summaryrefslogtreecommitdiffstats
path: root/src/backend/access/brin/brin_minmax_multi.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/access/brin/brin_minmax_multi.c')
-rw-r--r--src/backend/access/brin/brin_minmax_multi.c3145
1 files changed, 3145 insertions, 0 deletions
diff --git a/src/backend/access/brin/brin_minmax_multi.c b/src/backend/access/brin/brin_minmax_multi.c
new file mode 100644
index 0000000..9e29a08
--- /dev/null
+++ b/src/backend/access/brin/brin_minmax_multi.c
@@ -0,0 +1,3145 @@
+/*
+ * brin_minmax_multi.c
+ * Implementation of Multi Min/Max opclass for BRIN
+ *
+ * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * Implements a variant of minmax opclass, where the summary is composed of
+ * multiple smaller intervals. This allows us to handle outliers, which
+ * usually make the simple minmax opclass inefficient.
+ *
+ * Consider for example page range with simple minmax interval [1000,2000],
+ * and assume a new row gets inserted into the range with value 1000000.
+ * Due to that the interval gets [1000,1000000]. I.e. the minmax interval
+ * got 1000x wider and won't be useful to eliminate scan keys between 2001
+ * and 1000000.
+ *
+ * With minmax-multi opclass, we may have [1000,2000] interval initially,
+ * but after adding the new row we start tracking it as two interval:
+ *
+ * [1000,2000] and [1000000,1000000]
+ *
+ * This allows us to still eliminate the page range when the scan keys hit
+ * the gap between 2000 and 1000000, making it useful in cases when the
+ * simple minmax opclass gets inefficient.
+ *
+ * The number of intervals tracked per page range is somewhat flexible.
+ * What is restricted is the number of values per page range, and the limit
+ * is currently 32 (see values_per_range reloption). Collapsed intervals
+ * (with equal minimum and maximum value) are stored as a single value,
+ * while regular intervals require two values.
+ *
+ * When the number of values gets too high (by adding new values to the
+ * summary), we merge some of the intervals to free space for more values.
+ * This is done in a greedy way - we simply pick the two closest intervals,
+ * merge them, and repeat this until the number of values to store gets
+ * sufficiently low (below 50% of maximum values), but that is mostly
+ * arbitrary threshold and may be changed easily).
+ *
+ * To pick the closest intervals we use the "distance" support procedure,
+ * which measures space between two ranges (i.e. the length of an interval).
+ * The computed value may be an approximation - in the worst case we will
+ * merge two ranges that are slightly less optimal at that step, but the
+ * index should still produce correct results.
+ *
+ * The compactions (reducing the number of values) is fairly expensive, as
+ * it requires calling the distance functions, sorting etc. So when building
+ * the summary, we use a significantly larger buffer, and only enforce the
+ * exact limit at the very end. This improves performance, and it also helps
+ * with building better ranges (due to the greedy approach).
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/access/brin/brin_minmax_multi.c
+ */
+#include "postgres.h"
+
+/* needed for PGSQL_AF_INET */
+#include <sys/socket.h>
+
+#include "access/genam.h"
+#include "access/brin.h"
+#include "access/brin_internal.h"
+#include "access/brin_tuple.h"
+#include "access/reloptions.h"
+#include "access/stratnum.h"
+#include "access/htup_details.h"
+#include "catalog/pg_type.h"
+#include "catalog/pg_am.h"
+#include "catalog/pg_amop.h"
+#include "utils/array.h"
+#include "utils/builtins.h"
+#include "utils/date.h"
+#include "utils/datum.h"
+#include "utils/float.h"
+#include "utils/inet.h"
+#include "utils/lsyscache.h"
+#include "utils/memutils.h"
+#include "utils/numeric.h"
+#include "utils/pg_lsn.h"
+#include "utils/rel.h"
+#include "utils/syscache.h"
+#include "utils/timestamp.h"
+#include "utils/uuid.h"
+
+/*
+ * Additional SQL level support functions
+ *
+ * Procedure numbers must not use values reserved for BRIN itself; see
+ * brin_internal.h.
+ */
+#define MINMAX_MAX_PROCNUMS 1 /* maximum support procs we need */
+#define PROCNUM_DISTANCE 11 /* required, distance between values */
+
+/*
+ * Subtract this from procnum to obtain index in MinmaxMultiOpaque arrays
+ * (Must be equal to minimum of private procnums).
+ */
+#define PROCNUM_BASE 11
+
+/*
+ * Sizing the insert buffer - we use 10x the number of values specified
+ * in the reloption, but we cap it to 8192 not to get too large. When
+ * the buffer gets full, we reduce the number of values by half.
+ */
+#define MINMAX_BUFFER_FACTOR 10
+#define MINMAX_BUFFER_MIN 256
+#define MINMAX_BUFFER_MAX 8192
+#define MINMAX_BUFFER_LOAD_FACTOR 0.5
+
+typedef struct MinmaxMultiOpaque
+{
+ FmgrInfo extra_procinfos[MINMAX_MAX_PROCNUMS];
+ bool extra_proc_missing[MINMAX_MAX_PROCNUMS];
+ Oid cached_subtype;
+ FmgrInfo strategy_procinfos[BTMaxStrategyNumber];
+} MinmaxMultiOpaque;
+
+/*
+ * Storage type for BRIN's minmax reloptions
+ */
+typedef struct MinMaxMultiOptions
+{
+ int32 vl_len_; /* varlena header (do not touch directly!) */
+ int valuesPerRange; /* number of values per range */
+} MinMaxMultiOptions;
+
+#define MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE 32
+
+#define MinMaxMultiGetValuesPerRange(opts) \
+ ((opts) && (((MinMaxMultiOptions *) (opts))->valuesPerRange != 0) ? \
+ ((MinMaxMultiOptions *) (opts))->valuesPerRange : \
+ MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE)
+
+#define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
+
+/*
+ * The summary of minmax-multi indexes has two representations - Ranges for
+ * convenient processing, and SerializedRanges for storage in bytea value.
+ *
+ * The Ranges struct stores the boundary values in a single array, but we
+ * treat regular and single-point ranges differently to save space. For
+ * regular ranges (with different boundary values) we have to store both
+ * the lower and upper bound of the range, while for "single-point ranges"
+ * we only need to store a single value.
+ *
+ * The 'values' array stores boundary values for regular ranges first (there
+ * are 2*nranges values to store), and then the nvalues boundary values for
+ * single-point ranges. That is, we have (2*nranges + nvalues) boundary
+ * values in the array.
+ *
+ * +-------------------------+----------------------------------+
+ * | ranges (2 * nranges of) | single point values (nvalues of) |
+ * +-------------------------+----------------------------------+
+ *
+ * This allows us to quickly add new values, and store outliers without
+ * having to widen any of the existing range values.
+ *
+ * 'nsorted' denotes how many of 'nvalues' in the values[] array are sorted.
+ * When nsorted == nvalues, all single point values are sorted.
+ *
+ * We never store more than maxvalues values (as set by values_per_range
+ * reloption). If needed we merge some of the ranges.
+ *
+ * To minimize palloc overhead, we always allocate the full array with
+ * space for maxvalues elements. This should be fine as long as the
+ * maxvalues is reasonably small (64 seems fine), which is the case
+ * thanks to values_per_range reloption being limited to 256.
+ */
+typedef struct Ranges
+{
+ /* Cache information that we need quite often. */
+ Oid typid;
+ Oid colloid;
+ AttrNumber attno;
+ FmgrInfo *cmp;
+
+ /* (2*nranges + nvalues) <= maxvalues */
+ int nranges; /* number of ranges in the values[] array */
+ int nsorted; /* number of nvalues which are sorted */
+ int nvalues; /* number of point values in values[] array */
+ int maxvalues; /* number of elements in the values[] array */
+
+ /*
+ * We simply add the values into a large buffer, without any expensive
+ * steps (sorting, deduplication, ...). The buffer is a multiple of the
+ * target number of values, so the compaction happens less often,
+ * amortizing the costs. We keep the actual target and compact to the
+ * requested number of values at the very end, before serializing to
+ * on-disk representation.
+ */
+ /* requested number of values */
+ int target_maxvalues;
+
+ /* values stored for this range - either raw values, or ranges */
+ Datum values[FLEXIBLE_ARRAY_MEMBER];
+} Ranges;
+
+/*
+ * On-disk the summary is stored as a bytea value, with a simple header
+ * with basic metadata, followed by the boundary values. It has a varlena
+ * header, so can be treated as varlena directly.
+ *
+ * See brin_range_serialize/brin_range_deserialize for serialization details.
+ */
+typedef struct SerializedRanges
+{
+ /* varlena header (do not touch directly!) */
+ int32 vl_len_;
+
+ /* type of values stored in the data array */
+ Oid typid;
+
+ /* (2*nranges + nvalues) <= maxvalues */
+ int nranges; /* number of ranges in the array (stored) */
+ int nvalues; /* number of values in the data array (all) */
+ int maxvalues; /* maximum number of values (reloption) */
+
+ /* contains the actual data */
+ char data[FLEXIBLE_ARRAY_MEMBER];
+} SerializedRanges;
+
+static SerializedRanges *brin_range_serialize(Ranges *range);
+
+static Ranges *brin_range_deserialize(int maxvalues, SerializedRanges *range);
+
+
+/*
+ * Used to represent ranges expanded to make merging and combining easier.
+ *
+ * Each expanded range is essentially an interval, represented by min/max
+ * values, along with a flag whether it's a collapsed range (in which case
+ * the min and max values are equal). We have the flag to handle by-ref
+ * data types - we can't simply compare the datums, and this saves some
+ * calls to the type-specific comparator function.
+ */
+typedef struct ExpandedRange
+{
+ Datum minval; /* lower boundary */
+ Datum maxval; /* upper boundary */
+ bool collapsed; /* true if minval==maxval */
+} ExpandedRange;
+
+/*
+ * Represents a distance between two ranges (identified by index into
+ * an array of extended ranges).
+ */
+typedef struct DistanceValue
+{
+ int index;
+ double value;
+} DistanceValue;
+
+
+/* Cache for support and strategy procedures. */
+
+static FmgrInfo *minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno,
+ uint16 procnum);
+
+static FmgrInfo *minmax_multi_get_strategy_procinfo(BrinDesc *bdesc,
+ uint16 attno, Oid subtype,
+ uint16 strategynum);
+
+typedef struct compare_context
+{
+ FmgrInfo *cmpFn;
+ Oid colloid;
+} compare_context;
+
+static int compare_values(const void *a, const void *b, void *arg);
+
+
+#ifdef USE_ASSERT_CHECKING
+/*
+ * Check that the order of the array values is correct, using the cmp
+ * function (which should be BTLessStrategyNumber).
+ */
+static void
+AssertArrayOrder(FmgrInfo *cmp, Oid colloid, Datum *values, int nvalues)
+{
+ int i;
+ Datum lt;
+
+ for (i = 0; i < (nvalues - 1); i++)
+ {
+ lt = FunctionCall2Coll(cmp, colloid, values[i], values[i + 1]);
+ Assert(DatumGetBool(lt));
+ }
+}
+#endif
+
+/*
+ * Comprehensive check of the Ranges structure.
+ */
+static void
+AssertCheckRanges(Ranges *ranges, FmgrInfo *cmpFn, Oid colloid)
+{
+#ifdef USE_ASSERT_CHECKING
+ int i;
+
+ /* some basic sanity checks */
+ Assert(ranges->nranges >= 0);
+ Assert(ranges->nsorted >= 0);
+ Assert(ranges->nvalues >= ranges->nsorted);
+ Assert(ranges->maxvalues >= 2 * ranges->nranges + ranges->nvalues);
+ Assert(ranges->typid != InvalidOid);
+
+ /*
+ * First the ranges - there are 2*nranges boundary values, and the values
+ * have to be strictly ordered (equal values would mean the range is
+ * collapsed, and should be stored as a point). This also guarantees that
+ * the ranges do not overlap.
+ */
+ AssertArrayOrder(cmpFn, colloid, ranges->values, 2 * ranges->nranges);
+
+ /* then the single-point ranges (with nvalues boundary values ) */
+ AssertArrayOrder(cmpFn, colloid, &ranges->values[2 * ranges->nranges],
+ ranges->nsorted);
+
+ /*
+ * Check that none of the values are not covered by ranges (both sorted
+ * and unsorted)
+ */
+ if (ranges->nranges > 0)
+ {
+ for (i = 0; i < ranges->nvalues; i++)
+ {
+ Datum compar;
+ int start,
+ end;
+ Datum minvalue = ranges->values[0];
+ Datum maxvalue = ranges->values[2 * ranges->nranges - 1];
+ Datum value = ranges->values[2 * ranges->nranges + i];
+
+ compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
+
+ /*
+ * If the value is smaller than the lower bound in the first range
+ * then it cannot possibly be in any of the ranges.
