%s\"",
							"numeric", str)));
		cp = endptr;

		/*
		 * At this point, dweight and dscale can't be more than about
		 * INT_MAX/2 due to the MaxAllocSize limit on string length, so
		 * constraining the exponent similarly should be enough to prevent
		 * integer overflow in this function.  If the value is too large to
		 * fit in storage format, make_result() will complain about it later;
		 * for consistency use the same ereport errcode/text as make_result().
		 */
		if (exponent >= INT_MAX / 2 || exponent <= -(INT_MAX / 2))
			ereport(ERROR,
					(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
					 errmsg("value overflows numeric format")));
		dweight += (int) exponent;
		dscale -= (int) exponent;
		if (dscale < 0)
			dscale = 0;
	}

	/*
	 * Okay, convert pure-decimal representation to base NBASE.  First we need
	 * to determine the converted weight and ndigits.  offset is the number of
	 * decimal zeroes to insert before the first given digit to have a
	 * correctly aligned first NBASE digit.
	 */
	if (dweight >= 0)
		weight = (dweight + 1 + DEC_DIGITS - 1) / DEC_DIGITS - 1;
	else
		weight = -((-dweight - 1) / DEC_DIGITS + 1);
	offset = (weight + 1) * DEC_DIGITS - (dweight + 1);
	ndigits = (ddigits + offset + DEC_DIGITS - 1) / DEC_DIGITS;

	alloc_var(dest, ndigits);
	dest->sign = sign;
	dest->weight = weight;
	dest->dscale = dscale;

	i = DEC_DIGITS - offset;
	digits = dest->digits;

	while (ndigits-- > 0)
	{
#if DEC_DIGITS == 4
		*digits++ = ((decdigits[i] * 10 + decdigits[i + 1]) * 10 +
					 decdigits[i + 2]) * 10 + decdigits[i + 3];
#elif DEC_DIGITS == 2
		*digits++ = decdigits[i] * 10 + decdigits[i + 1];
#elif DEC_DIGITS == 1
		*digits++ = decdigits[i];
#else
#error unsupported NBASE
#endif
		i += DEC_DIGITS;
	}

	pfree(decdigits);

	/* Strip any leading/trailing zeroes, and normalize weight if zero */
	strip_var(dest);

	/* Return end+1 position for caller */
	return cp;
}


/*
 * set_var_from_num() -
 *
 *	Convert the packed db format into a variable
 */
static void
set_var_from_num(Numeric num, NumericVar *dest)
{
	int			ndigits;

	ndigits = NUMERIC_NDIGITS(num);

	alloc_var(dest, ndigits);

	dest->weight = NUMERIC_WEIGHT(num);
	dest->sign = NUMERIC_SIGN(num);
	dest->dscale = NUMERIC_DSCALE(num);

	memcpy(dest->digits, NUMERIC_DIGITS(num), ndigits * sizeof(NumericDigit));
}


/*
 * init_var_from_num() -
 *
 *	Initialize a variable from packed db format. The digits array is not
 *	copied, which saves some cycles when the resulting var is not modified.
 *	Also, there's no need to call free_var(), as long as you don't assign any
 *	other value to it (with set_var_* functions, or by using the var as the
 *	destination of a function like add_var())
 *
 *	CAUTION: Do not modify the digits buffer of a var initialized with this
 *	function, e.g by calling round_var() or trunc_var(), as the changes will
 *	propagate to the original Numeric! It's OK to use it as the destination
 *	argument of one of the calculational functions, though.
 */
static void
init_var_from_num(Numeric num, NumericVar *dest)
{
	dest->ndigits = NUMERIC_NDIGITS(num);
	dest->weight = NUMERIC_WEIGHT(num);
	dest->sign = NUMERIC_SIGN(num);
	dest->dscale = NUMERIC_DSCALE(num);
	dest->digits = NUMERIC_DIGITS(num);
	dest->buf = NULL;			/* digits array is not palloc'd */
}


/*
 * set_var_from_var() -
 *
 *	Copy one variable into another
 */
static void
set_var_from_var(const NumericVar *value, NumericVar *dest)
{
	NumericDigit *newbuf;

	newbuf = digitbuf_alloc(value->ndigits + 1);
	newbuf[0] = 0;				/* spare digit for rounding */
	if (value->ndigits > 0)		/* else value->digits might be null */
		memcpy(newbuf + 1, value->digits,
			   value->ndigits * sizeof(NumericDigit));

	digitbuf_free(dest->buf);

	memmove(dest, value, sizeof(NumericVar));
	dest->buf = newbuf;
	dest->digits = newbuf + 1;
}


/*
 * get_str_from_var() -
 *
 *	Convert a var to text representation (guts of numeric_out).
 *	The var is displayed to the number of digits indicated by its dscale.
 *	Returns a palloc'd string.
 */
static char *
get_str_from_var(const NumericVar *var)
{
	int			dscale;
	char	   *str;
	char	   *cp;
	char	   *endcp;
	int			i;
	int			d;
	NumericDigit dig;

#if DEC_DIGITS > 1
	NumericDigit d1;
#endif

	dscale = var->dscale;

	/*
	 * Allocate space for the result.
	 *
	 * i is set to the # of decimal digits before decimal point. dscale is the
	 * # of decimal digits we will print after decimal point. We may generate
	 * as many as DEC_DIGITS-1 excess digits at the end, and in addition we
	 * need room for sign, decimal point, null terminator.
	 */
	i = (var->weight + 1) * DEC_DIGITS;
	if (i <= 0)
		i = 1;

	str = palloc(i + dscale + DEC_DIGITS + 2);
	cp = str;

	/*
	 * Output a dash for negative values
	 */
	if (var->sign == NUMERIC_NEG)
		*cp++ = '-';

	/*
	 * Output all digits before the decimal point
	 */
	if (var->weight < 0)
	{
		d = var->weight + 1;
		*cp++ = '0';
	}
	else
	{
		for (d = 0; d <= var->weight; d++)
		{
			dig = (d < var->ndigits) ? var->digits[d] : 0;
			/* In the first digit, suppress extra leading decimal zeroes */
#if DEC_DIGITS == 4
			{
				bool		putit = (d > 0);

				d1 = dig / 1000;
				dig -= d1 * 1000;
				putit |= (d1 > 0);
				if (putit)
					*cp++ = d1 + '0';
				d1 = dig / 100;
				dig -= d1 * 100;
				putit |= (d1 > 0);
				if (putit)
					*cp++ = d1 + '0';
				d1 = dig / 10;
				dig -= d1 * 10;
				putit |= (d1 > 0);
				if (putit)
					*cp++ = d1 + '0';
				*cp++ = dig + '0';
			}
#elif DEC_DIGITS == 2
			d1 = dig / 10;
			dig -= d1 * 10;
			if (d1 > 0 || d > 0)
				*cp++ = d1 + '0';
			*cp++ = dig + '0';
#elif DEC_DIGITS == 1
			*cp++ = dig + '0';
#else
#error unsupported NBASE
#endif
		}
	}

	/*
	 * If requested, output a decimal point and all the digits that follow it.
	 * We initially put out a multiple of DEC_DIGITS digits, then truncate if
	 * needed.
	 */
	if (dscale > 0)
	{
		*cp++ = '.';
		endcp = cp + dscale;
		for (i = 0; i < dscale; d++, i += DEC_DIGITS)
		{
			dig = (d >= 0 && d < var->ndigits) ? var->digits[d] : 0;
#if DEC_DIGITS == 4
			d1 = dig / 1000;
			dig -= d1 * 1000;
			*cp++ = d1 + '0';
			d1 = dig / 100;
			dig -= d1 * 100;
			*cp++ = d1 + '0';
			d1 = dig / 10;
			dig -= d1 * 10;
			*cp++ = d1 + '0';
			*cp++ = dig + '0';
#elif DEC_DIGITS == 2
			d1 = dig / 10;
			dig -= d1 * 10;
			*cp++ = d1 + '0';
			*cp++ = dig + '0';
#elif DEC_DIGITS == 1
			*cp++ = dig + '0';
#else
#error unsupported NBASE
#endif
		}
		cp = endcp;
	}

	/*
	 * terminate the string and return it
	 */
	*cp = '\0';
	return str;
}

/*
 * get_str_from_var_sci() -
 *
 *	Convert a var to a normalised scientific notation text representation.
 *	This function does the heavy lifting for numeric_out_sci().
 *
 *	This notation has the general form a * 10^b, where a is known as the
 *	"significand" and b is known as the "exponent".
 *
 *	Because we can't do superscript in ASCII (and because we want to copy
 *	printf's behaviour) we display the exponent using E notation, with a
 *	minimum of two exponent digits.
 *
 *	For example, the value 1234 could be output as 1.2e+03.
 *
 *	We assume that the exponent can fit into an int32.
 *
 *	rscale is the number of decimal digits desired after the decimal point in
 *	the output, negative values will be treated as meaning zero.
 *
 *	Returns a palloc'd string.
 */
static char *
get_str_from_var_sci(const NumericVar *var, int rscale)
{
	int32		exponent;
	NumericVar	tmp_var;
	size_t		len;
	char	   *str;
	char	   *sig_out;

	if (rscale < 0)
		rscale = 0;

	/*
	 * Determine the exponent of this number in normalised form.
	 *
	 * This is the exponent required to represent the number with only one
	 * significant digit before the decimal place.
	 */
	if (var->ndigits > 0)
	{
		exponent = (var->weight + 1) * DEC_DIGITS;

		/*
		 * Compensate for leading decimal zeroes in the first numeric digit by
		 * decrementing the exponent.
		 */
		exponent -= DEC_DIGITS - (int) log10(var->digits[0]);
	}
	else
	{
		/*
		 * If var has no digits, then it must be zero.
		 *
		 * Zero doesn't technically have a meaningful exponent in normalised
		 * notation, but we just display the exponent as zero for consistency
		 * of output.
		 */
		exponent = 0;
	}

	/*
	 * Divide var by 10^exponent to get the significand, rounding to rscale
	 * decimal digits in the process.
	 */
	init_var(&tmp_var);

	power_ten_int(exponent, &tmp_var);
	div_var(var, &tmp_var, &tmp_var, rscale, true);
	sig_out = get_str_from_var(&tmp_var);

	free_var(&tmp_var);

	/*
	 * Allocate space for the result.
	 *
	 * In addition to the significand, we need room for the exponent
	 * decoration ("e"), the sign of the exponent, up to 10 digits for the
	 * exponent itself, and of course the null terminator.
	 */
	len = strlen(sig_out) + 13;
	str = palloc(len);
	snprintf(str, len, "%se%+03d", sig_out, exponent);

	pfree(sig_out);

	return str;
}


/*
 * duplicate_numeric() - copy a packed-format Numeric
 *
 * This will handle NaN and Infinity cases.
 */
static Numeric
duplicate_numeric(Numeric num)
{
	Numeric		res;

	res = (Numeric) palloc(VARSIZE(num));
	memcpy(res, num, VARSIZE(num));
	return res;
}

/*
 * make_result_opt_error() -
 *
 *	Create the packed db numeric format in palloc()'d memory from
 *	a variable.  This will handle NaN and Infinity cases.
 *
 *	If "have_error" isn't NULL, on overflow *have_error is set to true and
 *	NULL is returned.  This is helpful when caller needs to handle errors.
 */
static Numeric
make_result_opt_error(const NumericVar *var, bool *have_error)
{
	Numeric		result;
	NumericDigit *digits = var->digits;
	int			weight = var->weight;
	int			sign = var->sign;
	int			n;
	Size		len;

	if (have_error)
		*have_error = false;

	if ((sign & NUMERIC_SIGN_MASK) == NUMERIC_SPECIAL)
	{
		/*
		 * Verify valid special value.  This could be just an Assert, perhaps,
		 * but it seems worthwhile to expend a few cycles to ensure that we
		 * never write any nonzero reserved bits to disk.
		 */
		if (!(sign == NUMERIC_NAN ||
			  sign == NUMERIC_PINF ||
			  sign == NUMERIC_NINF))
			elog(ERROR, "invalid numeric sign value 0x%x", sign);

		result = (Numeric) palloc(NUMERIC_HDRSZ_SHORT);

		SET_VARSIZE(result, NUMERIC_HDRSZ_SHORT);
		result->choice.n_header = sign;
		/* the header word is all we need */

		dump_numeric("make_result()", result);
		return result;
	}

	n = var->ndigits;

	/* truncate leading zeroes */
	while (n > 0 && *digits == 0)
	{
		digits++;
		weight--;
		n--;
	}
	/* truncate trailing zeroes */
	while (n > 0 && digits[n - 1] == 0)
		n--;

	/* If zero result, force to weight=0 and positive sign */
	if (n == 0)
	{
		weight = 0;
		sign = NUMERIC_POS;
	}

	/* Build the result */
	if (NUMERIC_CAN_BE_SHORT(var->dscale, weight))
	{
		len = NUMERIC_HDRSZ_SHORT + n * sizeof(NumericDigit);
		result = (Numeric) palloc(len);
		SET_VARSIZE(result, len);
		result->choice.n_short.n_header =
			(sign == NUMERIC_NEG ? (NUMERIC_SHORT | NUMERIC_SHORT_SIGN_MASK)
			 : NUMERIC_SHORT)
			| (var->dscale << NUMERIC_SHORT_DSCALE_SHIFT)
			| (weight < 0 ? NUMERIC_SHORT_WEIGHT_SIGN_MASK : 0)
			| (weight & NUMERIC_SHORT_WEIGHT_MASK);
	}
	else
	{
		len = NUMERIC_HDRSZ + n * sizeof(NumericDigit);
		result = (Numeric) palloc(len);
		SET_VARSIZE(result, len);
		result->choice.n_long.n_sign_dscale =
			sign | (var->dscale & NUMERIC_DSCALE_MASK);
		result->choice.n_long.n_weight = weight;
	}

	Assert(NUMERIC_NDIGITS(result) == n);
	if (n > 0)
		memcpy(NUMERIC_DIGITS(result), digits, n * sizeof(NumericDigit));

	/* Check for overflow of int16 fields */
	if (NUMERIC_WEIGHT(result) != weight ||
		NUMERIC_DSCALE(result) != var->dscale)
	{
		if (have_error)
		{
			*have_error = true;
			return NULL;
		}
		else
		{
			ereport(ERROR,
					(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
					 errmsg("value overflows numeric format")));
		}
	}

	dump_numeric("make_result()", result);
	return result;
}


/*
 * make_result() -
 *
 *	An interface to make_result_opt_error() without "have_error" argument.
 */
static Numeric
make_result(const NumericVar *var)
{
	return make_result_opt_error(var, NULL);
}


/*
 * apply_typmod() -
 *
 *	Do bounds checking and rounding according to the specified typmod.
 *	Note that this is only applied to normal finite values.
 */
static void
apply_typmod(NumericVar *var, int32 typmod)
{
	int			precision;
	int			scale;
	int			maxdigits;
	int			ddigits;
	int			i;

	/* Do nothing if we have a default typmod (-1) */
	if (typmod < (int32) (VARHDRSZ))
		return;

	typmod -= VARHDRSZ;
	precision = (typmod >> 16) & 0xffff;
	scale = typmod & 0xffff;
	maxdigits = precision - scale;

	/* Round to target scale (and set var->dscale) */
	round_var(var, scale);

