summaryrefslogtreecommitdiffstats
path: root/src/backend/access/table/tableam.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/access/table/tableam.c')
-rw-r--r--src/backend/access/table/tableam.c761
1 files changed, 761 insertions, 0 deletions
diff --git a/src/backend/access/table/tableam.c b/src/backend/access/table/tableam.c
new file mode 100644
index 0000000..b3d1a6c
--- /dev/null
+++ b/src/backend/access/table/tableam.c
@@ -0,0 +1,761 @@
+/*----------------------------------------------------------------------
+ *
+ * tableam.c
+ * Table access method routines too big to be inline functions.
+ *
+ * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/access/table/tableam.c
+ *
+ * NOTES
+ * Note that most function in here are documented in tableam.h, rather than
+ * here. That's because there's a lot of inline functions in tableam.h and
+ * it'd be harder to understand if one constantly had to switch between files.
+ *
+ *----------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include <math.h>
+
+#include "access/syncscan.h"
+#include "access/tableam.h"
+#include "access/xact.h"
+#include "optimizer/plancat.h"
+#include "port/pg_bitutils.h"
+#include "storage/bufmgr.h"
+#include "storage/shmem.h"
+#include "storage/smgr.h"
+
+/*
+ * Constants to control the behavior of block allocation to parallel workers
+ * during a parallel seqscan. Technically these values do not need to be
+ * powers of 2, but having them as powers of 2 makes the math more optimal
+ * and makes the ramp-down stepping more even.
+ */
+
+/* The number of I/O chunks we try to break a parallel seqscan down into */
+#define PARALLEL_SEQSCAN_NCHUNKS 2048
+/* Ramp down size of allocations when we've only this number of chunks left */
+#define PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS 64
+/* Cap the size of parallel I/O chunks to this number of blocks */
+#define PARALLEL_SEQSCAN_MAX_CHUNK_SIZE 8192
+
+/* GUC variables */
+char *default_table_access_method = DEFAULT_TABLE_ACCESS_METHOD;
+bool synchronize_seqscans = true;
+
+
+/* ----------------------------------------------------------------------------
+ * Slot functions.
+ * ----------------------------------------------------------------------------
+ */
+
+const TupleTableSlotOps *
+table_slot_callbacks(Relation relation)
+{
+ const TupleTableSlotOps *tts_cb;
+
+ if (relation->rd_tableam)
+ tts_cb = relation->rd_tableam->slot_callbacks(relation);
+ else if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
+ {
+ /*
+ * Historically FDWs expect to store heap tuples in slots. Continue
+ * handing them one, to make it less painful to adapt FDWs to new
+ * versions. The cost of a heap slot over a virtual slot is pretty
+ * small.
+ */
+ tts_cb = &TTSOpsHeapTuple;
+ }
+ else
+ {
+ /*
+ * These need to be supported, as some parts of the code (like COPY)
+ * need to create slots for such relations too. It seems better to
+ * centralize the knowledge that a heap slot is the right thing in
+ * that case here.
+ */
+ Assert(relation->rd_rel->relkind == RELKIND_VIEW ||
+ relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
+ tts_cb = &TTSOpsVirtual;
+ }
+
+ return tts_cb;
+}
+
+TupleTableSlot *
+table_slot_create(Relation relation, List **reglist)
+{
+ const TupleTableSlotOps *tts_cb;
+ TupleTableSlot *slot;
+
+ tts_cb = table_slot_callbacks(relation);
+ slot = MakeSingleTupleTableSlot(RelationGetDescr(relation), tts_cb);
+
+ if (reglist)
+ *reglist = lappend(*reglist, slot);
+
+ return slot;
+}
+
+
+/* ----------------------------------------------------------------------------
+ * Table scan functions.