+ */
+ if (DatumGetBool(compar))
+ continue;
+
+ compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
+
+ /*
+ * Likewise, if the value is larger than the upper bound of the
+ * final range, then it cannot possibly be inside any of the
+ * ranges.
+ */
+ if (DatumGetBool(compar))
+ continue;
+
+ /* bsearch the ranges to see if 'value' fits within any of them */
+ start = 0; /* first range */
+ end = ranges->nranges - 1; /* last range */
+ while (true)
+ {
+ int midpoint = (start + end) / 2;
+
+ /* this means we ran out of ranges in the last step */
+ if (start > end)
+ break;
+
+ /* copy the min/max values from the ranges */
+ minvalue = ranges->values[2 * midpoint];
+ maxvalue = ranges->values[2 * midpoint + 1];
+
+ /*
+ * Is the value smaller than the minval? If yes, we'll recurse
+ * to the left side of range array.
+ */
+ compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
+
+ /* smaller than the smallest value in this range */
+ if (DatumGetBool(compar))
+ {
+ end = (midpoint - 1);
+ continue;
+ }
+
+ /*
+ * Is the value greater than the minval? If yes, we'll recurse
+ * to the right side of range array.
+ */
+ compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
+
+ /* larger than the largest value in this range */
+ if (DatumGetBool(compar))
+ {
+ start = (midpoint + 1);
+ continue;
+ }
+
+ /* hey, we found a matching range */
+ Assert(false);
+ }
+ }
+ }
+
+ /* and values in the unsorted part must not be in the sorted part */
+ if (ranges->nsorted > 0)
+ {
+ compare_context cxt;
+
+ cxt.colloid = ranges->colloid;
+ cxt.cmpFn = ranges->cmp;
+
+ for (i = ranges->nsorted; i < ranges->nvalues; i++)
+ {
+ Datum value = ranges->values[2 * ranges->nranges + i];
+
+ Assert(bsearch_arg(&value, &ranges->values[2 * ranges->nranges],
+ ranges->nsorted, sizeof(Datum),
+ compare_values, (void *) &cxt) == NULL);
+ }
+ }
+#endif
+}
+
+/*
+ * Check that the expanded ranges (built when reducing the number of ranges
+ * by combining some of them) are correctly sorted and do not overlap.
+ */
+static void
+AssertCheckExpandedRanges(BrinDesc *bdesc, Oid colloid, AttrNumber attno,
+ Form_pg_attribute attr, ExpandedRange *ranges,
+ int nranges)
+{
+#ifdef USE_ASSERT_CHECKING
+ int i;
+ FmgrInfo *eq;
+ FmgrInfo *lt;
+
+ eq = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
+ BTEqualStrategyNumber);
+
+ lt = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
+ BTLessStrategyNumber);
+
+ /*
+ * Each range independently should be valid, i.e. that for the boundary
+ * values (lower <= upper).
+ */
+ for (i = 0; i < nranges; i++)
+ {
+ Datum r;
+ Datum minval = ranges[i].minval;
+ Datum maxval = ranges[i].maxval;
+
+ if (ranges[i].collapsed) /* collapsed: minval == maxval */
+ r = FunctionCall2Coll(eq, colloid, minval, maxval);
+ else /* non-collapsed: minval < maxval */
+ r = FunctionCall2Coll(lt, colloid, minval, maxval);
+
+ Assert(DatumGetBool(r));
+ }
+
+ /*
+ * And the ranges should be ordered and must not overlap, i.e. upper <
+ * lower for boundaries of consecutive ranges.
+ */
+ for (i = 0; i < nranges - 1; i++)
+ {
+ Datum r;
+ Datum maxval = ranges[i].maxval;
+ Datum minval = ranges[i + 1].minval;
+
+ r = FunctionCall2Coll(lt, colloid, maxval, minval);
+
+ Assert(DatumGetBool(r));
+ }
+#endif
+}
+
+
+/*
+ * minmax_multi_init
+ * Initialize the deserialized range list, allocate all the memory.
+ *
+ * This is only in-memory representation of the ranges, so we allocate
+ * enough space for the maximum number of values (so as not to have to do
+ * repallocs as the ranges grow).
+ */
+static Ranges *
+minmax_multi_init(int maxvalues)
+{
+ Size len;
+ Ranges *ranges;
+
+ Assert(maxvalues > 0);
+
+ len = offsetof(Ranges, values); /* fixed header */
+ len += maxvalues * sizeof(Datum); /* Datum values */
+
+ ranges = (Ranges *) palloc0(len);
+
+ ranges->maxvalues = maxvalues;
+
+ return ranges;
+}
+
+
+/*
+ * range_deduplicate_values
+ * Deduplicate the part with values in the simple points.
+ *
+ * This is meant to be a cheaper way of reducing the size of the ranges. It
+ * does not touch the ranges, and only sorts the other values - it does not
+ * call the distance functions, which may be quite expensive, etc.
+ *
+ * We do know the values are not duplicate with the ranges, because we check
+ * that before adding a new value. Same for the sorted part of values.
+ */
+static void
+range_deduplicate_values(Ranges *range)
+{
+ int i,
+ n;
+ int start;
+ compare_context cxt;
+
+ /*
+ * If there are no unsorted values, we're done (this probably can't
+ * happen, as we're adding values to unsorted part).
+ */
+ if (range->nsorted == range->nvalues)
+ return;
+
+ /* sort the values */
+ cxt.colloid = range->colloid;
+ cxt.cmpFn = range->cmp;
+
+ /* the values start right after the ranges (which are always sorted) */
+ start = 2 * range->nranges;
+
+ /*
+ * XXX This might do a merge sort, to leverage that the first part of the
+ * array is already sorted. If the sorted part is large, it might be quite
+ * a bit faster.
+ */
+ qsort_arg(&range->values[start],
+ range->nvalues, sizeof(Datum),
+ compare_values, (void *) &cxt);
+
+ n = 1;
+ for (i = 1; i < range->nvalues; i++)
+ {
+ /* same as preceding value, so store it */
+ if (compare_values(&range->values[start + i - 1],
+ &range->values[start + i],
+ (void *) &cxt) == 0)
+ continue;
+
+ range->values[start + n] = range->values[start + i];
+
+ n++;
+ }
+
+ /* now all the values are sorted */
+ range->nvalues = n;
+ range->nsorted = n;
+
+ AssertCheckRanges(range, range->cmp, range->colloid);
+}
+
+
+/*
+ * brin_range_serialize
+ * Serialize the in-memory representation into a compact varlena value.
+ *
+ * Simply copy the header and then also the individual values, as stored
+ * in the in-memory value array.
+ */
+static SerializedRanges *
+brin_range_serialize(Ranges *range)
+{
+ Size len;
+ int nvalues;
+ SerializedRanges *serialized;
+ Oid typid;
+ int typlen;
+ bool typbyval;
+
+ int i;
+ char *ptr;
+
+ /* simple sanity checks */
+ Assert(range->nranges >= 0);
+ Assert(range->nsorted >= 0);
+ Assert(range->nvalues >= 0);
+ Assert(range->maxvalues > 0);
+ Assert(range->target_maxvalues > 0);
+
+ /* at this point the range should be compacted to the target size */
+ Assert(2 * range->nranges + range->nvalues <= range->target_maxvalues);
+
+ Assert(range->target_maxvalues <= range->maxvalues);
+
+ /* range boundaries are always sorted */
+ Assert(range->nvalues >= range->nsorted);
+
+ /* deduplicate values, if there's unsorted part */
+ range_deduplicate_values(range);
+
+ /* see how many Datum values we actually have */
+ nvalues = 2 * range->nranges + range->nvalues;
+
+ typid = range->typid;
+ typbyval = get_typbyval(typid);
+ typlen = get_typlen(typid);
+
+ /* header is always needed */
+ len = offsetof(SerializedRanges, data);
+
+ /*
+ * The space needed depends on data type - for fixed-length data types
+ * (by-value and some by-reference) it's pretty simple, just multiply
+ * (attlen * nvalues) and we're done. For variable-length by-reference
+ * types we need to actually walk all the values and sum the lengths.
+ */
+ if (typlen == -1) /* varlena */
+ {
+ int i;
+
+ for (i = 0; i < nvalues; i++)
+ {
+ len += VARSIZE_ANY(range->values[i]);
+ }
+ }
+ else if (typlen == -2) /* cstring */
+ {
+ int i;
+
+ for (i = 0; i < nvalues; i++)
+ {
+ /* don't forget to include the null terminator ;-) */
+ len += strlen(DatumGetCString(range->values[i])) + 1;
+ }
+ }
+ else /* fixed-length types (even by-reference) */
+ {
+ Assert(typlen > 0);
+ len += nvalues * typlen;
+ }
+
+ /*
+ * Allocate the serialized object, copy the basic information. The
+ * serialized object is a varlena, so update the header.
+ */
+ serialized = (SerializedRanges *) palloc0(len);
+ SET_VARSIZE(serialized, len);
+
+ serialized->typid = typid;
+ serialized->nranges = range->nranges;
+ serialized->nvalues = range->nvalues;
+ serialized->maxvalues = range->target_maxvalues;
+
+ /*
+ * And now copy also the boundary values (like the length calculation this
+ * depends on the particular data type).
+ */
+ ptr = serialized->data; /* start of the serialized data */
+
+ for (i = 0; i < nvalues; i++)
+ {
+ if (typbyval) /* simple by-value data types */
+ {
+ Datum tmp;
+
+ /*
+ * For byval types, we need to copy just the significant bytes -
+ * we can't use memcpy directly, as that assumes little-endian
+ * behavior. store_att_byval does almost what we need, but it
+ * requires a properly aligned buffer - the output buffer does not
+ * guarantee that. So we simply use a local Datum variable (which
+ * guarantees proper alignment), and then copy the value from it.
+ */
+ store_att_byval(&tmp, range->values[i], typlen);
+
+ memcpy(ptr, &tmp, typlen);
+ ptr += typlen;
+ }
+ else if (typlen > 0) /* fixed-length by-ref types */
+ {
+ memcpy(ptr, DatumGetPointer(range->values[i]), typlen);
+ ptr += typlen;
+ }
+ else if (typlen == -1) /* varlena */
+ {
+ int tmp = VARSIZE_ANY(DatumGetPointer(range->values[i]));
+
+ memcpy(ptr, DatumGetPointer(range->values[i]), tmp);
+ ptr += tmp;
+ }
+ else if (typlen == -2) /* cstring */
+ {
+ int tmp = strlen(DatumGetCString(range->values[i])) + 1;
+
+ memcpy(ptr, DatumGetCString(range->values[i]), tmp);
+ ptr += tmp;
+ }
+
+ /* make sure we haven't overflown the buffer end */
+ Assert(ptr <= ((char *) serialized + len));
+ }
+
+ /* exact size */
+ Assert(ptr == ((char *) serialized + len));
+
+ return serialized;
+}
+
+/*
+ * brin_range_deserialize
+ * Serialize the in-memory representation into a compact varlena value.
+ *
+ * Simply copy the header and then also the individual values, as stored
+ * in the in-memory value array.
+ */
+static Ranges *
+brin_range_deserialize(int maxvalues, SerializedRanges *serialized)
+{
+ int i,
+ nvalues;
+ char *ptr,
+ *dataptr;
+ bool typbyval;
+ int typlen;
+ Size datalen;
+
+ Ranges *range;
+
+ Assert(serialized->nranges >= 0);
+ Assert(serialized->nvalues >= 0);
+ Assert(serialized->maxvalues > 0);
+
+ nvalues = 2 * serialized->nranges + serialized->nvalues;
+
+ Assert(nvalues <= serialized->maxvalues);
+ Assert(serialized->maxvalues <= maxvalues);
+
+ range = minmax_multi_init(maxvalues);
+
+ /* copy the header info */
+ range->nranges = serialized->nranges;
+ range->nvalues = serialized->nvalues;
+ range->nsorted = serialized->nvalues;
+ range->maxvalues = maxvalues;
+ range->target_maxvalues = serialized->maxvalues;
+
+ range->typid = serialized->typid;
+
+ typbyval = get_typbyval(serialized->typid);
+ typlen = get_typlen(serialized->typid);
+
+ /*
+ * And now deconstruct the values into Datum array. We have to copy the
+ * data because the serialized representation ignores alignment, and we
+ * don't want to rely on it being kept around anyway.