	/*
	 * Check for overflow - note we can't do this before rounding, because
	 * rounding could raise the weight.  Also note that the var's weight could
	 * be inflated by leading zeroes, which will be stripped before storage
	 * but perhaps might not have been yet. In any case, we must recognize a
	 * true zero, whose weight doesn't mean anything.
	 */
	ddigits = (var->weight + 1) * DEC_DIGITS;
	if (ddigits > maxdigits)
	{
		/* Determine true weight; and check for all-zero result */
		for (i = 0; i < var->ndigits; i++)
		{
			NumericDigit dig = var->digits[i];

			if (dig)
			{
				/* Adjust for any high-order decimal zero digits */
#if DEC_DIGITS == 4
				if (dig < 10)
					ddigits -= 3;
				else if (dig < 100)
					ddigits -= 2;
				else if (dig < 1000)
					ddigits -= 1;
#elif DEC_DIGITS == 2
				if (dig < 10)
					ddigits -= 1;
#elif DEC_DIGITS == 1
				/* no adjustment */
#else
#error unsupported NBASE
#endif
				if (ddigits > maxdigits)
					ereport(ERROR,
							(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
							 errmsg("numeric field overflow"),
							 errdetail("A field with precision %d, scale %d must round to an absolute value less than %s%d.",
									   precision, scale,
					/* Display 10^0 as 1 */
									   maxdigits ? "10^" : "",
									   maxdigits ? maxdigits : 1
									   )));
				break;
			}
			ddigits -= DEC_DIGITS;
		}
	}
}

/*
 * apply_typmod_special() -
 *
 *	Do bounds checking according to the specified typmod, for an Inf or NaN.
 *	For convenience of most callers, the value is presented in packed form.
 */
static void
apply_typmod_special(Numeric num, int32 typmod)
{
	int			precision;
	int			scale;

	Assert(NUMERIC_IS_SPECIAL(num));	/* caller error if not */

	/*
	 * NaN is allowed regardless of the typmod; that's rather dubious perhaps,
	 * but it's a longstanding behavior.  Inf is rejected if we have any
	 * typmod restriction, since an infinity shouldn't be claimed to fit in
	 * any finite number of digits.
	 */
	if (NUMERIC_IS_NAN(num))
		return;

	/* Do nothing if we have a default typmod (-1) */
	if (typmod < (int32) (VARHDRSZ))
		return;

	typmod -= VARHDRSZ;
	precision = (typmod >> 16) & 0xffff;
	scale = typmod & 0xffff;

	ereport(ERROR,
			(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
			 errmsg("numeric field overflow"),
			 errdetail("A field with precision %d, scale %d cannot hold an infinite value.",
					   precision, scale)));
}


/*
 * Convert numeric to int8, rounding if needed.
 *
 * If overflow, return false (no error is raised).  Return true if okay.
 */
static bool
numericvar_to_int64(const NumericVar *var, int64 *result)
{
	NumericDigit *digits;
	int			ndigits;
	int			weight;
	int			i;
	int64		val;
	bool		neg;
	NumericVar	rounded;

	/* Round to nearest integer */
	init_var(&rounded);
	set_var_from_var(var, &rounded);
	round_var(&rounded, 0);

	/* Check for zero input */
	strip_var(&rounded);
	ndigits = rounded.ndigits;
	if (ndigits == 0)
	{
		*result = 0;
		free_var(&rounded);
		return true;
	}

	/*
	 * For input like 10000000000, we must treat stripped digits as real. So
	 * the loop assumes there are weight+1 digits before the decimal point.
	 */
	weight = rounded.weight;
	Assert(weight >= 0 && ndigits <= weight + 1);

	/*
	 * Construct the result. To avoid issues with converting a value
	 * corresponding to INT64_MIN (which can't be represented as a positive 64
	 * bit two's complement integer), accumulate value as a negative number.
	 */
	digits = rounded.digits;
	neg = (rounded.sign == NUMERIC_NEG);
	val = -digits[0];
	for (i = 1; i <= weight; i++)
	{
		if (unlikely(pg_mul_s64_overflow(val, NBASE, &val)))
		{
			free_var(&rounded);
			return false;
		}

		if (i < ndigits)
		{
			if (unlikely(pg_sub_s64_overflow(val, digits[i], &val)))
			{
				free_var(&rounded);
				return false;
			}
		}
	}

	free_var(&rounded);

	if (!neg)
	{
		if (unlikely(val == PG_INT64_MIN))
			return false;
		val = -val;
	}
	*result = val;

	return true;
}

/*
 * Convert int8 value to numeric.
 */
static void
int64_to_numericvar(int64 val, NumericVar *var)
{
	uint64		uval,
				newuval;
	NumericDigit *ptr;
	int			ndigits;

	/* int64 can require at most 19 decimal digits; add one for safety */
	alloc_var(var, 20 / DEC_DIGITS);
	if (val < 0)
	{
		var->sign = NUMERIC_NEG;
		uval = -val;
	}
	else
	{
		var->sign = NUMERIC_POS;
		uval = val;
	}
	var->dscale = 0;
	if (val == 0)
	{
		var->ndigits = 0;
		var->weight = 0;
		return;
	}
	ptr = var->digits + var->ndigits;
	ndigits = 0;
	do
	{
		ptr--;
		ndigits++;
		newuval = uval / NBASE;
		*ptr = uval - newuval * NBASE;
		uval = newuval;
	} while (uval);
	var->digits = ptr;
	var->ndigits = ndigits;
	var->weight = ndigits - 1;
}

/*
 * Convert numeric to uint64, rounding if needed.
 *
 * If overflow, return false (no error is raised).  Return true if okay.
 */
static bool
numericvar_to_uint64(const NumericVar *var, uint64 *result)
{
	NumericDigit *digits;
	int			ndigits;
	int			weight;
	int			i;
	uint64		val;
	NumericVar	rounded;

	/* Round to nearest integer */
	init_var(&rounded);
	set_var_from_var(var, &rounded);
	round_var(&rounded, 0);

	/* Check for zero input */
	strip_var(&rounded);
	ndigits = rounded.ndigits;
	if (ndigits == 0)
	{
		*result = 0;
		free_var(&rounded);
		return true;
	}

	/* Check for negative input */
	if (rounded.sign == NUMERIC_NEG)
	{
		free_var(&rounded);
		return false;
	}

	/*
	 * For input like 10000000000, we must treat stripped digits as real. So
	 * the loop assumes there are weight+1 digits before the decimal point.
	 */
	weight = rounded.weight;
	Assert(weight >= 0 && ndigits <= weight + 1);

	/* Construct the result */
	digits = rounded.digits;
	val = digits[0];
	for (i = 1; i <= weight; i++)
	{
		if (unlikely(pg_mul_u64_overflow(val, NBASE, &val)))
		{
			free_var(&rounded);
			return false;
		}

		if (i < ndigits)
		{
			if (unlikely(pg_add_u64_overflow(val, digits[i], &val)))
			{
				free_var(&rounded);
				return false;
			}
		}
	}

	free_var(&rounded);

	*result = val;

	return true;
}

#ifdef HAVE_INT128
/*
 * Convert numeric to int128, rounding if needed.
 *
 * If overflow, return false (no error is raised).  Return true if okay.
 */
static bool
numericvar_to_int128(const NumericVar *var, int128 *result)
{
	NumericDigit *digits;
	int			ndigits;
	int			weight;
	int			i;
	int128		val,
				oldval;
	bool		neg;
	NumericVar	rounded;

	/* Round to nearest integer */
	init_var(&rounded);
	set_var_from_var(var, &rounded);
	round_var(&rounded, 0);

	/* Check for zero input */
	strip_var(&rounded);
	ndigits = rounded.ndigits;
	if (ndigits == 0)
	{
		*result = 0;
		free_var(&rounded);
		return true;
	}

	/*
	 * For input like 10000000000, we must treat stripped digits as real. So
	 * the loop assumes there are weight+1 digits before the decimal point.
	 */
	weight = rounded.weight;
	Assert(weight >= 0 && ndigits <= weight + 1);

	/* Construct the result */
	digits = rounded.digits;
	neg = (rounded.sign == NUMERIC_NEG);
	val = digits[0];
	for (i = 1; i <= weight; i++)
	{
		oldval = val;
		val *= NBASE;
		if (i < ndigits)
			val += digits[i];

		/*
		 * The overflow check is a bit tricky because we want to accept
		 * INT128_MIN, which will overflow the positive accumulator.  We can
		 * detect this case easily though because INT128_MIN is the only
		 * nonzero value for which -val == val (on a two's complement machine,
		 * anyway).
		 */
		if ((val / NBASE) != oldval)	/* possible overflow? */
		{
			if (!neg || (-val) != val || val == 0 || oldval < 0)
			{
				free_var(&rounded);
				return false;
			}
		}
	}

	free_var(&rounded);

	*result = neg ? -val : val;
	return true;
}

/*
 * Convert 128 bit integer to numeric.
 */
static void
int128_to_numericvar(int128 val, NumericVar *var)
{
	uint128		uval,
				newuval;
	NumericDigit *ptr;
	int			ndigits;

	/* int128 can require at most 39 decimal digits; add one for safety */
	alloc_var(var, 40 / DEC_DIGITS);
	if (val < 0)
	{
		var->sign = NUMERIC_NEG;
		uval = -val;
	}
	else
	{
		var->sign = NUMERIC_POS;
		uval = val;
	}
	var->dscale = 0;
	if (val == 0)
	{
		var->ndigits = 0;
		var->weight = 0;
		return;
	}
	ptr = var->digits + var->ndigits;
	ndigits = 0;
	do
	{
		ptr--;
		ndigits++;
		newuval = uval / NBASE;
		*ptr = uval - newuval * NBASE;
		uval = newuval;
	} while (uval);
	var->digits = ptr;
	var->ndigits = ndigits;
	var->weight = ndigits - 1;
}
#endif

/*
 * Convert a NumericVar to float8; if out of range, return +/- HUGE_VAL
 */
static double
numericvar_to_double_no_overflow(const NumericVar *var)
{
	char	   *tmp;
	double		val;
	char	   *endptr;

	tmp = get_str_from_var(var);

	/* unlike float8in, we ignore ERANGE from strtod */
	val = strtod(tmp, &endptr);
	if (*endptr != '\0')
	{
		/* shouldn't happen ... */
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
				 errmsg("invalid input syntax for type %s: \"%s\"",
						"double precision", tmp)));
	}

	pfree(tmp);

	return val;
}


/*
 * cmp_var() -
 *
 *	Compare two values on variable level.  We assume zeroes have been
 *	truncated to no digits.
 */
static int
cmp_var(const NumericVar *var1, const NumericVar *var2)
{
	return cmp_var_common(var1->digits, var1->ndigits,
						  var1->weight, var1->sign,
						  var2->digits, var2->ndigits,
						  var2->weight, var2->sign);
}

/*
 * cmp_var_common() -
 *
 *	Main routine of cmp_var(). This function can be used by both
 *	NumericVar and Numeric.
 */
static int
cmp_var_common(const NumericDigit *var1digits, int var1ndigits,
			   int var1weight, int var1sign,
			   const NumericDigit *var2digits, int var2ndigits,
			   int var2weight, int var2sign)
{
	if (var1ndigits == 0)
	{
		if (var2ndigits == 0)
			return 0;
		if (var2sign == NUMERIC_NEG)
			return 1;
		return -1;
	}
	if (var2ndigits == 0)
	{
		if (var1sign == NUMERIC_POS)
			return 1;
		return -1;
	}

	if (var1sign == NUMERIC_POS)
	{
		if (var2sign == NUMERIC_NEG)
			return 1;
		return cmp_abs_common(var1digits, var1ndigits, var1weight,
							  var2digits, var2ndigits, var2weight);
	}

	if (var2sign == NUMERIC_POS)
		return -1;

	return cmp_abs_common(var2digits, var2ndigits, var2weight,
						  var1digits, var1ndigits, var1weight);
}


/*
 * add_var() -
 *
 *	Full version of add functionality on variable level (handling signs).
 *	result might point to one of the operands too without danger.
 */
static void
add_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result)
{
	/*
	 * Decide on the signs of the two variables what to do
	 */
	if (var1->sign == NUMERIC_POS)
	{
		if (var2->sign == NUMERIC_POS)
		{
			/*
			 * Both are positive result = +(ABS(var1) + ABS(var2))
			 */
			add_abs(var1, var2, result);
			result->sign = NUMERIC_POS;
		}
		else
		{
			/*
			 * var1 is positive, var2 is negative Must compare absolute values
			 */
			switch (cmp_abs(var1, var2))
			{
				case 0:
					/* ----------
					 * ABS(var1) == ABS(var2)
					 * result = ZERO
					 * ----------
					 */
					zero_var(result);
					result->dscale = Max(var1->dscale, var2->dscale);
					break;

				case 1:
					/* ----------
					 * ABS(var1) > ABS(var2)
					 * result = +(ABS(var1) - ABS(var2))
					 * ----------
					 */
					sub_abs(var1, var2, result);
					result->sign = NUMERIC_POS;
					break;

				case -1:
					/* ----------
					 * ABS(var1) < ABS(var2)
					 * result = -(ABS(var2) - ABS(var1))
					 * ----------
					 */
					sub_abs(var2, var1, result);
					result->sign = NUMERIC_NEG;
					break;
			}
		}
	}
	else
	{
		if (var2->sign == NUMERIC_POS)
		{
			/* ----------
			 * var1 is negative, var2 is positive
			 * Must compare absolute values
			 * ----------
			 */
			switch (cmp_abs(var1, var2))
			{
				case 0:
					/* ----------
					 * ABS(var1) == ABS(var2)
					 * result = ZERO
					 * ----------
					 */
					zero_var(result);
					result->dscale = Max(var1->dscale, var2->dscale);
					break;

				case 1:
					/* ----------
					 * ABS(var1) > ABS(var2)
					 * result = -(ABS(var1) - ABS(var2))
					 * ----------
					 */
					sub_abs(var1, var2, result);
					result->sign = NUMERIC_NEG;
					break;

				case -1:
					/* ----------
					 * ABS(var1) < ABS(var2)
					 * result = +(ABS(var2) - ABS(var1))
					 * ----------
					 */
					sub_abs(var2, var1, result);
					result->sign = NUMERIC_POS;
					break;
			}
		}
		else
		{
			/* ----------
			 * Both are negative
			 * result = -(ABS(var1) + ABS(var2))
			 * ----------
			 */
			add_abs(var1, var2, result);
			result->sign = NUMERIC_NEG;
		}
	}
}


/*
 * sub_var() -
 *
 *	Full version of sub functionality on variable level (handling signs).
 *	result might point to one of the operands too without danger.
 */
static void
sub_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result)
{
	/*
	 * Decide on the signs of the two variables what to do
	 */
	if (var1->sign == NUMERIC_POS)
	{
		if (var2->sign == NUMERIC_NEG)
		{
			/* ----------
			 * var1 is positive, var2 is negative
			 * result = +(ABS(var1) + ABS(var2))
			 * ----------
			 */
			add_abs(var1, var2, result);
			result->sign = NUMERIC_POS;
		}
		else
		{
			/* ----------
			 * Both are positive
			 * Must compare absolute values
			 * ----------
			 */
			switch (cmp_abs(var1, var2))
			{
				case 0:
					/* ----------
					 * ABS(var1) == ABS(var2)
					 * result = ZERO
					 * ----------
					 */
					zero_var(result);
					result->dscale = Max(var1->dscale, var2->dscale);
					break;

				case 1:
					/* ----------
					 * ABS(var1) > ABS(var2)
					 * result = +(ABS(var1) - ABS(var2))
					 * ----------
					 */
					sub_abs(var1, var2, result);
					result->sign = NUMERIC_POS;
					break;

				case -1:
					/* ----------
					 * ABS(var1) < ABS(var2)
					 * result = -(ABS(var2) - ABS(var1))
					 * ----------
					 */
					sub_abs(var2, var1, result);
					result->sign = NUMERIC_NEG;
					break;
			}
		}
	}
	else
	{
		if (var2->sign == NUMERIC_NEG)
		{
			/* ----------
			 * Both are negative
			 * Must compare absolute values
			 * ----------
			 */
			switch (cmp_abs(var1, var2))
			{
				case 0:
					/* ----------
					 * ABS(var1) == ABS(var2)
					 * result = ZERO
					 * ----------
					 */
					zero_var(result);
					result->dscale = Max(var1->dscale, var2->dscale);
					break;

				case 1:
					/* ----------
					 * ABS(var1) > ABS(var2)
					 * result = -(ABS(var1) - ABS(var2))
					 * ----------
					 */
					sub_abs(var1, var2, result);
					result->sign = NUMERIC_NEG;
					break;

				case -1:
					/* ----------
					 * ABS(var1) < ABS(var2)
					 * result = +(ABS(var2) - ABS(var1))
					 * ----------
					 */
					sub_abs(var2, var1, result);
					result->sign = NUMERIC_POS;
					break;
			}
		}
		else
		{
			/* ----------
			 * var1 is negative, var2 is positive
			 * result = -(ABS(var1) + ABS(var2))
			 * ----------
			 */
			add_abs(var1, var2, result);
			result->sign = NUMERIC_NEG;
		}
	}
}