+ * ----------------------------------------------------------------------------
+ */
+
+TableScanDesc
+table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
+{
+ uint32 flags = SO_TYPE_SEQSCAN |
+ SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE | SO_TEMP_SNAPSHOT;
+ Oid relid = RelationGetRelid(relation);
+ Snapshot snapshot = RegisterSnapshot(GetCatalogSnapshot(relid));
+
+ return relation->rd_tableam->scan_begin(relation, snapshot, nkeys, key,
+ NULL, flags);
+}
+
+void
+table_scan_update_snapshot(TableScanDesc scan, Snapshot snapshot)
+{
+ Assert(IsMVCCSnapshot(snapshot));
+
+ RegisterSnapshot(snapshot);
+ scan->rs_snapshot = snapshot;
+ scan->rs_flags |= SO_TEMP_SNAPSHOT;
+}
+
+
+/* ----------------------------------------------------------------------------
+ * Parallel table scan related functions.
+ * ----------------------------------------------------------------------------
+ */
+
+Size
+table_parallelscan_estimate(Relation rel, Snapshot snapshot)
+{
+ Size sz = 0;
+
+ if (IsMVCCSnapshot(snapshot))
+ sz = add_size(sz, EstimateSnapshotSpace(snapshot));
+ else
+ Assert(snapshot == SnapshotAny);
+
+ sz = add_size(sz, rel->rd_tableam->parallelscan_estimate(rel));
+
+ return sz;
+}
+
+void
+table_parallelscan_initialize(Relation rel, ParallelTableScanDesc pscan,
+ Snapshot snapshot)
+{
+ Size snapshot_off = rel->rd_tableam->parallelscan_initialize(rel, pscan);
+
+ pscan->phs_snapshot_off = snapshot_off;
+
+ if (IsMVCCSnapshot(snapshot))
+ {
+ SerializeSnapshot(snapshot, (char *) pscan + pscan->phs_snapshot_off);
+ pscan->phs_snapshot_any = false;
+ }
+ else
+ {
+ Assert(snapshot == SnapshotAny);
+ pscan->phs_snapshot_any = true;
+ }
+}
+
+TableScanDesc
+table_beginscan_parallel(Relation relation, ParallelTableScanDesc parallel_scan)
+{
+ Snapshot snapshot;
+ uint32 flags = SO_TYPE_SEQSCAN |
+ SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE;
+
+ Assert(RelationGetRelid(relation) == parallel_scan->phs_relid);
+
+ if (!parallel_scan->phs_snapshot_any)
+ {
+ /* Snapshot was serialized -- restore it */
+ snapshot = RestoreSnapshot((char *) parallel_scan +
+ parallel_scan->phs_snapshot_off);
+ RegisterSnapshot(snapshot);
+ flags |= SO_TEMP_SNAPSHOT;
+ }
+ else
+ {
+ /* SnapshotAny passed by caller (not serialized) */
+ snapshot = SnapshotAny;
+ }
+
+ return relation->rd_tableam->scan_begin(relation, snapshot, 0, NULL,
+ parallel_scan, flags);
+}
+
+
+/* ----------------------------------------------------------------------------
+ * Index scan related functions.
+ * ----------------------------------------------------------------------------
+ */
+
+/*
+ * To perform that check simply start an index scan, create the necessary
+ * slot, do the heap lookup, and shut everything down again. This could be
+ * optimized, but is unlikely to matter from a performance POV. If there
+ * frequently are live index pointers also matching a unique index key, the
+ * CPU overhead of this routine is unlikely to matter.
+ *
+ * Note that *tid may be modified when we return true if the AM supports
+ * storing multiple row versions reachable via a single index entry (like
+ * heap's HOT).