+ */
+ ptr = serialized->data;
+
+ /*
+ * We don't want to allocate many pieces, so we just allocate everything
+ * in one chunk. How much space will we need?
+ *
+ * XXX We don't need to copy simple by-value data types.
+ */
+ datalen = 0;
+ dataptr = NULL;
+ for (i = 0; (i < nvalues) && (!typbyval); i++)
+ {
+ if (typlen > 0) /* fixed-length by-ref types */
+ datalen += MAXALIGN(typlen);
+ else if (typlen == -1) /* varlena */
+ {
+ datalen += MAXALIGN(VARSIZE_ANY(DatumGetPointer(ptr)));
+ ptr += VARSIZE_ANY(DatumGetPointer(ptr));
+ }
+ else if (typlen == -2) /* cstring */
+ {
+ Size slen = strlen(DatumGetCString(ptr)) + 1;
+
+ datalen += MAXALIGN(slen);
+ ptr += slen;
+ }
+ }
+
+ if (datalen > 0)
+ dataptr = palloc(datalen);
+
+ /*
+ * Restore the source pointer (might have been modified when calculating
+ * the space we need to allocate).
+ */
+ ptr = serialized->data;
+
+ for (i = 0; i < nvalues; i++)
+ {
+ if (typbyval) /* simple by-value data types */
+ {
+ Datum v = 0;
+
+ memcpy(&v, ptr, typlen);
+
+ range->values[i] = fetch_att(&v, true, typlen);
+ ptr += typlen;
+ }
+ else if (typlen > 0) /* fixed-length by-ref types */
+ {
+ range->values[i] = PointerGetDatum(dataptr);
+
+ memcpy(dataptr, ptr, typlen);
+ dataptr += MAXALIGN(typlen);
+
+ ptr += typlen;
+ }
+ else if (typlen == -1) /* varlena */
+ {
+ range->values[i] = PointerGetDatum(dataptr);
+
+ memcpy(dataptr, ptr, VARSIZE_ANY(ptr));
+ dataptr += MAXALIGN(VARSIZE_ANY(ptr));
+ ptr += VARSIZE_ANY(ptr);
+ }
+ else if (typlen == -2) /* cstring */
+ {
+ Size slen = strlen(ptr) + 1;
+
+ range->values[i] = PointerGetDatum(dataptr);
+
+ memcpy(dataptr, ptr, slen);
+ dataptr += MAXALIGN(slen);
+ ptr += slen;
+ }
+
+ /* make sure we haven't overflown the buffer end */
+ Assert(ptr <= ((char *) serialized + VARSIZE_ANY(serialized)));
+ }
+
+ /* should have consumed the whole input value exactly */
+ Assert(ptr == ((char *) serialized + VARSIZE_ANY(serialized)));
+
+ /* return the deserialized value */
+ return range;
+}
+
+/*
+ * compare_expanded_ranges
+ * Compare the expanded ranges - first by minimum, then by maximum.
+ *
+ * We do guarantee that ranges in a single Ranges object do not overlap, so it
+ * may seem strange that we don't order just by minimum. But when merging two
+ * Ranges (which happens in the union function), the ranges may in fact
+ * overlap. So we do compare both.
+ */
+static int
+compare_expanded_ranges(const void *a, const void *b, void *arg)
+{
+ ExpandedRange *ra = (ExpandedRange *) a;
+ ExpandedRange *rb = (ExpandedRange *) b;
+ Datum r;
+
+ compare_context *cxt = (compare_context *) arg;
+
+ /* first compare minvals */
+ r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->minval, rb->minval);
+
+ if (DatumGetBool(r))
+ return -1;
+
+ r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->minval, ra->minval);
+
+ if (DatumGetBool(r))
+ return 1;
+
+ /* then compare maxvals */
+ r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->maxval, rb->maxval);
+
+ if (DatumGetBool(r))
+ return -1;
+
+ r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->maxval, ra->maxval);
+
+ if (DatumGetBool(r))
+ return 1;
+
+ return 0;
+}
+
+/*
+ * compare_values
+ * Compare the values.
+ */
+static int
+compare_values(const void *a, const void *b, void *arg)
+{
+ Datum *da = (Datum *) a;
+ Datum *db = (Datum *) b;
+ Datum r;
+
+ compare_context *cxt = (compare_context *) arg;
+
+ r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *da, *db);
+
+ if (DatumGetBool(r))
+ return -1;
+
+ r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *db, *da);
+
+ if (DatumGetBool(r))
+ return 1;
+
+ return 0;
+}
+
+/*
+ * Check if the new value matches one of the existing ranges.
+ */
+static bool
+has_matching_range(BrinDesc *bdesc, Oid colloid, Ranges *ranges,
+ Datum newval, AttrNumber attno, Oid typid)
+{
+ Datum compar;
+
+ Datum minvalue;
+ Datum maxvalue;
+
+ FmgrInfo *cmpLessFn;
+ FmgrInfo *cmpGreaterFn;
+
+ /* binary search on ranges */
+ int start,
+ end;
+
+ if (ranges->nranges == 0)
+ return false;
+
+ minvalue = ranges->values[0];
+ maxvalue = ranges->values[2 * ranges->nranges - 1];
+
+ /*
+ * Otherwise, need to compare the new value with boundaries of all the
+ * ranges. First check if it's less than the absolute minimum, which is
+ * the first value in the array.
+ */
+ cmpLessFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
+ BTLessStrategyNumber);
+ compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
+
+ /* smaller than the smallest value in the range list */
+ if (DatumGetBool(compar))
+ return false;
+
+ /*
+ * And now compare it to the existing maximum (last value in the data
+ * array). But only if we haven't already ruled out a possible match in
+ * the minvalue check.
+ */
+ cmpGreaterFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
+ BTGreaterStrategyNumber);
+ compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
+
+ if (DatumGetBool(compar))
+ return false;
+
+ /*
+ * So we know it's in the general min/max, the question is whether it
+ * falls in one of the ranges or gaps. We'll do a binary search on
+ * individual ranges - for each range we check equality (value falls into
+ * the range), and then check ranges either above or below the current
+ * range.
+ */
+ start = 0; /* first range */
+ end = (ranges->nranges - 1); /* last range */
+ while (true)
+ {
+ int midpoint = (start + end) / 2;
+
+ /* this means we ran out of ranges in the last step */
+ if (start > end)
+ return false;
+
+ /* copy the min/max values from the ranges */
+ minvalue = ranges->values[2 * midpoint];
+ maxvalue = ranges->values[2 * midpoint + 1];
+
+ /*
+ * Is the value smaller than the minval? If yes, we'll recurse to the
+ * left side of range array.
+ */
+ compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
+
+ /* smaller than the smallest value in this range */
+ if (DatumGetBool(compar))
+ {
+ end = (midpoint - 1);
+ continue;
+ }
+
+ /*
+ * Is the value greater than the minval? If yes, we'll recurse to the
+ * right side of range array.
+ */
+ compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
+
+ /* larger than the largest value in this range */
+ if (DatumGetBool(compar))
+ {
+ start = (midpoint + 1);
+ continue;
+ }
+
+ /* hey, we found a matching range */
+ return true;
+ }
+
+ return false;
+}
+
+
+/*
+ * range_contains_value
+ * See if the new value is already contained in the range list.
+ *
+ * We first inspect the list of intervals. We use a small trick - we check
+ * the value against min/max of the whole range (min of the first interval,
+ * max of the last one) first, and only inspect the individual intervals if
+ * this passes.
+ *
+ * If the value matches none of the intervals, we check the exact values.
+ * We simply loop through them and invoke equality operator on them.
+ *
+ * The last parameter (full) determines whether we need to search all the
+ * values, including the unsorted part. With full=false, the unsorted part
+ * is not searched, which may produce false negatives and duplicate values
+ * (in the unsorted part only), but when we're building the range that's
+ * fine - we'll deduplicate before serialization, and it can only happen
+ * if there already are unsorted values (so it was already modified).
+ *
+ * Serialized ranges don't have any unsorted values, so this can't cause
+ * false negatives during querying.
+ */
+static bool
+range_contains_value(BrinDesc *bdesc, Oid colloid,
+ AttrNumber attno, Form_pg_attribute attr,
+ Ranges *ranges, Datum newval, bool full)
+{
+ int i;
+ FmgrInfo *cmpEqualFn;
+ Oid typid = attr->atttypid;
+
+ /*
+ * First inspect the ranges, if there are any. We first check the whole
+ * range, and only when there's still a chance of getting a match we
+ * inspect the individual ranges.
+ */
+ if (has_matching_range(bdesc, colloid, ranges, newval, attno, typid))
+ return true;
+
+ cmpEqualFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
+ BTEqualStrategyNumber);
+
+ /*
+ * There is no matching range, so let's inspect the sorted values.
+ *
+ * We do a sequential search for small numbers of values, and binary
+ * search once we have more than 16 values. This threshold is somewhat
+ * arbitrary, as it depends on how expensive the comparison function is.
+ *
+ * XXX If we use the threshold here, maybe we should do the same thing in
+ * has_matching_range? Or maybe we should do the bin search all the time?
+ *
+ * XXX We could use the same optimization as for ranges, to check if the
+ * value is between min/max, to maybe rule out all sorted values without
+ * having to inspect all of them.
+ */
+ if (ranges->nsorted >= 16)
+ {
+ compare_context cxt;
+
+ cxt.colloid = ranges->colloid;
+ cxt.cmpFn = ranges->cmp;
+
+ if (bsearch_arg(&newval, &ranges->values[2 * ranges->nranges],
+ ranges->nsorted, sizeof(Datum),
+ compare_values, (void *) &cxt) != NULL)
+ return true;
+ }
+ else
+ {
+ for (i = 2 * ranges->nranges; i < 2 * ranges->nranges + ranges->nsorted; i++)
+ {
+ Datum compar;
+
+ compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
+
+ /* found an exact match */
+ if (DatumGetBool(compar))
+ return true;
+ }
+ }
+
+ /* If not asked to inspect the unsorted part, we're done. */
+ if (!full)
+ return false;
+
+ /* Inspect the unsorted part. */
+ for (i = 2 * ranges->nranges + ranges->nsorted; i < 2 * ranges->nranges + ranges->nvalues; i++)
+ {
+ Datum compar;
+
+ compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
+
+ /* found an exact match */
+ if (DatumGetBool(compar))
+ return true;
+ }
+
+ /* the value is not covered by this BRIN tuple */
+ return false;
+}
+
+/*
+ * Expand ranges from Ranges into ExpandedRange array. This expects the
+ * eranges to be pre-allocated and with the correct size - there needs to be
+ * (nranges + nvalues) elements.
+ *
+ * The order of expanded ranges is arbitrary. We do expand the ranges first,
+ * and this part is sorted. But then we expand the values, and this part may
+ * be unsorted.
+ */
+static void
+fill_expanded_ranges(ExpandedRange *eranges, int neranges, Ranges *ranges)
+{
+ int idx;
+ int i;
+
+ /* Check that the output array has the right size. */
+ Assert(neranges == (ranges->nranges + ranges->nvalues));
+
+ idx = 0;
+ for (i = 0; i < ranges->nranges; i++)
+ {
+ eranges[idx].minval = ranges->values[2 * i];
+ eranges[idx].maxval = ranges->values[2 * i + 1];
+ eranges[idx].collapsed = false;
+ idx++;
+
+ Assert(idx <= neranges);
+ }
+
+ for (i = 0; i < ranges->nvalues; i++)
+ {
+ eranges[idx].minval = ranges->values[2 * ranges->nranges + i];
+ eranges[idx].maxval = ranges->values[2 * ranges->nranges + i];
+ eranges[idx].collapsed = true;
+ idx++;
+
+ Assert(idx <= neranges);
+ }
+
+ /* Did we produce the expected number of elements? */
+ Assert(idx == neranges);
+
+ return;
+}
+
+/*
+ * Sort and deduplicate expanded ranges.
+ *
+ * The ranges may be deduplicated - we're simply appending values, without
+ * checking for duplicates etc. So maybe the deduplication will reduce the
+ * number of ranges enough, and we won't have to compute the distances etc.
+ *
+ * Returns the number of expanded ranges.
+ */
+static int
+sort_expanded_ranges(FmgrInfo *cmp, Oid colloid,
+ ExpandedRange *eranges, int neranges)
+{
+ int n;
+ int i;
+ compare_context cxt;
+
+ Assert(neranges > 0);
+
+ /* sort the values */
+ cxt.colloid = colloid;
+ cxt.cmpFn = cmp;
+
+ /*
+ * XXX We do qsort on all the values, but we could also leverage the fact
+ * that some of the input data is already sorted (all the ranges and maybe
+ * some of the points) and do merge sort.