/*
 * mul_var() -
 *
 *	Multiplication on variable level. Product of var1 * var2 is stored
 *	in result.  Result is rounded to no more than rscale fractional digits.
 */
static void
mul_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result,
		int rscale)
{
	int			res_ndigits;
	int			res_sign;
	int			res_weight;
	int			maxdigits;
	int		   *dig;
	int			carry;
	int			maxdig;
	int			newdig;
	int			var1ndigits;
	int			var2ndigits;
	NumericDigit *var1digits;
	NumericDigit *var2digits;
	NumericDigit *res_digits;
	int			i,
				i1,
				i2;

	/*
	 * Arrange for var1 to be the shorter of the two numbers.  This improves
	 * performance because the inner multiplication loop is much simpler than
	 * the outer loop, so it's better to have a smaller number of iterations
	 * of the outer loop.  This also reduces the number of times that the
	 * accumulator array needs to be normalized.
	 */
	if (var1->ndigits > var2->ndigits)
	{
		const NumericVar *tmp = var1;

		var1 = var2;
		var2 = tmp;
	}

	/* copy these values into local vars for speed in inner loop */
	var1ndigits = var1->ndigits;
	var2ndigits = var2->ndigits;
	var1digits = var1->digits;
	var2digits = var2->digits;

	if (var1ndigits == 0 || var2ndigits == 0)
	{
		/* one or both inputs is zero; so is result */
		zero_var(result);
		result->dscale = rscale;
		return;
	}

	/* Determine result sign and (maximum possible) weight */
	if (var1->sign == var2->sign)
		res_sign = NUMERIC_POS;
	else
		res_sign = NUMERIC_NEG;
	res_weight = var1->weight + var2->weight + 2;

	/*
	 * Determine the number of result digits to compute.  If the exact result
	 * would have more than rscale fractional digits, truncate the computation
	 * with MUL_GUARD_DIGITS guard digits, i.e., ignore input digits that
	 * would only contribute to the right of that.  (This will give the exact
	 * rounded-to-rscale answer unless carries out of the ignored positions
	 * would have propagated through more than MUL_GUARD_DIGITS digits.)
	 *
	 * Note: an exact computation could not produce more than var1ndigits +
	 * var2ndigits digits, but we allocate one extra output digit in case
	 * rscale-driven rounding produces a carry out of the highest exact digit.
	 */
	res_ndigits = var1ndigits + var2ndigits + 1;
	maxdigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS +
		MUL_GUARD_DIGITS;
	res_ndigits = Min(res_ndigits, maxdigits);

	if (res_ndigits < 3)
	{
		/* All input digits will be ignored; so result is zero */
		zero_var(result);
		result->dscale = rscale;
		return;
	}

	/*
	 * We do the arithmetic in an array "dig[]" of signed int's.  Since
	 * INT_MAX is noticeably larger than NBASE*NBASE, this gives us headroom
	 * to avoid normalizing carries immediately.
	 *
	 * maxdig tracks the maximum possible value of any dig[] entry; when this
	 * threatens to exceed INT_MAX, we take the time to propagate carries.
	 * Furthermore, we need to ensure that overflow doesn't occur during the
	 * carry propagation passes either.  The carry values could be as much as
	 * INT_MAX/NBASE, so really we must normalize when digits threaten to
	 * exceed INT_MAX - INT_MAX/NBASE.
	 *
	 * To avoid overflow in maxdig itself, it actually represents the max
	 * possible value divided by NBASE-1, ie, at the top of the loop it is
	 * known that no dig[] entry exceeds maxdig * (NBASE-1).
	 */
	dig = (int *) palloc0(res_ndigits * sizeof(int));
	maxdig = 0;

	/*
	 * The least significant digits of var1 should be ignored if they don't
	 * contribute directly to the first res_ndigits digits of the result that
	 * we are computing.
	 *
	 * Digit i1 of var1 and digit i2 of var2 are multiplied and added to digit
	 * i1+i2+2 of the accumulator array, so we need only consider digits of
	 * var1 for which i1 <= res_ndigits - 3.
	 */
	for (i1 = Min(var1ndigits - 1, res_ndigits - 3); i1 >= 0; i1--)
	{
		int			var1digit = var1digits[i1];

		if (var1digit == 0)
			continue;

		/* Time to normalize? */
		maxdig += var1digit;
		if (maxdig > (INT_MAX - INT_MAX / NBASE) / (NBASE - 1))
		{
			/* Yes, do it */
			carry = 0;
			for (i = res_ndigits - 1; i >= 0; i--)
			{
				newdig = dig[i] + carry;
				if (newdig >= NBASE)
				{
					carry = newdig / NBASE;
					newdig -= carry * NBASE;
				}
				else
					carry = 0;
				dig[i] = newdig;
			}
			Assert(carry == 0);
			/* Reset maxdig to indicate new worst-case */
			maxdig = 1 + var1digit;
		}

		/*
		 * Add the appropriate multiple of var2 into the accumulator.
		 *
		 * As above, digits of var2 can be ignored if they don't contribute,
		 * so we only include digits for which i1+i2+2 < res_ndigits.
		 *
		 * This inner loop is the performance bottleneck for multiplication,
		 * so we want to keep it simple enough so that it can be
		 * auto-vectorized.  Accordingly, process the digits left-to-right
		 * even though schoolbook multiplication would suggest right-to-left.
		 * Since we aren't propagating carries in this loop, the order does
		 * not matter.
		 */
		{
			int			i2limit = Min(var2ndigits, res_ndigits - i1 - 2);
			int		   *dig_i1_2 = &dig[i1 + 2];

			for (i2 = 0; i2 < i2limit; i2++)
				dig_i1_2[i2] += var1digit * var2digits[i2];
		}
	}

	/*
	 * Now we do a final carry propagation pass to normalize the result, which
	 * we combine with storing the result digits into the output. Note that
	 * this is still done at full precision w/guard digits.
	 */
	alloc_var(result, res_ndigits);
	res_digits = result->digits;
	carry = 0;
	for (i = res_ndigits - 1; i >= 0; i--)
	{
		newdig = dig[i] + carry;
		if (newdig >= NBASE)
		{
			carry = newdig / NBASE;
			newdig -= carry * NBASE;
		}
		else
			carry = 0;
		res_digits[i] = newdig;
	}
	Assert(carry == 0);

	pfree(dig);

	/*
	 * Finally, round the result to the requested precision.
	 */
	result->weight = res_weight;
	result->sign = res_sign;

	/* Round to target rscale (and set result->dscale) */
	round_var(result, rscale);

	/* Strip leading and trailing zeroes */
	strip_var(result);
}


/*
 * div_var() -
 *
 *	Division on variable level. Quotient of var1 / var2 is stored in result.
 *	The quotient is figured to exactly rscale fractional digits.
 *	If round is true, it is rounded at the rscale'th digit; if false, it
 *	is truncated (towards zero) at that digit.
 */
static void
div_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result,
		int rscale, bool round)
{
	int			div_ndigits;
	int			res_ndigits;
	int			res_sign;
	int			res_weight;
	int			carry;
	int			borrow;
	int			divisor1;
	int			divisor2;
	NumericDigit *dividend;
	NumericDigit *divisor;
	NumericDigit *res_digits;
	int			i;
	int			j;

	/* copy these values into local vars for speed in inner loop */
	int			var1ndigits = var1->ndigits;
	int			var2ndigits = var2->ndigits;

	/*
	 * First of all division by zero check; we must not be handed an
	 * unnormalized divisor.
	 */
	if (var2ndigits == 0 || var2->digits[0] == 0)
		ereport(ERROR,
				(errcode(ERRCODE_DIVISION_BY_ZERO),
				 errmsg("division by zero")));

	/*
	 * Now result zero check
	 */
	if (var1ndigits == 0)
	{
		zero_var(result);
		result->dscale = rscale;
		return;
	}

	/*
	 * Determine the result sign, weight and number of digits to calculate.
	 * The weight figured here is correct if the emitted quotient has no
	 * leading zero digits; otherwise strip_var() will fix things up.
	 */
	if (var1->sign == var2->sign)
		res_sign = NUMERIC_POS;
	else
		res_sign = NUMERIC_NEG;
	res_weight = var1->weight - var2->weight;
	/* The number of accurate result digits we need to produce: */
	res_ndigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS;
	/* ... but always at least 1 */
	res_ndigits = Max(res_ndigits, 1);
	/* If rounding needed, figure one more digit to ensure correct result */
	if (round)
		res_ndigits++;

	/*
	 * The working dividend normally requires res_ndigits + var2ndigits
	 * digits, but make it at least var1ndigits so we can load all of var1
	 * into it.  (There will be an additional digit dividend[0] in the
	 * dividend space, but for consistency with Knuth's notation we don't
	 * count that in div_ndigits.)
	 */
	div_ndigits = res_ndigits + var2ndigits;
	div_ndigits = Max(div_ndigits, var1ndigits);

	/*
	 * We need a workspace with room for the working dividend (div_ndigits+1
	 * digits) plus room for the possibly-normalized divisor (var2ndigits
	 * digits).  It is convenient also to have a zero at divisor[0] with the
	 * actual divisor data in divisor[1 .. var2ndigits].  Transferring the
	 * digits into the workspace also allows us to realloc the result (which
	 * might be the same as either input var) before we begin the main loop.
	 * Note that we use palloc0 to ensure that divisor[0], dividend[0], and
	 * any additional dividend positions beyond var1ndigits, start out 0.
	 */
	dividend = (NumericDigit *)
		palloc0((div_ndigits + var2ndigits + 2) * sizeof(NumericDigit));
	divisor = dividend + (div_ndigits + 1);
	memcpy(dividend + 1, var1->digits, var1ndigits * sizeof(NumericDigit));
	memcpy(divisor + 1, var2->digits, var2ndigits * sizeof(NumericDigit));

	/*
	 * Now we can realloc the result to hold the generated quotient digits.
	 */
	alloc_var(result, res_ndigits);
	res_digits = result->digits;

	if (var2ndigits == 1)
	{
		/*
		 * If there's only a single divisor digit, we can use a fast path (cf.
		 * Knuth section 4.3.1 exercise 16).
		 */
		divisor1 = divisor[1];
		carry = 0;
		for (i = 0; i < res_ndigits; i++)
		{
			carry = carry * NBASE + dividend[i + 1];
			res_digits[i] = carry / divisor1;
			carry = carry % divisor1;
		}
	}
	else
	{
		/*
		 * The full multiple-place algorithm is taken from Knuth volume 2,
		 * Algorithm 4.3.1D.
		 *
		 * We need the first divisor digit to be >= NBASE/2.  If it isn't,
		 * make it so by scaling up both the divisor and dividend by the
		 * factor "d".  (The reason for allocating dividend[0] above is to
		 * leave room for possible carry here.)
		 */
		if (divisor[1] < HALF_NBASE)
		{
			int			d = NBASE / (divisor[1] + 1);

			carry = 0;
			for (i = var2ndigits; i > 0; i--)
			{
				carry += divisor[i] * d;
				divisor[i] = carry % NBASE;
				carry = carry / NBASE;
			}
			Assert(carry == 0);
			carry = 0;
			/* at this point only var1ndigits of dividend can be nonzero */
			for (i = var1ndigits; i >= 0; i--)
			{
				carry += dividend[i] * d;
				dividend[i] = carry % NBASE;
				carry = carry / NBASE;
			}
			Assert(carry == 0);
			Assert(divisor[1] >= HALF_NBASE);
		}
		/* First 2 divisor digits are used repeatedly in main loop */
		divisor1 = divisor[1];
		divisor2 = divisor[2];

		/*
		 * Begin the main loop.  Each iteration of this loop produces the j'th
		 * quotient digit by dividing dividend[j .. j + var2ndigits] by the
		 * divisor; this is essentially the same as the common manual
		 * procedure for long division.
		 */
		for (j = 0; j < res_ndigits; j++)
		{
			/* Estimate quotient digit from the first two dividend digits */
			int			next2digits = dividend[j] * NBASE + dividend[j + 1];
			int			qhat;

			/*
			 * If next2digits are 0, then quotient digit must be 0 and there's
			 * no need to adjust the working dividend.  It's worth testing
			 * here to fall out ASAP when processing trailing zeroes in a
			 * dividend.
			 */
			if (next2digits == 0)
			{
				res_digits[j] = 0;
				continue;
			}

			if (dividend[j] == divisor1)
				qhat = NBASE - 1;
			else
				qhat = next2digits / divisor1;

			/*
			 * Adjust quotient digit if it's too large.  Knuth proves that
			 * after this step, the quotient digit will be either correct or
			 * just one too large.  (Note: it's OK to use dividend[j+2] here
			 * because we know the divisor length is at least 2.)
			 */
			while (divisor2 * qhat >
				   (next2digits - qhat * divisor1) * NBASE + dividend[j + 2])
				qhat--;

			/* As above, need do nothing more when quotient digit is 0 */
			if (qhat > 0)
			{
				/*
				 * Multiply the divisor by qhat, and subtract that from the
				 * working dividend.  "carry" tracks the multiplication,
				 * "borrow" the subtraction (could we fold these together?)
				 */
				carry = 0;
				borrow = 0;
				for (i = var2ndigits; i >= 0; i--)
				{
					carry += divisor[i] * qhat;
					borrow -= carry % NBASE;
					carry = carry / NBASE;
					borrow += dividend[j + i];
					if (borrow < 0)
					{
						dividend[j + i] = borrow + NBASE;
						borrow = -1;
					}
					else
					{
						dividend[j + i] = borrow;
						borrow = 0;
					}
				}
				Assert(carry == 0);

				/*
				 * If we got a borrow out of the top dividend digit, then
				 * indeed qhat was one too large.  Fix it, and add back the
				 * divisor to correct the working dividend.  (Knuth proves
				 * that this will occur only about 3/NBASE of the time; hence,
				 * it's a good idea to test this code with small NBASE to be
				 * sure this section gets exercised.)
				 */
				if (borrow)
				{
					qhat--;
					carry = 0;
					for (i = var2ndigits; i >= 0; i--)
					{
						carry += dividend[j + i] + divisor[i];
						if (carry >= NBASE)
						{
							dividend[j + i] = carry - NBASE;
							carry = 1;
						}
						else
						{
							dividend[j + i] = carry;
							carry = 0;
						}
					}
					/* A carry should occur here to cancel the borrow above */
					Assert(carry == 1);
				}
			}

			/* And we're done with this quotient digit */
			res_digits[j] = qhat;
		}
	}

	pfree(dividend);

	/*
	 * Finally, round or truncate the result to the requested precision.
	 */
	result->weight = res_weight;
	result->sign = res_sign;