+ */
+bool
+table_index_fetch_tuple_check(Relation rel,
+ ItemPointer tid,
+ Snapshot snapshot,
+ bool *all_dead)
+{
+ IndexFetchTableData *scan;
+ TupleTableSlot *slot;
+ bool call_again = false;
+ bool found;
+
+ slot = table_slot_create(rel, NULL);
+ scan = table_index_fetch_begin(rel);
+ found = table_index_fetch_tuple(scan, tid, snapshot, slot, &call_again,
+ all_dead);
+ table_index_fetch_end(scan);
+ ExecDropSingleTupleTableSlot(slot);
+
+ return found;
+}
+
+
+/* ------------------------------------------------------------------------
+ * Functions for non-modifying operations on individual tuples
+ * ------------------------------------------------------------------------
+ */
+
+void
+table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid)
+{
+ Relation rel = scan->rs_rd;
+ const TableAmRoutine *tableam = rel->rd_tableam;
+
+ /*
+ * We don't expect direct calls to table_tuple_get_latest_tid with valid
+ * CheckXidAlive for catalog or regular tables. See detailed comments in
+ * xact.c where these variables are declared.
+ */
+ if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
+ elog(ERROR, "unexpected table_tuple_get_latest_tid call during logical decoding");
+
+ /*
+ * Since this can be called with user-supplied TID, don't trust the input
+ * too much.
+ */
+ if (!tableam->tuple_tid_valid(scan, tid))
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
+ errmsg("tid (%u, %u) is not valid for relation \"%s\"",
+ ItemPointerGetBlockNumberNoCheck(tid),
+ ItemPointerGetOffsetNumberNoCheck(tid),
+ RelationGetRelationName(rel))));
+
+ tableam->tuple_get_latest_tid(scan, tid);
+}
+
+
+/* ----------------------------------------------------------------------------
+ * Functions to make modifications a bit simpler.
+ * ----------------------------------------------------------------------------
+ */
+
+/*
+ * simple_table_tuple_insert - insert a tuple
+ *
+ * Currently, this routine differs from table_tuple_insert only in supplying a
+ * default command ID and not allowing access to the speedup options.
+ */
+void
+simple_table_tuple_insert(Relation rel, TupleTableSlot *slot)
+{
+ table_tuple_insert(rel, slot, GetCurrentCommandId(true), 0, NULL);
+}
+
+/*
+ * simple_table_tuple_delete - delete a tuple
+ *
+ * This routine may be used to delete a tuple when concurrent updates of
+ * the target tuple are not expected (for example, because we have a lock
+ * on the relation associated with the tuple). Any failure is reported
+ * via ereport().
+ */
+void
+simple_table_tuple_delete(Relation rel, ItemPointer tid, Snapshot snapshot)
+{
+ TM_Result result;
+ TM_FailureData tmfd;
+
+ result = table_tuple_delete(rel, tid,
+ GetCurrentCommandId(true),
+ snapshot, InvalidSnapshot,
+ true /* wait for commit */ ,
+ &tmfd, false /* changingPart */ );
+
+ switch (result)
+ {
+ case TM_SelfModified:
+ /* Tuple was already updated in current command? */
+ elog(ERROR, "tuple already updated by self");
+ break;
+
+ case TM_Ok:
+ /* done successfully */
+ break;
+
+ case TM_Updated:
+ elog(ERROR, "tuple concurrently updated");
+ break;
+
+ case TM_Deleted:
+ elog(ERROR, "tuple concurrently deleted");
+ break;
+
+ default:
+ elog(ERROR, "unrecognized table_tuple_delete status: %u", result);
+ break;
+ }
+}
+
+/*
+ * simple_table_tuple_update - replace a tuple
+ *
+ * This routine may be used to update a tuple when concurrent updates of
+ * the target tuple are not expected (for example, because we have a lock
+ * on the relation associated with the tuple). Any failure is reported
+ * via ereport().