+ */
+ qsort_arg(eranges, neranges, sizeof(ExpandedRange),
+ compare_expanded_ranges, (void *) &cxt);
+
+ /*
+ * Deduplicate the ranges - simply compare each range to the preceding
+ * one, and skip the duplicate ones.
+ */
+ n = 1;
+ for (i = 1; i < neranges; i++)
+ {
+ /* if the current range is equal to the preceding one, do nothing */
+ if (!compare_expanded_ranges(&eranges[i - 1], &eranges[i], (void *) &cxt))
+ continue;
+
+ /* otherwise, copy it to n-th place (if not already there) */
+ if (i != n)
+ memcpy(&eranges[n], &eranges[i], sizeof(ExpandedRange));
+
+ n++;
+ }
+
+ Assert((n > 0) && (n <= neranges));
+
+ return n;
+}
+
+/*
+ * When combining multiple Range values (in union function), some of the
+ * ranges may overlap. We simply merge the overlapping ranges to fix that.
+ *
+ * XXX This assumes the expanded ranges were previously sorted (by minval
+ * and then maxval). We leverage this when detecting overlap.
+ */
+static int
+merge_overlapping_ranges(FmgrInfo *cmp, Oid colloid,
+ ExpandedRange *eranges, int neranges)
+{
+ int idx;
+
+ /* Merge ranges (idx) and (idx+1) if they overlap. */
+ idx = 0;
+ while (idx < (neranges - 1))
+ {
+ Datum r;
+
+ /*
+ * comparing [?,maxval] vs. [minval,?] - the ranges overlap if (minval
+ * < maxval)
+ */
+ r = FunctionCall2Coll(cmp, colloid,
+ eranges[idx].maxval,
+ eranges[idx + 1].minval);
+
+ /*
+ * Nope, maxval < minval, so no overlap. And we know the ranges are
+ * ordered, so there are no more overlaps, because all the remaining
+ * ranges have greater or equal minval.
+ */
+ if (DatumGetBool(r))
+ {
+ /* proceed to the next range */
+ idx += 1;
+ continue;
+ }
+
+ /*
+ * So ranges 'idx' and 'idx+1' do overlap, but we don't know if
+ * 'idx+1' is contained in 'idx', or if they overlap only partially.
+ * So compare the upper bounds and keep the larger one.
+ */
+ r = FunctionCall2Coll(cmp, colloid,
+ eranges[idx].maxval,
+ eranges[idx + 1].maxval);
+
+ if (DatumGetBool(r))
+ eranges[idx].maxval = eranges[idx + 1].maxval;
+
+ /*
+ * The range certainly is no longer collapsed (irrespectively of the
+ * previous state).
+ */
+ eranges[idx].collapsed = false;
+
+ /*
+ * Now get rid of the (idx+1) range entirely by shifting the remaining
+ * ranges by 1. There are neranges elements, and we need to move
+ * elements from (idx+2). That means the number of elements to move is
+ * [ncranges - (idx+2)].
+ */
+ memmove(&eranges[idx + 1], &eranges[idx + 2],
+ (neranges - (idx + 2)) * sizeof(ExpandedRange));
+
+ /*
+ * Decrease the number of ranges, and repeat (with the same range, as
+ * it might overlap with additional ranges thanks to the merge).
+ */
+ neranges--;
+ }
+
+ return neranges;
+}
+
+/*
+ * Simple comparator for distance values, comparing the double value.
+ * This is intentionally sorting the distances in descending order, i.e.
+ * the longer gaps will be at the front.
+ */
+static int
+compare_distances(const void *a, const void *b)
+{
+ DistanceValue *da = (DistanceValue *) a;
+ DistanceValue *db = (DistanceValue *) b;
+
+ if (da->value < db->value)
+ return 1;
+ else if (da->value > db->value)
+ return -1;
+
+ return 0;
+}
+
+/*
+ * Given an array of expanded ranges, compute size of the gaps between each
+ * range. For neranges there are (neranges-1) gaps.
+ *
+ * We simply call the "distance" function to compute the (max-min) for pairs
+ * of consecutive ranges. The function may be fairly expensive, so we do that
+ * just once (and then use it to pick as many ranges to merge as possible).
+ *
+ * See reduce_expanded_ranges for details.
+ */
+static DistanceValue *
+build_distances(FmgrInfo *distanceFn, Oid colloid,
+ ExpandedRange *eranges, int neranges)
+{
+ int i;
+ int ndistances;
+ DistanceValue *distances;
+
+ Assert(neranges > 0);
+
+ /* If there's only a single range, there's no distance to calculate. */
+ if (neranges == 1)
+ return NULL;
+
+ ndistances = (neranges - 1);
+ distances = (DistanceValue *) palloc0(sizeof(DistanceValue) * ndistances);
+
+ /*
+ * Walk through the ranges once and compute the distance between the
+ * ranges so that we can sort them once.
+ */
+ for (i = 0; i < ndistances; i++)
+ {
+ Datum a1,
+ a2,
+ r;
+
+ a1 = eranges[i].maxval;
+ a2 = eranges[i + 1].minval;
+
+ /* compute length of the gap (between max/min) */
+ r = FunctionCall2Coll(distanceFn, colloid, a1, a2);
+
+ /* remember the index of the gap the distance is for */
+ distances[i].index = i;
+ distances[i].value = DatumGetFloat8(r);
+ }
+
+ /*
+ * Sort the distances in descending order, so that the longest gaps are at
+ * the front.
+ */
+ pg_qsort(distances, ndistances, sizeof(DistanceValue), compare_distances);
+
+ return distances;
+}
+
+/*
+ * Builds expanded ranges for the existing ranges (and single-point ranges),
+ * and also the new value (which did not fit into the array). This expanded
+ * representation makes the processing a bit easier, as it allows handling
+ * ranges and points the same way.
+ *
+ * We sort and deduplicate the expanded ranges - this is necessary, because
+ * the points may be unsorted. And moreover the two parts (ranges and
+ * points) are sorted on their own.
+ */
+static ExpandedRange *
+build_expanded_ranges(FmgrInfo *cmp, Oid colloid, Ranges *ranges,
+ int *nranges)
+{
+ int neranges;
+ ExpandedRange *eranges;
+
+ /* both ranges and points are expanded into a separate element */
+ neranges = ranges->nranges + ranges->nvalues;
+
+ eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
+
+ /* fill the expanded ranges */
+ fill_expanded_ranges(eranges, neranges, ranges);
+
+ /* sort and deduplicate the expanded ranges */
+ neranges = sort_expanded_ranges(cmp, colloid, eranges, neranges);
+
+ /* remember how many ranges we built */
+ *nranges = neranges;
+
+ return eranges;
+}
+
+#ifdef USE_ASSERT_CHECKING
+/*
+ * Counts boundary values needed to store the ranges. Each single-point
+ * range is stored using a single value, each regular range needs two.
+ */
+static int
+count_values(ExpandedRange *cranges, int ncranges)
+{
+ int i;
+ int count;
+
+ count = 0;
+ for (i = 0; i < ncranges; i++)
+ {
+ if (cranges[i].collapsed)
+ count += 1;
+ else
+ count += 2;
+ }
+
+ return count;
+}
+#endif
+
+/*
+ * reduce_expanded_ranges
+ * reduce the ranges until the number of values is low enough
+ *
+ * Combines ranges until the number of boundary values drops below the
+ * threshold specified by max_values. This happens by merging enough
+ * ranges by the distance between them.
+ *
+ * Returns the number of result ranges.
+ *
+ * We simply use the global min/max and then add boundaries for enough
+ * largest gaps. Each gap adds 2 values, so we simply use (target/2-1)
+ * distances. Then we simply sort all the values - each two values are
+ * a boundary of a range (possibly collapsed).
+ *
+ * XXX Some of the ranges may be collapsed (i.e. the min/max values are
+ * equal), but we ignore that for now. We could repeat the process,
+ * adding a couple more gaps recursively.
+ *
+ * XXX The ranges to merge are selected solely using the distance. But
+ * that may not be the best strategy, for example when multiple gaps
+ * are of equal (or very similar) length.
+ *
+ * Consider for example points 1, 2, 3, .., 64, which have gaps of the
+ * same length 1 of course. In that case, we tend to pick the first
+ * gap of that length, which leads to this:
+ *
+ * step 1: [1, 2], 3, 4, 5, .., 64
+ * step 2: [1, 3], 4, 5, .., 64
+ * step 3: [1, 4], 5, .., 64
+ * ...
+ *
+ * So in the end we'll have one "large" range and multiple small points.
+ * That may be fine, but it seems a bit strange and non-optimal. Maybe
+ * we should consider other things when picking ranges to merge - e.g.
+ * length of the ranges? Or perhaps randomize the choice of ranges, with
+ * probability inversely proportional to the distance (the gap lengths
+ * may be very close, but not exactly the same).
+ *
+ * XXX Or maybe we could just handle this by using random value as a
+ * tie-break, or by adding random noise to the actual distance.
+ */
+static int
+reduce_expanded_ranges(ExpandedRange *eranges, int neranges,
+ DistanceValue *distances, int max_values,
+ FmgrInfo *cmp, Oid colloid)
+{
+ int i;
+ int nvalues;
+ Datum *values;
+
+ compare_context cxt;
+
+ /* total number of gaps between ranges */
+ int ndistances = (neranges - 1);
+
+ /* number of gaps to keep */
+ int keep = (max_values / 2 - 1);
+
+ /*
+ * Maybe we have a sufficiently low number of ranges already?
+ *
+ * XXX This should happen before we actually do the expensive stuff like
+ * sorting, so maybe this should be just an assert.
+ */
+ if (keep >= ndistances)
+ return neranges;
+
+ /* sort the values */
+ cxt.colloid = colloid;
+ cxt.cmpFn = cmp;
+
+ /* allocate space for the boundary values */
+ nvalues = 0;
+ values = (Datum *) palloc(sizeof(Datum) * max_values);
+
+ /* add the global min/max values, from the first/last range */
+ values[nvalues++] = eranges[0].minval;
+ values[nvalues++] = eranges[neranges - 1].maxval;
+
+ /* add boundary values for enough gaps */
+ for (i = 0; i < keep; i++)
+ {
+ /* index of the gap between (index) and (index+1) ranges */
+ int index = distances[i].index;
+
+ Assert((index >= 0) && ((index + 1) < neranges));
+
+ /* add max from the preceding range, minval from the next one */
+ values[nvalues++] = eranges[index].maxval;
+ values[nvalues++] = eranges[index + 1].minval;
+
+ Assert(nvalues <= max_values);
+ }
+
+ /* We should have an even number of range values. */
+ Assert(nvalues % 2 == 0);
+
+ /*
+ * Sort the values using the comparator function, and form ranges from the
+ * sorted result.
+ */
+ qsort_arg(values, nvalues, sizeof(Datum),
+ compare_values, (void *) &cxt);
+
+ /* We have nvalues boundary values, which means nvalues/2 ranges. */
+ for (i = 0; i < (nvalues / 2); i++)
+ {
+ eranges[i].minval = values[2 * i];
+ eranges[i].maxval = values[2 * i + 1];
+
+ /* if the boundary values are the same, it's a collapsed range */
+ eranges[i].collapsed = (compare_values(&values[2 * i],
+ &values[2 * i + 1],
+ &cxt) == 0);
+ }
+
+ return (nvalues / 2);
+}
+
+/*
+ * Store the boundary values from ExpandedRanges back into 'ranges' (using
+ * only the minimal number of values needed).
+ */
+static void
+store_expanded_ranges(Ranges *ranges, ExpandedRange *eranges, int neranges)
+{
+ int i;
+ int idx = 0;
+
+ /* first copy in the regular ranges */
+ ranges->nranges = 0;
+ for (i = 0; i < neranges; i++)
+ {
+ if (!eranges[i].collapsed)
+ {
+ ranges->values[idx++] = eranges[i].minval;
+ ranges->values[idx++] = eranges[i].maxval;
+ ranges->nranges++;
+ }
+ }
+
+ /* now copy in the collapsed ones */
+ ranges->nvalues = 0;
+ for (i = 0; i < neranges; i++)
+ {
+ if (eranges[i].collapsed)
+ {
+ ranges->values[idx++] = eranges[i].minval;
+ ranges->nvalues++;
+ }
+ }
+
+ /* all the values are sorted */
+ ranges->nsorted = ranges->nvalues;
+
+ Assert(count_values(eranges, neranges) == 2 * ranges->nranges + ranges->nvalues);
+ Assert(2 * ranges->nranges + ranges->nvalues <= ranges->maxvalues);
+}
+
+
+/*
+ * Consider freeing space in the ranges. Checks if there's space for at least
+ * one new value, and performs compaction if needed.