	/* Round or truncate to target rscale (and set result->dscale) */
	if (round)
		round_var(result, rscale);
	else
		trunc_var(result, rscale);

	/* Strip leading and trailing zeroes */
	strip_var(result);
}


/*
 * div_var_fast() -
 *
 *	This has the same API as div_var, but is implemented using the division
 *	algorithm from the "FM" library, rather than Knuth's schoolbook-division
 *	approach.  This is significantly faster but can produce inaccurate
 *	results, because it sometimes has to propagate rounding to the left,
 *	and so we can never be entirely sure that we know the requested digits
 *	exactly.  We compute DIV_GUARD_DIGITS extra digits, but there is
 *	no certainty that that's enough.  We use this only in the transcendental
 *	function calculation routines, where everything is approximate anyway.
 *
 *	Although we provide a "round" argument for consistency with div_var,
 *	it is unwise to use this function with round=false.  In truncation mode
 *	it is possible to get a result with no significant digits, for example
 *	with rscale=0 we might compute 0.99999... and truncate that to 0 when
 *	the correct answer is 1.
 */
static void
div_var_fast(const NumericVar *var1, const NumericVar *var2,
			 NumericVar *result, int rscale, bool round)
{
	int			div_ndigits;
	int			load_ndigits;
	int			res_sign;
	int			res_weight;
	int		   *div;
	int			qdigit;
	int			carry;
	int			maxdiv;
	int			newdig;
	NumericDigit *res_digits;
	double		fdividend,
				fdivisor,
				fdivisorinverse,
				fquotient;
	int			qi;
	int			i;

	/* copy these values into local vars for speed in inner loop */
	int			var1ndigits = var1->ndigits;
	int			var2ndigits = var2->ndigits;
	NumericDigit *var1digits = var1->digits;
	NumericDigit *var2digits = var2->digits;

	/*
	 * First of all division by zero check; we must not be handed an
	 * unnormalized divisor.
	 */
	if (var2ndigits == 0 || var2digits[0] == 0)
		ereport(ERROR,
				(errcode(ERRCODE_DIVISION_BY_ZERO),
				 errmsg("division by zero")));

	/*
	 * Now result zero check
	 */
	if (var1ndigits == 0)
	{
		zero_var(result);
		result->dscale = rscale;
		return;
	}

	/*
	 * Determine the result sign, weight and number of digits to calculate
	 */
	if (var1->sign == var2->sign)
		res_sign = NUMERIC_POS;
	else
		res_sign = NUMERIC_NEG;
	res_weight = var1->weight - var2->weight + 1;
	/* The number of accurate result digits we need to produce: */
	div_ndigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS;
	/* Add guard digits for roundoff error */
	div_ndigits += DIV_GUARD_DIGITS;
	if (div_ndigits < DIV_GUARD_DIGITS)
		div_ndigits = DIV_GUARD_DIGITS;

	/*
	 * We do the arithmetic in an array "div[]" of signed int's.  Since
	 * INT_MAX is noticeably larger than NBASE*NBASE, this gives us headroom
	 * to avoid normalizing carries immediately.
	 *
	 * We start with div[] containing one zero digit followed by the
	 * dividend's digits (plus appended zeroes to reach the desired precision
	 * including guard digits).  Each step of the main loop computes an
	 * (approximate) quotient digit and stores it into div[], removing one
	 * position of dividend space.  A final pass of carry propagation takes
	 * care of any mistaken quotient digits.
	 *
	 * Note that div[] doesn't necessarily contain all of the digits from the
	 * dividend --- the desired precision plus guard digits might be less than
	 * the dividend's precision.  This happens, for example, in the square
	 * root algorithm, where we typically divide a 2N-digit number by an
	 * N-digit number, and only require a result with N digits of precision.
	 */
	div = (int *) palloc0((div_ndigits + 1) * sizeof(int));
	load_ndigits = Min(div_ndigits, var1ndigits);
	for (i = 0; i < load_ndigits; i++)
		div[i + 1] = var1digits[i];

	/*
	 * We estimate each quotient digit using floating-point arithmetic, taking
	 * the first four digits of the (current) dividend and divisor.  This must
	 * be float to avoid overflow.  The quotient digits will generally be off
	 * by no more than one from the exact answer.
	 */
	fdivisor = (double) var2digits[0];
	for (i = 1; i < 4; i++)
	{
		fdivisor *= NBASE;
		if (i < var2ndigits)
			fdivisor += (double) var2digits[i];
	}
	fdivisorinverse = 1.0 / fdivisor;

	/*
	 * maxdiv tracks the maximum possible absolute value of any div[] entry;
	 * when this threatens to exceed INT_MAX, we take the time to propagate
	 * carries.  Furthermore, we need to ensure that overflow doesn't occur
	 * during the carry propagation passes either.  The carry values may have
	 * an absolute value as high as INT_MAX/NBASE + 1, so really we must
	 * normalize when digits threaten to exceed INT_MAX - INT_MAX/NBASE - 1.
	 *
	 * To avoid overflow in maxdiv itself, it represents the max absolute
	 * value divided by NBASE-1, ie, at the top of the loop it is known that
	 * no div[] entry has an absolute value exceeding maxdiv * (NBASE-1).
	 *
	 * Actually, though, that holds good only for div[] entries after div[qi];
	 * the adjustment done at the bottom of the loop may cause div[qi + 1] to
	 * exceed the maxdiv limit, so that div[qi] in the next iteration is
	 * beyond the limit.  This does not cause problems, as explained below.
	 */
	maxdiv = 1;

	/*
	 * Outer loop computes next quotient digit, which will go into div[qi]
	 */
	for (qi = 0; qi < div_ndigits; qi++)
	{
		/* Approximate the current dividend value */
		fdividend = (double) div[qi];
		for (i = 1; i < 4; i++)
		{
			fdividend *= NBASE;
			if (qi + i <= div_ndigits)
				fdividend += (double) div[qi + i];
		}
		/* Compute the (approximate) quotient digit */
		fquotient = fdividend * fdivisorinverse;
		qdigit = (fquotient >= 0.0) ? ((int) fquotient) :
			(((int) fquotient) - 1);	/* truncate towards -infinity */

		if (qdigit != 0)
		{
			/* Do we need to normalize now? */
			maxdiv += Abs(qdigit);
			if (maxdiv > (INT_MAX - INT_MAX / NBASE - 1) / (NBASE - 1))
			{
				/*
				 * Yes, do it.  Note that if var2ndigits is much smaller than
				 * div_ndigits, we can save a significant amount of effort
				 * here by noting that we only need to normalise those div[]
				 * entries touched where prior iterations subtracted multiples
				 * of the divisor.
				 */
				carry = 0;
				for (i = Min(qi + var2ndigits - 2, div_ndigits); i > qi; i--)
				{
					newdig = div[i] + carry;
					if (newdig < 0)
					{
						carry = -((-newdig - 1) / NBASE) - 1;
						newdig -= carry * NBASE;
					}
					else if (newdig >= NBASE)
					{
						carry = newdig / NBASE;
						newdig -= carry * NBASE;
					}
					else
						carry = 0;
					div[i] = newdig;
				}
				newdig = div[qi] + carry;
				div[qi] = newdig;

				/*
				 * All the div[] digits except possibly div[qi] are now in the
				 * range 0..NBASE-1.  We do not need to consider div[qi] in
				 * the maxdiv value anymore, so we can reset maxdiv to 1.
				 */
				maxdiv = 1;

				/*
				 * Recompute the quotient digit since new info may have
				 * propagated into the top four dividend digits
				 */
				fdividend = (double) div[qi];
				for (i = 1; i < 4; i++)
				{
					fdividend *= NBASE;
					if (qi + i <= div_ndigits)
						fdividend += (double) div[qi + i];
				}
				/* Compute the (approximate) quotient digit */
				fquotient = fdividend * fdivisorinverse;
				qdigit = (fquotient >= 0.0) ? ((int) fquotient) :
					(((int) fquotient) - 1);	/* truncate towards -infinity */
				maxdiv += Abs(qdigit);
			}

			/*
			 * Subtract off the appropriate multiple of the divisor.
			 *
			 * The digits beyond div[qi] cannot overflow, because we know they
			 * will fall within the maxdiv limit.  As for div[qi] itself, note
			 * that qdigit is approximately trunc(div[qi] / vardigits[0]),
			 * which would make the new value simply div[qi] mod vardigits[0].
			 * The lower-order terms in qdigit can change this result by not
			 * more than about twice INT_MAX/NBASE, so overflow is impossible.
			 */
			if (qdigit != 0)
			{
				int			istop = Min(var2ndigits, div_ndigits - qi + 1);

				for (i = 0; i < istop; i++)
					div[qi + i] -= qdigit * var2digits[i];
			}
		}

		/*
		 * The dividend digit we are about to replace might still be nonzero.
		 * Fold it into the next digit position.
		 *
		 * There is no risk of overflow here, although proving that requires
		 * some care.  Much as with the argument for div[qi] not overflowing,
		 * if we consider the first two terms in the numerator and denominator
		 * of qdigit, we can see that the final value of div[qi + 1] will be
		 * approximately a remainder mod (vardigits[0]*NBASE + vardigits[1]).
		 * Accounting for the lower-order terms is a bit complicated but ends
		 * up adding not much more than INT_MAX/NBASE to the possible range.
		 * Thus, div[qi + 1] cannot overflow here, and in its role as div[qi]
		 * in the next loop iteration, it can't be large enough to cause
		 * overflow in the carry propagation step (if any), either.
		 *
		 * But having said that: div[qi] can be more than INT_MAX/NBASE, as
		 * noted above, which means that the product div[qi] * NBASE *can*
		 * overflow.  When that happens, adding it to div[qi + 1] will always
		 * cause a canceling overflow so that the end result is correct.  We
		 * could avoid the intermediate overflow by doing the multiplication
		 * and addition in int64 arithmetic, but so far there appears no need.
		 */
		div[qi + 1] += div[qi] * NBASE;

		div[qi] = qdigit;
	}

	/*
	 * Approximate and store the last quotient digit (div[div_ndigits])
	 */
	fdividend = (double) div[qi];
	for (i = 1; i < 4; i++)
		fdividend *= NBASE;
	fquotient = fdividend * fdivisorinverse;
	qdigit = (fquotient >= 0.0) ? ((int) fquotient) :
		(((int) fquotient) - 1);	/* truncate towards -infinity */
	div[qi] = qdigit;

	/*
	 * Because the quotient digits might be off by one, some of them might be
	 * -1 or NBASE at this point.  The represented value is correct in a
	 * mathematical sense, but it doesn't look right.  We do a final carry
	 * propagation pass to normalize the digits, which we combine with storing
	 * the result digits into the output.  Note that this is still done at
	 * full precision w/guard digits.
	 */
	alloc_var(result, div_ndigits + 1);
	res_digits = result->digits;
	carry = 0;
	for (i = div_ndigits; i >= 0; i--)
	{
		newdig = div[i] + carry;
		if (newdig < 0)
		{
			carry = -((-newdig - 1) / NBASE) - 1;
			newdig -= carry * NBASE;
		}
		else if (newdig >= NBASE)
		{
			carry = newdig / NBASE;
			newdig -= carry * NBASE;
		}
		else
			carry = 0;
		res_digits[i] = newdig;
	}
	Assert(carry == 0);

	pfree(div);

	/*
	 * Finally, round the result to the requested precision.
	 */
	result->weight = res_weight;
	result->sign = res_sign;

	/* Round to target rscale (and set result->dscale) */
	if (round)
		round_var(result, rscale);
	else
		trunc_var(result, rscale);

	/* Strip leading and trailing zeroes */
	strip_var(result);
}


/*
 * Default scale selection for division
 *
 * Returns the appropriate result scale for the division result.
 */
static int
select_div_scale(const NumericVar *var1, const NumericVar *var2)
{
	int			weight1,
				weight2,
				qweight,
				i;
	NumericDigit firstdigit1,
				firstdigit2;
	int			rscale;

	/*
	 * The result scale of a division isn't specified in any SQL standard. For
	 * PostgreSQL we select a result scale that will give at least
	 * NUMERIC_MIN_SIG_DIGITS significant digits, so that numeric gives a
	 * result no less accurate than float8; but use a scale not less than
	 * either input's display scale.
	 */

	/* Get the actual (normalized) weight and first digit of each input */

	weight1 = 0;				/* values to use if var1 is zero */
	firstdigit1 = 0;
	for (i = 0; i < var1->ndigits; i++)
	{
		firstdigit1 = var1->digits[i];
		if (firstdigit1 != 0)
		{
			weight1 = var1->weight - i;
			break;
		}
	}

	weight2 = 0;				/* values to use if var2 is zero */
	firstdigit2 = 0;
	for (i = 0; i < var2->ndigits; i++)
	{
		firstdigit2 = var2->digits[i];
		if (firstdigit2 != 0)
		{
			weight2 = var2->weight - i;
			break;
		}
	}

	/*
	 * Estimate weight of quotient.  If the two first digits are equal, we
	 * can't be sure, but assume that var1 is less than var2.
	 */
	qweight = weight1 - weight2;
	if (firstdigit1 <= firstdigit2)
		qweight--;

	/* Select result scale */
	rscale = NUMERIC_MIN_SIG_DIGITS - qweight * DEC_DIGITS;
	rscale = Max(rscale, var1->dscale);
	rscale = Max(rscale, var2->dscale);
	rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
	rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);

	return rscale;
}


/*
 * mod_var() -
 *
 *	Calculate the modulo of two numerics at variable level
 */
static void
mod_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result)
{
	NumericVar	tmp;

	init_var(&tmp);

	/* ---------
	 * We do this using the equation
	 *		mod(x,y) = x - trunc(x/y)*y
	 * div_var can be persuaded to give us trunc(x/y) directly.
	 * ----------
	 */
	div_var(var1, var2, &tmp, 0, false);

	mul_var(var2, &tmp, &tmp, var2->dscale);

	sub_var(var1, &tmp, result);

	free_var(&tmp);
}


/*
 * div_mod_var() -
 *
 *	Calculate the truncated integer quotient and numeric remainder of two
 *	numeric variables.  The remainder is precise to var2's dscale.
 */
static void
div_mod_var(const NumericVar *var1, const NumericVar *var2,
			NumericVar *quot, NumericVar *rem)
{
	NumericVar	q;
	NumericVar	r;

	init_var(&q);
	init_var(&r);

	/*
	 * Use div_var_fast() to get an initial estimate for the integer quotient.
	 * This might be inaccurate (per the warning in div_var_fast's comments),
	 * but we can correct it below.
	 */
	div_var_fast(var1, var2, &q, 0, false);

	/* Compute initial estimate of remainder using the quotient estimate. */
	mul_var(var2, &q, &r, var2->dscale);
	sub_var(var1, &r, &r);