+ */
+void
+simple_table_tuple_update(Relation rel, ItemPointer otid,
+ TupleTableSlot *slot,
+ Snapshot snapshot,
+ bool *update_indexes)
+{
+ TM_Result result;
+ TM_FailureData tmfd;
+ LockTupleMode lockmode;
+
+ result = table_tuple_update(rel, otid, slot,
+ GetCurrentCommandId(true),
+ snapshot, InvalidSnapshot,
+ true /* wait for commit */ ,
+ &tmfd, &lockmode, update_indexes);
+
+ switch (result)
+ {
+ case TM_SelfModified:
+ /* Tuple was already updated in current command? */
+ elog(ERROR, "tuple already updated by self");
+ break;
+
+ case TM_Ok:
+ /* done successfully */
+ break;
+
+ case TM_Updated:
+ elog(ERROR, "tuple concurrently updated");
+ break;
+
+ case TM_Deleted:
+ elog(ERROR, "tuple concurrently deleted");
+ break;
+
+ default:
+ elog(ERROR, "unrecognized table_tuple_update status: %u", result);
+ break;
+ }
+}
+
+
+/* ----------------------------------------------------------------------------
+ * Helper functions to implement parallel scans for block oriented AMs.
+ * ----------------------------------------------------------------------------
+ */
+
+Size
+table_block_parallelscan_estimate(Relation rel)
+{
+ return sizeof(ParallelBlockTableScanDescData);
+}
+
+Size
+table_block_parallelscan_initialize(Relation rel, ParallelTableScanDesc pscan)
+{
+ ParallelBlockTableScanDesc bpscan = (ParallelBlockTableScanDesc) pscan;
+
+ bpscan->base.phs_relid = RelationGetRelid(rel);
+ bpscan->phs_nblocks = RelationGetNumberOfBlocks(rel);
+ /* compare phs_syncscan initialization to similar logic in initscan */
+ bpscan->base.phs_syncscan = synchronize_seqscans &&
+ !RelationUsesLocalBuffers(rel) &&
+ bpscan->phs_nblocks > NBuffers / 4;
+ SpinLockInit(&bpscan->phs_mutex);
+ bpscan->phs_startblock = InvalidBlockNumber;
+ pg_atomic_init_u64(&bpscan->phs_nallocated, 0);
+
+ return sizeof(ParallelBlockTableScanDescData);
+}
+
+void
+table_block_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan)
+{
+ ParallelBlockTableScanDesc bpscan = (ParallelBlockTableScanDesc) pscan;
+
+ pg_atomic_write_u64(&bpscan->phs_nallocated, 0);
+}
+
+/*
+ * find and set the scan's startblock
+ *
+ * Determine where the parallel seq scan should start. This function may be
+ * called many times, once by each parallel worker. We must be careful only
+ * to set the startblock once.
+ */
+void
+table_block_parallelscan_startblock_init(Relation rel,
+ ParallelBlockTableScanWorker pbscanwork,
+ ParallelBlockTableScanDesc pbscan)
+{
+ BlockNumber sync_startpage = InvalidBlockNumber;
+
+ /* Reset the state we use for controlling allocation size. */
+ memset(pbscanwork, 0, sizeof(*pbscanwork));
+
+ StaticAssertStmt(MaxBlockNumber <= 0xFFFFFFFE,
+ "pg_nextpower2_32 may be too small for non-standard BlockNumber width");
+
+ /*
+ * We determine the chunk size based on the size of the relation. First we
+ * split the relation into PARALLEL_SEQSCAN_NCHUNKS chunks but we then
+ * take the next highest power of 2 number of the chunk size. This means
+ * we split the relation into somewhere between PARALLEL_SEQSCAN_NCHUNKS
+ * and PARALLEL_SEQSCAN_NCHUNKS / 2 chunks.
+ */
+ pbscanwork->phsw_chunk_size = pg_nextpower2_32(Max(pbscan->phs_nblocks /
+ PARALLEL_SEQSCAN_NCHUNKS, 1));
+
+ /*
+ * Ensure we don't go over the maximum chunk size with larger tables. This
+ * means we may get much more than PARALLEL_SEQSCAN_NCHUNKS for larger
+ * tables. Too large a chunk size has been shown to be detrimental to
+ * synchronous scan performance.