+ *
+ * Returns true if the value was actually modified.
+ */
+static bool
+ensure_free_space_in_buffer(BrinDesc *bdesc, Oid colloid,
+ AttrNumber attno, Form_pg_attribute attr,
+ Ranges *range)
+{
+ MemoryContext ctx;
+ MemoryContext oldctx;
+
+ FmgrInfo *cmpFn,
+ *distanceFn;
+
+ /* expanded ranges */
+ ExpandedRange *eranges;
+ int neranges;
+ DistanceValue *distances;
+
+ /*
+ * If there is free space in the buffer, we're done without having to
+ * modify anything.
+ */
+ if (2 * range->nranges + range->nvalues < range->maxvalues)
+ return false;
+
+ /* we'll certainly need the comparator, so just look it up now */
+ cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
+ BTLessStrategyNumber);
+
+ /* deduplicate values, if there's an unsorted part */
+ range_deduplicate_values(range);
+
+ /*
+ * Did we reduce enough free space by just the deduplication?
+ *
+ * We don't simply check against range->maxvalues again. The deduplication
+ * might have freed very little space (e.g. just one value), forcing us to
+ * do deduplication very often. In that case, it's better to do the
+ * compaction and reduce more space.
+ */
+ if (2 * range->nranges + range->nvalues <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR)
+ return true;
+
+ /*
+ * We need to combine some of the existing ranges, to reduce the number of
+ * values we have to store.
+ *
+ * The distanceFn calls (which may internally call e.g. numeric_le) may
+ * allocate quite a bit of memory, and we must not leak it (we might have
+ * to do this repeatedly, even for a single BRIN page range). Otherwise
+ * we'd have problems e.g. when building new indexes. So we use a memory
+ * context and make sure we free the memory at the end (so if we call the
+ * distance function many times, it might be an issue, but meh).
+ */
+ ctx = AllocSetContextCreate(CurrentMemoryContext,
+ "minmax-multi context",
+ ALLOCSET_DEFAULT_SIZES);
+
+ oldctx = MemoryContextSwitchTo(ctx);
+
+ /* build the expanded ranges */
+ eranges = build_expanded_ranges(cmpFn, colloid, range, &neranges);
+
+ /* and we'll also need the 'distance' procedure */
+ distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
+
+ /* build array of gap distances and sort them in ascending order */
+ distances = build_distances(distanceFn, colloid, eranges, neranges);
+
+ /*
+ * Combine ranges until we release at least 50% of the space. This
+ * threshold is somewhat arbitrary, perhaps needs tuning. We must not use
+ * too low or high value.
+ */
+ neranges = reduce_expanded_ranges(eranges, neranges, distances,
+ range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR,
+ cmpFn, colloid);
+
+ /* Make sure we've sufficiently reduced the number of ranges. */
+ Assert(count_values(eranges, neranges) <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR);
+
+ /* decompose the expanded ranges into regular ranges and single values */
+ store_expanded_ranges(range, eranges, neranges);
+
+ MemoryContextSwitchTo(oldctx);
+ MemoryContextDelete(ctx);
+
+ /* Did we break the ranges somehow? */
+ AssertCheckRanges(range, cmpFn, colloid);
+
+ return true;
+}
+
+/*
+ * range_add_value
+ * Add the new value to the minmax-multi range.
+ */
+static bool
+range_add_value(BrinDesc *bdesc, Oid colloid,
+ AttrNumber attno, Form_pg_attribute attr,
+ Ranges *ranges, Datum newval)
+{
+ FmgrInfo *cmpFn;
+ bool modified = false;
+
+ /* we'll certainly need the comparator, so just look it up now */
+ cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
+ BTLessStrategyNumber);
+
+ /* comprehensive checks of the input ranges */
+ AssertCheckRanges(ranges, cmpFn, colloid);
+
+ /*
+ * Make sure there's enough free space in the buffer. We only trigger this
+ * when the buffer is full, which means it had to be modified as we size
+ * it to be larger than what is stored on disk.
+ *
+ * This needs to happen before we check if the value is contained in the
+ * range, because the value might be in the unsorted part, and we don't
+ * check that in range_contains_value. The deduplication would then move
+ * it to the sorted part, and we'd add the value too, which violates the
+ * rule that we never have duplicates with the ranges or sorted values.
+ *
+ * We might also deduplicate and recheck if the value is contained, but
+ * that seems like overkill. We'd need to deduplicate anyway, so why not
+ * do it now.
+ */
+ modified = ensure_free_space_in_buffer(bdesc, colloid,
+ attno, attr, ranges);
+
+ /*
+ * Bail out if the value already is covered by the range.
+ *
+ * We could also add values until we hit values_per_range, and then do the
+ * deduplication in a batch, hoping for better efficiency. But that would
+ * mean we actually modify the range every time, which means having to
+ * serialize the value, which does palloc, walks the values, copies them,
+ * etc. Not exactly cheap.
+ *
+ * So instead we do the check, which should be fairly cheap - assuming the
+ * comparator function is not very expensive.
+ *
+ * This also implies the values array can't contain duplicate values.
+ */
+ if (range_contains_value(bdesc, colloid, attno, attr, ranges, newval, false))
+ return modified;
+
+ /* Make a copy of the value, if needed. */
+ newval = datumCopy(newval, attr->attbyval, attr->attlen);
+
+ /*
+ * If there's space in the values array, copy it in and we're done.
+ *
+ * We do want to keep the values sorted (to speed up searches), so we do a
+ * simple insertion sort. We could do something more elaborate, e.g. by
+ * sorting the values only now and then, but for small counts (e.g. when
+ * maxvalues is 64) this should be fine.
+ */
+ ranges->values[2 * ranges->nranges + ranges->nvalues] = newval;
+ ranges->nvalues++;
+
+ /* If we added the first value, we can consider it as sorted. */
+ if (ranges->nvalues == 1)
+ ranges->nsorted = 1;
+
+ /*
+ * Check we haven't broken the ordering of boundary values (checks both
+ * parts, but that doesn't hurt).
+ */
+ AssertCheckRanges(ranges, cmpFn, colloid);
+
+ /* Check the range contains the value we just added. */
+ Assert(range_contains_value(bdesc, colloid, attno, attr, ranges, newval, true));
+
+ /* yep, we've modified the range */
+ return true;
+}
+
+/*
+ * Generate range representation of data collected during "batch mode".
+ * This is similar to reduce_expanded_ranges, except that we can't assume
+ * the values are sorted and there may be duplicate values.
+ */
+static void
+compactify_ranges(BrinDesc *bdesc, Ranges *ranges, int max_values)
+{
+ FmgrInfo *cmpFn,
+ *distanceFn;
+
+ /* expanded ranges */
+ ExpandedRange *eranges;
+ int neranges;
+ DistanceValue *distances;
+
+ MemoryContext ctx;
+ MemoryContext oldctx;
+
+ /*
+ * Do we need to actually compactify anything?
+ *
+ * There are two reasons why compaction may be needed - firstly, there may
+ * be too many values, or some of the values may be unsorted.
+ */
+ if ((ranges->nranges * 2 + ranges->nvalues <= max_values) &&
+ (ranges->nsorted == ranges->nvalues))
+ return;
+
+ /* we'll certainly need the comparator, so just look it up now */
+ cmpFn = minmax_multi_get_strategy_procinfo(bdesc, ranges->attno, ranges->typid,
+ BTLessStrategyNumber);
+
+ /* and we'll also need the 'distance' procedure */
+ distanceFn = minmax_multi_get_procinfo(bdesc, ranges->attno, PROCNUM_DISTANCE);
+
+ /*
+ * The distanceFn calls (which may internally call e.g. numeric_le) may
+ * allocate quite a bit of memory, and we must not leak it. Otherwise,
+ * we'd have problems e.g. when building indexes. So we create a local
+ * memory context and make sure we free the memory before leaving this
+ * function (not after every call).
+ */
+ ctx = AllocSetContextCreate(CurrentMemoryContext,
+ "minmax-multi context",
+ ALLOCSET_DEFAULT_SIZES);
+
+ oldctx = MemoryContextSwitchTo(ctx);
+
+ /* build the expanded ranges */
+ eranges = build_expanded_ranges(cmpFn, ranges->colloid, ranges, &neranges);
+
+ /* build array of gap distances and sort them in ascending order */
+ distances = build_distances(distanceFn, ranges->colloid,
+ eranges, neranges);
+
+ /*
+ * Combine ranges until we get below max_values. We don't use any scale
+ * factor, because this is used during serialization, and we don't expect
+ * more tuples to be inserted anytime soon.
+ */
+ neranges = reduce_expanded_ranges(eranges, neranges, distances,
+ max_values, cmpFn, ranges->colloid);
+
+ Assert(count_values(eranges, neranges) <= max_values);
+
+ /* transform back into regular ranges and single values */
+ store_expanded_ranges(ranges, eranges, neranges);
+
+ /* check all the range invariants */
+ AssertCheckRanges(ranges, cmpFn, ranges->colloid);
+
+ MemoryContextSwitchTo(oldctx);
+ MemoryContextDelete(ctx);
+}
+
+Datum
+brin_minmax_multi_opcinfo(PG_FUNCTION_ARGS)
+{
+ BrinOpcInfo *result;
+
+ /*
+ * opaque->strategy_procinfos is initialized lazily; here it is set to
+ * all-uninitialized by palloc0 which sets fn_oid to InvalidOid.
+ */
+
+ result = palloc0(MAXALIGN(SizeofBrinOpcInfo(1)) +
+ sizeof(MinmaxMultiOpaque));
+ result->oi_nstored = 1;
+ result->oi_regular_nulls = true;
+ result->oi_opaque = (MinmaxMultiOpaque *)
+ MAXALIGN((char *) result + SizeofBrinOpcInfo(1));
+ result->oi_typcache[0] = lookup_type_cache(PG_BRIN_MINMAX_MULTI_SUMMARYOID, 0);
+
+ PG_RETURN_POINTER(result);
+}
+
+/*
+ * Compute the distance between two float4 values (plain subtraction).
+ */
+Datum
+brin_minmax_multi_distance_float4(PG_FUNCTION_ARGS)
+{
+ float a1 = PG_GETARG_FLOAT4(0);
+ float a2 = PG_GETARG_FLOAT4(1);
+
+ /* if both values are NaN, then we consider them the same */
+ if (isnan(a1) && isnan(a2))
+ PG_RETURN_FLOAT8(0.0);
+
+ /* if one value is NaN, use infinite distance */
+ if (isnan(a1) || isnan(a2))
+ PG_RETURN_FLOAT8(get_float8_infinity());
+
+ /*
+ * We know the values are range boundaries, but the range may be collapsed
+ * (i.e. single points), with equal values.
+ */
+ Assert(a1 <= a2);
+
+ PG_RETURN_FLOAT8((double) a2 - (double) a1);
+}
+
+/*
+ * Compute the distance between two float8 values (plain subtraction).
+ */
+Datum
+brin_minmax_multi_distance_float8(PG_FUNCTION_ARGS)
+{
+ double a1 = PG_GETARG_FLOAT8(0);
+ double a2 = PG_GETARG_FLOAT8(1);
+
+ /* if both values are NaN, then we consider them the same */
+ if (isnan(a1) && isnan(a2))
+ PG_RETURN_FLOAT8(0.0);
+
+ /* if one value is NaN, use infinite distance */
+ if (isnan(a1) || isnan(a2))
+ PG_RETURN_FLOAT8(get_float8_infinity());
+
+ /*
+ * We know the values are range boundaries, but the range may be collapsed
+ * (i.e. single points), with equal values.
+ */
+ Assert(a1 <= a2);
+
+ PG_RETURN_FLOAT8(a2 - a1);
+}
+
+/*
+ * Compute the distance between two int2 values (plain subtraction).
+ */
+Datum
+brin_minmax_multi_distance_int2(PG_FUNCTION_ARGS)
+{
+ int16 a1 = PG_GETARG_INT16(0);
+ int16 a2 = PG_GETARG_INT16(1);
+
+ /*
+ * We know the values are range boundaries, but the range may be collapsed
+ * (i.e. single points), with equal values.