	/*
	 * Adjust the results if necessary --- the remainder should have the same
	 * sign as var1, and its absolute value should be less than the absolute
	 * value of var2.
	 */
	while (r.ndigits != 0 && r.sign != var1->sign)
	{
		/* The absolute value of the quotient is too large */
		if (var1->sign == var2->sign)
		{
			sub_var(&q, &const_one, &q);
			add_var(&r, var2, &r);
		}
		else
		{
			add_var(&q, &const_one, &q);
			sub_var(&r, var2, &r);
		}
	}

	while (cmp_abs(&r, var2) >= 0)
	{
		/* The absolute value of the quotient is too small */
		if (var1->sign == var2->sign)
		{
			add_var(&q, &const_one, &q);
			sub_var(&r, var2, &r);
		}
		else
		{
			sub_var(&q, &const_one, &q);
			add_var(&r, var2, &r);
		}
	}

	set_var_from_var(&q, quot);
	set_var_from_var(&r, rem);

	free_var(&q);
	free_var(&r);
}


/*
 * ceil_var() -
 *
 *	Return the smallest integer greater than or equal to the argument
 *	on variable level
 */
static void
ceil_var(const NumericVar *var, NumericVar *result)
{
	NumericVar	tmp;

	init_var(&tmp);
	set_var_from_var(var, &tmp);

	trunc_var(&tmp, 0);

	if (var->sign == NUMERIC_POS && cmp_var(var, &tmp) != 0)
		add_var(&tmp, &const_one, &tmp);

	set_var_from_var(&tmp, result);
	free_var(&tmp);
}


/*
 * floor_var() -
 *
 *	Return the largest integer equal to or less than the argument
 *	on variable level
 */
static void
floor_var(const NumericVar *var, NumericVar *result)
{
	NumericVar	tmp;

	init_var(&tmp);
	set_var_from_var(var, &tmp);

	trunc_var(&tmp, 0);

	if (var->sign == NUMERIC_NEG && cmp_var(var, &tmp) != 0)
		sub_var(&tmp, &const_one, &tmp);

	set_var_from_var(&tmp, result);
	free_var(&tmp);
}


/*
 * gcd_var() -
 *
 *	Calculate the greatest common divisor of two numerics at variable level
 */
static void
gcd_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result)
{
	int			res_dscale;
	int			cmp;
	NumericVar	tmp_arg;
	NumericVar	mod;

	res_dscale = Max(var1->dscale, var2->dscale);

	/*
	 * Arrange for var1 to be the number with the greater absolute value.
	 *
	 * This would happen automatically in the loop below, but avoids an
	 * expensive modulo operation.
	 */
	cmp = cmp_abs(var1, var2);
	if (cmp < 0)
	{
		const NumericVar *tmp = var1;

		var1 = var2;
		var2 = tmp;
	}

	/*
	 * Also avoid the taking the modulo if the inputs have the same absolute
	 * value, or if the smaller input is zero.
	 */
	if (cmp == 0 || var2->ndigits == 0)
	{
		set_var_from_var(var1, result);
		result->sign = NUMERIC_POS;
		result->dscale = res_dscale;
		return;
	}

	init_var(&tmp_arg);
	init_var(&mod);

	/* Use the Euclidean algorithm to find the GCD */
	set_var_from_var(var1, &tmp_arg);
	set_var_from_var(var2, result);

	for (;;)
	{
		/* this loop can take a while, so allow it to be interrupted */
		CHECK_FOR_INTERRUPTS();

		mod_var(&tmp_arg, result, &mod);
		if (mod.ndigits == 0)
			break;
		set_var_from_var(result, &tmp_arg);
		set_var_from_var(&mod, result);
	}
	result->sign = NUMERIC_POS;
	result->dscale = res_dscale;

	free_var(&tmp_arg);
	free_var(&mod);
}


/*
 * sqrt_var() -
 *
 *	Compute the square root of x using the Karatsuba Square Root algorithm.
 *	NOTE: we allow rscale < 0 here, implying rounding before the decimal
 *	point.
 */
static void
sqrt_var(const NumericVar *arg, NumericVar *result, int rscale)
{
	int			stat;
	int			res_weight;
	int			res_ndigits;
	int			src_ndigits;
	int			step;
	int			ndigits[32];
	int			blen;
	int64		arg_int64;
	int			src_idx;
	int64		s_int64;
	int64		r_int64;
	NumericVar	s_var;
	NumericVar	r_var;
	NumericVar	a0_var;
	NumericVar	a1_var;
	NumericVar	q_var;
	NumericVar	u_var;

	stat = cmp_var(arg, &const_zero);
	if (stat == 0)
	{
		zero_var(result);
		result->dscale = rscale;
		return;
	}

	/*
	 * SQL2003 defines sqrt() in terms of power, so we need to emit the right
	 * SQLSTATE error code if the operand is negative.
	 */
	if (stat < 0)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
				 errmsg("cannot take square root of a negative number")));

	init_var(&s_var);
	init_var(&r_var);
	init_var(&a0_var);
	init_var(&a1_var);
	init_var(&q_var);
	init_var(&u_var);

	/*
	 * The result weight is half the input weight, rounded towards minus
	 * infinity --- res_weight = floor(arg->weight / 2).
	 */
	if (arg->weight >= 0)
		res_weight = arg->weight / 2;
	else
		res_weight = -((-arg->weight - 1) / 2 + 1);

	/*
	 * Number of NBASE digits to compute.  To ensure correct rounding, compute
	 * at least 1 extra decimal digit.  We explicitly allow rscale to be
	 * negative here, but must always compute at least 1 NBASE digit.  Thus
	 * res_ndigits = res_weight + 1 + ceil((rscale + 1) / DEC_DIGITS) or 1.
	 */
	if (rscale + 1 >= 0)
		res_ndigits = res_weight + 1 + (rscale + DEC_DIGITS) / DEC_DIGITS;
	else
		res_ndigits = res_weight + 1 - (-rscale - 1) / DEC_DIGITS;
	res_ndigits = Max(res_ndigits, 1);

	/*
	 * Number of source NBASE digits logically required to produce a result
	 * with this precision --- every digit before the decimal point, plus 2
	 * for each result digit after the decimal point (or minus 2 for each
	 * result digit we round before the decimal point).
	 */
	src_ndigits = arg->weight + 1 + (res_ndigits - res_weight - 1) * 2;
	src_ndigits = Max(src_ndigits, 1);

	/* ----------
	 * From this point on, we treat the input and the result as integers and
	 * compute the integer square root and remainder using the Karatsuba
	 * Square Root algorithm, which may be written recursively as follows:
	 *
	 *	SqrtRem(n = a3*b^3 + a2*b^2 + a1*b + a0):
	 *		[ for some base b, and coefficients a0,a1,a2,a3 chosen so that
	 *		  0 <= a0,a1,a2 < b and a3 >= b/4 ]
	 *		Let (s,r) = SqrtRem(a3*b + a2)
	 *		Let (q,u) = DivRem(r*b + a1, 2*s)
	 *		Let s = s*b + q
	 *		Let r = u*b + a0 - q^2
	 *		If r < 0 Then
	 *			Let r = r + s
	 *			Let s = s - 1
	 *			Let r = r + s
	 *		Return (s,r)
	 *
	 * See "Karatsuba Square Root", Paul Zimmermann, INRIA Research Report
	 * RR-3805, November 1999.  At the time of writing this was available
	 * on the net at <https://hal.inria.fr/inria-00072854>.
	 *
	 * The way to read the assumption "n = a3*b^3 + a2*b^2 + a1*b + a0" is
	 * "choose a base b such that n requires at least four base-b digits to
	 * express; then those digits are a3,a2,a1,a0, with a3 possibly larger
	 * than b".  For optimal performance, b should have approximately a
	 * quarter the number of digits in the input, so that the outer square
	 * root computes roughly twice as many digits as the inner one.  For
	 * simplicity, we choose b = NBASE^blen, an integer power of NBASE.
	 *
	 * We implement the algorithm iteratively rather than recursively, to
	 * allow the working variables to be reused.  With this approach, each
	 * digit of the input is read precisely once --- src_idx tracks the number
	 * of input digits used so far.
	 *
	 * The array ndigits[] holds the number of NBASE digits of the input that
	 * will have been used at the end of each iteration, which roughly doubles
	 * each time.  Note that the array elements are stored in reverse order,
	 * so if the final iteration requires src_ndigits = 37 input digits, the
	 * array will contain [37,19,11,7,5,3], and we would start by computing
	 * the square root of the 3 most significant NBASE digits.
	 *
	 * In each iteration, we choose blen to be the largest integer for which
	 * the input number has a3 >= b/4, when written in the form above.  In
	 * general, this means blen = src_ndigits / 4 (truncated), but if
	 * src_ndigits is a multiple of 4, that might lead to the coefficient a3
	 * being less than b/4 (if the first input digit is less than NBASE/4), in
	 * which case we choose blen = src_ndigits / 4 - 1.  The number of digits
	 * in the inner square root is then src_ndigits - 2*blen.  So, for
	 * example, if we have src_ndigits = 26 initially, the array ndigits[]
	 * will be either [26,14,8,4] or [26,14,8,6,4], depending on the size of
	 * the first input digit.
	 *
	 * Additionally, we can put an upper bound on the number of steps required
	 * as follows --- suppose that the number of source digits is an n-bit
	 * number in the range [2^(n-1), 2^n-1], then blen will be in the range
	 * [2^(n-3)-1, 2^(n-2)-1] and the number of digits in the inner square
	 * root will be in the range [2^(n-2), 2^(n-1)+1].  In the next step, blen
	 * will be in the range [2^(n-4)-1, 2^(n-3)] and the number of digits in
	 * the next inner square root will be in the range [2^(n-3), 2^(n-2)+1].
	 * This pattern repeats, and in the worst case the array ndigits[] will
	 * contain [2^n-1, 2^(n-1)+1, 2^(n-2)+1, ... 9, 5, 3], and the computation
	 * will require n steps.  Therefore, since all digit array sizes are
	 * signed 32-bit integers, the number of steps required is guaranteed to
	 * be less than 32.
	 * ----------
	 */
	step = 0;
	while ((ndigits[step] = src_ndigits) > 4)
	{
		/* Choose b so that a3 >= b/4, as described above */
		blen = src_ndigits / 4;
		if (blen * 4 == src_ndigits && arg->digits[0] < NBASE / 4)
			blen--;

		/* Number of digits in the next step (inner square root) */
		src_ndigits -= 2 * blen;
		step++;
	}

	/*
	 * First iteration (innermost square root and remainder):
	 *
	 * Here src_ndigits <= 4, and the input fits in an int64.  Its square root
	 * has at most 9 decimal digits, so estimate it using double precision
	 * arithmetic, which will in fact almost certainly return the correct
	 * result with no further correction required.
	 */
	arg_int64 = arg->digits[0];
	for (src_idx = 1; src_idx < src_ndigits; src_idx++)
	{
		arg_int64 *= NBASE;
		if (src_idx < arg->ndigits)
			arg_int64 += arg->digits[src_idx];
	}

	s_int64 = (int64) sqrt((double) arg_int64);
	r_int64 = arg_int64 - s_int64 * s_int64;

	/*
	 * Use Newton's method to correct the result, if necessary.
	 *
	 * This uses integer division with truncation to compute the truncated
	 * integer square root by iterating using the formula x -> (x + n/x) / 2.
	 * This is known to converge to isqrt(n), unless n+1 is a perfect square.
	 * If n+1 is a perfect square, the sequence will oscillate between the two
	 * values isqrt(n) and isqrt(n)+1, so we can be assured of convergence by
	 * checking the remainder.
	 */
	while (r_int64 < 0 || r_int64 > 2 * s_int64)
	{
		s_int64 = (s_int64 + arg_int64 / s_int64) / 2;
		r_int64 = arg_int64 - s_int64 * s_int64;
	}

	/*
	 * Iterations with src_ndigits <= 8:
	 *
	 * The next 1 or 2 iterations compute larger (outer) square roots with
	 * src_ndigits <= 8, so the result still fits in an int64 (even though the
	 * input no longer does) and we can continue to compute using int64
	 * variables to avoid more expensive numeric computations.
	 *
	 * It is fairly easy to see that there is no risk of the intermediate
	 * values below overflowing 64-bit integers.  In the worst case, the
	 * previous iteration will have computed a 3-digit square root (of a
	 * 6-digit input less than NBASE^6 / 4), so at the start of this
	 * iteration, s will be less than NBASE^3 / 2 = 10^12 / 2, and r will be
	 * less than 10^12.  In this case, blen will be 1, so numer will be less
	 * than 10^17, and denom will be less than 10^12 (and hence u will also be
	 * less than 10^12).  Finally, since q^2 = u*b + a0 - r, we can also be
	 * sure that q^2 < 10^17.  Therefore all these quantities fit comfortably
	 * in 64-bit integers.
	 */
	step--;
	while (step >= 0 && (src_ndigits = ndigits[step]) <= 8)
	{
		int			b;
		int			a0;
		int			a1;
		int			i;
		int64		numer;
		int64		denom;
		int64		q;
		int64		u;

		blen = (src_ndigits - src_idx) / 2;

		/* Extract a1 and a0, and compute b */
		a0 = 0;
		a1 = 0;
		b = 1;

		for (i = 0; i < blen; i++, src_idx++)
		{
			b *= NBASE;
			a1 *= NBASE;
			if (src_idx < arg->ndigits)
				a1 += arg->digits[src_idx];
		}

		for (i = 0; i < blen; i++, src_idx++)
		{
			a0 *= NBASE;
			if (src_idx < arg->ndigits)
				a0 += arg->digits[src_idx];
		}

		/* Compute (q,u) = DivRem(r*b + a1, 2*s) */
		numer = r_int64 * b + a1;
		denom = 2 * s_int64;
		q = numer / denom;
		u = numer - q * denom;

		/* Compute s = s*b + q and r = u*b + a0 - q^2 */
		s_int64 = s_int64 * b + q;
		r_int64 = u * b + a0 - q * q;

		if (r_int64 < 0)
		{
			/* s is too large by 1; set r += s, s--, r += s */
			r_int64 += s_int64;
			s_int64--;
			r_int64 += s_int64;
		}

		Assert(src_idx == src_ndigits); /* All input digits consumed */
		step--;
	}

	/*
	 * On platforms with 128-bit integer support, we can further delay the
	 * need to use numeric variables.
	 */
#ifdef HAVE_INT128
	if (step >= 0)
	{
		int128		s_int128;
		int128		r_int128;

		s_int128 = s_int64;
		r_int128 = r_int64;

		/*
		 * Iterations with src_ndigits <= 16:
		 *
		 * The result fits in an int128 (even though the input doesn't) so we
		 * use int128 variables to avoid more expensive numeric computations.
		 */
		while (step >= 0 && (src_ndigits = ndigits[step]) <= 16)
		{
			int64		b;
			int64		a0;
			int64		a1;
			int64		i;
			int128		numer;
			int128		denom;
			int128		q;
			int128		u;

			blen = (src_ndigits - src_idx) / 2;

			/* Extract a1 and a0, and compute b */
			a0 = 0;
			a1 = 0;
			b = 1;

			for (i = 0; i < blen; i++, src_idx++)
			{
				b *= NBASE;
				a1 *= NBASE;
				if (src_idx < arg->ndigits)
					a1 += arg->digits[src_idx];
			}

			for (i = 0; i < blen; i++, src_idx++)
			{
				a0 *= NBASE;
				if (src_idx < arg->ndigits)
					a0 += arg->digits[src_idx];
			}

			/* Compute (q,u) = DivRem(r*b + a1, 2*s) */
			numer = r_int128 * b + a1;
			denom = 2 * s_int128;
			q = numer / denom;
			u = numer - q * denom;

			/* Compute s = s*b + q and r = u*b + a0 - q^2 */
			s_int128 = s_int128 * b + q;
			r_int128 = u * b + a0 - q * q;

			if (r_int128 < 0)
			{
				/* s is too large by 1; set r += s, s--, r += s */
				r_int128 += s_int128;
				s_int128--;
				r_int128 += s_int128;
			}

			Assert(src_idx == src_ndigits); /* All input digits consumed */
			step--;
		}

		/*
		 * All remaining iterations require numeric variables.  Convert the
		 * integer values to NumericVar and continue.  Note that in the final
		 * iteration we don't need the remainder, so we can save a few cycles
		 * there by not fully computing it.
		 */
		int128_to_numericvar(s_int128, &s_var);
		if (step >= 0)
			int128_to_numericvar(r_int128, &r_var);
	}
	else
	{
		int64_to_numericvar(s_int64, &s_var);
		/* step < 0, so we certainly don't need r */
	}
#else							/* !HAVE_INT128 */
	int64_to_numericvar(s_int64, &s_var);
	if (step >= 0)
		int64_to_numericvar(r_int64, &r_var);
#endif							/* HAVE_INT128 */