+ */
+ pbscanwork->phsw_chunk_size = Min(pbscanwork->phsw_chunk_size,
+ PARALLEL_SEQSCAN_MAX_CHUNK_SIZE);
+
+retry:
+ /* Grab the spinlock. */
+ SpinLockAcquire(&pbscan->phs_mutex);
+
+ /*
+ * If the scan's startblock has not yet been initialized, we must do so
+ * now. If this is not a synchronized scan, we just start at block 0, but
+ * if it is a synchronized scan, we must get the starting position from
+ * the synchronized scan machinery. We can't hold the spinlock while
+ * doing that, though, so release the spinlock, get the information we
+ * need, and retry. If nobody else has initialized the scan in the
+ * meantime, we'll fill in the value we fetched on the second time
+ * through.
+ */
+ if (pbscan->phs_startblock == InvalidBlockNumber)
+ {
+ if (!pbscan->base.phs_syncscan)
+ pbscan->phs_startblock = 0;
+ else if (sync_startpage != InvalidBlockNumber)
+ pbscan->phs_startblock = sync_startpage;
+ else
+ {
+ SpinLockRelease(&pbscan->phs_mutex);
+ sync_startpage = ss_get_location(rel, pbscan->phs_nblocks);
+ goto retry;
+ }
+ }
+ SpinLockRelease(&pbscan->phs_mutex);
+}
+
+/*
+ * get the next page to scan
+ *
+ * Get the next page to scan. Even if there are no pages left to scan,
+ * another backend could have grabbed a page to scan and not yet finished
+ * looking at it, so it doesn't follow that the scan is done when the first
+ * backend gets an InvalidBlockNumber return.
+ */
+BlockNumber
+table_block_parallelscan_nextpage(Relation rel,
+ ParallelBlockTableScanWorker pbscanwork,
+ ParallelBlockTableScanDesc pbscan)
+{
+ BlockNumber page;
+ uint64 nallocated;
+
+ /*
+ * The logic below allocates block numbers out to parallel workers in a
+ * way that each worker will receive a set of consecutive block numbers to
+ * scan. Earlier versions of this would allocate the next highest block
+ * number to the next worker to call this function. This would generally
+ * result in workers never receiving consecutive block numbers. Some
+ * operating systems would not detect the sequential I/O pattern due to
+ * each backend being a different process which could result in poor
+ * performance due to inefficient or no readahead. To work around this
+ * issue, we now allocate a range of block numbers for each worker and
+ * when they come back for another block, we give them the next one in
+ * that range until the range is complete. When the worker completes the
+ * range of blocks we then allocate another range for it and return the
+ * first block number from that range.
+ *
+ * Here we name these ranges of blocks "chunks". The initial size of
+ * these chunks is determined in table_block_parallelscan_startblock_init
+ * based on the size of the relation. Towards the end of the scan, we
+ * start making reductions in the size of the chunks in order to attempt
+ * to divide the remaining work over all the workers as evenly as
+ * possible.
+ *
+ * Here pbscanwork is local worker memory. phsw_chunk_remaining tracks
+ * the number of blocks remaining in the chunk. When that reaches 0 then
+ * we must allocate a new chunk for the worker.
+ *
+ * phs_nallocated tracks how many blocks have been allocated to workers
+ * already. When phs_nallocated >= rs_nblocks, all blocks have been
+ * allocated.
+ *
+ * Because we use an atomic fetch-and-add to fetch the current value, the
+ * phs_nallocated counter will exceed rs_nblocks, because workers will
+ * still increment the value, when they try to allocate the next block but
+ * all blocks have been allocated already. The counter must be 64 bits
+ * wide because of that, to avoid wrapping around when rs_nblocks is close
+ * to 2^32.
+ *
+ * The actual block to return is calculated by adding the counter to the
+ * starting block number, modulo nblocks.
+ */
+
+ /*
+ * First check if we have any remaining blocks in a previous chunk for
+ * this worker. We must consume all of the blocks from that before we
+ * allocate a new chunk to the worker.