+ */
+ Assert(a1 <= a2);
+
+ PG_RETURN_FLOAT8((double) a2 - (double) a1);
+}
+
+/*
+ * Compute the distance between two int4 values (plain subtraction).
+ */
+Datum
+brin_minmax_multi_distance_int4(PG_FUNCTION_ARGS)
+{
+ int32 a1 = PG_GETARG_INT32(0);
+ int32 a2 = PG_GETARG_INT32(1);
+
+ /*
+ * We know the values are range boundaries, but the range may be collapsed
+ * (i.e. single points), with equal values.
+ */
+ Assert(a1 <= a2);
+
+ PG_RETURN_FLOAT8((double) a2 - (double) a1);
+}
+
+/*
+ * Compute the distance between two int8 values (plain subtraction).
+ */
+Datum
+brin_minmax_multi_distance_int8(PG_FUNCTION_ARGS)
+{
+ int64 a1 = PG_GETARG_INT64(0);
+ int64 a2 = PG_GETARG_INT64(1);
+
+ /*
+ * We know the values are range boundaries, but the range may be collapsed
+ * (i.e. single points), with equal values.
+ */
+ Assert(a1 <= a2);
+
+ PG_RETURN_FLOAT8((double) a2 - (double) a1);
+}
+
+/*
+ * Compute the distance between two tid values (by mapping them to float8 and
+ * then subtracting them).
+ */
+Datum
+brin_minmax_multi_distance_tid(PG_FUNCTION_ARGS)
+{
+ double da1,
+ da2;
+
+ ItemPointer pa1 = (ItemPointer) PG_GETARG_DATUM(0);
+ ItemPointer pa2 = (ItemPointer) PG_GETARG_DATUM(1);
+
+ /*
+ * We know the values are range boundaries, but the range may be collapsed
+ * (i.e. single points), with equal values.
+ */
+ Assert(ItemPointerCompare(pa1, pa2) <= 0);
+
+ /*
+ * We use the no-check variants here, because user-supplied values may
+ * have (ip_posid == 0). See ItemPointerCompare.
+ */
+ da1 = ItemPointerGetBlockNumberNoCheck(pa1) * MaxHeapTuplesPerPage +
+ ItemPointerGetOffsetNumberNoCheck(pa1);
+
+ da2 = ItemPointerGetBlockNumberNoCheck(pa2) * MaxHeapTuplesPerPage +
+ ItemPointerGetOffsetNumberNoCheck(pa2);
+
+ PG_RETURN_FLOAT8(da2 - da1);
+}
+
+/*
+ * Compute the distance between two numeric values (plain subtraction).
+ */
+Datum
+brin_minmax_multi_distance_numeric(PG_FUNCTION_ARGS)
+{
+ Datum d;
+ Datum a1 = PG_GETARG_DATUM(0);
+ Datum a2 = PG_GETARG_DATUM(1);
+
+ /*
+ * We know the values are range boundaries, but the range may be collapsed
+ * (i.e. single points), with equal values.
+ */
+ Assert(DatumGetBool(DirectFunctionCall2(numeric_le, a1, a2)));
+
+ d = DirectFunctionCall2(numeric_sub, a2, a1); /* a2 - a1 */
+
+ PG_RETURN_FLOAT8(DirectFunctionCall1(numeric_float8, d));
+}
+
+/*
+ * Compute the approximate distance between two UUID values.
+ *
+ * XXX We do not need a perfectly accurate value, so we approximate the
+ * deltas (which would have to be 128-bit integers) with a 64-bit float.
+ * The small inaccuracies do not matter in practice, in the worst case
+ * we'll decide to merge ranges that are not the closest ones.
+ */
+Datum
+brin_minmax_multi_distance_uuid(PG_FUNCTION_ARGS)
+{
+ int i;
+ float8 delta = 0;
+
+ Datum a1 = PG_GETARG_DATUM(0);
+ Datum a2 = PG_GETARG_DATUM(1);
+
+ pg_uuid_t *u1 = DatumGetUUIDP(a1);
+ pg_uuid_t *u2 = DatumGetUUIDP(a2);
+
+ /*
+ * We know the values are range boundaries, but the range may be collapsed
+ * (i.e. single points), with equal values.
+ */
+ Assert(DatumGetBool(DirectFunctionCall2(uuid_le, a1, a2)));
+
+ /* compute approximate delta as a double precision value */
+ for (i = UUID_LEN - 1; i >= 0; i--)
+ {
+ delta += (int) u2->data[i] - (int) u1->data[i];
+ delta /= 256;
+ }
+
+ Assert(delta >= 0);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+/*
+ * Compute the approximate distance between two dates.
+ */
+Datum
+brin_minmax_multi_distance_date(PG_FUNCTION_ARGS)
+{
+ float8 delta = 0;
+ DateADT dateVal1 = PG_GETARG_DATEADT(0);
+ DateADT dateVal2 = PG_GETARG_DATEADT(1);
+
+ delta = (float8) dateVal2 - (float8) dateVal1;
+
+ Assert(delta >= 0);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+/*
+ * Compute the approximate distance between two time (without tz) values.
+ *
+ * TimeADT is just an int64, so we simply subtract the values directly.
+ */
+Datum
+brin_minmax_multi_distance_time(PG_FUNCTION_ARGS)
+{
+ float8 delta = 0;
+
+ TimeADT ta = PG_GETARG_TIMEADT(0);
+ TimeADT tb = PG_GETARG_TIMEADT(1);
+
+ delta = (tb - ta);
+
+ Assert(delta >= 0);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+/*
+ * Compute the approximate distance between two timetz values.
+ *
+ * Simply subtracts the TimeADT (int64) values embedded in TimeTzADT.
+ */
+Datum
+brin_minmax_multi_distance_timetz(PG_FUNCTION_ARGS)
+{
+ float8 delta = 0;
+
+ TimeTzADT *ta = PG_GETARG_TIMETZADT_P(0);
+ TimeTzADT *tb = PG_GETARG_TIMETZADT_P(1);
+
+ delta = (tb->time - ta->time) + (tb->zone - ta->zone) * USECS_PER_SEC;
+
+ Assert(delta >= 0);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+/*
+ * Compute the distance between two timestamp values.
+ */
+Datum
+brin_minmax_multi_distance_timestamp(PG_FUNCTION_ARGS)
+{
+ float8 delta = 0;
+
+ Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
+ Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
+
+ delta = (float8) dt2 - (float8) dt1;
+
+ Assert(delta >= 0);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+/*
+ * Compute the distance between two interval values.
+ */
+Datum
+brin_minmax_multi_distance_interval(PG_FUNCTION_ARGS)
+{
+ float8 delta = 0;
+
+ Interval *ia = PG_GETARG_INTERVAL_P(0);
+ Interval *ib = PG_GETARG_INTERVAL_P(1);
+
+ int64 dayfraction;
+ int64 days;
+
+ /*
+ * Delta is (fractional) number of days between the intervals. Assume
+ * months have 30 days for consistency with interval_cmp_internal. We
+ * don't need to be exact, in the worst case we'll build a bit less
+ * efficient ranges. But we should not contradict interval_cmp.
+ */
+ dayfraction = (ib->time % USECS_PER_DAY) - (ia->time % USECS_PER_DAY);
+ days = (ib->time / USECS_PER_DAY) - (ia->time / USECS_PER_DAY);
+ days += (int64) ib->day - (int64) ia->day;
+ days += ((int64) ib->month - (int64) ia->month) * INT64CONST(30);
+
+ /* convert to double precision */
+ delta = (double) days + dayfraction / (double) USECS_PER_DAY;
+
+ Assert(delta >= 0);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+/*
+ * Compute the distance between two pg_lsn values.
+ *
+ * LSN is just an int64 encoding position in the stream, so just subtract
+ * those int64 values directly.
+ */
+Datum
+brin_minmax_multi_distance_pg_lsn(PG_FUNCTION_ARGS)
+{
+ float8 delta = 0;
+
+ XLogRecPtr lsna = PG_GETARG_LSN(0);
+ XLogRecPtr lsnb = PG_GETARG_LSN(1);
+
+ delta = (lsnb - lsna);
+
+ Assert(delta >= 0);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+/*
+ * Compute the distance between two macaddr values.
+ *
+ * mac addresses are treated as 6 unsigned chars, so do the same thing we
+ * already do for UUID values.
+ */
+Datum
+brin_minmax_multi_distance_macaddr(PG_FUNCTION_ARGS)
+{
+ float8 delta;
+
+ macaddr *a = PG_GETARG_MACADDR_P(0);
+ macaddr *b = PG_GETARG_MACADDR_P(1);
+
+ delta = ((float8) b->f - (float8) a->f);
+ delta /= 256;
+
+ delta += ((float8) b->e - (float8) a->e);
+ delta /= 256;
+
+ delta += ((float8) b->d - (float8) a->d);
+ delta /= 256;
+
+ delta += ((float8) b->c - (float8) a->c);
+ delta /= 256;
+
+ delta += ((float8) b->b - (float8) a->b);
+ delta /= 256;
+
+ delta += ((float8) b->a - (float8) a->a);
+ delta /= 256;
+
+ Assert(delta >= 0);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+/*
+ * Compute the distance between two macaddr8 values.
+ *
+ * macaddr8 addresses are 8 unsigned chars, so do the same thing we
+ * already do for UUID values.
+ */
+Datum
+brin_minmax_multi_distance_macaddr8(PG_FUNCTION_ARGS)
+{
+ float8 delta;
+
+ macaddr8 *a = PG_GETARG_MACADDR8_P(0);
+ macaddr8 *b = PG_GETARG_MACADDR8_P(1);
+
+ delta = ((float8) b->h - (float8) a->h);
+ delta /= 256;
+
+ delta += ((float8) b->g - (float8) a->g);
+ delta /= 256;
+
+ delta += ((float8) b->f - (float8) a->f);
+ delta /= 256;
+
+ delta += ((float8) b->e - (float8) a->e);
+ delta /= 256;
+
+ delta += ((float8) b->d - (float8) a->d);
+ delta /= 256;
+
+ delta += ((float8) b->c - (float8) a->c);
+ delta /= 256;
+
+ delta += ((float8) b->b - (float8) a->b);
+ delta /= 256;
+
+ delta += ((float8) b->a - (float8) a->a);
+ delta /= 256;
+
+ Assert(delta >= 0);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+/*
+ * Compute the distance between two inet values.
+ *
+ * The distance is defined as the difference between 32-bit/128-bit values,
+ * depending on the IP version. The distance is computed by subtracting
+ * the bytes and normalizing it to [0,1] range for each IP family.
+ * Addresses from different families are considered to be in maximum
+ * distance, which is 1.0.
+ *
+ * XXX Does this need to consider the mask (bits)? For now, it's ignored.
+ */
+Datum
+brin_minmax_multi_distance_inet(PG_FUNCTION_ARGS)
+{
+ float8 delta;
+ int i;
+ int len;
+ unsigned char *addra,
+ *addrb;
+
+ inet *ipa = PG_GETARG_INET_PP(0);
+ inet *ipb = PG_GETARG_INET_PP(1);
+
+ int lena,
+ lenb;
+
+ /*
+ * If the addresses are from different families, consider them to be in
+ * maximal possible distance (which is 1.0).
+ */
+ if (ip_family(ipa) != ip_family(ipb))
+ PG_RETURN_FLOAT8(1.0);
+
+ addra = (unsigned char *) palloc(ip_addrsize(ipa));
+ memcpy(addra, ip_addr(ipa), ip_addrsize(ipa));
+
+ addrb = (unsigned char *) palloc(ip_addrsize(ipb));
+ memcpy(addrb, ip_addr(ipb), ip_addrsize(ipb));
+
+ /*
+ * The length is calculated from the mask length, because we sort the
+ * addresses by first address in the range, so A.B.C.D/24 < A.B.C.1 (the
+ * first range starts at A.B.C.0, which is before A.B.C.1). We don't want
+ * to produce a negative delta in this case, so we just cut the extra
+ * bytes.
+ *
+ * XXX Maybe this should be a bit more careful and cut the bits, not just
+ * whole bytes.