	/*
	 * The remaining iterations with src_ndigits > 8 (or 16, if have int128)
	 * use numeric variables.
	 */
	while (step >= 0)
	{
		int			tmp_len;

		src_ndigits = ndigits[step];
		blen = (src_ndigits - src_idx) / 2;

		/* Extract a1 and a0 */
		if (src_idx < arg->ndigits)
		{
			tmp_len = Min(blen, arg->ndigits - src_idx);
			alloc_var(&a1_var, tmp_len);
			memcpy(a1_var.digits, arg->digits + src_idx,
				   tmp_len * sizeof(NumericDigit));
			a1_var.weight = blen - 1;
			a1_var.sign = NUMERIC_POS;
			a1_var.dscale = 0;
			strip_var(&a1_var);
		}
		else
		{
			zero_var(&a1_var);
			a1_var.dscale = 0;
		}
		src_idx += blen;

		if (src_idx < arg->ndigits)
		{
			tmp_len = Min(blen, arg->ndigits - src_idx);
			alloc_var(&a0_var, tmp_len);
			memcpy(a0_var.digits, arg->digits + src_idx,
				   tmp_len * sizeof(NumericDigit));
			a0_var.weight = blen - 1;
			a0_var.sign = NUMERIC_POS;
			a0_var.dscale = 0;
			strip_var(&a0_var);
		}
		else
		{
			zero_var(&a0_var);
			a0_var.dscale = 0;
		}
		src_idx += blen;

		/* Compute (q,u) = DivRem(r*b + a1, 2*s) */
		set_var_from_var(&r_var, &q_var);
		q_var.weight += blen;
		add_var(&q_var, &a1_var, &q_var);
		add_var(&s_var, &s_var, &u_var);
		div_mod_var(&q_var, &u_var, &q_var, &u_var);

		/* Compute s = s*b + q */
		s_var.weight += blen;
		add_var(&s_var, &q_var, &s_var);

		/*
		 * Compute r = u*b + a0 - q^2.
		 *
		 * In the final iteration, we don't actually need r; we just need to
		 * know whether it is negative, so that we know whether to adjust s.
		 * So instead of the final subtraction we can just compare.
		 */
		u_var.weight += blen;
		add_var(&u_var, &a0_var, &u_var);
		mul_var(&q_var, &q_var, &q_var, 0);

		if (step > 0)
		{
			/* Need r for later iterations */
			sub_var(&u_var, &q_var, &r_var);
			if (r_var.sign == NUMERIC_NEG)
			{
				/* s is too large by 1; set r += s, s--, r += s */
				add_var(&r_var, &s_var, &r_var);
				sub_var(&s_var, &const_one, &s_var);
				add_var(&r_var, &s_var, &r_var);
			}
		}
		else
		{
			/* Don't need r anymore, except to test if s is too large by 1 */
			if (cmp_var(&u_var, &q_var) < 0)
				sub_var(&s_var, &const_one, &s_var);
		}

		Assert(src_idx == src_ndigits); /* All input digits consumed */
		step--;
	}

	/*
	 * Construct the final result, rounding it to the requested precision.
	 */
	set_var_from_var(&s_var, result);
	result->weight = res_weight;
	result->sign = NUMERIC_POS;

	/* Round to target rscale (and set result->dscale) */
	round_var(result, rscale);

	/* Strip leading and trailing zeroes */
	strip_var(result);

	free_var(&s_var);
	free_var(&r_var);
	free_var(&a0_var);
	free_var(&a1_var);
	free_var(&q_var);
	free_var(&u_var);
}


/*
 * exp_var() -
 *
 *	Raise e to the power of x, computed to rscale fractional digits
 */
static void
exp_var(const NumericVar *arg, NumericVar *result, int rscale)
{
	NumericVar	x;
	NumericVar	elem;
	NumericVar	ni;
	double		val;
	int			dweight;
	int			ndiv2;
	int			sig_digits;
	int			local_rscale;

	init_var(&x);
	init_var(&elem);
	init_var(&ni);

	set_var_from_var(arg, &x);

	/*
	 * Estimate the dweight of the result using floating point arithmetic, so
	 * that we can choose an appropriate local rscale for the calculation.
	 */
	val = numericvar_to_double_no_overflow(&x);

	/* Guard against overflow/underflow */
	/* If you change this limit, see also power_var()'s limit */
	if (Abs(val) >= NUMERIC_MAX_RESULT_SCALE * 3)
	{
		if (val > 0)
			ereport(ERROR,
					(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
					 errmsg("value overflows numeric format")));
		zero_var(result);
		result->dscale = rscale;
		return;
	}

	/* decimal weight = log10(e^x) = x * log10(e) */
	dweight = (int) (val * 0.434294481903252);

	/*
	 * Reduce x to the range -0.01 <= x <= 0.01 (approximately) by dividing by
	 * 2^n, to improve the convergence rate of the Taylor series.
	 */
	if (Abs(val) > 0.01)
	{
		NumericVar	tmp;

		init_var(&tmp);
		set_var_from_var(&const_two, &tmp);

		ndiv2 = 1;
		val /= 2;

		while (Abs(val) > 0.01)
		{
			ndiv2++;
			val /= 2;
			add_var(&tmp, &tmp, &tmp);
		}

		local_rscale = x.dscale + ndiv2;
		div_var_fast(&x, &tmp, &x, local_rscale, true);

		free_var(&tmp);
	}
	else
		ndiv2 = 0;

	/*
	 * Set the scale for the Taylor series expansion.  The final result has
	 * (dweight + rscale + 1) significant digits.  In addition, we have to
	 * raise the Taylor series result to the power 2^ndiv2, which introduces
	 * an error of up to around log10(2^ndiv2) digits, so work with this many
	 * extra digits of precision (plus a few more for good measure).
	 */
	sig_digits = 1 + dweight + rscale + (int) (ndiv2 * 0.301029995663981);
	sig_digits = Max(sig_digits, 0) + 8;

	local_rscale = sig_digits - 1;

	/*
	 * Use the Taylor series
	 *
	 * exp(x) = 1 + x + x^2/2! + x^3/3! + ...
	 *
	 * Given the limited range of x, this should converge reasonably quickly.
	 * We run the series until the terms fall below the local_rscale limit.
	 */
	add_var(&const_one, &x, result);

	mul_var(&x, &x, &elem, local_rscale);
	set_var_from_var(&const_two, &ni);
	div_var_fast(&elem, &ni, &elem, local_rscale, true);

	while (elem.ndigits != 0)
	{
		add_var(result, &elem, result);

		mul_var(&elem, &x, &elem, local_rscale);
		add_var(&ni, &const_one, &ni);
		div_var_fast(&elem, &ni, &elem, local_rscale, true);
	}

	/*
	 * Compensate for the argument range reduction.  Since the weight of the
	 * result doubles with each multiplication, we can reduce the local rscale
	 * as we proceed.
	 */
	while (ndiv2-- > 0)
	{
		local_rscale = sig_digits - result->weight * 2 * DEC_DIGITS;
		local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE);
		mul_var(result, result, result, local_rscale);
	}

	/* Round to requested rscale */
	round_var(result, rscale);

	free_var(&x);
	free_var(&elem);
	free_var(&ni);
}


/*
 * Estimate the dweight of the most significant decimal digit of the natural
 * logarithm of a number.
 *
 * Essentially, we're approximating log10(abs(ln(var))).  This is used to
 * determine the appropriate rscale when computing natural logarithms.
 *
 * Note: many callers call this before range-checking the input.  Therefore,
 * we must be robust against values that are invalid to apply ln() to.
 * We don't wish to throw an error here, so just return zero in such cases.
 */
static int
estimate_ln_dweight(const NumericVar *var)
{
	int			ln_dweight;

	/* Caller should fail on ln(negative), but for the moment return zero */
	if (var->sign != NUMERIC_POS)
		return 0;

	if (cmp_var(var, &const_zero_point_nine) >= 0 &&
		cmp_var(var, &const_one_point_one) <= 0)
	{
		/*
		 * 0.9 <= var <= 1.1
		 *
		 * ln(var) has a negative weight (possibly very large).  To get a
		 * reasonably accurate result, estimate it using ln(1+x) ~= x.
		 */
		NumericVar	x;

		init_var(&x);
		sub_var(var, &const_one, &x);

		if (x.ndigits > 0)
		{
			/* Use weight of most significant decimal digit of x */
			ln_dweight = x.weight * DEC_DIGITS + (int) log10(x.digits[0]);
		}
		else
		{
			/* x = 0.  Since ln(1) = 0 exactly, we don't need extra digits */
			ln_dweight = 0;
		}

		free_var(&x);
	}
	else
	{
		/*
		 * Estimate the logarithm using the first couple of digits from the
		 * input number.  This will give an accurate result whenever the input
		 * is not too close to 1.
		 */
		if (var->ndigits > 0)
		{
			int			digits;
			int			dweight;
			double		ln_var;

			digits = var->digits[0];
			dweight = var->weight * DEC_DIGITS;

			if (var->ndigits > 1)
			{
				digits = digits * NBASE + var->digits[1];
				dweight -= DEC_DIGITS;
			}

			/*----------
			 * We have var ~= digits * 10^dweight
			 * so ln(var) ~= ln(digits) + dweight * ln(10)
			 *----------
			 */
			ln_var = log((double) digits) + dweight * 2.302585092994046;
			ln_dweight = (int) log10(Abs(ln_var));
		}
		else
		{
			/* Caller should fail on ln(0), but for the moment return zero */
			ln_dweight = 0;
		}
	}

	return ln_dweight;
}


/*
 * ln_var() -
 *
 *	Compute the natural log of x
 */
static void
ln_var(const NumericVar *arg, NumericVar *result, int rscale)
{
	NumericVar	x;
	NumericVar	xx;
	NumericVar	ni;
	NumericVar	elem;
	NumericVar	fact;
	int			nsqrt;
	int			local_rscale;
	int			cmp;

	cmp = cmp_var(arg, &const_zero);
	if (cmp == 0)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
				 errmsg("cannot take logarithm of zero")));
	else if (cmp < 0)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
				 errmsg("cannot take logarithm of a negative number")));

	init_var(&x);
	init_var(&xx);
	init_var(&ni);
	init_var(&elem);
	init_var(&fact);

	set_var_from_var(arg, &x);
	set_var_from_var(&const_two, &fact);

	/*
	 * Reduce input into range 0.9 < x < 1.1 with repeated sqrt() operations.
	 *
	 * The final logarithm will have up to around rscale+6 significant digits.
	 * Each sqrt() will roughly halve the weight of x, so adjust the local
	 * rscale as we work so that we keep this many significant digits at each
	 * step (plus a few more for good measure).
	 *
	 * Note that we allow local_rscale < 0 during this input reduction
	 * process, which implies rounding before the decimal point.  sqrt_var()
	 * explicitly supports this, and it significantly reduces the work
	 * required to reduce very large inputs to the required range.  Once the
	 * input reduction is complete, x.weight will be 0 and its display scale
	 * will be non-negative again.
	 */
	nsqrt = 0;
	while (cmp_var(&x, &const_zero_point_nine) <= 0)
	{
		local_rscale = rscale - x.weight * DEC_DIGITS / 2 + 8;
		sqrt_var(&x, &x, local_rscale);
		mul_var(&fact, &const_two, &fact, 0);
		nsqrt++;
	}
	while (cmp_var(&x, &const_one_point_one) >= 0)
	{
		local_rscale = rscale - x.weight * DEC_DIGITS / 2 + 8;
		sqrt_var(&x, &x, local_rscale);
		mul_var(&fact, &const_two, &fact, 0);
		nsqrt++;
	}

	/*
	 * We use the Taylor series for 0.5 * ln((1+z)/(1-z)),
	 *
	 * z + z^3/3 + z^5/5 + ...
	 *
	 * where z = (x-1)/(x+1) is in the range (approximately) -0.053 .. 0.048
	 * due to the above range-reduction of x.
	 *
	 * The convergence of this is not as fast as one would like, but is
	 * tolerable given that z is small.
	 *
	 * The Taylor series result will be multiplied by 2^(nsqrt+1), which has a
	 * decimal weight of (nsqrt+1) * log10(2), so work with this many extra
	 * digits of precision (plus a few more for good measure).
	 */
	local_rscale = rscale + (int) ((nsqrt + 1) * 0.301029995663981) + 8;

	sub_var(&x, &const_one, result);
	add_var(&x, &const_one, &elem);
	div_var_fast(result, &elem, result, local_rscale, true);
	set_var_from_var(result, &xx);
	mul_var(result, result, &x, local_rscale);

	set_var_from_var(&const_one, &ni);

	for (;;)
	{
		add_var(&ni, &const_two, &ni);
		mul_var(&xx, &x, &xx, local_rscale);
		div_var_fast(&xx, &ni, &elem, local_rscale, true);

		if (elem.ndigits == 0)
			break;

		add_var(result, &elem, result);

		if (elem.weight < (result->weight - local_rscale * 2 / DEC_DIGITS))
			break;
	}

	/* Compensate for argument range reduction, round to requested rscale */
	mul_var(result, &fact, result, rscale);

	free_var(&x);
	free_var(&xx);
	free_var(&ni);
	free_var(&elem);
	free_var(&fact);
}


/*
 * log_var() -
 *
 *	Compute the logarithm of num in a given base.
 *
 *	Note: this routine chooses dscale of the result.
 */
static void
log_var(const NumericVar *base, const NumericVar *num, NumericVar *result)
{
	NumericVar	ln_base;
	NumericVar	ln_num;
	int			ln_base_dweight;
	int			ln_num_dweight;
	int			result_dweight;
	int			rscale;
	int			ln_base_rscale;
	int			ln_num_rscale;

	init_var(&ln_base);
	init_var(&ln_num);

	/* Estimated dweights of ln(base), ln(num) and the final result */
	ln_base_dweight = estimate_ln_dweight(base);
	ln_num_dweight = estimate_ln_dweight(num);
	result_dweight = ln_num_dweight - ln_base_dweight;

	/*
	 * Select the scale of the result so that it will have at least
	 * NUMERIC_MIN_SIG_DIGITS significant digits and is not less than either
	 * input's display scale.
	 */
	rscale = NUMERIC_MIN_SIG_DIGITS - result_dweight;
	rscale = Max(rscale, base->dscale);
	rscale = Max(rscale, num->dscale);
	rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
	rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);

	/*
	 * Set the scales for ln(base) and ln(num) so that they each have more
	 * significant digits than the final result.
	 */
	ln_base_rscale = rscale + result_dweight - ln_base_dweight + 8;
	ln_base_rscale = Max(ln_base_rscale, NUMERIC_MIN_DISPLAY_SCALE);

	ln_num_rscale = rscale + result_dweight - ln_num_dweight + 8;
	ln_num_rscale = Max(ln_num_rscale, NUMERIC_MIN_DISPLAY_SCALE);

	/* Form natural logarithms */
	ln_var(base, &ln_base, ln_base_rscale);
	ln_var(num, &ln_num, ln_num_rscale);

	/* Divide and round to the required scale */
	div_var_fast(&ln_num, &ln_base, result, rscale, true);

	free_var(&ln_num);
	free_var(&ln_base);
}


/*
 * power_var() -
 *
 *	Raise base to the power of exp
 *
 *	Note: this routine chooses dscale of the result.
 */
static void
power_var(const NumericVar *base, const NumericVar *exp, NumericVar *result)
{
	int			res_sign;
	NumericVar	abs_base;
	NumericVar	ln_base;
	NumericVar	ln_num;
	int			ln_dweight;
	int			rscale;
	int			sig_digits;
	int			local_rscale;
	double		val;