+ */
+ if (pbscanwork->phsw_chunk_remaining > 0)
+ {
+ /*
+ * Give them the next block in the range and update the remaining
+ * number of blocks.
+ */
+ nallocated = ++pbscanwork->phsw_nallocated;
+ pbscanwork->phsw_chunk_remaining--;
+ }
+ else
+ {
+ /*
+ * When we've only got PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS chunks
+ * remaining in the scan, we half the chunk size. Since we reduce the
+ * chunk size here, we'll hit this again after doing
+ * PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS at the new size. After a few
+ * iterations of this, we'll end up doing the last few blocks with the
+ * chunk size set to 1.
+ */
+ if (pbscanwork->phsw_chunk_size > 1 &&
+ pbscanwork->phsw_nallocated > pbscan->phs_nblocks -
+ (pbscanwork->phsw_chunk_size * PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS))
+ pbscanwork->phsw_chunk_size >>= 1;
+
+ nallocated = pbscanwork->phsw_nallocated =
+ pg_atomic_fetch_add_u64(&pbscan->phs_nallocated,
+ pbscanwork->phsw_chunk_size);
+
+ /*
+ * Set the remaining number of blocks in this chunk so that subsequent
+ * calls from this worker continue on with this chunk until it's done.
+ */
+ pbscanwork->phsw_chunk_remaining = pbscanwork->phsw_chunk_size - 1;
+ }
+
+ if (nallocated >= pbscan->phs_nblocks)
+ page = InvalidBlockNumber; /* all blocks have been allocated */
+ else
+ page = (nallocated + pbscan->phs_startblock) % pbscan->phs_nblocks;
+
+ /*
+ * Report scan location. Normally, we report the current page number.
+ * When we reach the end of the scan, though, we report the starting page,
+ * not the ending page, just so the starting positions for later scans
+ * doesn't slew backwards. We only report the position at the end of the
+ * scan once, though: subsequent callers will report nothing.
+ */
+ if (pbscan->base.phs_syncscan)
+ {
+ if (page != InvalidBlockNumber)
+ ss_report_location(rel, page);
+ else if (nallocated == pbscan->phs_nblocks)
+ ss_report_location(rel, pbscan->phs_startblock);
+ }
+
+ return page;
+}
+
+/* ----------------------------------------------------------------------------
+ * Helper functions to implement relation sizing for block oriented AMs.
+ * ----------------------------------------------------------------------------
+ */
+
+/*
+ * table_block_relation_size
+ *
+ * If a table AM uses the various relation forks as the sole place where data
+ * is stored, and if it uses them in the expected manner (e.g. the actual data
+ * is in the main fork rather than some other), it can use this implementation
+ * of the relation_size callback rather than implementing its own.
+ */
+uint64
+table_block_relation_size(Relation rel, ForkNumber forkNumber)
+{
+ uint64 nblocks = 0;
+
+ /* InvalidForkNumber indicates returning the size for all forks */
+ if (forkNumber == InvalidForkNumber)
+ {
+ for (int i = 0; i < MAX_FORKNUM; i++)
+ nblocks += smgrnblocks(RelationGetSmgr(rel), i);
+ }
+ else
+ nblocks = smgrnblocks(RelationGetSmgr(rel), forkNumber);
+
+ return nblocks * BLCKSZ;
+}
+
+/*
+ * table_block_relation_estimate_size
+ *
+ * This function can't be directly used as the implementation of the
+ * relation_estimate_size callback, because it has a few additional parameters.
+ * Instead, it is intended to be used as a helper function; the caller can
+ * pass through the arguments to its relation_estimate_size function plus the
+ * additional values required here.
+ *
+ * overhead_bytes_per_tuple should contain the approximate number of bytes
+ * of storage required to store a tuple above and beyond what is required for
+ * the tuple data proper. Typically, this would include things like the
+ * size of the tuple header and item pointer. This is only used for query
+ * planning, so a table AM where the value is not constant could choose to
+ * pass a "best guess".