+ */
+ lena = ip_bits(ipa);
+ lenb = ip_bits(ipb);
+
+ len = ip_addrsize(ipa);
+
+ /* apply the network mask to both addresses */
+ for (i = 0; i < len; i++)
+ {
+ unsigned char mask;
+ int nbits;
+
+ nbits = Max(0, lena - (i * 8));
+ if (nbits < 8)
+ {
+ mask = (0xFF << (8 - nbits));
+ addra[i] = (addra[i] & mask);
+ }
+
+ nbits = Max(0, lenb - (i * 8));
+ if (nbits < 8)
+ {
+ mask = (0xFF << (8 - nbits));
+ addrb[i] = (addrb[i] & mask);
+ }
+ }
+
+ /* Calculate the difference between the addresses. */
+ delta = 0;
+ for (i = len - 1; i >= 0; i--)
+ {
+ unsigned char a = addra[i];
+ unsigned char b = addrb[i];
+
+ delta += (float8) b - (float8) a;
+ delta /= 256;
+ }
+
+ Assert((delta >= 0) && (delta <= 1));
+
+ pfree(addra);
+ pfree(addrb);
+
+ PG_RETURN_FLOAT8(delta);
+}
+
+static void
+brin_minmax_multi_serialize(BrinDesc *bdesc, Datum src, Datum *dst)
+{
+ Ranges *ranges = (Ranges *) DatumGetPointer(src);
+ SerializedRanges *s;
+
+ /*
+ * In batch mode, we need to compress the accumulated values to the
+ * actually requested number of values/ranges.
+ */
+ compactify_ranges(bdesc, ranges, ranges->target_maxvalues);
+
+ /* At this point everything has to be fully sorted. */
+ Assert(ranges->nsorted == ranges->nvalues);
+
+ s = brin_range_serialize(ranges);
+ dst[0] = PointerGetDatum(s);
+}
+
+static int
+brin_minmax_multi_get_values(BrinDesc *bdesc, MinMaxMultiOptions *opts)
+{
+ return MinMaxMultiGetValuesPerRange(opts);
+}
+
+/*
+ * Examine the given index tuple (which contains the partial status of a
+ * certain page range) by comparing it to the given value that comes from
+ * another heap tuple. If the new value is outside the min/max range
+ * specified by the existing tuple values, update the index tuple and return
+ * true. Otherwise, return false and do not modify in this case.
+ */
+Datum
+brin_minmax_multi_add_value(PG_FUNCTION_ARGS)
+{
+ BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
+ BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
+ Datum newval = PG_GETARG_DATUM(2);
+ bool isnull PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(3);
+ MinMaxMultiOptions *opts = (MinMaxMultiOptions *) PG_GET_OPCLASS_OPTIONS();
+ Oid colloid = PG_GET_COLLATION();
+ bool modified = false;
+ Form_pg_attribute attr;
+ AttrNumber attno;
+ Ranges *ranges;
+ SerializedRanges *serialized = NULL;
+
+ Assert(!isnull);
+
+ attno = column->bv_attno;
+ attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
+
+ /* use the already deserialized value, if possible */
+ ranges = (Ranges *) DatumGetPointer(column->bv_mem_value);
+
+ /*
+ * If this is the first non-null value, we need to initialize the range
+ * list. Otherwise, just extract the existing range list from BrinValues.
+ *
+ * When starting with an empty range, we assume this is a batch mode and
+ * we use a larger buffer. The buffer size is derived from the BRIN range
+ * size, number of rows per page, with some sensible min/max values. A
+ * small buffer would be bad for performance, but a large buffer might
+ * require a lot of memory (because of keeping all the values).
+ */
+ if (column->bv_allnulls)
+ {
+ MemoryContext oldctx;
+
+ int target_maxvalues;
+ int maxvalues;
+ BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
+
+ /* what was specified as a reloption? */
+ target_maxvalues = brin_minmax_multi_get_values(bdesc, opts);
+
+ /*
+ * Determine the insert buffer size - we use 10x the target, capped to
+ * the maximum number of values in the heap range. This is more than
+ * enough, considering the actual number of rows per page is likely
+ * much lower, but meh.
+ */
+ maxvalues = Min(target_maxvalues * MINMAX_BUFFER_FACTOR,
+ MaxHeapTuplesPerPage * pagesPerRange);
+
+ /* but always at least the original value */
+ maxvalues = Max(maxvalues, target_maxvalues);
+
+ /* always cap by MIN/MAX */
+ maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
+ maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
+
+ oldctx = MemoryContextSwitchTo(column->bv_context);
+ ranges = minmax_multi_init(maxvalues);
+ ranges->attno = attno;
+ ranges->colloid = colloid;
+ ranges->typid = attr->atttypid;
+ ranges->target_maxvalues = target_maxvalues;
+
+ /* we'll certainly need the comparator, so just look it up now */
+ ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
+ BTLessStrategyNumber);
+
+ MemoryContextSwitchTo(oldctx);
+
+ column->bv_allnulls = false;
+ modified = true;
+
+ column->bv_mem_value = PointerGetDatum(ranges);
+ column->bv_serialize = brin_minmax_multi_serialize;
+ }
+ else if (!ranges)
+ {
+ MemoryContext oldctx;
+
+ int maxvalues;
+ BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
+
+ oldctx = MemoryContextSwitchTo(column->bv_context);
+
+ serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
+
+ /*
+ * Determine the insert buffer size - we use 10x the target, capped to
+ * the maximum number of values in the heap range. This is more than
+ * enough, considering the actual number of rows per page is likely
+ * much lower, but meh.
+ */
+ maxvalues = Min(serialized->maxvalues * MINMAX_BUFFER_FACTOR,
+ MaxHeapTuplesPerPage * pagesPerRange);
+
+ /* but always at least the original value */
+ maxvalues = Max(maxvalues, serialized->maxvalues);
+
+ /* always cap by MIN/MAX */
+ maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
+ maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
+
+ ranges = brin_range_deserialize(maxvalues, serialized);
+
+ ranges->attno = attno;
+ ranges->colloid = colloid;
+ ranges->typid = attr->atttypid;
+
+ /* we'll certainly need the comparator, so just look it up now */
+ ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
+ BTLessStrategyNumber);
+
+ column->bv_mem_value = PointerGetDatum(ranges);
+ column->bv_serialize = brin_minmax_multi_serialize;
+
+ MemoryContextSwitchTo(oldctx);
+ }
+
+ /*
+ * Try to add the new value to the range. We need to update the modified
+ * flag, so that we serialize the updated summary later.
+ */
+ modified |= range_add_value(bdesc, colloid, attno, attr, ranges, newval);
+
+
+ PG_RETURN_BOOL(modified);
+}
+
+/*
+ * Given an index tuple corresponding to a certain page range and a scan key,
+ * return whether the scan key is consistent with the index tuple's min/max
+ * values. Return true if so, false otherwise.
+ */
+Datum
+brin_minmax_multi_consistent(PG_FUNCTION_ARGS)
+{
+ BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
+ BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
+ ScanKey *keys = (ScanKey *) PG_GETARG_POINTER(2);
+ int nkeys = PG_GETARG_INT32(3);
+
+ Oid colloid = PG_GET_COLLATION(),
+ subtype;
+ AttrNumber attno;
+ Datum value;
+ FmgrInfo *finfo;
+ SerializedRanges *serialized;
+ Ranges *ranges;
+ int keyno;
+ int rangeno;
+ int i;
+
+ attno = column->bv_attno;
+
+ serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
+ ranges = brin_range_deserialize(serialized->maxvalues, serialized);
+
+ /* inspect the ranges, and for each one evaluate the scan keys */
+ for (rangeno = 0; rangeno < ranges->nranges; rangeno++)
+ {
+ Datum minval = ranges->values[2 * rangeno];
+ Datum maxval = ranges->values[2 * rangeno + 1];
+
+ /* assume the range is matching, and we'll try to prove otherwise */
+ bool matching = true;
+
+ for (keyno = 0; keyno < nkeys; keyno++)
+ {
+ Datum matches;
+ ScanKey key = keys[keyno];
+
+ /* NULL keys are handled and filtered-out in bringetbitmap */
+ Assert(!(key->sk_flags & SK_ISNULL));
+
+ attno = key->sk_attno;
+ subtype = key->sk_subtype;
+ value = key->sk_argument;
+ switch (key->sk_strategy)
+ {
+ case BTLessStrategyNumber:
+ case BTLessEqualStrategyNumber:
+ finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
+ key->sk_strategy);
+ /* first value from the array */
+ matches = FunctionCall2Coll(finfo, colloid, minval, value);
+ break;
+
+ case BTEqualStrategyNumber:
+ {
+ Datum compar;
+ FmgrInfo *cmpFn;
+
+ /* by default this range does not match */
+ matches = false;
+
+ /*
+ * Otherwise, need to compare the new value with
+ * boundaries of all the ranges. First check if it's
+ * less than the absolute minimum, which is the first
+ * value in the array.
+ */
+ cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
+ BTGreaterStrategyNumber);
+ compar = FunctionCall2Coll(cmpFn, colloid, minval, value);
+
+ /* smaller than the smallest value in this range */
+ if (DatumGetBool(compar))
+ break;
+
+ cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
+ BTLessStrategyNumber);
+ compar = FunctionCall2Coll(cmpFn, colloid, maxval, value);
+
+ /* larger than the largest value in this range */
+ if (DatumGetBool(compar))
+ break;
+
+ /*
+ * We haven't managed to eliminate this range, so
+ * consider it matching.
+ */
+ matches = true;
+
+ break;
+ }
+ case BTGreaterEqualStrategyNumber:
+ case BTGreaterStrategyNumber:
+ finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
+ key->sk_strategy);
+ /* last value from the array */
+ matches = FunctionCall2Coll(finfo, colloid, maxval, value);
+ break;
+
+ default:
+ /* shouldn't happen */
+ elog(ERROR, "invalid strategy number %d", key->sk_strategy);
+ matches = 0;
+ break;
+ }
+
+ /* the range has to match all the scan keys */
+ matching &= DatumGetBool(matches);
+
+ /* once we find a non-matching key, we're done */
+ if (!matching)
+ break;
+ }
+
+ /*
+ * have we found a range matching all scan keys? if yes, we're done
+ */
+ if (matching)
+ PG_RETURN_DATUM(BoolGetDatum(true));
+ }
+
+ /*
+ * And now inspect the values. We don't bother with doing a binary search
+ * here, because we're dealing with serialized / fully compacted ranges,
+ * so there should be only very few values.
+ */
+ for (i = 0; i < ranges->nvalues; i++)
+ {
+ Datum val = ranges->values[2 * ranges->nranges + i];
+
+ /* assume the range is matching, and we'll try to prove otherwise */
+ bool matching = true;
+
+ for (keyno = 0; keyno < nkeys; keyno++)
+ {
+ Datum matches;
+ ScanKey key = keys[keyno];
+
+ /* we've already dealt with NULL keys at the beginning */
+ if (key->sk_flags & SK_ISNULL)
+ continue;
+
+ attno = key->sk_attno;
+ subtype = key->sk_subtype;
+ value = key->sk_argument;
+ switch (key->sk_strategy)
+ {
+ case BTLessStrategyNumber:
+ case BTLessEqualStrategyNumber:
+ case BTEqualStrategyNumber:
+ case BTGreaterEqualStrategyNumber:
+ case BTGreaterStrategyNumber:
+
+ finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
+ key->sk_strategy);
+ matches = FunctionCall2Coll(finfo, colloid, val, value);
+ break;
+
+ default:
+ /* shouldn't happen */
+ elog(ERROR, "invalid strategy number %d", key->sk_strategy);
+ matches = 0;
+ break;
+ }
+
+ /* the range has to match all the scan keys */
+ matching &= DatumGetBool(matches);
+
+ /* once we find a non-matching key, we're done */
+ if (!matching)
+ break;
+ }
+
+ /* have we found a range matching all scan keys? if yes, we're done */
+ if (matching)
+ PG_RETURN_DATUM(BoolGetDatum(true));
+ }
+
+ PG_RETURN_DATUM(BoolGetDatum(false));
+}
+
+/*
+ * Given two BrinValues, update the first of them as a union of the summary
+ * values contained in both. The second one is untouched.