	/* If exp can be represented as an integer, use power_var_int */
	if (exp->ndigits == 0 || exp->ndigits <= exp->weight + 1)
	{
		/* exact integer, but does it fit in int? */
		int64		expval64;

		if (numericvar_to_int64(exp, &expval64))
		{
			if (expval64 >= PG_INT32_MIN && expval64 <= PG_INT32_MAX)
			{
				/* Okay, select rscale */
				rscale = NUMERIC_MIN_SIG_DIGITS;
				rscale = Max(rscale, base->dscale);
				rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
				rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);

				power_var_int(base, (int) expval64, result, rscale);
				return;
			}
		}
	}

	/*
	 * This avoids log(0) for cases of 0 raised to a non-integer.  0 ^ 0 is
	 * handled by power_var_int().
	 */
	if (cmp_var(base, &const_zero) == 0)
	{
		set_var_from_var(&const_zero, result);
		result->dscale = NUMERIC_MIN_SIG_DIGITS;	/* no need to round */
		return;
	}

	init_var(&abs_base);
	init_var(&ln_base);
	init_var(&ln_num);

	/*
	 * If base is negative, insist that exp be an integer.  The result is then
	 * positive if exp is even and negative if exp is odd.
	 */
	if (base->sign == NUMERIC_NEG)
	{
		/*
		 * Check that exp is an integer.  This error code is defined by the
		 * SQL standard, and matches other errors in numeric_power().
		 */
		if (exp->ndigits > 0 && exp->ndigits > exp->weight + 1)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
					 errmsg("a negative number raised to a non-integer power yields a complex result")));

		/* Test if exp is odd or even */
		if (exp->ndigits > 0 && exp->ndigits == exp->weight + 1 &&
			(exp->digits[exp->ndigits - 1] & 1))
			res_sign = NUMERIC_NEG;
		else
			res_sign = NUMERIC_POS;

		/* Then work with abs(base) below */
		set_var_from_var(base, &abs_base);
		abs_base.sign = NUMERIC_POS;
		base = &abs_base;
	}
	else
		res_sign = NUMERIC_POS;

	/*----------
	 * Decide on the scale for the ln() calculation.  For this we need an
	 * estimate of the weight of the result, which we obtain by doing an
	 * initial low-precision calculation of exp * ln(base).
	 *
	 * We want result = e ^ (exp * ln(base))
	 * so result dweight = log10(result) = exp * ln(base) * log10(e)
	 *
	 * We also perform a crude overflow test here so that we can exit early if
	 * the full-precision result is sure to overflow, and to guard against
	 * integer overflow when determining the scale for the real calculation.
	 * exp_var() supports inputs up to NUMERIC_MAX_RESULT_SCALE * 3, so the
	 * result will overflow if exp * ln(base) >= NUMERIC_MAX_RESULT_SCALE * 3.
	 * Since the values here are only approximations, we apply a small fuzz
	 * factor to this overflow test and let exp_var() determine the exact
	 * overflow threshold so that it is consistent for all inputs.
	 *----------
	 */
	ln_dweight = estimate_ln_dweight(base);

	/*
	 * Set the scale for the low-precision calculation, computing ln(base) to
	 * around 8 significant digits.  Note that ln_dweight may be as small as
	 * -SHRT_MAX, so the scale may exceed NUMERIC_MAX_DISPLAY_SCALE here.
	 */
	local_rscale = 8 - ln_dweight;
	local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE);

	ln_var(base, &ln_base, local_rscale);

	mul_var(&ln_base, exp, &ln_num, local_rscale);

	val = numericvar_to_double_no_overflow(&ln_num);

	/* initial overflow/underflow test with fuzz factor */
	if (Abs(val) > NUMERIC_MAX_RESULT_SCALE * 3.01)
	{
		if (val > 0)
			ereport(ERROR,
					(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
					 errmsg("value overflows numeric format")));
		zero_var(result);
		result->dscale = NUMERIC_MAX_DISPLAY_SCALE;
		return;
	}

	val *= 0.434294481903252;	/* approximate decimal result weight */

	/* choose the result scale */
	rscale = NUMERIC_MIN_SIG_DIGITS - (int) val;
	rscale = Max(rscale, base->dscale);
	rscale = Max(rscale, exp->dscale);
	rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
	rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);

	/* significant digits required in the result */
	sig_digits = rscale + (int) val;
	sig_digits = Max(sig_digits, 0);

	/* set the scale for the real exp * ln(base) calculation */
	local_rscale = sig_digits - ln_dweight + 8;
	local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE);

	/* and do the real calculation */

	ln_var(base, &ln_base, local_rscale);

	mul_var(&ln_base, exp, &ln_num, local_rscale);

	exp_var(&ln_num, result, rscale);

	if (res_sign == NUMERIC_NEG && result->ndigits > 0)
		result->sign = NUMERIC_NEG;

	free_var(&ln_num);
	free_var(&ln_base);
	free_var(&abs_base);
}

/*
 * power_var_int() -
 *
 *	Raise base to the power of exp, where exp is an integer.
 */
static void
power_var_int(const NumericVar *base, int exp, NumericVar *result, int rscale)
{
	double		f;
	int			p;
	int			i;
	int			sig_digits;
	unsigned int mask;
	bool		neg;
	NumericVar	base_prod;
	int			local_rscale;

	/* Handle some common special cases, as well as corner cases */
	switch (exp)
	{
		case 0:

			/*
			 * While 0 ^ 0 can be either 1 or indeterminate (error), we treat
			 * it as 1 because most programming languages do this. SQL:2003
			 * also requires a return value of 1.
			 * https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_zero_power
			 */
			set_var_from_var(&const_one, result);
			result->dscale = rscale;	/* no need to round */
			return;
		case 1:
			set_var_from_var(base, result);
			round_var(result, rscale);
			return;
		case -1:
			div_var(&const_one, base, result, rscale, true);
			return;
		case 2:
			mul_var(base, base, result, rscale);
			return;
		default:
			break;
	}

	/* Handle the special case where the base is zero */
	if (base->ndigits == 0)
	{
		if (exp < 0)
			ereport(ERROR,
					(errcode(ERRCODE_DIVISION_BY_ZERO),
					 errmsg("division by zero")));
		zero_var(result);
		result->dscale = rscale;
		return;
	}

	/*
	 * The general case repeatedly multiplies base according to the bit
	 * pattern of exp.
	 *
	 * First we need to estimate the weight of the result so that we know how
	 * many significant digits are needed.
	 */
	f = base->digits[0];
	p = base->weight * DEC_DIGITS;

	for (i = 1; i < base->ndigits && i * DEC_DIGITS < 16; i++)
	{
		f = f * NBASE + base->digits[i];
		p -= DEC_DIGITS;
	}

	/*----------
	 * We have base ~= f * 10^p
	 * so log10(result) = log10(base^exp) ~= exp * (log10(f) + p)
	 *----------
	 */
	f = exp * (log10(f) + p);

	/*
	 * Apply crude overflow/underflow tests so we can exit early if the result
	 * certainly will overflow/underflow.
	 */
	if (f > 3 * SHRT_MAX * DEC_DIGITS)
		ereport(ERROR,
				(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
				 errmsg("value overflows numeric format")));
	if (f + 1 < -rscale || f + 1 < -NUMERIC_MAX_DISPLAY_SCALE)
	{
		zero_var(result);
		result->dscale = rscale;
		return;
	}

	/*
	 * Approximate number of significant digits in the result.  Note that the
	 * underflow test above means that this is necessarily >= 0.
	 */
	sig_digits = 1 + rscale + (int) f;

	/*
	 * The multiplications to produce the result may introduce an error of up
	 * to around log10(abs(exp)) digits, so work with this many extra digits
	 * of precision (plus a few more for good measure).
	 */
	sig_digits += (int) log(fabs((double) exp)) + 8;

	/*
	 * Now we can proceed with the multiplications.
	 */
	neg = (exp < 0);
	mask = Abs(exp);

	init_var(&base_prod);
	set_var_from_var(base, &base_prod);

	if (mask & 1)
		set_var_from_var(base, result);
	else
		set_var_from_var(&const_one, result);

	while ((mask >>= 1) > 0)
	{
		/*
		 * Do the multiplications using rscales large enough to hold the
		 * results to the required number of significant digits, but don't
		 * waste time by exceeding the scales of the numbers themselves.
		 */
		local_rscale = sig_digits - 2 * base_prod.weight * DEC_DIGITS;
		local_rscale = Min(local_rscale, 2 * base_prod.dscale);
		local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE);

		mul_var(&base_prod, &base_prod, &base_prod, local_rscale);

		if (mask & 1)
		{
			local_rscale = sig_digits -
				(base_prod.weight + result->weight) * DEC_DIGITS;
			local_rscale = Min(local_rscale,
							   base_prod.dscale + result->dscale);
			local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE);

			mul_var(&base_prod, result, result, local_rscale);
		}

		/*
		 * When abs(base) > 1, the number of digits to the left of the decimal
		 * point in base_prod doubles at each iteration, so if exp is large we
		 * could easily spend large amounts of time and memory space doing the
		 * multiplications.  But once the weight exceeds what will fit in
		 * int16, the final result is guaranteed to overflow (or underflow, if
		 * exp < 0), so we can give up before wasting too many cycles.
		 */
		if (base_prod.weight > SHRT_MAX || result->weight > SHRT_MAX)
		{
			/* overflow, unless neg, in which case result should be 0 */
			if (!neg)
				ereport(ERROR,
						(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
						 errmsg("value overflows numeric format")));
			zero_var(result);
			neg = false;
			break;
		}
	}

	free_var(&base_prod);

	/* Compensate for input sign, and round to requested rscale */
	if (neg)
		div_var_fast(&const_one, result, result, rscale, true);
	else
		round_var(result, rscale);
}

/*
 * power_ten_int() -
 *
 *	Raise ten to the power of exp, where exp is an integer.  Note that unlike
 *	power_var_int(), this does no overflow/underflow checking or rounding.
 */
static void
power_ten_int(int exp, NumericVar *result)
{
	/* Construct the result directly, starting from 10^0 = 1 */
	set_var_from_var(&const_one, result);

	/* Scale needed to represent the result exactly */
	result->dscale = exp < 0 ? -exp : 0;

	/* Base-NBASE weight of result and remaining exponent */
	if (exp >= 0)
		result->weight = exp / DEC_DIGITS;
	else
		result->weight = (exp + 1) / DEC_DIGITS - 1;

	exp -= result->weight * DEC_DIGITS;

	/* Final adjustment of the result's single NBASE digit */
	while (exp-- > 0)
		result->digits[0] *= 10;
}


/* ----------------------------------------------------------------------
 *
 * Following are the lowest level functions that operate unsigned
 * on the variable level
 *
 * ----------------------------------------------------------------------
 */


/* ----------
 * cmp_abs() -
 *
 *	Compare the absolute values of var1 and var2
 *	Returns:	-1 for ABS(var1) < ABS(var2)
 *				0  for ABS(var1) == ABS(var2)
 *				1  for ABS(var1) > ABS(var2)
 * ----------
 */
static int
cmp_abs(const NumericVar *var1, const NumericVar *var2)
{
	return cmp_abs_common(var1->digits, var1->ndigits, var1->weight,
						  var2->digits, var2->ndigits, var2->weight);
}

/* ----------
 * cmp_abs_common() -
 *
 *	Main routine of cmp_abs(). This function can be used by both
 *	NumericVar and Numeric.
 * ----------
 */
static int
cmp_abs_common(const NumericDigit *var1digits, int var1ndigits, int var1weight,
			   const NumericDigit *var2digits, int var2ndigits, int var2weight)
{
	int			i1 = 0;
	int			i2 = 0;

	/* Check any digits before the first common digit */

	while (var1weight > var2weight && i1 < var1ndigits)
	{
		if (var1digits[i1++] != 0)
			return 1;
		var1weight--;
	}
	while (var2weight > var1weight && i2 < var2ndigits)
	{
		if (var2digits[i2++] != 0)
			return -1;
		var2weight--;
	}

	/* At this point, either w1 == w2 or we've run out of digits */

	if (var1weight == var2weight)
	{
		while (i1 < var1ndigits && i2 < var2ndigits)
		{
			int			stat = var1digits[i1++] - var2digits[i2++];

			if (stat)
			{
				if (stat > 0)
					return 1;
				return -1;
			}
		}
	}

	/*
	 * At this point, we've run out of digits on one side or the other; so any
	 * remaining nonzero digits imply that side is larger
	 */
	while (i1 < var1ndigits)
	{
		if (var1digits[i1++] != 0)
			return 1;
	}
	while (i2 < var2ndigits)
	{
		if (var2digits[i2++] != 0)
			return -1;
	}

	return 0;
}


/*
 * add_abs() -
 *
 *	Add the absolute values of two variables into result.
 *	result might point to one of the operands without danger.
 */
static void
add_abs(const NumericVar *var1, const NumericVar *var2, NumericVar *result)
{
	NumericDigit *res_buf;
	NumericDigit *res_digits;
	int			res_ndigits;
	int			res_weight;
	int			res_rscale,
				rscale1,
				rscale2;
	int			res_dscale;
	int			i,
				i1,
				i2;
	int			carry = 0;

	/* copy these values into local vars for speed in inner loop */
	int			var1ndigits = var1->ndigits;
	int			var2ndigits = var2->ndigits;
	NumericDigit *var1digits = var1->digits;
	NumericDigit *var2digits = var2->digits;

	res_weight = Max(var1->weight, var2->weight) + 1;

	res_dscale = Max(var1->dscale, var2->dscale);

	/* Note: here we are figuring rscale in base-NBASE digits */
	rscale1 = var1->ndigits - var1->weight - 1;
	rscale2 = var2->ndigits - var2->weight - 1;
	res_rscale = Max(rscale1, rscale2);

	res_ndigits = res_rscale + res_weight + 1;
	if (res_ndigits <= 0)
		res_ndigits = 1;

	res_buf = digitbuf_alloc(res_ndigits + 1);
	res_buf[0] = 0;				/* spare digit for later rounding */
	res_digits = res_buf + 1;

	i1 = res_rscale + var1->weight + 1;
	i2 = res_rscale + var2->weight + 1;
	for (i = res_ndigits - 1; i >= 0; i--)
	{
		i1--;
		i2--;
		if (i1 >= 0 && i1 < var1ndigits)
			carry += var1digits[i1];
		if (i2 >= 0 && i2 < var2ndigits)
			carry += var2digits[i2];

		if (carry >= NBASE)
		{
			res_digits[i] = carry - NBASE;
			carry = 1;
		}
		else
		{
			res_digits[i] = carry;
			carry = 0;
		}
	}

	Assert(carry == 0);			/* else we failed to allow for carry out */

	digitbuf_free(result->buf);
	result->ndigits = res_ndigits;
	result->buf = res_buf;
	result->digits = res_digits;
	result->weight = res_weight;
	result->dscale = res_dscale;

	/* Remove leading/trailing zeroes */
	strip_var(result);
}


/*
 * sub_abs()
 *
 *	Subtract the absolute value of var2 from the absolute value of var1
 *	and store in result. result might point to one of the operands
 *	without danger.
 *
 *	ABS(var1) MUST BE GREATER OR EQUAL ABS(var2) !!!
 */
static void
sub_abs(const NumericVar *var1, const NumericVar *var2, NumericVar *result)
{
	NumericDigit *res_buf;
	NumericDigit *res_digits;
	int			res_ndigits;
	int			res_weight;
	int			res_rscale,
				rscale1,
				rscale2;
	int			res_dscale;
	int			i,
				i1,
				i2;
	int			borrow = 0;