+ *
+ * usable_bytes_per_page should contain the approximate number of bytes per
+ * page usable for tuple data, excluding the page header and any anticipated
+ * special space.
+ */
+void
+table_block_relation_estimate_size(Relation rel, int32 *attr_widths,
+ BlockNumber *pages, double *tuples,
+ double *allvisfrac,
+ Size overhead_bytes_per_tuple,
+ Size usable_bytes_per_page)
+{
+ BlockNumber curpages;
+ BlockNumber relpages;
+ double reltuples;
+ BlockNumber relallvisible;
+ double density;
+
+ /* it should have storage, so we can call the smgr */
+ curpages = RelationGetNumberOfBlocks(rel);
+
+ /* coerce values in pg_class to more desirable types */
+ relpages = (BlockNumber) rel->rd_rel->relpages;
+ reltuples = (double) rel->rd_rel->reltuples;
+ relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
+
+ /*
+ * HACK: if the relation has never yet been vacuumed, use a minimum size
+ * estimate of 10 pages. The idea here is to avoid assuming a
+ * newly-created table is really small, even if it currently is, because
+ * that may not be true once some data gets loaded into it. Once a vacuum
+ * or analyze cycle has been done on it, it's more reasonable to believe
+ * the size is somewhat stable.
+ *
+ * (Note that this is only an issue if the plan gets cached and used again
+ * after the table has been filled. What we're trying to avoid is using a
+ * nestloop-type plan on a table that has grown substantially since the
+ * plan was made. Normally, autovacuum/autoanalyze will occur once enough
+ * inserts have happened and cause cached-plan invalidation; but that
+ * doesn't happen instantaneously, and it won't happen at all for cases
+ * such as temporary tables.)
+ *
+ * We test "never vacuumed" by seeing whether reltuples < 0.
+ *
+ * If the table has inheritance children, we don't apply this heuristic.
+ * Totally empty parent tables are quite common, so we should be willing
+ * to believe that they are empty.
+ */
+ if (curpages < 10 &&
+ reltuples < 0 &&
+ !rel->rd_rel->relhassubclass)
+ curpages = 10;
+
+ /* report estimated # pages */
+ *pages = curpages;
+ /* quick exit if rel is clearly empty */
+ if (curpages == 0)
+ {
+ *tuples = 0;
+ *allvisfrac = 0;
+ return;
+ }
+
+ /* estimate number of tuples from previous tuple density */
+ if (reltuples >= 0 && relpages > 0)
+ density = reltuples / (double) relpages;
+ else
+ {
+ /*
+ * When we have no data because the relation was never yet vacuumed,
+ * estimate tuple width from attribute datatypes. We assume here that
+ * the pages are completely full, which is OK for tables but is
+ * probably an overestimate for indexes. Fortunately
+ * get_relation_info() can clamp the overestimate to the parent
+ * table's size.
+ *
+ * Note: this code intentionally disregards alignment considerations,
+ * because (a) that would be gilding the lily considering how crude
+ * the estimate is, (b) it creates platform dependencies in the
+ * default plans which are kind of a headache for regression testing,
+ * and (c) different table AMs might use different padding schemes.
+ */
+ int32 tuple_width;
+
+ tuple_width = get_rel_data_width(rel, attr_widths);
+ tuple_width += overhead_bytes_per_tuple;
+ /* note: integer division is intentional here */
+ density = usable_bytes_per_page / tuple_width;
+ }
+ *tuples = rint(density * (double) curpages);
+
+ /*
+ * We use relallvisible as-is, rather than scaling it up like we do for
+ * the pages and tuples counts, on the theory that any pages added since
+ * the last VACUUM are most likely not marked all-visible. But costsize.c
+ * wants it converted to a fraction.
+ */
+ if (relallvisible == 0 || curpages <= 0)
+ *allvisfrac = 0;
+ else if ((double) relallvisible >= curpages)
+ *allvisfrac = 1;
+ else
+ *allvisfrac = (double) relallvisible / curpages;
+}