+ */
+Datum
+brin_minmax_multi_union(PG_FUNCTION_ARGS)
+{
+ BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
+ BrinValues *col_a = (BrinValues *) PG_GETARG_POINTER(1);
+ BrinValues *col_b = (BrinValues *) PG_GETARG_POINTER(2);
+
+ Oid colloid = PG_GET_COLLATION();
+ SerializedRanges *serialized_a;
+ SerializedRanges *serialized_b;
+ Ranges *ranges_a;
+ Ranges *ranges_b;
+ AttrNumber attno;
+ Form_pg_attribute attr;
+ ExpandedRange *eranges;
+ int neranges;
+ FmgrInfo *cmpFn,
+ *distanceFn;
+ DistanceValue *distances;
+ MemoryContext ctx;
+ MemoryContext oldctx;
+
+ Assert(col_a->bv_attno == col_b->bv_attno);
+ Assert(!col_a->bv_allnulls && !col_b->bv_allnulls);
+
+ attno = col_a->bv_attno;
+ attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
+
+ serialized_a = (SerializedRanges *) PG_DETOAST_DATUM(col_a->bv_values[0]);
+ serialized_b = (SerializedRanges *) PG_DETOAST_DATUM(col_b->bv_values[0]);
+
+ ranges_a = brin_range_deserialize(serialized_a->maxvalues, serialized_a);
+ ranges_b = brin_range_deserialize(serialized_b->maxvalues, serialized_b);
+
+ /* make sure neither of the ranges is NULL */
+ Assert(ranges_a && ranges_b);
+
+ neranges = (ranges_a->nranges + ranges_a->nvalues) +
+ (ranges_b->nranges + ranges_b->nvalues);
+
+ /*
+ * The distanceFn calls (which may internally call e.g. numeric_le) may
+ * allocate quite a bit of memory, and we must not leak it. Otherwise,
+ * we'd have problems e.g. when building indexes. So we create a local
+ * memory context and make sure we free the memory before leaving this
+ * function (not after every call).
+ */
+ ctx = AllocSetContextCreate(CurrentMemoryContext,
+ "minmax-multi context",
+ ALLOCSET_DEFAULT_SIZES);
+
+ oldctx = MemoryContextSwitchTo(ctx);
+
+ /* allocate and fill */
+ eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
+
+ /* fill the expanded ranges with entries for the first range */
+ fill_expanded_ranges(eranges, ranges_a->nranges + ranges_a->nvalues,
+ ranges_a);
+
+ /* and now add combine ranges for the second range */
+ fill_expanded_ranges(&eranges[ranges_a->nranges + ranges_a->nvalues],
+ ranges_b->nranges + ranges_b->nvalues,
+ ranges_b);
+
+ cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
+ BTLessStrategyNumber);
+
+ /* sort the expanded ranges */
+ neranges = sort_expanded_ranges(cmpFn, colloid, eranges, neranges);
+
+ /*
+ * We've loaded two different lists of expanded ranges, so some of them
+ * may be overlapping. So walk through them and merge them.
+ */
+ neranges = merge_overlapping_ranges(cmpFn, colloid, eranges, neranges);
+
+ /* check that the combine ranges are correct (no overlaps, ordering) */
+ AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
+
+ /*
+ * If needed, reduce some of the ranges.
+ *
+ * XXX This may be fairly expensive, so maybe we should do it only when
+ * it's actually needed (when we have too many ranges).
+ */
+
+ /* build array of gap distances and sort them in ascending order */
+ distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
+ distances = build_distances(distanceFn, colloid, eranges, neranges);
+
+ /*
+ * See how many values would be needed to store the current ranges, and if
+ * needed combine as many of them to get below the threshold. The
+ * collapsed ranges will be stored as a single value.
+ *
+ * XXX This does not apply the load factor, as we don't expect to add more
+ * values to the range, so we prefer to keep as many ranges as possible.
+ *
+ * XXX Can the maxvalues be different in the two ranges? Perhaps we should
+ * use maximum of those?
+ */
+ neranges = reduce_expanded_ranges(eranges, neranges, distances,
+ ranges_a->maxvalues,
+ cmpFn, colloid);
+
+ /* update the first range summary */
+ store_expanded_ranges(ranges_a, eranges, neranges);
+
+ MemoryContextSwitchTo(oldctx);
+ MemoryContextDelete(ctx);
+
+ /* cleanup and update the serialized value */
+ pfree(serialized_a);
+ col_a->bv_values[0] = PointerGetDatum(brin_range_serialize(ranges_a));
+
+ PG_RETURN_VOID();
+}
+
+/*
+ * Cache and return minmax multi opclass support procedure
+ *
+ * Return the procedure corresponding to the given function support number
+ * or null if it does not exist.
+ */
+static FmgrInfo *
+minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
+{
+ MinmaxMultiOpaque *opaque;
+ uint16 basenum = procnum - PROCNUM_BASE;
+
+ /*
+ * We cache these in the opaque struct, to avoid repetitive syscache
+ * lookups.
+ */
+ opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
+
+ /*
+ * If we already searched for this proc and didn't find it, don't bother
+ * searching again.
+ */
+ if (opaque->extra_proc_missing[basenum])
+ return NULL;
+
+ if (opaque->extra_procinfos[basenum].fn_oid == InvalidOid)
+ {
+ if (RegProcedureIsValid(index_getprocid(bdesc->bd_index, attno,
+ procnum)))
+ {
+ fmgr_info_copy(&opaque->extra_procinfos[basenum],
+ index_getprocinfo(bdesc->bd_index, attno, procnum),
+ bdesc->bd_context);
+ }
+ else
+ {
+ opaque->extra_proc_missing[basenum] = true;
+ return NULL;
+ }
+ }
+
+ return &opaque->extra_procinfos[basenum];
+}
+
+/*
+ * Cache and return the procedure for the given strategy.
+ *
+ * Note: this function mirrors minmax_multi_get_strategy_procinfo; see notes
+ * there. If changes are made here, see that function too.
+ */
+static FmgrInfo *
+minmax_multi_get_strategy_procinfo(BrinDesc *bdesc, uint16 attno, Oid subtype,
+ uint16 strategynum)
+{
+ MinmaxMultiOpaque *opaque;
+
+ Assert(strategynum >= 1 &&
+ strategynum <= BTMaxStrategyNumber);
+
+ opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
+
+ /*
+ * We cache the procedures for the previous subtype in the opaque struct,
+ * to avoid repetitive syscache lookups. If the subtype changed,
+ * invalidate all the cached entries.
+ */
+ if (opaque->cached_subtype != subtype)
+ {
+ uint16 i;
+
+ for (i = 1; i <= BTMaxStrategyNumber; i++)
+ opaque->strategy_procinfos[i - 1].fn_oid = InvalidOid;
+ opaque->cached_subtype = subtype;
+ }
+
+ if (opaque->strategy_procinfos[strategynum - 1].fn_oid == InvalidOid)
+ {
+ Form_pg_attribute attr;
+ HeapTuple tuple;
+ Oid opfamily,
+ oprid;
+ bool isNull;
+
+ opfamily = bdesc->bd_index->rd_opfamily[attno - 1];
+ attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
+ tuple = SearchSysCache4(AMOPSTRATEGY, ObjectIdGetDatum(opfamily),
+ ObjectIdGetDatum(attr->atttypid),
+ ObjectIdGetDatum(subtype),
+ Int16GetDatum(strategynum));
+ if (!HeapTupleIsValid(tuple))
+ elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
+ strategynum, attr->atttypid, subtype, opfamily);
+
+ oprid = DatumGetObjectId(SysCacheGetAttr(AMOPSTRATEGY, tuple,
+ Anum_pg_amop_amopopr, &isNull));
+ ReleaseSysCache(tuple);
+ Assert(!isNull && RegProcedureIsValid(oprid));
+
+ fmgr_info_cxt(get_opcode(oprid),
+ &opaque->strategy_procinfos[strategynum - 1],
+ bdesc->bd_context);
+ }
+
+ return &opaque->strategy_procinfos[strategynum - 1];
+}
+
+Datum
+brin_minmax_multi_options(PG_FUNCTION_ARGS)
+{
+ local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
+
+ init_local_reloptions(relopts, sizeof(MinMaxMultiOptions));
+
+ add_local_int_reloption(relopts, "values_per_range", "desc",
+ MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE, 8, 256,
+ offsetof(MinMaxMultiOptions, valuesPerRange));
+
+ PG_RETURN_VOID();
+}
+
+/*
+ * brin_minmax_multi_summary_in
+ * - input routine for type brin_minmax_multi_summary.
+ *
+ * brin_minmax_multi_summary is only used internally to represent summaries
+ * in BRIN minmax-multi indexes, so it has no operations of its own, and we
+ * disallow input too.
+ */
+Datum
+brin_minmax_multi_summary_in(PG_FUNCTION_ARGS)
+{
+ /*
+ * brin_minmax_multi_summary stores the data in binary form and parsing
+ * text input is not needed, so disallow this.
+ */
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
+
+ PG_RETURN_VOID(); /* keep compiler quiet */
+}
+
+
+/*
+ * brin_minmax_multi_summary_out
+ * - output routine for type brin_minmax_multi_summary.
+ *
+ * BRIN minmax-multi summaries are serialized into a bytea value, but we
+ * want to output something nicer humans can understand.
+ */
+Datum
+brin_minmax_multi_summary_out(PG_FUNCTION_ARGS)
+{
+ int i;
+ int idx;
+ SerializedRanges *ranges;
+ Ranges *ranges_deserialized;
+ StringInfoData str;
+ bool isvarlena;
+ Oid outfunc;
+ FmgrInfo fmgrinfo;
+ ArrayBuildState *astate_values = NULL;
+
+ initStringInfo(&str);
+ appendStringInfoChar(&str, '{');
+
+ /*
+ * Detoast to get value with full 4B header (can't be stored in a toast
+ * table, but can use 1B header).
+ */
+ ranges = (SerializedRanges *) PG_DETOAST_DATUM(PG_GETARG_BYTEA_PP(0));
+
+ /* lookup output func for the type */
+ getTypeOutputInfo(ranges->typid, &outfunc, &isvarlena);
+ fmgr_info(outfunc, &fmgrinfo);
+
+ /* deserialize the range info easy-to-process pieces */
+ ranges_deserialized = brin_range_deserialize(ranges->maxvalues, ranges);
+
+ appendStringInfo(&str, "nranges: %d nvalues: %d maxvalues: %d",
+ ranges_deserialized->nranges,
+ ranges_deserialized->nvalues,
+ ranges_deserialized->maxvalues);
+
+ /* serialize ranges */
+ idx = 0;
+ for (i = 0; i < ranges_deserialized->nranges; i++)
+ {
+ char *a,
+ *b;
+ text *c;
+ StringInfoData str;
+
+ initStringInfo(&str);
+
+ a = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
+ b = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
+
+ appendStringInfo(&str, "%s ... %s", a, b);
+
+ c = cstring_to_text(str.data);
+
+ astate_values = accumArrayResult(astate_values,
+ PointerGetDatum(c),
+ false,
+ TEXTOID,
+ CurrentMemoryContext);
+ }
+
+ if (ranges_deserialized->nranges > 0)
+ {
+ Oid typoutput;
+ bool typIsVarlena;
+ Datum val;
+ char *extval;
+
+ getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
+
+ val = PointerGetDatum(makeArrayResult(astate_values, CurrentMemoryContext));
+
+ extval = OidOutputFunctionCall(typoutput, val);
+
+ appendStringInfo(&str, " ranges: %s", extval);
+ }
+
+ /* serialize individual values */
+ astate_values = NULL;
+
+ for (i = 0; i < ranges_deserialized->nvalues; i++)
+ {
+ Datum a;
+ text *b;
+ StringInfoData str;
+
+ initStringInfo(&str);
+
+ a = FunctionCall1(&fmgrinfo, ranges_deserialized->values[idx++]);
+
+ appendStringInfoString(&str, DatumGetCString(a));
+
+ b = cstring_to_text(str.data);
+
+ astate_values = accumArrayResult(astate_values,
+ PointerGetDatum(b),
+ false,
+ TEXTOID,
+ CurrentMemoryContext);
+ }
+
+ if (ranges_deserialized->nvalues > 0)
+ {
+ Oid typoutput;
+ bool typIsVarlena;
+ Datum val;
+ char *extval;
+
+ getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
+
+ val = PointerGetDatum(makeArrayResult(astate_values, CurrentMemoryContext));
+
+ extval = OidOutputFunctionCall(typoutput, val);
+
+ appendStringInfo(&str, " values: %s", extval);
+ }
+
+
+ appendStringInfoChar(&str, '}');
+
+ PG_RETURN_CSTRING(str.data);
+}
+
+/*
+ * brin_minmax_multi_summary_recv
+ * - binary input routine for type brin_minmax_multi_summary.
+ */
+Datum
+brin_minmax_multi_summary_recv(PG_FUNCTION_ARGS)
+{
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
+
+ PG_RETURN_VOID(); /* keep compiler quiet */
+}
+
+/*
+ * brin_minmax_multi_summary_send
+ * - binary output routine for type brin_minmax_multi_summary.
+ *
+ * BRIN minmax-multi summaries are serialized in a bytea value (although
+ * the type is named differently), so let's just send that.
+ */
+Datum
+brin_minmax_multi_summary_send(PG_FUNCTION_ARGS)
+{
+ return byteasend(fcinfo);
+}