	/* copy these values into local vars for speed in inner loop */
	int			var1ndigits = var1->ndigits;
	int			var2ndigits = var2->ndigits;
	NumericDigit *var1digits = var1->digits;
	NumericDigit *var2digits = var2->digits;

	res_weight = var1->weight;

	res_dscale = Max(var1->dscale, var2->dscale);

	/* Note: here we are figuring rscale in base-NBASE digits */
	rscale1 = var1->ndigits - var1->weight - 1;
	rscale2 = var2->ndigits - var2->weight - 1;
	res_rscale = Max(rscale1, rscale2);

	res_ndigits = res_rscale + res_weight + 1;
	if (res_ndigits <= 0)
		res_ndigits = 1;

	res_buf = digitbuf_alloc(res_ndigits + 1);
	res_buf[0] = 0;				/* spare digit for later rounding */
	res_digits = res_buf + 1;

	i1 = res_rscale + var1->weight + 1;
	i2 = res_rscale + var2->weight + 1;
	for (i = res_ndigits - 1; i >= 0; i--)
	{
		i1--;
		i2--;
		if (i1 >= 0 && i1 < var1ndigits)
			borrow += var1digits[i1];
		if (i2 >= 0 && i2 < var2ndigits)
			borrow -= var2digits[i2];

		if (borrow < 0)
		{
			res_digits[i] = borrow + NBASE;
			borrow = -1;
		}
		else
		{
			res_digits[i] = borrow;
			borrow = 0;
		}
	}

	Assert(borrow == 0);		/* else caller gave us var1 < var2 */

	digitbuf_free(result->buf);
	result->ndigits = res_ndigits;
	result->buf = res_buf;
	result->digits = res_digits;
	result->weight = res_weight;
	result->dscale = res_dscale;

	/* Remove leading/trailing zeroes */
	strip_var(result);
}

/*
 * round_var
 *
 * Round the value of a variable to no more than rscale decimal digits
 * after the decimal point.  NOTE: we allow rscale < 0 here, implying
 * rounding before the decimal point.
 */
static void
round_var(NumericVar *var, int rscale)
{
	NumericDigit *digits = var->digits;
	int			di;
	int			ndigits;
	int			carry;

	var->dscale = rscale;

	/* decimal digits wanted */
	di = (var->weight + 1) * DEC_DIGITS + rscale;

	/*
	 * If di = 0, the value loses all digits, but could round up to 1 if its
	 * first extra digit is >= 5.  If di < 0 the result must be 0.
	 */
	if (di < 0)
	{
		var->ndigits = 0;
		var->weight = 0;
		var->sign = NUMERIC_POS;
	}
	else
	{
		/* NBASE digits wanted */
		ndigits = (di + DEC_DIGITS - 1) / DEC_DIGITS;

		/* 0, or number of decimal digits to keep in last NBASE digit */
		di %= DEC_DIGITS;

		if (ndigits < var->ndigits ||
			(ndigits == var->ndigits && di > 0))
		{
			var->ndigits = ndigits;

#if DEC_DIGITS == 1
			/* di must be zero */
			carry = (digits[ndigits] >= HALF_NBASE) ? 1 : 0;
#else
			if (di == 0)
				carry = (digits[ndigits] >= HALF_NBASE) ? 1 : 0;
			else
			{
				/* Must round within last NBASE digit */
				int			extra,
							pow10;

#if DEC_DIGITS == 4
				pow10 = round_powers[di];
#elif DEC_DIGITS == 2
				pow10 = 10;
#else
#error unsupported NBASE
#endif
				extra = digits[--ndigits] % pow10;
				digits[ndigits] -= extra;
				carry = 0;
				if (extra >= pow10 / 2)
				{
					pow10 += digits[ndigits];
					if (pow10 >= NBASE)
					{
						pow10 -= NBASE;
						carry = 1;
					}
					digits[ndigits] = pow10;
				}
			}
#endif

			/* Propagate carry if needed */
			while (carry)
			{
				carry += digits[--ndigits];
				if (carry >= NBASE)
				{
					digits[ndigits] = carry - NBASE;
					carry = 1;
				}
				else
				{
					digits[ndigits] = carry;
					carry = 0;
				}
			}

			if (ndigits < 0)
			{
				Assert(ndigits == -1);	/* better not have added > 1 digit */
				Assert(var->digits > var->buf);
				var->digits--;
				var->ndigits++;
				var->weight++;
			}
		}
	}
}

/*
 * trunc_var
 *
 * Truncate (towards zero) the value of a variable at rscale decimal digits
 * after the decimal point.  NOTE: we allow rscale < 0 here, implying
 * truncation before the decimal point.
 */
static void
trunc_var(NumericVar *var, int rscale)
{
	int			di;
	int			ndigits;

	var->dscale = rscale;

	/* decimal digits wanted */
	di = (var->weight + 1) * DEC_DIGITS + rscale;

	/*
	 * If di <= 0, the value loses all digits.
	 */
	if (di <= 0)
	{
		var->ndigits = 0;
		var->weight = 0;
		var->sign = NUMERIC_POS;
	}
	else
	{
		/* NBASE digits wanted */
		ndigits = (di + DEC_DIGITS - 1) / DEC_DIGITS;

		if (ndigits <= var->ndigits)
		{
			var->ndigits = ndigits;

#if DEC_DIGITS == 1
			/* no within-digit stuff to worry about */
#else
			/* 0, or number of decimal digits to keep in last NBASE digit */
			di %= DEC_DIGITS;

			if (di > 0)
			{
				/* Must truncate within last NBASE digit */
				NumericDigit *digits = var->digits;
				int			extra,
							pow10;

#if DEC_DIGITS == 4
				pow10 = round_powers[di];
#elif DEC_DIGITS == 2
				pow10 = 10;
#else
#error unsupported NBASE
#endif
				extra = digits[--ndigits] % pow10;
				digits[ndigits] -= extra;
			}
#endif
		}
	}
}

/*
 * strip_var
 *
 * Strip any leading and trailing zeroes from a numeric variable
 */
static void
strip_var(NumericVar *var)
{
	NumericDigit *digits = var->digits;
	int			ndigits = var->ndigits;

	/* Strip leading zeroes */
	while (ndigits > 0 && *digits == 0)
	{
		digits++;
		var->weight--;
		ndigits--;
	}

	/* Strip trailing zeroes */
	while (ndigits > 0 && digits[ndigits - 1] == 0)
		ndigits--;

	/* If it's zero, normalize the sign and weight */
	if (ndigits == 0)
	{
		var->sign = NUMERIC_POS;
		var->weight = 0;
	}

	var->digits = digits;
	var->ndigits = ndigits;
}


/* ----------------------------------------------------------------------
 *
 * Fast sum accumulator functions
 *
 * ----------------------------------------------------------------------
 */

/*
 * Reset the accumulator's value to zero.  The buffers to hold the digits
 * are not free'd.
 */
static void
accum_sum_reset(NumericSumAccum *accum)
{
	int			i;

	accum->dscale = 0;
	for (i = 0; i < accum->ndigits; i++)
	{
		accum->pos_digits[i] = 0;
		accum->neg_digits[i] = 0;
	}
}

/*
 * Accumulate a new value.
 */
static void
accum_sum_add(NumericSumAccum *accum, const NumericVar *val)
{
	int32	   *accum_digits;
	int			i,
				val_i;
	int			val_ndigits;
	NumericDigit *val_digits;

	/*
	 * If we have accumulated too many values since the last carry
	 * propagation, do it now, to avoid overflowing.  (We could allow more
	 * than NBASE - 1, if we reserved two extra digits, rather than one, for
	 * carry propagation.  But even with NBASE - 1, this needs to be done so
	 * seldom, that the performance difference is negligible.)
	 */
	if (accum->num_uncarried == NBASE - 1)
		accum_sum_carry(accum);

	/*
	 * Adjust the weight or scale of the old value, so that it can accommodate
	 * the new value.
	 */
	accum_sum_rescale(accum, val);

	/* */
	if (val->sign == NUMERIC_POS)
		accum_digits = accum->pos_digits;
	else
		accum_digits = accum->neg_digits;

	/* copy these values into local vars for speed in loop */
	val_ndigits = val->ndigits;
	val_digits = val->digits;

	i = accum->weight - val->weight;
	for (val_i = 0; val_i < val_ndigits; val_i++)
	{
		accum_digits[i] += (int32) val_digits[val_i];
		i++;
	}

	accum->num_uncarried++;
}

/*
 * Propagate carries.
 */
static void
accum_sum_carry(NumericSumAccum *accum)
{
	int			i;
	int			ndigits;
	int32	   *dig;
	int32		carry;
	int32		newdig = 0;

	/*
	 * If no new values have been added since last carry propagation, nothing
	 * to do.
	 */
	if (accum->num_uncarried == 0)
		return;

	/*
	 * We maintain that the weight of the accumulator is always one larger
	 * than needed to hold the current value, before carrying, to make sure
	 * there is enough space for the possible extra digit when carry is
	 * propagated.  We cannot expand the buffer here, unless we require
	 * callers of accum_sum_final() to switch to the right memory context.
	 */
	Assert(accum->pos_digits[0] == 0 && accum->neg_digits[0] == 0);

	ndigits = accum->ndigits;

	/* Propagate carry in the positive sum */
	dig = accum->pos_digits;
	carry = 0;
	for (i = ndigits - 1; i >= 0; i--)
	{
		newdig = dig[i] + carry;
		if (newdig >= NBASE)
		{
			carry = newdig / NBASE;
			newdig -= carry * NBASE;
		}
		else
			carry = 0;
		dig[i] = newdig;
	}
	/* Did we use up the digit reserved for carry propagation? */
	if (newdig > 0)
		accum->have_carry_space = false;

	/* And the same for the negative sum */
	dig = accum->neg_digits;
	carry = 0;
	for (i = ndigits - 1; i >= 0; i--)
	{
		newdig = dig[i] + carry;
		if (newdig >= NBASE)
		{
			carry = newdig / NBASE;
			newdig -= carry * NBASE;
		}
		else
			carry = 0;
		dig[i] = newdig;
	}
	if (newdig > 0)
		accum->have_carry_space = false;

	accum->num_uncarried = 0;
}

/*
 * Re-scale accumulator to accommodate new value.
 *
 * If the new value has more digits than the current digit buffers in the
 * accumulator, enlarge the buffers.
 */
static void
accum_sum_rescale(NumericSumAccum *accum, const NumericVar *val)
{
	int			old_weight = accum->weight;
	int			old_ndigits = accum->ndigits;
	int			accum_ndigits;
	int			accum_weight;
	int			accum_rscale;
	int			val_rscale;

	accum_weight = old_weight;
	accum_ndigits = old_ndigits;

	/*
	 * Does the new value have a larger weight? If so, enlarge the buffers,
	 * and shift the existing value to the new weight, by adding leading
	 * zeros.
	 *
	 * We enforce that the accumulator always has a weight one larger than
	 * needed for the inputs, so that we have space for an extra digit at the
	 * final carry-propagation phase, if necessary.
	 */
	if (val->weight >= accum_weight)
	{
		accum_weight = val->weight + 1;
		accum_ndigits = accum_ndigits + (accum_weight - old_weight);
	}

	/*
	 * Even though the new value is small, we might've used up the space
	 * reserved for the carry digit in the last call to accum_sum_carry().  If
	 * so, enlarge to make room for another one.
	 */
	else if (!accum->have_carry_space)
	{
		accum_weight++;
		accum_ndigits++;
	}

	/* Is the new value wider on the right side? */
	accum_rscale = accum_ndigits - accum_weight - 1;
	val_rscale = val->ndigits - val->weight - 1;
	if (val_rscale > accum_rscale)
		accum_ndigits = accum_ndigits + (val_rscale - accum_rscale);

	if (accum_ndigits != old_ndigits ||
		accum_weight != old_weight)
	{
		int32	   *new_pos_digits;
		int32	   *new_neg_digits;
		int			weightdiff;

		weightdiff = accum_weight - old_weight;

		new_pos_digits = palloc0(accum_ndigits * sizeof(int32));
		new_neg_digits = palloc0(accum_ndigits * sizeof(int32));

		if (accum->pos_digits)
		{
			memcpy(&new_pos_digits[weightdiff], accum->pos_digits,
				   old_ndigits * sizeof(int32));
			pfree(accum->pos_digits);

			memcpy(&new_neg_digits[weightdiff], accum->neg_digits,
				   old_ndigits * sizeof(int32));
			pfree(accum->neg_digits);
		}

		accum->pos_digits = new_pos_digits;
		accum->neg_digits = new_neg_digits;

		accum->weight = accum_weight;
		accum->ndigits = accum_ndigits;

		Assert(accum->pos_digits[0] == 0 && accum->neg_digits[0] == 0);
		accum->have_carry_space = true;
	}

	if (val->dscale > accum->dscale)
		accum->dscale = val->dscale;
}

/*
 * Return the current value of the accumulator.  This perform final carry
 * propagation, and adds together the positive and negative sums.
 *
 * Unlike all the other routines, the caller is not required to switch to
 * the memory context that holds the accumulator.
 */
static void
accum_sum_final(NumericSumAccum *accum, NumericVar *result)
{
	int			i;
	NumericVar	pos_var;
	NumericVar	neg_var;

	if (accum->ndigits == 0)
	{
		set_var_from_var(&const_zero, result);
		return;
	}

	/* Perform final carry */
	accum_sum_carry(accum);

	/* Create NumericVars representing the positive and negative sums */
	init_var(&pos_var);
	init_var(&neg_var);

	pos_var.ndigits = neg_var.ndigits = accum->ndigits;
	pos_var.weight = neg_var.weight = accum->weight;
	pos_var.dscale = neg_var.dscale = accum->dscale;
	pos_var.sign = NUMERIC_POS;
	neg_var.sign = NUMERIC_NEG;

	pos_var.buf = pos_var.digits = digitbuf_alloc(accum->ndigits);
	neg_var.buf = neg_var.digits = digitbuf_alloc(accum->ndigits);

	for (i = 0; i < accum->ndigits; i++)
	{
		Assert(accum->pos_digits[i] < NBASE);
		pos_var.digits[i] = (int16) accum->pos_digits[i];

		Assert(accum->neg_digits[i] < NBASE);
		neg_var.digits[i] = (int16) accum->neg_digits[i];
	}

	/* And add them together */
	add_var(&pos_var, &neg_var, result);

	/* Remove leading/trailing zeroes */
	strip_var(result);
}

/*
 * Copy an accumulator's state.
 *
 * 'dst' is assumed to be uninitialized beforehand.  No attempt is made at
 * freeing old values.
 */
static void
accum_sum_copy(NumericSumAccum *dst, NumericSumAccum *src)
{
	dst->pos_digits = palloc(src->ndigits * sizeof(int32));
	dst->neg_digits = palloc(src->ndigits * sizeof(int32));

	memcpy(dst->pos_digits, src->pos_digits, src->ndigits * sizeof(int32));
	memcpy(dst->neg_digits, src->neg_digits, src->ndigits * sizeof(int32));
	dst->num_uncarried = src->num_uncarried;
	dst->ndigits = src->ndigits;
	dst->weight = src->weight;
	dst->dscale = src->dscale;
}

/*
 * Add the current value of 'accum2' into 'accum'.
 */
static void
accum_sum_combine(NumericSumAccum *accum, NumericSumAccum *accum2)
{
	NumericVar	tmp_var;

	init_var(&tmp_var);

	accum_sum_final(accum2, &tmp_var);
	accum_sum_add(accum, &tmp_var);

	free_var(&tmp_var);
}